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Abstract: Aiming at the problem that the tracking accuracy of unmanned vehicle path tracking
preview control is greatly affected by the preview time, a BP neural network adaptive preview control
method is proposed. Considering that the prediction effect of the BP neural network is limited to the
initial value setting, a preview time adjuster based on the SSA-BP neural network was established;
by establishing the relationship between the front wheel steering angle and the preview time, a new
direction control driver model was formed. The driver model and the preview time adjuster together
constitute an adaptive steering controller. In order to solve the influence of the longitudinal speed
change on the vehicle stability, a PID variable-speed controller was designed to realize the horizontal
and vertical coordinated control of the path tracking of the unmanned vehicle. Compared with the
fixed preview time and the BP preview time control method, the results show that the proposed
method has strong tracking ability when driving at various speeds on three consecutive curves and
Alt 3 test roads, and can be used when driving at a variable speed.
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1. Introduction

Driverless vehicles represent the key development direction of automobiles, and
the path tracking control is one of the key technologies needed in order to realize the
accurate path tracking and planning of driverless vehicles and ensure their safe and stable
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driving [1,2]. In the study of path tracking control, the control methods can be divided into
pre-aim and non-pre-aim, according to the source of external information. In non-pre-aim
control, a composite control strategy was used to design the path-tracking controller [3,4];
in order to solve the problem of accurate tracking in curves, an adaptive control method

was applied [5]. Furthermore, in order to solve the problem of vehicle rollover caused
by excessive roll angle during cornering, a roll angle constraint was added to the model
predictive controller design to achieve the limitation of body roll angle, but the impact of
the vehicle’s nonlinear characteristics on stability was not considered [6]. Most of the above
studies use the feedback principle approach, which usually does not consider the driver’s
predictive role in the “human-vehicle-road” system for vehicle maneuvering behavior.
However, human drivers are used to making reasonable driving decisions by observing
the road ahead during the driving process [7].

Pre-aim control is a path-tracking control method based on the driver model that
integrates the driver’s forward view of the path with the estimation of the vehicle motion
state, and is one of the main research directions in driverless vehicles [8]. According to the
different types of tasks, the driver models can be divided into directional control driver
Attribution (CC BY) license (https:// ~ models, speed control driver models, and speed directional control driver models [9].
creativecommons.org/licenses /by / In [10], the optimal pre-aim theory was proposed for the first time, and the driver’s pre-aim
40/). role was considered in the path-tracking controller design, which is simple in structure,
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easy to implement, and has high control accuracy. Five driver models were proposed
based on the driver pre-aim theory using different assumptions, each with its own focus on
the control effect [11]. The trajectory pre-aim controller was designed using the trajectory
feedforward + vehicle state feedback method to improve the tracking accuracy when the
vehicle dynamically changes lanes [12]. The arc length pre-aim method was proposed to
improve the robustness and computational speed of the pre-aim controller [13]. The above
methods do not take into account the tracking characteristics of real drivers, and cannot
take into account safety, stability, and comfort at the same time. The pre-aim distance and
time are key parameters in the pre-aim control theory, and the above study designed them
as fixed and constant parameters, which will produce the problem of poor adaptability and
poor tracking effect of tracking control for complex driving conditions [14].

The authors of [15] designed a pre-aim distance adaptive tracking controller based on
the pre-aim angle deviation, which achieved more accuracy in a tracking task when the
initial deviation was large, but only for low-speed conditions. Furthermore, by analyzing
the influence of parameters on the path-tracking effect during the driving process, the
variable weight multipoint pre-aim method was used to improve the stability under the
low-adhesion-coefficient road surface [16,17]; the variable pre-aim distance controller was
designed according to the current vehicle speed using fuzzy rules [18], based on which the
influence of road curvature was considered to design the dual pre-aim point transverse—
longitudinal controller, in order to complete the tracking task of the vehicle within a safe
speed range under the large curvature path [19]. Fuzzy control mostly uses the operating
behavior of skilled drivers to develop fuzzy rules and, in order to eliminate the influence of
human factors, adaptive optimization is used to achieve dynamic adjustment of the pre-aim
distance [20]. On study analyzed the influence of vehicle speed and road curvature on the
tracking path, and proposed a particle swarm optimization (PSO) pre-aim control method
to achieve adaptability to complex road conditions [21]. The author of [22] investigated the
relationship between pre-aim time and road curvature, and proposed a selection method
that provided a new research direction to study control-variable pre-aim time control;
meanwhile, other studies used driving deviation to design an optimization function to
adaptively select pre-aim time [23,24]. The authors of [25] proposed adaptive pre-aim time
based on a BP neural network, and this method can reduce the lateral cumulative tracking
error under different driving modes, but its control effect is limited by the influence of
the initial value of the BP neural network. BP neural networks have the advantages of
nonlinearity, fault tolerance, and adaptivity but, due to the disadvantages of the large
influence of the initial value on the training effect and the tendency to fall into local
optimization, their prediction accuracy is not high enough when used as predictors in
some specific applications. Therefore, intelligent algorithms such as genetic algorithms
(GAs) [26,27], particle swarm optimization (PSO) [28,29], and cuckoo search (CS) [30] are
used to optimize the initial weights and thresholds of BP neural networks.

This paper establishes a new directional control driver model based on the theory of
pre-aim control and the design of a decision mechanism based on the deviation relationship
between the current position and the pre-aim point. We used the sparrow search algorithm
to optimize the initial value of the BP neural network and improve its prediction accuracy,
so as to establish the SSA-BP neural network pre-aim time adjuster. Considering that the
change in the vehicle’s longitudinal speed has a great influence on the tracking effect, the
current longitudinal acceleration was solved by a PID algorithm to achieve the control
of vehicle speed. We built a combined simulation model with CarSim and Simulink
to verify the effectiveness of the SSA-BP-neural-network-based path tracking adaptive
pre-aim controller.

2. Vehicle Model

The influence of the steering system on the vertical direction of the vehicle is small
when the vehicle is driven on a dry road. To simplify the analysis, a two-degrees-of-freedom
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vehicle model with lateral tilt and a transverse pendulum was chosen as the reference
model in this paper, and its differential equations are as follows:
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where v, is the longitudinal vehicle speed, B is the lateral deflection angle of the center of
mass, w is the angular velocity of transverse swing, J; is the front wheel angle, m is the
vehicle weight, I, is the rotational inertia, C Y and C, are the lateral deflection stiffness of
the front and rear tires, respectively, and Iy and I, are the distances from the front and rear
axles, respectively, to the center of mass of the vehicle.

Selecting state vectors x = [B;w] and u = Jf, the vehicle state space expression is as
follows [11]:
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3. SSA-BP-Neural-Network-Based Adaptive Pre-Aim Control for Path Tracking
3.1. Overall Control Scheme

The SSA-BP-neural-network-based adaptive pre-aim control scheme for unmanned
vehicle path tracking is shown in Figure 1, and consists of a lateral corner controller
and a longitudinal variable-speed controller. The lateral corner controller includes the
SSA-BP neural network pre-aim time adjuster and a driver direction control model. The
pre-aim time adjuster is used to achieve an accurate path-tracking effect, and the pre-aim
time is predicted dynamically based on the vehicle’s state information (vehicle speed
v, pre-aim distance y;) at the current moment using the BP neural network. The initial
values of the BP neural network are optimized offline using the sparrow search algorithm
(SSA) to overcome the problem that the network is susceptible to local minima due to the
nonlinear characteristics of the vehicle, and to obtain the initial weights and thresholds for
optimization. The driver direction control model includes a pre-aim control model based
on the driving position and heading deviation of the vehicle, and solves for the current
steering wheel angle J of the vehicle through the steering wheel turn decision mechanism.
Since the change in longitudinal speed will have an impact on the path tracking when
the vehicle is driving on the actual road, the longitudinal variable-speed controller is
established by using a PID control algorithm. The longitudinal speed error e, is adjusted
according to the principle of fast and smooth tracking of the target speed, and the desired
longitudinal acceleration ay is calculated, while the acceleration is limited in order to avoid
the occurrence of rapid speed change, and the longitudinal speed change function of the
vehicle is realized under the premise of ensuring the comfort of the ride.
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Figure 1. Block diagram of adaptive pre-aim control of path tracking based on an SSA-BP
neural network.

3.2. Directional Control Driver Model
3.2.1. Pre-Aim Control Model
The human driver is constantly making decisions based on the curvature of the road

and the current steering wheel rotation angle during the driving process, which follows the
following relationship:

537/0
P= L ®)
where p is the road curvature, ds;, is the steering wheel rotation angle, is;, is the vehicle’s
steering system ratio, and L = I + I, is the wheelbase.
Figure 2 shows the optimal curvature model of the relative vehicle-road position; f(t)
is the desired trajectory of the road, and the vehicle travels to the desired point C after
pre-aim time £p,.

0

Figure 2. Optimal curvature model of relative vehicle-road position.

The lateral displacement of the vehicle at moment ¢y + ¢, is:

t2
y(to+tp) = y(to) + tpy(to) + f y(to) 4

The lateral acceleration is:

. o,
ylto) = m =0vp ®)
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where R is the turning radius of the vehicle.

Combining Equations (4) and (5) yields the road curvature:

p_zb%+%)—y%)—%ﬂM] ©)
- 2
(0tp)
Substituting Equation (6) into Equation (3) yields:
. 2igyL [y(fo + tp) - y(to) - fpy(fo)]

sw = @)

(0t)°

Equation (7) gives the steering wheel angle calculated based on the deviation of the
center of mass of the vehicle from the pre-aim point, without considering the transient
angular deviation of the vehicle at that point.

Figure 3 shows the prediction model of vehicle trajectory under constant transverse
pendulum angular velocity; xoy is the vehicle coordinate system, XOY is the geodesic
coordinate system, point G is the vehicle’s center of mass, point M is the circle center of the
pre-aim path, y; is the lateral distance between the pre-aim point C and the vehicle’s center
of mass, x, and y, are the vehicle displacements along the x and y directions, respectively,

and the combined velocity of v = /03 + v} vehicles is kept constant. Assuming that the

unmanned vehicle runs to the pre-aim point C at time ¢, , the angular velocity of the
transverse pendulum is constant, and there is no lateral position deviation during the
motion, the vehicle moves in a uniform circular motion, and its combined velocity direction
is tangential to the desired path.

AY

Desired path ,”

0 >
Figure 3. Vehicle trajectory prediction model under constant yaw rate.

According to the geometric relationship yielding CGA = CGB + 8, by the definition
of the chord tangent angle we can know that CGB = g, so CGA = % + B to get the vehicle
center of mass and the lateral distance y; of the pre-aim point.

0
w=tan(3+)x, ®)
The vehicle moves in a uniform circular motion to obtain a circular angle 6.
0 = wtp )
Vehicle longitudinal displacement x:

Xy = Uxtp (10)
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From Equation (9), the ideal angular velocity of the vehicle’s transverse pendulum wy:
tp
Substituting the above equation into Equation (8) gives:
2tan! (Z—i - [3)

wy = (12)
tp

The vehicle moves in a uniform circular motion during the pre-aim time, and the
vehicle is in a steady state, i.e., x=0.

p=0 13
{ P (13)

Substituting the above equation into Equation (2) yields the steady-state gain G, of
the theoretical transverse pendulum angular velocity w; versus steering wheel rotation
angle dg.

G = L(1+Ko?) (14)
Lsw
m(1,C; — 1¢Cy)

where the vehicle stability factor k = 26,C12

The ideal steering wheel turning angle ds;+ under consideration of angular deviation
is obtained by combining Equations (12) and (14):

w _ 2len(atg) ~ )
Go en

5swt = (15)

3.2.2. Steering Wheel Cornering Decision Mechanism

In Figure 2, [; is the current heading and I, is the heading at the pre-aim point. e,
is the deviation of the heading from the current position to the presight point—negative
clockwise and positive counterclockwise. e, is the deviation of the position from the center
of mass to [,—negative left and positive right. The human driver makes steering decisions
by observing position deviation e, and heading deviation e, together, so the design of the
driver model also requires dynamic selection based on both. If the two can cancel one
another out, the vehicle is in equilibrium and the control output is zero; conversely, control
is performed according to the following decision method:

1
o + . 2
6 = Sax + Omin~ 2 + (eaifp + EaTeP)z’éstrtsswt 70 (16)
0/55w+5swt =0

where Sy = max{0sw, Sswt}, Omin = Min{dsw, dswt }-

In summary, the driver model depends mainly on the forward-looking role of the
pre-aim control, and the pre-aim model takes the road state at the pre-aim point as the
basis for estimation, according to Equations (7) and (15), so the control amount is directly
related to the pre-aim time. When actually driving, drivers will take different pre-sighting
times for different road conditions. In this study, the SSA-BP neural network pre-aim time
adjuster described in Section 3.3 was used to simulate the pre-aim time selection law of
human drivers in different driving environments, and the directional driver control model
was established according to Equation (16).
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3.3. SSA-BP Neural Network Pre-Aim Time Adjuster
3.3.1. BP Neural Network

The BP neural network adjusts the corresponding weights and thresholds according to
the fastest gradient descent method to minimize the total network error; it mainly consists
of an input layer, an implicit layer, and an output layer. The number of neurons in the
hidden layer is set according to the following equation:

9= Vitk+a (17)

where g is the number of neurons in the hidden layer, j and k are the number of neurons in
the input and output layers, respectively, and a is a random number between 1 and 10.

In this study, the BP neural network was applied to predict the pre-aim time values
under different vehicle states, and a 2-5-1 network structure was used. The input quantities
were the current vehicle speed and the pre-aim distance, and the output quantity was the
pre-aim time in a certain vehicle state. The sigmoid function was used for the excitation
function of the nodes in the implicit layer, the purelin function was used for the excitation
function of the nodes in the output layer, the mean square error function (MSE) was used
for the performance function, the maximum number of iterations was 100, the training
result error was set to 0.00001, and the learning efficiency was set to 0.01.

3.3.2. Sparrow Search Algorithm (SSA)

The sparrow search algorithm (SSA) is a population intelligence optimization method
based on the foraging and anti-predation behavior of sparrow populations [31]. The
authors of [32] used standard test functions to verify the performance of the SSA algorithm;
the results showed that it outperforms conventional algorithms such as particle swarm
algorithms and gray wolf optimization algorithms in terms of accuracy, convergence speed,
and avoidance of becoming trapped in local optimization. Applying SSA to optimize the
initial weights and thresholds of the BP neural network offline, the first step is to obtain the
dimension j of the optimization problem for the SSA calculation based on the BP neural
network structure, and to set the number of iterations and the sparrow size as follows:

j=RN+N+NL+L (18)

where R is the number of input nodes, N is the number of implied nodes, and L is the
number of output nodes.

The absolute value of the total prediction error generated by the random initial weights
and thresholds of the BP neural network is chosen as the sparrow fitness value, as follows:

fitness = sum(abs(p — b)) (19)

where p is the predicted output value of the network and b is the actual output value of
the network.

Sparrow populations are divided into discoverers and joiners, with discoverers usually
having easier access to food sources and providing foraging direction for the entire popula-
tion; joiners obtain food by following discoverers. The identity of the two is dynamic, but
the proportion of the population is constant. The smaller the fitness value in the SSA, the
stronger the predation ability, so the finder has a wider search area than the joiner, and its
location update is described as follows:

Xttt = ) X (i ) Ro < ST (20)
b Xt +QL,Ry > ST

where f represents the current number of iterations, i is the number of sparrows, j is the
dimensionality of the optimization problem, X! j denotes the positional information of
the ¢-th optimization of the i-th sparrow in the j-th dimension, and itery,;x denotes the
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maximum number of iterations. « € (0, 1] is a random number, R, € (0,1] denotes the
warning value, and ST € [0.5,1] denotes the safety value—0.8 was chosen for this paper.
Ry < ST indicates that the population is in a safe state and can search for food in a wide
area; Ry > ST indicates the presence of a predator around an individual, and informs the
whole population to abandon the search and fly to a safe area immediately. Q is a random
number subject to normal distribution, and L is an all-one matrix of 1 x d.

Some accessions with poor foraging locations are more likely to fly to other locations
to forage for more food sources. The updated descriptions of the accessions’ locations are
as follows:

Xwﬂrsf - Xt .
Qexp| ——7—2)i> 73

(21)
t+1 +1A+T 4
X+ ‘X,{j x5 ’A Li<l

e
Xl.,j =

where Xp is the optimal position currently occupied by the discoverer, X5t denotes the
current global worst position, A is a 1 x d matrix with each element being 1 or —1, and

AT = AT (AAT) ! si > % indicates that the i-th accession with a lower fitness value is not
getting food, is starving, and needs to fly to other places to forage for more food.

Ten percent of individuals were selected for vigilance work, and the entire population
was in an anti-predatory state when in danger. The location of the vigilantes was updated
and described as follows:

t t t
%m+ﬂ&fxmwﬁ>&
X1 =

t t
ij Xworst

(22)
T | i

where Xj,; is the current global optimal position, T is a normal random number obeying
a 0-1 distribution as the control step parameter, H € [—1, 1] is a random number, f;, f,
and f;, denote the current individual sparrow fitness value and the current global best and
worst fitness values, respectively, and ¢ is a constant to prevent the denominator from being

zero, which was set to 10e~10 in this study.

3.3.3. Pre-Aim Time Adjuster

The training process of BP neural networks often treats the characteristics of training
samples as general properties, making it prone to overfitting and leading to large training
errors, and the training effect depends heavily on the selection of initial weights and
thresholds. To solve the above problems, the initial values of the BP neural network were
optimized offline using the SSA algorithm described in Section 3.3.2, and the optimization
results were used for network training. The optimized results can effectively prevent the
BP neural network from falling into the problem of local minima due to improper initial
value selection, and can improve the convergence speed at the same time.

1. Firstly, the topology of the BP neural network and the input and output variables are
determined, and the algorithm stopping condition is set as the maximum error value
< 674.

€train ’

2. The weights and thresholds of the BP neural network are initialized, and the parame-
ters related to the SSA algorithm, such as (iteryqx, T, ST, etc.), are defined;

3. The fitness values of the sparrow population are calculated and ranked from smallest
to largest to find the current optimal and worst values, where the initial fitness value
is the training error of the random initial value of the BP neural network;

4. Equations (20)—(22) are used to update the location of finders, joiners, and vigilantes,
respectively;

5. The optimal value of the sparrow position for this iteration is obtained, and the
position is updated if the new position is better than the optimal value of the previous
iteration; otherwise, no position update is performed;
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6.  If the maximum number of iterations iter;;,x = 100 is reached, the search is stopped,
and the global optimum and the best fitness value are output; otherwise, steps 3-5

are repeated;

7. The parameters corresponding to the global optimum of the SSA algorithm are used
as the initial weights and thresholds of the BP neural network, and the network is
trained by inputting training and testing sample sets.

The SSA-BP neural network algorithm flow is shown in Figure 4, and the steps are

as follows:

Determine the neural
network structure

[P

!

Get the global optimal value

Initialize network weights
and thresholds

I

'

Output the optimal initial
value of the BP network

Defining parameters related
to sparrow populations

i

Input training set and test set

Calculate the initial

17

Training Network

population fitness value

Update finder, joiner and
vigilante locations

The population fitness values
were updated to find the best
and worst values.

Figure 4. SSA-BP neural network algorithm flowchart.

Because the trained BP neural network is used to predict the pre-aim time, the estab-
lished SSA-BP neural network is a pre-aim time adjuster. The actual vehicle speed and
pre-aim distance information in each control cycle are input to obtain different pre-aim
times for various vehicle states, and the process is shown in Figure 5.

Actual

Steering
e SSA-BP Neural Pre-aim wheel
Pre-aim Network Pre-aim time .| Directional control comering | Driverless vehicle
i W - -
disance ; : Driver's model model
—>|  time adjuster

Figure 5. SSA-BP neural network pre-aim time adjuster workflow.

4. Simulation Experiments and Analysis

In order to verify the effectiveness of the proposed method (hereafter: the method in
this paper) for path tracking under complex conditions such as continuous large-curvature
curves and variable-speed driving, continuous three-curve roads and Alt 3 test roads were
selected for experiments. The joint simulation model was built in CarSim and Simulink,
the vehicle was selected as the experimental vehicle from CarSim, and the SSA-BP neural
network pre-aim time regulator model was built in Simulink. This was compared with the
fixed pre-aim control method (hereafter referred to as method 1), the BP neural network
adjusted pre-aim control method with random initial values (hereafter referred to as
method 2), and the GWO-BP neural network pre-aim control method (hereafter referred to
as method 3).

Using the direction-controlled driver model described in Section 3.2, different vehicle
speeds, pre-aim distances, and pre-aim times were selected to perform tracking experi-
ments on the reference path (U-turn path), and 20,012 sets of data with tracking errors
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within £0.2 m of the pre-targeting control were used as training samples to train the
SSA-BP neural network. The network training target was reached after 29 iterations
with fast convergence; 53 sets of test samples were used to test the SSA-optimized net-
work, and the results are shown in Figure 6. As can be seen from Table 1, the improved
algorithm has a mean absolute error (MAE) of 2.059 x 1073 a root-mean-square error
(RMSE) of 2.29 x 1072, and a maximum error of 6.156 x 10~2. This pre-aim time regu-
lator has high prediction accuracy; it can reduce the accumulated deviation caused by
understeering during high-speed turns and improve the adaptability to cope with complex
working conditions.

Actual value —#— SSA-BP neural network prediction error value
—#— SSA-BPneural network predicted values 012 GWO-BP neural network prediction error value
1 GWO-BPneural network predicted values —©— BP neural network prediction error value

A —©— BPneural network predicted values

Pre-aim time/ s
Error value/ s

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Test sample/ session Test sample/ session

(@) (b)

Figure 6. Test sample verification results: (a) Comparison of predicted values and true values.
(b) Predicted error values.

Table 1. Performance comparison of different pre-aim time regulators.

Algorithm Maximum Error MAE RMSE
BPNN 0.1362 0.01583 0.047

GWO-BPNN 0.07554 0.004989 0.02331
SSA-BPNN 0.06156 0.002059 0.0229

4.1. Variable-Speed Continuous Three-Curve Roads Tracking Experiment

In this section, the experimental road was composed of three U-bends, the vehicle was
set to drive on dry road, and the speed was set to 36 km/h for 0-410 m and 72 km /h for
410-820 m, after which the vehicle was accelerated to 108 km/h. Thus, the vehicle was
simulated to drive from the city to the full speed range, and the experimental results are
shown in Figure 7. As seen in Figure 7a, the longitudinal variable-speed controller has
fast tracking capability for the target speed, and the rise time is shorter when switching
from low-speed to medium-speed than when switching from medium-speed to high-speed
driving, which can quickly approach and converge to the target speed. Combined with the
lateral error variation results in Figure 7c, this shows that improving the lateral stability of
the vehicle comes at the expense of the longitudinal speed of the vehicle. During the actual
control of the vehicle, the longitudinal velocity is not precisely controlled to the desired
value. This is due to the fact that the PID controller output is the desired longitudinal
acceleration, and due to the nonlinearity and complexity of vehicle dynamics during
high-speed turns, the actual value deviates from the desired value, but it does not have a
significant impact on the overall tracking control performance because it does not break the
control logic of the system, and the actual value can be kept close to the desired value by
adjusting the controller parameters to meet the desired longitudinal control performance.
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Figure 7. Variable-speed continuous-curve simulation results: (a) Longitudinal speed change curve
of the vehicle. (b) Path tracking with different methods. (c) Lateral displacement tracking deviation.
(d) Adaptive change in pre-aim time.

As shown in Figure 7b, the average lateral error of the method in this paper is only
8.538¢* m under various speed conditions, with a high tracking accuracy. The tracking
error of method 1 increases continuously with the increase in the vehicle’s speed; the
lateral error reaches 0.4826 m at 847 m, the oscillation phenomenon appears when the
transition is to straight driving, and at 108 km/h it has seriously deviated from the target
trajectory, and the phenomenon of “drawing 8” appears. Method 2 can achieve accurate
tracking at both low and medium speeds, but when the acceleration increases to 108 km/h,
affected by the BP neural network falling into local minima, the prediction accuracy of
the pre-aim time decreases, the foresight of road changes is insufficient, and the vehicle
suffers from steering lag and oscillation at the exit of the curve, which seriously reduces
the stability of the vehicle. Method 3 is limited by the prediction accuracy of the pre-aim
time regulator, resulting in the inability to implement the path-tracking task. As seen in
Figure 7c, the lateral errors of the method in this paper at the bend are 0.1747 m, 0.2204 m,
and 0.1184 m, respectively, and the accumulated lateral errors can be cancelled out in the
second half of the bend by the driver’s forward-looking action after the change in direction,
indicating that the pre-targeting time-adaptive control can reduce the lateral tracking errors
and achieve the effect of accurate tracking under the variable-speed conditions. Figure 7d
shows the adaptive change in the pre-aim time of the method in this paper, and it can be
seen that the pre-aim time takes different values at different driving speeds, which can
adapt to the changes in the external environment by selecting different control parameters
according to the vehicle driving information and help to achieve accurate tracking under
variable-speed conditions.

4.2. Alt 3 Road Tracking Experiment

The Alt 3 road is a test road incorporating a horizontal slope and a front-to-back slope,
which can comprehensively evaluate the path-tracking controller performance. Figure 8
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shows the simulation results of the Alt 3 test road under different speed conditions. As
can be seen from Figure 8a, the driving trajectories of the three methods overlap with the
target path when the vehicle speed is 36 km/h, and all have a better tracking effect. At
72 km/h, lateral error is increased; from Figure 8d it can be seen that the error direction of
method 1 and this paper’s method, method 2, and method 3 is not consistent; this paper’s
method takes control of the vehicle on the curve at the first turn, indicating that the driver
model can pre-aim the road curvature changes and steering control, and the maximum lat-
eral error is 34% less than in method 1—only 0.3175 m. The vehicle controlled by method 1
takes a period of time to stabilize to zero after exiting the curve, increasing the chance
of vehicle instability. At 108 km/h the method in this paper has a predictive effect on
vehicle speed and road changes, the lateral error variation range is —0.1689 to 0.1842 m,
and because the SSA-optimized neural network has high prediction accuracy, it makes
the lateral error at high speeds significantly lower than that at low and medium speeds,
significantly improving the tracking accuracy under high-speed conditions. Method 2 has
insufficient prediction ability for large-curvature roads (at the second and third curves),
fails to anticipate steering in advance, and fails to compensate for lateral coupling errors
caused by longitudinal speed changes, resulting in body sway. Method 3 seriously deviates
from the lane, and loses tracking ability.
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Figure 8. Cont.
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Figure 8. Alt 3 simulation results at different speeds: (a) 36 km/h path-tracking effect. (b) 36 km/h
lateral tracking error. (c) 72 km/h path-tracking effect. (d) 72 km/h lateral tracking error. (e) 108 km/h
path-tracking effect. (f) 108 km/h lateral tracking error.

Furthermore, the tracking performance of the method in this paper was verified under
variable-speed conditions. The vehicle was set to drive on a dry road at a speed of 36 km/h
for 0410 m, 72 km/h for 410-670 m, and finally accelerate to 108 km/h. Figure 9 shows
the Alt 3 test road simulation results under variable-speed conditions. The method in this
paper eliminates the accumulated error during driving by adaptively changing the pre-aim
time under variable-speed conditions, which not only improves the path-tracking accuracy,
but also reduces the chance of vehicle instability. The vehicle controlled by method 1 has
a smoother tracking curve at the first curve, but at the exit of the second curve under the
dual influence of vehicle acceleration and steering lag, the vehicle has a lateral error of
3.922 m and deviates from the road. Method 2 still has high tracking accuracy at low and
medium speeds, but the tracking error fluctuates more at high speeds, and the stability of
the controlled vehicle is insufficient.
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Figure 9. Simulation results of variable speed on the Alt 3 road: (a) Variable-speed path-tracking
effect. (b) Variable-speed lateral tracking error.

5. Conclusions

Considering the influence of pre-aim time on path tracking in the path tracking pre-
aim control model of unmanned vehicles, this paper constructed an SSA-BP neural network
pre-aim time adjuster under complex road conditions and variable speed conditions to
achieve the adaptive change of pre-aim time and obtain a path tracking adaptive pre-aim
control method.

The main conclusions obtained in this paper are as follows.

1. Based on the vehicle model and the pre-aim control model, we built a “human-
vehicle-road” closed-loop control system and proposed a new directional control
driver model;
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2. The offline optimization of BP neural network primaries by the sparrow search al-
gorithm (SSA) improves the prediction accuracy of the pre-aim time. Considering
the law of pre-aim time selection under different driving conditions, the controller
established by using the directional control driver model was used to conduct simu-
lation experiments on the reference path (U-turn path). The SSA-BP neural network
was trained with the obtained parameter samples to achieve the dynamic selection of
pre-aim time;

3. The longitudinal variable-speed controller was designed to reduce the coupling
effect of longitudinal speed on path tracking, making the method in this paper more
adaptable to a wide range of speed variation and able to achieve accurate path tracking
under a variety of variable-speed working conditions;

4. Through the tracking simulation experiments on two different roads, the results show
that the maximum error value of the method in this paper is only 0.2673 m under the
fixed-speed and variable-speed conditions, providing a new scheme for the research
of path tracking pre-scanning control.

The proposed pre-aim time adjuster in this paper is only related to the vehicle speed
and pre-aim distance during the driving process, and does not consider the road adhesion
coefficient, which will be considered in subsequent studies to make it more consistent with
actual situations.
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