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Abstract: In view of the disadvantages of the traditional high-frequency square wave signal injection
method in the low-speed operation of high-power interior permanent magnet synchronous motor
(IPMSM), such as the large error of rotor position calculation and delay of position update, a method
based on high-frequency square wave signal injection is proposed to obtain an effective vector action
current through oversampling. When the vector is zero, the current changes to not zero, but when the
vector is effective, the current changes greatly. In the traditional sampling and calculation methods,
the change of the zero-vector is ignored, resulting in errors, especially in the case of small power,
and the errors are more obvious. Through the method of oversampling the current of the effective
vector, the high-frequency response current of the effective vector is obtained. Through the reasonable
demodulation method, the high-frequency response current of the effective vector is extracted, and
then the rotor position information is obtained through the phase-locked loop. On this basis, the
influence of the inherent nonlinear characteristics of the motor system and the sampling delay on the
calculation of the rotor position is analyzed, and the error is compensated to obtain a more accurate
rotor position.

Keywords: IPMSM; square wave injection sensorless control; current oversample

1. Introduction

As an energy-saving and environmentally friendly new energy product, electric ve-
hicles have developed rapidly around the world in recent years [1–3]. The permanent
magnet synchronous motor (PMSM) has been proven to be suitable for electric vehicle
drive systems that require high torque density, high precision, and a wide speed range.
In the process of controlling a permanent magnet synchronous motor, the rotor position
and speed information obtained by the position sensor is usually needed to calculate the
out-put voltage vector. However, due to the complex electromagnetic environment of
electric vehicles and harsh operating environments, the position sensor is prone to failure
and lose of position signals [4–6]. In order to improve the reliability of electric vehicle
operations, the research on the sensorless control methods of high-performance permanent
magnet synchronous motors has become a hot issue in recent years [7–9].

The speed sensorless control in the middle and high-speed range is realized by using
the voltage model combined with the respective observers [10–12]. When the PMSM is at
the low-speed stage, it is difficult to obtain the position information by using the observer
because of the small amplitude of the back EMF [13–15]. At present, the main solution is to
get the rotor position information by injecting a high-frequency signal and then designing
a filter or a high-frequency current solution method, based on the salient characteristics
of the IPMSM [16–32]. According to the different injection signal forms, high-frequency
signal injection methods can be divided into the rotating sinusoidal injection method, the
pulse vibration sinusoidal injection method, and the pulse vibration square wave injection
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method. The use of a filter often causes a large delay during the update of the position
information, which reduces the dynamic response performance of the current loop control
system. The estimation results are easily affected by the nonlinear characteristics of the
inverter and the cross-saturation of the inductors.

The main influence of the nonlinear factor of the inverter is the influence of the dead-
time voltage. Reference [20] used the positive sequence component of the current in the
rotating voltage injection method to compensate for the influence of the dead-time of the in-
verter on the negative sequence component and made up for the influence of the dead-time
voltage on the high-frequency signal voltage. References [21–23] propose a reduced-order
extended Kalman filter for filtering and position detection. This method takes into account
factors such as modeling error and sampling noise and improves the anti-interference
ability of the system. Using the square wave signal injection method effectively solves
the influence of the filter. In order to solve the influence of inverter nonlinearity, refer-
ences [24,25] analyze the influence of inverter nonlinearity on the high-frequency injection
signal and the position detection and proposed a compensation strategy and a rotor/flux
position estimation method based on frequency tracking to reduce the estimation error
caused by the inverter nonlinearity. To solve the influence of cross saturation, the demodu-
lation method proposed in reference [26] eliminates the low-pass filter by discretizing the
current in the measurement frame. When the high-frequency square wave voltage injection
scheme is used, the cross-saturation effect should be considered, and a direct compensation
strategy is proposed to reduce the influence of cross-saturation on position estimation.

In addition, researchers also adopted the method of injecting the high-frequency square
wave signal into the d-axis. There are many current demodulation methods proposed to
extract the high-frequency response current, avoiding the use of filters. So, the square wave
injecting method increases the accuracy of position calculation and improves the dynamic
response performance of the system. When using this method to analyze and demodulate
the high-frequency response current, the current changes in each control cycle are always
approximately linear, that is, di/dt = ∆i/∆t. However, in the seven-segment SVPWM
modulation, the zero-vector phase currents flowing in the inverter and motor system under
the action of back EMF are not invariant but decaying gradually. The current rate of change
in the zero-vector phase is not equal to that in the effective vector phase. In the traditional
method and sampling scheme, the current during the action time of the zero-vector is
always considered to be invariant, and the accuracy of the sampling currents will have
large errors that affect the position estimation accuracy. In addition, the traditional method
usually needs three cycles to update the position angle once, resulting in a delay in the
position update.

In reference [27], the current scaling error, bias current, and error of A/D sampling
in the motor control system are analyzed quantitatively, and the influence of the current
measurement error on the accuracy of rotor position estimation is analyzed by taking the
high-frequency injection method for IPMSM as an example. In addition, researchers also
introduced compensation ideal to improve the accuracy of position angle estimation. For
example, a three-dimensional compensation table was designed based on the relationship
between the real rotor position and the convergence position [28], and a double filter
compensation method was designed to eliminate harmonic errors [29].

This paper focuses on the research of the low-speed sensorless control of IPMSM and
proposes a high-frequency square wave signal injection sensorless control method based
on the current oversampling scheme. This method also injects a high-frequency square
wave signal into the stator d-axis. Through current sampling at the beginning and end of
the zero-vector and effective vector, respectively, in one PWM carrier cycle, more current
change information generated by high-frequency signal injection is obtained. Then, the
responding current signal demodulation method is used to extract the high-frequency
response current when the effective vector acts, and the current signal is used to get
more accurate rotor position information through the phase-locked loop. In addition, the
proposed method samples multiple times in one PWM cycle, which improves the update
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frequency of the position angle and the dynamic response performance of the system.
Table 1 is the improvement of the proposed method.

Table 1. Improvement of the proposed method.

Sample Mode Weakness and Strength

The Traditional Method

Sampling three times in
three PWM cycles, which
is at the start time of the
injection cycle, the middle
time of the injection cycle,
and the end time of the
injection cycle

1. The current sampling error
during the zero-vector ac-
tion process is ignored.

2. The angle update frequency
is low.

The Proposed Method

Sampling four times in
two PWM cycles, which is
at the beginning and end
of the zero-vector and
effective vector,
respectively, in one PWM
carrier cycle

1. The proposed method con-
siders the current sampling
errors εα and εβ.

2. The angle update frequency
is improved.

2. Traditional Sensorless Control of IPMSM Based on High-Frequency Square Wave
Voltage Injection
2.1. High-Frequency Square Wave Signal Injection Principle

Figure 1 is the traditional sensorless control block diagram based on the high-frequency
square wave signal injection method.
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In Figure 2, d-q axis is the actual two-phase rotation coordinate system of the mo-
tor, and de-qe is the estimated two-phase rotation coordinate system calculated by the
sensorless algorithm.
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According to the coordinate relationship shown in Figure 2, the stator voltage equation
of the motor can be obtained as follows:[

ud
uq

]
= Rs

[
ids
iqs

]
+

[
Ld 0
0 Lq

]
d
dt

[
ids
iqs

]
+ωe

[
0 −Lq

Ld 0

][
ids
iqs

]
+ ωeλf

[
0
1

] (1)

where, ud and uq are the reference voltages of de-qe axis, respectively; Rs is the stator
resistance; Ld and Lq are the de-qe axis inductance, respectively; ids and iqs are the currents
of de-qe axis, respectively; and ωe is the estimated electric angular velocity of the motor.

The following formula can be obtained by transforming the voltage equation under
the de-qe axis to the α-β axis through the coordinate transformation.[

uα

uβ

]
= Rs

[
iα
iβ

]
+ 2L2ωr

[
− sin(2θe) cos(2θe)
cos(2θe) sin(2θe)

][
iα
iβ

]
+

[
L1 + L2 cos(2θe) L2 sin(2θe)

L2 sin(2θe) L1 − L2 cos(2θe)

]
d
dt

[
iα
iβ

]
+ωrψf

[
− sin(θe)
cos(θe)

] (2)

where, uα and uβ are voltage components in the α-β coordinate system; iα and iβ are
current components in the α-β coordinate system, L1 = (Ld + Lq)/2, L2 = (Ld − Lq)/2; and
θe is the electric angle of the estimated pole position of the rotor.

Figure 3 shows the injected high-frequency square wave signal and carrier wave with
the traditional method. From Figure 3, to the traditional high-frequency square wave signal
injection sensorless control method, the injected square wave signal frequency is 1/2 of
the carrier wave. To complete the demodulation process of the primary high-frequency
current (i.e., to complete the primary position estimation), it is necessary to sample the
current value at three points, that is, the current value at the beginning of each PWM cycle.
As shown in Figure 3, k-2, k-1, and k are three sampling points. So, it requires at least three
PWM control cycles to complete one position estimation.
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The frequency of the injected square wave signal is much higher than that of the
fundamental wave signal. The high-frequency voltage equation of IPMSM in the α-β
axis is: [

uαh
uβh

]
=

[
L1 + L2 cos(2θe) L2 sin(2θe)

L2 sin(2θe) L1 − L2 cos(2θe)

]
d
dt

[
iαh
iβh

]
(3)

where, uαh and uβh are high-frequency voltage components in the α-β coordinate system,
and iαh and iβh are high-frequency current components in the α-β coordinate system.

The current differential expression is obtained from Equation (3)

d
dt

[
iαh
iβh

]
=

1
L2

1 − L2
2

[
L1 − L2 cos(2θe) −L2 sin(2θe)
−L2 sin(2θe) L1 + L2 cos(2θe)

][
uαh
uβh

]
(4)

At this time, the injected high-frequency square wave signal is as follows [6–8]:[
udh
uqh

]
=

[
±Uinj

0

]
(5)

Equation (5) is used to obtain the high-frequency signal under the α-β axis through
coordinate transformation [

uαh
uβh

]
= ±Uinj

[
cos θe
sin θe

]
(6)

The voltage equation under the α-β axis can be obtained by taking Equation (6) into
Equation (4) and simplifying

d
dt

[
iαh
iβh

]
=
±Uinj

Ldh

[
cos θe
sin θe

]
(7)

where Ldh is the de-axis high-frequency inductive signal after high-frequency square wave
voltage injection, approximately regarded as Ldh = Ld.

It is assumed that the current changes linearly in one sampling period [6–8]. di/dt
being equal to ∆i/∆t, Equation (7) can be arranged as follows:[

∆iαh
∆iβh

]
=
±∆TUinj

Ldh

[
cos θe
sin θe

]
(8)

where ∆iαh and ∆iβh are the difference between the two sampling currents, and ∆T is the
time difference of sampling.

The three-phase current values corresponding to three sampling points are trans-
formed into a-β coordinate system:

iαβ,k−2 = C3/2iabc,k−2
iαβ,k−1 = C3/2iabc,k−1

iαβ,k = C3/2iabc,k

(9)
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where iαβ is [iα, iβ], and the subscripts k, k-1, and k-2, respectively, correspond to the three
sampling times in Figure 3.

The above-obtained α-β axis currents include the basic frequency components and
the high-frequency response components. Then, the basic frequency current and the
high-frequency response current need to be demodulated.

When the injection signal is positive, the relationship between two adjacent sampling
points is as follows:

∆iαβk,k−1 = iαβ,k − iαβ,k−1 = iαβf + ∆iαβh (10)

where ∆iαβk,k-1 is the difference of the sampling current between two adjacent points,
including the fundamental frequency current and the high-frequency response current.

When the injection signal is negative, the relationship between two adjacent sampling
points is as follows:

∆iαβk−1,k−2 = iαβ,k−1 − iαβ,k−2 = iαβf − ∆iαβh (11)

where ∆iαβk-1,k-2 is the difference of the sampling current between two adjacent points,
including the fundamental frequency current and the high-frequency response current.

The difference between Equations (10) and (11) can obtain the high frequency re-
sponse current.

∆iαβh =
1
2
(∆iαβk,k−1 − ∆iαβk−1,k−2) (12)

where ∆iαβh is the high-frequency response current under theα-β axis. ∆iαβh is substituted
into Equation (8), and the rotor position angle can be calculated by the arctangent formula.

When the injection signal is negative, the relationship between two adjacent sampling
points is as follows:

θe = atan(
∣∣∆iβh

∣∣, |∆iαh|
)

(13)

After the high-frequency response current is obtained, the rotor position can be calcu-
lated by substituting the high-frequency response current into Equation (13). Then, it is
necessary to take the high-frequency response current as the input of the phase-locked loop
(PLL). The rotor speed and position can be obtained by PLL shown in Figure 4.
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PLL calculates the speed and rotor position by{
ωe = GPLL

ωe (s)∆θ

θe = GPLL
θe

(s)∆θ
(14)

{
GPLL

ωe (s) = Ki

GPLL
θe

(s) = KP + Ki
s

(15)
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where GPLL
ωe is the speed transfer function in PLL, and GPLL

ωe is the position angle transfer
function in PLL. Kp = wc

2

√
tan2 γ

1+tan2 γ

Ki =
w2

c
2

√
1

1+tan2 γ

(16)

where wc is the cut-off frequency of the system, γ is the phase angle margin, and Kp and Ki
are the proportional and integral coefficients in the PLL [21].

2.2. Error Factor Analysis of Traditional High Frequency Square Wave Signal Injection Method
2.2.1. The Ignored Current Sampling Error during the Zero-Vector Action Process

The square wave voltage was injected as shown in Figure 3 into d-axis. To the tra-
ditional high-frequency square wave injection method, considering that the current-loop
control is digital, the sampling current of each PWM cycle is linear, so the current change
during the zero-vector action stage is always ignored.

As shown in Figure 5, taking A-phase current as an example, in a PWM cycle, it is
approximately considered that the current is an ideal change in the phase of zero-vector
action, and the current value at zero time of each PWM cycle is equal to that at the beginning
of the effective vector. In Figure 5, ia,idc0, ia,idc1, ia,idc2, and ia,idc3 are used to represent the
three sampling times corresponding to the traditional method. The traditional method
chooses to sample at the beginning of the PWM cycle. In fact, during the phase of the
zero-vector action process, due to the action of back EMF and the continuous current of
the diode, the current will not be changed. In Figure 5, ∆ia,act0 and ∆ia,act1 are the current
change values during the zero-vector phase action process. Due to the current change in
the zero-vector phase, the sampling error occurs at the beginning of zero-vector action
time and at the beginning of effective vector action time in one PWM cycle. It can be seen
from Equation (13) that the above sampling error will lead to the obtained high-frequency
response current of the α-β axis being inaccurate. The sampling error of the high-frequency
response current will cause errors in the final rotor position calculation.
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From Figure 5, the error between the zero-time sampling current at the beginning of
the PWM cycle and the sampling current at the beginning of the effective vector is

∆ia,act0 = ia,m1 − ia,k−2 (17)
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Similarly, the error between the zero-time sampling current at the beginning of the
PWM cycle and the sampling current at the beginning of the effective vector is

∆ia,act1 = ia,m3 − ia,k−1 (18)

After the coordinate transformation of Equations (17) and (18), the current error under
the α-β axis can be obtained, which is expressed as:{

∆iαβ0 = iαβ,m3 − iαβ,k−1
∆iαβ1 = iαβ,m1 − iαβ,k−2

(19)

In Equation (19), when calculating the rotor position angle by using the current
difference value, an error will be generated. The expression of the error is:{

εα = iα,m1 − iα,k−2 + iα,m3 − iα,k−1
εβ = iβ,m1 − iβ,k−2 + iβ,m3 − iβ,k−1

(20)

The position angle position error ∆θe caused by sampling error can be expressed as

∆θe= atan(εβ, εα) (21)

Therefore, when the current change during the zero-vector action process is ig-
nored, there will be current errors, εα and εβ, which will cause an error in the rotor
position calculation.

2.2.2. The Low Angle Update Frequency and the Long Position Delay

To the traditional high-frequency square wave signal injection sensorless control
algorithm, the frequency of the injected square wave signal is generally equal to 1/2 of
the PWM cycle frequency. According to Equation (12), the traditional scheme needs three
current samples to demodulate one high-frequency response current, so the angle update
needs at least three PWM cycles. The traditional method program execution sequence
diagram is shown in Figure 6. There are three sampling points: k-2, k-1, and k. After current
sampling, the coordinate transformation is carried out to obtain iαβ,k-2, iαβ,k-1, and iαβ,k.
Then, current demodulation is carried out to obtain the high-frequency response current
under the α-β axis. In the k cycle, the motor speed and position information are obtained
through PLL. Therefore, the traditional method needs three PWM cycles to calculate the
rotor position, which will delay the position update for three cycles and cause the position
angle error. The above phenomenon will be more serious when the speed is higher and the
carrier ratio is relatively lower.
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3. A Novel Sensorless Control Method of High-Frequency Square Wave Voltage
Injection Based on Oversampling Scheme
3.1. Oversampling and Effect Analysis of High-Frequency Response Current

The high-frequency square wave signal injected by the novel method proposed in the
paper is shown in Figure 7. Although the frequency of the signal is still half of the carrier
frequency, in order to reduce the error of the estimated position angle, this paper adopts a
current oversampling scheme to obtain a more accurate high-frequency response current.
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Figure 7. Proposed method current oversampling and injection signal waveform.

From Figure 7, when the injection signal is positive, two sampling currents are con-
ducted, i.e., m1, m2 sampling points in the figure; when the injection signal is negative, two
sampling currents are conducted, i.e., m3, m4 sampling points in the figure. Among them,
m1, m2, m3, and m4 are the current sampling points used for calculating the position angle,
respectively; m1 and m2 are the sampling points at the beginning and end of the effective
vector of the first half period of k-2, and m3 and m4 are the sampling points at the beginning
and end of the effective vector of the first half period of k-1. Compared with the traditional
method of sampling three times in three PWM cycles, the proposed method samples four
times in two PWM cycles. At the same time, k-2 and k-1 are sampling points for current
loop control. Because the feedback current used in the current loop is still the zero-time
sampling value of the PWM cycle, the control effect of the current loop is not affected.

Based on the oversampling scheme of stator current shown in Figure 7, the program
execution block diagram of the oversampling method is shown in Figure 8.
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In the k-2 period, the oversampling currents are iabc,m1 and iabc,m2 at the beginning
and end of the effective vector, respectively. Then, iαβ,m1 and iαβ,m2 are obtained by
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coordinate transformation, and the current difference is calculated in the k-2 period to
obtain ∆iαβ,m2m1.

In the k-1 period, the oversampling current are iabc,m3 and iabc,m4 at the beginning
and end of the effective vector, respectively, and then iαβ,m3 and iαβ,m4 are obtained by
coordinate transformation. The current difference is calculated in the k-1 period, and
∆iαβ,m4m3 is obtained. In the k-1 period, the high-frequency response current ∆iαβh is
calculated, and the motor speed and position information are obtained by PLL. Therefore,
the oversampling current method only needs two PWM cycles to get the rotor position.
Compared with the traditional method, the oversampling current method can reduce the
effect of position angle delay and increase the angle update frequency.

Because the high-frequency square wave signal is not injected into the inverter at
the initial time of zero-vector action, there is no high-frequency response current in the
zero-vector phase. To the traditional high-frequency square wave signal injection method,
the current sampling point is usually selected at the zero-time of the PWM cycle for the
convenience of sampling and calculation. In Figure 9, ia,k-2, ia,k-1, and ia,k cause the current
change to produce errors. Section 2.2 has analyzed the reasons of the errors.
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Figure 9. The actual change of phase A current with the proposed method.

The sampling points of the novel method (ia,m1, ia,m2, ia,m3, ia,m4) are selected at the
beginning and end of the effective vector, respectively, as shown in Figure 9.

∆ia,act0 and ∆ia,act1 are current errors calculated as follows:{
∆ia,act0 = ia,k−2 − ia,m1
∆ia,act1 = ia,m3 − ia,k−1

(22)

The novel method adopts the current oversampling scheme to sample at the beginning
and end of the effective vector in a PWM cycle. When the high-frequency square wave
voltage signal has been injected into the inverter, the high-frequency response current
changes, and the linear change can be seen approximately. Therefore, the proposed method
considers the current sampling errors εα and εβ and obtains more accurate current sampling
results, which can improve the accuracy of the rotor position calculation.

3.2. The High-Frequency Response Current Demodulation with the Proposed Method

When the high-frequency square wave signal is injected, the oversampling currents
include the high-frequency response components and the basic frequency components. The
three-phase currents are transformed into the α-β coordinate system.

[
iα
iβ

]
= C3s/2s

ia
ib
ic

 (23)
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The demodulation process of high-frequency response current is as follows:{
∆iα,m2m1 = iα,m2 − iα,m1 = ∆iαh + iαf

∆iα,m4m3 = iα,m4 − iα,m3 = −∆iαh + iαf
(24)

{
∆iβ,m2m1 = iβ,m2 − iβ,m1 = ∆iβh + iβf

∆iβ,m4m3 = iβ,m4 − iβ,m3 = −∆iβh + iβf
(25)

As shown in Figure 8, ∆iα,m2m1 and ∆iβ,m2m1 are the differences between the two
current samples in the α-β coordinate system when the square wave signal is positive. At
this time, the high-frequency response current is positive, so it can also be expressed as the
sum of the high-frequency response current and the basic frequency current. ∆iα,m4m3 and
∆iβ,m4m3 are the difference between two current samples when the square wave signal in
the α-β coordinate system is negative. At this time, the high-frequency response current is
negative, so it can also be expressed as the difference between the high-frequency response
currents and the fundamental frequency currents. ∆iαh and ∆iβh are the high frequency
response currents, and iαf and iβf are the fundamental frequency currents.

The high-frequency response current can be obtained by making difference between
Equations (24) and (25), respectively.

∆iαh =
1
2
(∆iα,m2m1 − ∆iα,m4m3) (26)

∆iβh =
1
2
(∆iβ,m2m1 − ∆iβ,m4m3) (27)

Cross vector multiplication by using Equations (26) and (27)

sin ∆θ = Ld
∆TUinj

[∆iαh · (− sin θe,k−1) + ∆iβh · cos θe,k−1]

= sin θe,k cos θe,k−1 − cos θe,k sin θe,k−1
(28)

When ∆θ approaches 0, sin∆θ ≈ ∆θ, so get the next formula,

∆θ = Ld
∆TUinj

[∆iαh · (− sin θe,k−1) + ∆iβh · cos θe,k−1]

= sin θe,k cos θe,k−1 − cos θe,k sin θe,k−1
(29)

Derived from the above formula, the position of current demodulation is shown
in Figure 10.
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After obtaining ∆θ, take it as the input value of PLL, and acquire the rotor position
and speed through PLL. The schematic diagram of PLL is shown in Figure 4 in Section 2.1.
Figure 11 is the block diagram of the proposed method in the paper.
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4. Experiment Result and Analysis

To verify the effectiveness of the proposed method in this paper, the PMSM experi-
mental platform as shown in Figure 12 is set up. The experimental platform consists of the
dynamometer, DC power supply, inverter, control circuit, and PMSM. The dynamometer is
an asynchronous motor driven by the ABB ACS-800 AC drive. The digital signal processing
chip of the control circuit is TMS320F28335, and the inverter adopts the electric vehicle
GD12-WDI power unit produced by Semikron. The motor parameters are shown in Table 2.
The amplitude of the high-frequency square wave voltage injected into the de axis is 40 V
and the frequency is 2.5 kHz. The switching frequency of the experimental system is 5 kHz.
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Table 2. IPMSM parameter.

Parameter Value Parameter Value

Rates Power 20 kW Rated Speed 3000 r/min
d-axis Inductance 0.209 mH Pole Pairs 4
q-axis Inductance 0.333 mH Resistance 10.23 mΩ

Rated Torque 64 Nm Flux Linkage 0.071 Wb
Rated Voltage 300 V Rated Current 94 A

4.1. Load Start and Brake Experiment at Low Speed

Figure 13 shows the experimental results of the load starting and braking at low
speed with the traditional method and the proposed method, respectively. Due to the
driving motor, electric vehicles always work under the torque control mode. So, during the
experiment, the dynamometer motor was in speed mode control and the tested motor was
in torque mode control. At first, the dynamometer system was given zero-speed instruction
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to ensure that the dynamometer motor is static. Then the rotor position estimation program
was started. The output torque of the tested motor was controlled from zero to the 1.5 times
rated load (96 Nm). Then, the speed of the dynamometer motor was adjusted from 0 r/min
to 400 r/min after 5 s. When the speed reached a steady state, the dynamometer motor
speed continued to adjust to 0 r/min. The slope adjustment time of the dynamometer
motor speed is about 5 s.
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Figure 13. The speed control of dynamometer with traditional method and the proposed method
from 0 r/min to 400 r/min, and from 400 r/min to 0 r/min: (a) traditional method; (b) the
proposed method.

From the local enlarged view in Figure 13a, it can be clearly calculated that with the
traditional method that the angle error is 5.70◦ during acceleration, the angle error is 2.85◦

when the speed of the dynamometer was controlled at 400 r/min, and the angle error is
5.54◦ during deceleration. From the local enlarged view in Figure 13b, it can be clearly
calculated that with the proposed method in the paper, the angle error is 2.65◦ during
acceleration, 1.20◦ when the speed of the dynamometer was controlled at 400 r/min and
2.44◦ during deceleration.

Figure 14 shows the similar experimental results. However, the speed of the dy-
namometer motor was adjusted from 0 r/min to 100 r/min and then returned to 0 r/min.
From the local enlarged view in Figure 14a,b, it also can be seen that the proposed method
in the paper has better estimation accuracy of electrical position angle of the rotor.

4.2. Step Load Experiment at Constant Speed

Figure 15 shows the experimental results of the step load with traditional method and
proposed method, respectively. During the experiment, the dynamometer motor was in
torque mode control and the tested motor was in speed mode control. At first, the tested
rotor position estimation program was started. The output speed of the tested motor was
controlled from zero to 400 r/min. After the tested motor speed reached the steady state,
the step torque signal was given to the dynamometer system and the out-put torque of
dynamometer motor was improved from zero to 30 Nm, 64 Nm (the rated load), and 96 Nm
(the 1.5 times rated load). After the tested motor speed reached the steady state, the output
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torque of dynamometer motor was reduced from 96 Nm to 64 Nm, 30 Nm, and 0 Nm,
successively. The step adjustment time of the dynamometer motor torque is about 1 s.

World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 14 of 18 
 

 

(a) (b) 

Figure 14. The speed control of dynamometer with traditional method and the proposed method 

from 0 r/min to 100 r/min, and from 100 r/min to 0 r/min: (a) traditional method; (b) the proposed 

method. 

4.2. Step Load Experiment at Constant Speed 

Figure 15 shows the experimental results of the step load with traditional method 

and proposed method, respectively. During the experiment, the dynamometer motor was 

in torque mode control and the tested motor was in speed mode control. At first, the tested 

rotor position estimation program was started. The output speed of the tested motor was 

controlled from zero to 400 r/min. After the tested motor speed reached the steady state, 

the step torque signal was given to the dynamometer system and the out-put torque of 

dynamometer motor was improved from zero to 30 Nm, 64 Nm (the rated load), and 96 

Nm (the 1.5 times rated load). After the tested motor speed reached the steady state, the 

output torque of dynamometer motor was reduced from 96 Nm to 64 Nm, 30 Nm, and 0 

Nm, successively. The step adjustment time of the dynamometer motor torque is about 1 

s. 

Figure 14. The speed control of dynamometer with traditional method and the proposed method
from 0 r/min to 100 r/min, and from 100 r/min to 0 r/min: (a) traditional method; (b) the
proposed method.

World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 15 of 18 
 

 

(a) (b) 

Figure 15. The speed control of tested motor with traditional method and proposed method at 400 

r/min: (a) traditional method; (b) the proposed method. 

From the local enlarged view in Figure 15a, it can be clearly calculated that with the 

traditional method, the angle error is 4.80° when the applied torque by dynamometer mo-

tor changed from the rated load of 64 Nm to the 1.5 times rated load of 96 Nm. From the 

local enlarged view in Figure 15b, it can be clearly calculated that with the proposed 

method, the angle error is 2.22° when the applied torque by dynamometer motor changed 

from the rated load of 64 Nm to the 1.5 times rated load of 96 Nm. Compared with the 

traditional method, the position angle error of the proposed method is smaller. As can be 

seen from the tested motor speed waveform in Figure 15a, when the applied torque by 

dynamometer motor changed abruptly, the speed of the traditional method changes 

greatly and recovers slowly. As can be seen from Figure 15b, when the torque applied by 

the dynamometer motor changed abruptly, the speed change of the proposed method was 

small, and it recovered quickly. 

Figure 16 shows the similar experimental results. However, the output speed of the 

tested motor was controlled from zero to 100 r/min. Compared with the traditional 

method, the proposed method has a more accurate estimation of the position angle, and 

when the load changes suddenly, the deviation from the actual position angle is smaller. 

Therefore, the speed change is smaller and the speed recovers quickly after the change. 

The proposed method in this paper can be applied to the load step process at low speeds 

very well. Actually, the tested motor can operate at higher speeds with bigger loads with 

the proposed method. So, the proposed method can better meet the application require-

ments of electric vehicles. 

Figure 15. The speed control of tested motor with traditional method and proposed method at
400 r/min: (a) traditional method; (b) the proposed method.



World Electr. Veh. J. 2022, 13, 217 15 of 18

From the local enlarged view in Figure 15a, it can be clearly calculated that with the
traditional method, the angle error is 4.80◦ when the applied torque by dynamometer
motor changed from the rated load of 64 Nm to the 1.5 times rated load of 96 Nm. From
the local enlarged view in Figure 15b, it can be clearly calculated that with the proposed
method, the angle error is 2.22◦ when the applied torque by dynamometer motor changed
from the rated load of 64 Nm to the 1.5 times rated load of 96 Nm. Compared with the
traditional method, the position angle error of the proposed method is smaller. As can
be seen from the tested motor speed waveform in Figure 15a, when the applied torque
by dynamometer motor changed abruptly, the speed of the traditional method changes
greatly and recovers slowly. As can be seen from Figure 15b, when the torque applied by
the dynamometer motor changed abruptly, the speed change of the proposed method was
small, and it recovered quickly.

Figure 16 shows the similar experimental results. However, the output speed of
the tested motor was controlled from zero to 100 r/min. Compared with the traditional
method, the proposed method has a more accurate estimation of the position angle, and
when the load changes suddenly, the deviation from the actual position angle is smaller.
Therefore, the speed change is smaller and the speed recovers quickly after the change. The
proposed method in this paper can be applied to the load step process at low speeds very
well. Actually, the tested motor can operate at higher speeds with bigger loads with the
proposed method. So, the proposed method can better meet the application requirements
of electric vehicles.
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Table 3 shows the qualitative and quantitative features of the traditional method and
the proposed method. It can be seen from the table that the position angle error of the
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improved method is about half that of the traditional method, which greatly improves the
accuracy of position angle estimation.

Table 3. Results discussion.

Load Start and Brake Experiment at Low Speed Step Load Experiment at Constant Speed

Quantitative Analysis:
(Angle Error) Qualitative Analysis Quantitative Analysis:

(Angle Error) Qualitative Analysis:

The Traditional Method
Acceleration: 5.70◦

400 r/min: 2.85◦

Deceleration: 5.54◦
Estimated position
angle error is large.

When the torque is 96
Nm at 400 r/min: 4.80◦

Estimated position
angle error is large.

The Proposed Method
Acceleration: 2.65◦

400 r/min: 1.20◦

Deceleration: 2.44◦
Estimated position
angle error is small.

When the torque is 96
Nm at 400 r/min: 2.22◦

Estimated position
angle error is small.

5. Conclusions

This paper proposes a sensorless control method for high-frequency square wave sig-
nal injection into permanent magnet synchronous motors based on a current oversampling
scheme. Compared with the traditional high-frequency square wave injection method,
this method performs current sampling at the beginning and end of the effective vector
and obtains the high-frequency current response through current demodulation, thereby
calculating the rotor position and speed. This method increases the frequency of calcu-
lating the rotor position by oversampling the current, thereby increasing the frequency
of updating the position angle, and reducing the time of position update delay. At the
same time, sampling at the beginning and end of the effective vector avoids the error
effect caused by the non-linear change of the current in the zero-vector time and improves
the rotor position accuracy. The experimental results of load start and brake experiment
at low speed and step load experiments at a constant speed show that, compared with
the traditional method, the position angle error of the proposed method in the transient
process and the steady-state process is about 1–5◦, which is about half of the position angle
error of the traditional method, and the time for the measured motor current to reach the
steady state is shorter. By improving the accuracy of the position angle, the speed range
is widened, and the load ability is increased. This has good application value and can be
used in engineering practice.
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