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Abstract: The high-speed Maglev train is driven by long-stator linear synchronous motors (LLSM).
During the long-time outdoor operation, the insulation material of the armature winding may be
damaged, either due to aging or the movement of the windings. This may result in the three-phase
short-circuit fault, which affects the traction performance and the operation of the train. In this paper,
a simulation model of the high-speed Maglev train traction system with a three-phase short-circuit
fault LLSM is established, including the converters at two ends, feeder cables, segmented LLSM
and traction control system. The system adopts a double-end power supply mode. The model
divides the fault segment LLSM into two parts. One part is connected to the converter, which is
equivalent to a normal operating segment with shortened long-stator. The other part is equivalent
to a three-phase short-circuit linear generator. Based on this model, the influence of running speed
and fault segment length on the traction performance of the train is simulated. In addition, the stator
current, acceleration and traction force of the Maglev train during fault segment are investigated in
the acceleration phase, deceleration phase and constant speed phase, respectively. The results can
provide a reference for three-phase short-circuit fault diagnosis.

Keywords: high-speed Maglev train; double-end power supply mode; long-stator linear synchronous
motor (LLSM); three-phase short-circuit fault; thrust force analysis

1. Introduction

The running speed of traditional high-speed railways is limited by pantographs and
wheel-rails. High-speed Maglev trains use a Long-stator Linear Synchronous Motor (LLSM)
to achieve contactless suspension. As there is no wear and friction, the running speed of
Maglev trains can reach more than 600 km/h. In addition, the Maglev trains also have the
advantages of safety, stability, comfort and no noise [1,2].

After long-time operation in the outdoor environment, the stator windings of the
Maglev train will move relative to each other. The wear and damage to the insulating layer,
caused by the movement of the stator windings or by the aging of the insulating material,
may lead to a three-phase short-circuit fault. The fault point may occur in the long stator
segment or feeder cable [3]. The electromagnetic thrust generated by the train will change
significantly after the fault, affecting the train’s running speed, running safety and riding
comfort. Therefore, it is very important to study the influence of three-phase short-circuit
faults on train running performance.

Research on the Maglev train has mainly focused on magnetic levitation, guidance,
propulsion and power supply. In terms of fault analysis and fault simulation of Maglev
trains, a method for detecting inter-chip short-circuit faults between long stators based
on fractal dimensions is proposed and simulated [4]. The impact of the power supply
system on the grid under different fault conditions is also studied through a simulation
model [5]. As in the fault-tolerant control for the magnetic levitation system of high-
speed Maglev train, a fault-tolerant control system with a state observer is constructed
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to improve the redundancy [6]. There is also a study exploring the fault-tolerant control
scheme for permanent-magnet linear motor traction systems with open-phase fault [7]. The
current research on Maglev train faults is mainly aimed at the linear motor itself or the
traction power supply terminal. However, there is not much research on the impact of the
three-phase short-circuit fault of LLSM on the running performance of the train.

This paper introduces the working mode of the high-speed Maglev train in a normal
operation state and establishes the three-phase short-circuit fault model of a LLSM for
high-speed Maglev train. The short process when the train passes through the three-phase
short-circuit fault point is analyzed. Then, the impact of the three-phase short-circuit fault
on the running performance of the Maglev train, at different stages of operation, is studied,
including the acceleration phase, deceleration phase and constant speed phase.

2. Traction Power Supply System of High-Speed Maglev Train

The traction power supply system of the high-speed Maglev train is composed of
a traction grid, step-down transformer, high-power converter(including rectifier and in-
verter), feeder cables and segmented LLSM [8,9]. The excitation winding is mounted
underneath the vehicle body and the excitation current is controlled by the suspension
system to keep the suspension air gap constant. The core drive unit of the high-speed
Maglev is a LLSM, of which stator winding is laid on the track. After a LLSM is supplied
with a three-phase variable frequency current, there will be an armature traveling wave
magnetic field. The electromagnetic thrust is generated when the armature magnetic field
and the excitation magnetic field run synchronously to realize the horizontal movement of
the vehicle [10]. In order to improve the operation efficiency, the segmented power supply
to the stator on the track is adopted. To improve the system capacity and obtain a higher
acceleration, the double-end power supply system is required [11,12]. As shown in Figure 1,
the substation A and substation B at each end supply power to each stator segment in
parallel through their respective feeder cables [13]. There will be a large impedance voltage
drop as a result of the long feeder cables.
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Figure 1. Double-end power supply mode.

In the double-end power supply mode of the high-speed Maglev train, the traditional
direct mode method can be used for the traction control strategy. The circulating current
and total current are directly used as control targets to ensure that the two converters
output the same current. The system will generate a large loss because of the differences
in the cable impedance, particularly when the train is close to a substation on one side. In
order to solve this problem, a control strategy based on the lowest loss can also be used.
The output current of one side converter is inversely proportional to the resistance of the
connected feeder cable. The current ratio of the two converters needs to be adjusted in real
time to achieve the lowest total loss of the feeder cables on both sides [14–16].

The control strategy of the whole system in this paper is shown in Figure 2. This
control method includes two control loops: the speed loop and the current loop. In order to
realize the decoupling control of thrust and levitation force, the control method with id = 0
is adopted [17–19]. To provide the maximum current for the LLSM, this paper maintains the
output currents of the two power converts in the same phase and frequency. The strategy
also adjusts the current distribution ratio k, dynamically, to reduce losses and improve
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efficiency. The long feeder cable end with a large impedance receives a small current while
the short feeder cable end with a small impedance receives a large current. The output
currents of converter 1 and converter 2 are as follows:

i∗d1 = i∗d2 = 0
i∗q1 = ki∗q
i∗q2 = (1− k)i∗q

(1)

where (i∗d1, i∗q1) are the d-axis and q-axis component of convert 1 output current, (i∗d2, i∗q2)

are the d-axis and q-axis component of convert 2 output current.
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Due to the continuous increase in the voltage drop on the feeder cable and the back
Electromotive Force (EMF) in the LLSM during the acceleration process, the required stator
current cannot be provided by the converter. Thus, the traction system adopts three-level
transformer voltage ratios to achieve the running speed of 600 km/h.

The converter capacity is S = 3U0max I0max, where U0max and I0max are the maximum
phase voltage and phase current, respectively. The three-level transformation voltage ratios
used are k1 = 1.7, k2 = 2.6, k3 = 3.5. The voltage and current limits that can be provided
by the converter are as follows:

U1max = k1U0max, I1max = I0max/k1 (2)

U2max = k2U0max, I2max = I0max/k2 (3)

U3max = k3U0max, I3max = I0max/k3 (4)

The stator maintains a constant current when the train starts to move, and the output
voltage of the converter continues to increase. When U0max is reached, the current decreases
and the acceleration also decreases. When the current drops to I1max, the first-level trans-
formation ratio of the transformer is used, and so on. Therefore, the high voltage can be
obtained through the transformer to accelerate the train.

3. Mathematical Model of Three-Phase Short-Circuit Fault of LLSM

The process of the Maglev train passing through the short-circuit fault segment is
shown in Figure 3. When the train has not yet reached the short-circuit point, such as in
position 1, the LLSM works in the normal motor state. At this point, the train has reached
the short-circuit point, such as in position 2, covering both the normal section and the fault
section. The LLSM on the left side of the short-circuit point is in the normal section, which
works as a motor to generate traction thrust. The LLSM on the right side of the short-circuit
point is in the fault section, which works as a three-phase short-circuit generator to generate
braking force. The magnitude of the braking force primarily depends on the length of the
train covering the fault section. When the train has completely left the normal section, such
as in position 3, the LLSM is working in the generator state. The train is subjected to a
braking force, the magnitude of which depends primarily on the speed of the train. When
the train has reached the next normal stator section, such as in position 4, the LLSM in the
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fault section still works as a generator to generate the braking force, while the LLSM in
the next normal section works as a motor to generate thrust. The train starts to accelerate
again.
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The LLSM works normally when the train is in position 1. At this time, the voltage
equation of the armature winding can be expressed as:

.
Us = Rs

.
Is + jXd

.
Id + jXq

.
Iq +

.
E0 (5)

where Us is the phase voltage, Rs is the winding resistance before the short-circuit point,
(Xd, Xq) are the d-axis and q-axis reactance of the winding before the short-circuit point,(

Id, Iq
)

are the d-axis and q-axis component of LLSM stator current, Is is the phase current
and E0 is the phase back EMF.

When the train is in position 2, the LLSM is divided into two parts. One part is
connected to the converter, which is equivalent to a long stator segment with a shortened
length. The other part is equivalent to a three-phase short-circuit linear generator. The
single-phase equivalent circuits of the two parts are shown in Figure 4a,b, respectively;
where Rc1, Lc1, Rc2, Lc2 are the resistance and inductance of the left- and right-side feeder
cables of the normal working part, Rs1, Lq1 and Rs2, Lq2 are the winding resistance and
q-axis inductance of the normal part and the fault part, respectively; E1 and E2 are the
back EMF of the two parts, respectively. The magnitude of the back EMF depends on the
running speed of the train, the length of the motor and the magnitude of the excitation
current. The part connected to the power supply continues to work normally, as shown in
Figure 4a. It is assumed that the motor current Is1 is the same as before. The part between
the fault point and the three-phase center point is the three-phase short-circuit section, as
shown in Figure 4b. This part can be regarded as a generator, and the current in the motor
is generated by the back EMF.
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As is shown in Figure 4b, the phase voltage is Us = 0 in this part of the LLSM. The
voltage equation of the armature winding can be expressed as:

−
.
E2 = Rs2

.
Is2 + jXd2

.
Id2 + jXq2

.
Iq2 (6)

where
(
Xd2, Xq2

)
are the d-axis and q-axis reactance of the fault part winding,

(
Id2, Iq2

)
are

the d-axis and q-axis component of the fault part LLSM stator current, Is2 is the fault part
LLSM phase current.
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The steady-state phasor diagram of this part of the LLSM is shown in Figure 5.
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The current of LLSM after the fault can be obtained through the phasor diagram. The
braking force generated by the LLSM after the fault can be calculated as follows:

Fx =
π

τ
[(Ld2 − Lq2)id2iq2 + Lmdi′f iq2] (7)

where τ is the stator armature pole pitch, Ld2 and Lq2 are the d-axis inductance and q-axis
inductance, i′f is the converted excitation current.

4. Simulation of Three-Phase Short-Circuit Fault of LLSM
4.1. Simulation Model

Based on MATLAB/Simulink, the simulation model of the three-phase short-circuit
fault segment of the high-speed Maglev train is established according to the mathematical
model. The short process of the train passing through the fault segment is simulated and
analyzed. The parameters of the LLSM and Maglev train used by Simulink model are
shown in Table 1.

Table 1. The parameters of the LLSM and Maglev train in Simulink model.

Parameters Value

Pitch Length (m) 0.258
Back EMF Coefficient (V/(km/h)/km) 74.84
One-side Motor Thrust Coefficient (kN/A/km) 0.735
Train Length (m) 128.5
Stator Segment Length (m) 1200
Train Mass (t) 330

4.2. The Fault Operation Process

Assuming that the high-speed Maglev train is at a constant speed of 600 km/h before
entering the fault segment and the stator current is 513 A, if the fault point is located at
the starting point of the stator segment, the fault segment length is the length of the stator
segment, which is 1200 m. During the process of the train, from passing the short-circuit
point to entering the next normal stator segment, the force of one-side LLSM is shown in
Figure 6, which is divided into traction force and braking force.
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Figure 6. The force of one-side LLSM during the process.

During the process of the train passing through the fault point, the length of the
fault stator covered by the LLSM gradually increases, while the length of the normal
stator covered by the LLSM gradually decreases. When the train completely enters the
fault segment, the traction force drops to 0. On the contrary, the braking force gradually
increases. As a result of the high running speed and high current frequency, the short-circuit
stator segment is mainly reactance, and the resistance can be ignored. The reactance and
the back EMF are proportional to the length of the fault segment, therefore, the braking
force can reach a stable value. When the train leaves the fault segment and gradually enters
the next normal stator segment, the traction force increases and the braking force decreases.
After the train completely leaves the fault segment, the traction force returns to normal and
the braking force drops to 0.

It can be seen from Figure 6 that when the train is completely in the fault stator
segment, the braking force of the fault side motor is 4.6 kN and the acceleration of the train
is −0.16 m/s2. The speed of the train during the whole process drops by 4.1 km/h. The
acceleration-distance curve is shown in Figure 7.
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4.3. Failure Performance of the LLSM at Different Speeds

Maintain the length of the fault section at 1200 m and change the running speed of
the train before reaching the short-circuit point. The braking force of the fault side LLSM
in the fault segment, at different speeds, is shown in Figure 8. The fault stator current at
different speeds is close because both the back EMF and the reactance are proportional to
the speed and the resistance can be ignored. However, the internal power factor angles are
81.6◦, 85.8◦, and 87.2◦, respectively. Therefore, when the train runs faster, the q-axis current
component and the braking force generated by the motor will be smaller.
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4.4. Failure Performance of the LLSM at Different Lengths of Fault Stator Segment

Maintain the running speed of the train at 600 km/h before reaching the short-circuit
point and change the length of the fault stator segment. The braking force of the fault side
LLSM is shown in Figure 9. The longer the fault segment length is, the greater the stator
winding’s resistance and inductance are. The back EMF is determined by the length of the
mover. In this case, the length of the mover remains unchanged. Therefore, the current
generated in the stator and the braking force will be smaller as the length of the fault stator
segment becomes longer.
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5. Simulation of Three-Phase Short-Circuit Fault during Line Operation
5.1. Simulation Model

The above simulation is carried out for one long stator segment. The speed of the train
when passing the fault point is assumed and the whole line operation is not considered.
Therefore, the whole line operation needs to be simulated and analyzed.

The length of whole line is set to 50 km and the maximum capacity of the converter is
24 MVA. The simulation model of the whole line is built through MATLAB/Simulink. The
power supply system adopts a three-step method [20]. The parameters of the LLSM and
the power supply system are shown in Table 2.

Table 2. The parameters of the LLSM and power supply system.

Parameters Value

Feeder Cable Resistance (Ω/km) 0.05833
Feeder Cable Inductance (H/km) 0.000071
Stator Resistance (Ω/km) 0.23
D-axis Inductance (mH) 3
Q-axis Inductance (mH) 2.8
Converter Maximum Capacity (MVA) 24
DC Bus Voltage (V) 4400
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5.2. Fault during Acceleration or Deceleration Process

Assuming that a three-phase short-circuit fault occurs at the 10th segment in the
left-side stator, of which the distance is 12 km, at this time, the train is still accelerating. The
stator currents and forces of the LLSM in two sides during the whole process are shown in
Figure 10.
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When the train passes through the fault segment during the acceleration process,
the left-side LLSM is subjected to a braking force of 5.8 kN as circled in Figure 10a. The
right-side converter is in the maximum output state to enable it to provide a traction force
of 124 kN. As circled in Figure 11, the acceleration decreases from 0.56 m/s2 to 0.17 m/s2

during the process. The acceleration can return to normal after the train leaves the fault
segment and enters the next normal stator segment.
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Assuming that a three-phase short-circuit fault occurs at the 35th segment in the left-
side stator, of which the distance is 42 km, at this time, the train is decelerating. The
stator currents and forces of the LLSM in two sides during the whole process are shown in
Figure 12.
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When the train passes through the fault segment during the deceleration process,
the left-side LLSM is subjected to a braking force of 5.8 kN as circled in Figure 12a. The
right-side converter is in the maximum output state, meaning it can provide a braking force
of 110 kN. As circled in Figure 13, the deceleration decreases from 0.89 m/s2 to 0.54 m/s2

during the process. The deceleration can return to normal after the train leaves the fault
segment and enters the next normal stator segment.
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5.3. Fault during Constant Speed

Assuming that a three-phase short-circuit fault occurs at the 25th segment in the left
side stator, of which the distance is 30 km, the train already operates at constant speed of
600 km/h at this time. The stator currents and forces of the LLSM at two sides during the
entire fault process are shown in Figure 14.
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When the train operates at 600 km/h, the LLSM on each side of the train can provide
a traction force of 48.5 kN. The capacity of the converter is not at the maximum value,
and thus can provide residual acceleration for the train. When the train enters the fault
segment, the left-side LLSM generates a braking force of 4.6 kN, while the right-side LLSM
can provide 102 kN traction force as circled in Figure 14a,b, which can compensate for the
force loss of the fault side. Therefore, although the acceleration has some fluctuation during
the fault segment as circled in Figure 15, it will soon return to 0. During the whole process,
the acceleration of the train is shown in Figure 15.

Comparing the above simulation results in the acceleration, deceleration and constant
speed stages, it is evident that the occurrence of a three-phase short-circuit fault in both
acceleration and deceleration stage has a greater impact on the operation of the train.
The converters on both sides are the maximum output during this stage. The normal
side convert operates in maximum output state and could not produce extra current; the
acceleration of the train is greatly reduced. When a failure occurs in the constant speed
stage, the converters on both sides are not in the maximum output state. Although the
braking force is generated on the fault side, the thrust on the other side can be twice to
compensate for the thrust loss. Therefore, the total thrust remains unchanged and the fault
has little effect on the running of the train.



World Electr. Veh. J. 2022, 13, 216 11 of 12

World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 11 of 12 
 

force loss of the fault side. Therefore, although the acceleration has some fluctuation dur-
ing the fault segment as circled in Figure 15, it will soon return to 0. During the whole 
process, the acceleration of the train is shown in Figure 15. 

 
Figure 15. The whole acceleration of the train when the fault occurs during constant speed. 

Comparing the above simulation results in the acceleration, deceleration and con-
stant speed stages, it is evident that the occurrence of a three-phase short-circuit fault in 
both acceleration and deceleration stage has a greater impact on the operation of the train. 
The converters on both sides are the maximum output during this stage. The normal side 
convert operates in maximum output state and could not produce extra current; the ac-
celeration of the train is greatly reduced. When a failure occurs in the constant speed stage, 
the converters on both sides are not in the maximum output state. Although the braking 
force is generated on the fault side, the thrust on the other side can be twice to compensate 
for the thrust loss. Therefore, the total thrust remains unchanged and the fault has little 
effect on the running of the train. 

6. Conclusions 
This paper focuses on the three-phase short-circuit fault of a LLSM for the high-speed 

Maglev train. The mathematical model of the LLSM after the three-phase short-circuit 
fault is established. Under a double-end power supply mode, the operation performance 
of the LLSM at two sides is simulated and analyzed during whole line of 50 km. The sim-
ulation results will provide a reference for LLSM three-phase short-circuit fault analysis 
and fault diagnosis in high-speed Maglev trains. It is of great significance for improving 
the fault-tolerant control of the high-speed Maglev train to ensure the stability of train 
operation. 

Author Contributions: Conceptualization, Q.L. and Y.L.; methodology, Y.L.; software, Y.L. and 
H.Y.; validation, Y.L. and H.Y.; formal analysis, Y.L.; investigation, H.Y.; resources, Q.L.; data cura-
tion, H.Y.; writing—original draft preparation, H.Y.; writing—review and editing, Y.L. and H.Y.; 
visualization, H.Y.; supervision, Y.L.; project administration, Q.L.; funding acquisition, Q.L. All au-
thors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by National Natural Science Foundation of China under Grant 
NSFC52177061. 

Data Availability Statement: Study did not report any data. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Lee, H.-W.; Kim, K.-C.; Lee, J. Review of Maglev Train Technologies. IEEE Trans. Magn. 2006, 42, 1917–1925. 

https://doi.org/10.1109/TMAG.2006.875842. 
2. Luguang, Y. Progress of the Maglev Transportation in China. IEEE Trans. Appl. Supercond. 2006, 16, 1138–1141. 

https://doi.org/10.1109/TASC.2006.871345. 

Figure 15. The whole acceleration of the train when the fault occurs during constant speed.

6. Conclusions

This paper focuses on the three-phase short-circuit fault of a LLSM for the high-speed
Maglev train. The mathematical model of the LLSM after the three-phase short-circuit
fault is established. Under a double-end power supply mode, the operation performance
of the LLSM at two sides is simulated and analyzed during whole line of 50 km. The
simulation results will provide a reference for LLSM three-phase short-circuit fault analysis
and fault diagnosis in high-speed Maglev trains. It is of great significance for improving
the fault-tolerant control of the high-speed Maglev train to ensure the stability of train
operation.
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