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Abstract: Connecting large numbers of electric vehicles to the power grid creates challenges for the
operation of the power distribution network, but also provides a new method for supporting grid
operation. This paper considers the trip patterns of electric vehicle users in China, including their
trip starting time, traffic congestion, vehicle energy consumption, and other factors. We develop a
charging–discharging operation strategy for electric vehicles in different functional areas with the
goal of minimizing the cost of distribution network, which considers the distribution patterns of
electric vehicles in different functional areas. As different types of cities in China have different
proportions of electric vehicle users who follow different travel chains, we provide multiple examples
showing the effectiveness of our proposed V2G method in different cities.

Keywords: electric vehicles; distribution network; travel chains; time and space distribution model

1. Introduction

To reduce fossil fuel consumption and the emission of greenhouse gases, including
carbon dioxide and other harmful gases, governments of all countries have promoted
electric vehicles (EV) as a substitute for traditional fossil fuel vehicles. On one hand, given
the unpredictable charging behavior of EV users, connecting many EV charging loads to the
power grid may create problems by increasing peak load and causing power grid voltage
fluctuations. Appropriate charging strategies should therefore be adopted to minimize the
adverse impact of EVs on the power grid. On the other hand, EV batteries serve as a kind
of mobile energy storage. They can participate in the demand response by coordinating
their charging and discharging strategies to promote economy in power grid operation,
and the development of vehicle-to-grid (V2G) technology can further support power grid
operation [1–4].

Previous studies predicted the distribution, travel time, and mileage of EVs and opti-
mized EV charging based on this distribution rule [5–7]. However, these studies did not
consider the transfer of EVs in different spaces or its spatial distribution. Zhou et al. [8] pro-
posed an EV charging strategy that was based on information about user travel chains and
traffic networks and considered the travel time of electric vehicles; the authors additionally
derived a model predicting the temporal and spatial distribution of EV load under this
strategy. Moghaddass et al. [9] similarly used a mixed integer multi-objective optimization
model to optimize an EV charging strategy that accounted for the power supply cost of
the grid, load fluctuation, EV charging station benefits, user charging costs, and household
electricity patterns. Other studies have proposed different control strategies by considering
the possibility of EV battery discharge and studying V2G strategies [10–12]. These studies
scheduled charging and discharging times for each vehicle and verified the feasibility of
their scheduling strategy in real-world situations.
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The studies mentioned above all determined the temporal and spatial distribution
of EVs using the Monte Carlo simulation method. However, as the number of EVs in the
current city increases, the calculation time required for traditional Monte Carlo sampling
gradually increases. As cluster EVs will gradually become uniformly distributed as the
number of EVs increases, the probability distribution formula can mathematically derived.

In this study, we develop a charging–discharging operation strategy for electric vehi-
cles based on different trip patterns for various city types with the intention of minimizing
the cost of distribution network. Firstly, we determine the probability distribution formula
of EVs based on the travel patterns of EV users while also considering trip rules of Chinese
residents and traffic congestion. In addition, because different EV users have different
travel patterns, the spatiotemporal distribution of EVs differs among functional areas.
We also consider the distribution network power flow and voltage constraints based on
the second-order cone relaxation method, and we analyze the charging and discharging
strategy of cluster EVs for different EV distribution patterns in different functional areas.
Finally, based on the proportion of EV users following each defined travel pattern, we
obtained the EV distribution patterns for different types of cities in China, as well as the
charging and discharging strategies, distribution network costs, and EV user profits in
these cities.

This paper is organized as follows. In Section 2, the time and space distribution models
of EVs are established based on different travel patterns of EVs in China. In Section 3, the
charging and discharging model of aggregated EVs is designed, and the electric vehicle
scheduling model is established in Section 4 considering the distribution network power
flow and voltage constraints. Algorithm flow chart is demonstrated in Section 5. The
profitability of our strategy is verified in Section 6. Section 7 summarizes the findings of
paper.

2. Time and Space Distribution Model of Electric Vehicles
2.1. Electric Vehicle Travel Chain

EVs can be categorized according to the type of travel they are used for (e.g., private
cars for work purposes, private cars for non-work purposes, official cars for corporate
travel, etc.). Here, we focus on private cars used for work or entertainment and fully
consider people’s life habits when simulating user trip patterns. We also adopt a “travel
chain” structure to represent the travel time, travel destination, and trip itinerary of EV
users and the sequence of each trip [13]. Overall, the travel of an EV used for work and
entertainment can be roughly divided into trips to/from home, work, and entertainment,
which we represent using the English letters H, W, and E, respectively.

According to the literature [14], 98.21% of private car trips start and end at home.
The number of daily trips taken by urban residents ranges from 2 to 3.5; this number
decreases from small cities to big cities and increases from economically underdeveloped
cities to developed cities [15–17]. As travel is convenient in small cities, residents of these
cities often take an extra trip home for lunch at noon [18]. Entertainment options are more
abundant for residents of large, economically developed cities, and these residents therefore
travel for entertainment consumption in the evening. This paper considers three modes of
travel chain structure: the simple work chain “A” (H–W–H), the complex work chain “B”
(H–W–H–W–H), and the work–entertainment chain “C” (H–W–E–H).

2.2. Distribution Network Function Division

Any geographical area can be functionally subdivided depending on the purpose of
the trip to that area (residential areas, working areas, and commercial areas, etc.). Given
the distribution network topology over the whole region, each subordinate node of the
distribution network area can be geographically allocated to various functional areas. For
example, in a four-node distribution network, each grid node (except for the root node) will
be divided into corresponding functional areas and equipped with EV charging stations, as
shown in Figure 1. In one day, EVs drive between each functional area according to the
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travel chain they are following (defined above). If the functional area has multiple nodes
that are equipped with EV charging stations, we assume that EVs are evenly distributed
among each node that is equipped with charging stations. The average distance between
each region is selected in the calculation, and Lij (i,j ∈ [1, 3]) is the distance between each
region.
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Figure 1. Topological diagram of a four-node network divided into different functional areas.

2.3. Distribution of Electric Vehicles in Each Functional Area at Each Time Period

At any given time, the distribution of subordinate nodes of EVs in each functional area
is related to the departure and arrival conditions of EVs under each trip. These conditions
can be expressed using their corresponding probability distribution functions. As shown in
Figure 2, the probability distribution functions for departures and arrivals of similar trips
from each travel chain structure can adopt the same form. Trips from each travel chain can
therefore be divided into three categories based on the probability distribution function
they follow:

1. Type 1 (black line in Figure 2) refers to the working trip, including the H–W trip of the
simple work chain A, the first H–W trip of the complex work chain B, and the H–W
trip of the work–entertainment chain C.

2. Type 2 (red line in Figure 2) mainly includes home or entertainment trips, including
the W–H trip of the simple work chain A, both W–H trips of the complex work chain
B, and the W–E trip of the work–entertainment chain C.

3. Type 3 (blue line in Figure 2) includes the second H–W trip of the complex work chain
B and the E–H trip of the work–entertainment chain C.
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2.3.1. Type 1 Trips

Trip type 1 mainly includes the first trip to the working area: the H–W trip in the
simple work chain A, the first H–W trip in the complex work chain B, and the H–W
trip in the work–entertainment chain C. Travel time for these trips follows a normal
distribution [15,19]. The mean and standard deviation of the travel time for different users
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can vary, but they can be fitted with a certain distribution function. For trip type 1, the
mean user departure time conforms to a gamma distribution, and the standard deviation
conforms to a standard normal distribution [8,16]. Based on these distributions of the
means and standard deviations, we solved the edge probability distribution of variable T
to obtain the probability density formula (1) and cumulative distribution function (2) for
the departure time of trip type 1. See Appendix A for details.

f lv
1 (t) =

∞∫
0

∞∫
0

2θ−αµα−1

σσ2π · Γ(α) · exp

(
− (t− µ)2

2σ2 − µ

θ
− σ2

2σ22

)
dµdσ (1)

Flv
1 (t) =

t∫
0

f lv
1 (τ)dτ (2)

In these equations, t is the start time of EV travel, µ is the mean EV start time, σ is the
standard deviation of the EV start time, α and θ are the scale and shape parameters of the
gamma distribution, respectively, and σ2 is the standard deviation of the standard normal
distribution.

The gamma distribution and the parameters for the standard normal distribution are
shown in Appendix A for the different trip types. Using these distributions, we can obtain
the probability density function and cumulative distribution function for the H–W trip in
simple work chain A, the first H–W trip in the complex work chain B, and the H–W trip in
the work–entertainment chain C.

As the cumulative distribution function of arrival time is related to the travel time
between home and work, this function can be obtained by combining the cumulative
distribution functions of departure times and travel times. If traffic congestion is considered
during travel, the congestion coefficient can be set based on the time of day, as shown in
Table 1. Vehicle speed during the congestion period is divided by the congestion coefficient.

Table 1. Congestion coefficient at different times of day.

Time Morning Peak
7:00–9:00

Evening Peak
17:00–19:00

Other Time
0:00–7:00, 9:00–17:00,

19:00–24:00

Congestion coefficient 1.5 1.5 1

If the start time of congestion is tjam
s , the end time of congestion is tjam

end, and the
congestion parameter ε = 1.5, then the total journey time is:

∆tij,t =



Lij
v tarr

i,j ≤ tjam
s

Lij
v + (1− 1

ε )(t
arr
i,j − tjam

s ) tjam
s < tarr

i,j ≤ tjam
s +

εLij
v

εLij
v tjam

s +
εLij

v < tarr
i,j ≤ tjam

end
εLij

v − (ε− 1)(tarr
i,j − tjam

end) tjam
end < tarr

i,j ≤ tjam
end +

Lij
v

Lij
v tarr

i,j > tjam
end +

Lij
v

(3)

where ∆tij,t indicates the travel time of the electric vehicle for a trip from region i to region j,
arriving at time t. v indicates the speed of the electric vehicle, and tarr

i,j indicates the arrival
time for the journey from region i to region j.

The cumulative distribution function for the arrival time is:

Farr
1 (t) = Flv

1 (t− ∆t12,t) (4)
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2.3.2. Type 2 Trips

Trip type 2 mainly consists of trips to home or entertainment: the W–H trip in simple
work chain A, both W–H trips in complex work chain B, and the W–E trip in work-
entertainment chain C. The departure time for these trips follows a normal distribution.
The Weibull and normal distributions were used to fit the mean and standard deviations,
respectively, for different EV users [20]. We then obtained the corresponding probabil-
ity density formula (5) and cumulative distribution function formula (6); the detailed
derivation process is shown in Appendix B.

f lv
2 (t) =

x {
k

2πσσ3λ
·
(µ

λ

)k−1
· exp

(
− (t− µ)2

2σ2 −
(µ

λ

)k
− (σ− µ2)

2

2σ2
3

)}
dµdσ (5)

Flv
2 (t) =

t∫
0

f lv
2 (τ)dτ (6)

In these equations, µ is fitted by the Weibull distribution, and k and λ are the shape
parameters and scale parameters, respectively, of the Weibull distribution. The standard
deviation is fitted by the normal distribution, and µ2 and σ3 are the mean and standard
deviation, respectively, of the normal distribution.

Parameters of the Weibull and normal distributions for the different type 2 trips are
shown in Appendix B. Using these parameters, we can obtain the probability density and
cumulative distribution functions of the W–H trip in simple work chain A, both W–H trips
in complex work chain B, and the W–E trip in work–entertainment chain C.

Combined with the return journey time, the cumulative distribution function of the
type 2 trips to residential or commercial areas is given by:

Farr
2 (t) = Flv

2 (t− ∆t2j,t) j = 1, 3 (7)

2.3.3. Type 3 Trips

Trip type 3 includes the second H–W trip in the complex work chain B and the E–H
trip in the work–entertainment chain C. As the departure time for the second H–W trip in
small cities is related to the “stay” time at home for lunch, and the departure time for the
E–H trip in big cities is related to the stay time in the commercial area, we assume the stay
time follows a random distribution [8], which is expressed as ∆t ~ U(∆tmin, ∆tmax). I this
equation, ∆tmin is the shortest residence time and ∆tmax is the longest residence time. The
probability density function for the H–W departure time is given by Formula (8), and the
cumulative distribution function is given by Formula (9):

f lv
3 (t) =

∫ t−∆tmin
t−∆tmax

f arr
last(τ) ·

1
∆tmax−∆tmin

dτ

= 1
∆tmax−∆tmin

(Farr
last(t− ∆tmin)− Farr

last(t− ∆tmax))
90 (8)

Flv
3 (t) =

t∫
0

f lv
3 (τ)dτ (9)

f arr
last(τ) is the probability density function of the arrival time of the last trip. The values of

∆tmin and ∆tmax for different trips are shown in Appendix C.
The formula of the cumulative distribution function for arriving at the working or

residential area for type 3 trips, accounting for journey time, is shown in Formula (10):

Farr
3 (t) = Flv

3 (t− ∆tij,t) (10)
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2.3.4. EV Departure, Arrival, and Distribution Probability in Each Region

The departure time distribution function of EVs in each space can be seen as the
probability of EVs leaving the space at each time. Conversely, the arrival time distribution
function of EVs can be regarded as the probability of EVs arriving in the space at each time.
Therefore, the equations derived in Section 2.3.1 to Section 2.3.3 can be used to calculate the
probability of leaving from and arriving in each region at each time, for each trip in each
of the three travel chains, while accounting for the proportion of EVs using the different
travel chains. For example, the probability of EVs leaving area 1 (a residential area) is:

f lv
1,t = βA f lv_A

12 (t) + βB f lv_B
12 (t)+βC f lv_C

12 (t) (11)

where βA, βB, and βC are the proportions of EVs using travel chains A, B, and C, respectively,
and f lv_A

12 (t), f lv_B
12 (t), and f lv_C

12 (t) are the moment-by-moment probabilities of a user leaving
area 1 for the trip from area 1 (residential area) to area 2 (working area) under travel chains
A, B and C, respectively.

Similarly, the arrival and departure probabilities of EVs at time t in region I are f lv
i,t

and f arr
i,t , respectively. By subtracting the cumulative probability function of leaving each

region from the cumulative probability function of arriving in the corresponding region,
we can determine that the distribution probability of EVs at time t in region i is ηi,t.

3. Model for the Charging and Discharging of Electric Vehicles
3.1. Energy Consumption Model

Unlike energy storage, the state of charge (SOC) of the battery will decrease as EVs
consume energy while driving. Here, we define the energy consumption factor as ψ. The
energy consumption of each EV for travel from i to j (i 6= j) is:

∆Eij = ψ · Lij (12)

For this model, we assume that the travel chain of EV users in small cities includes the
simple work chain A and the complex work chain B, and that the travel chain of EV users
in large cities includes the simple work chain A and the work–entertainment chain C.

3.1.1. EV Energy Consumption Model at the Workspace Node

For trips starting from the residential area, the total energy consumed by all EVs
arriving at a node in the working area at time t is:

∆E2,t =

[
Nall · f arr

2 (t) · 1
N2

]
· ∆E12 (13)

where Nall indicates the possession of EVs. Ni is the number of nodes with EV charging
stations in region i, and [] is the round-up function.

3.1.2. EV Energy Consumption Model at the Commercial Node

For trips starting from the working area, the total energy consumed by all EVs arriving
at a node in the commercial area at time t is:

∆E3,t =

[
Nall · f arr

3 (t) · 1
N3

]
· ∆E23 (14)

3.1.3. EV Energy Consumption Model at the Residential Node

For trips starting from the working or commercial areas, the total energy consumed by
all electric cars arriving at a node in the residential area at time t is:

∆E1,t =

[
( f arr

1 (t)− βC · f arr
31 (t)) · Nall

N1
)

]
· ∆E21 +

[
βC Nall · f arr

31 (t) · 1
N1

]
· ∆E31 (15)
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where f arr
31 (t) indicates the probability that an EV reaches the residential area at time t

in the E–H trip in travel chain C. In Formula (15), the first term represents the energy
consumption of cluster EVs arriving in residential areas as part of travel chains A and B
at each moment, and the second term represents the energy consumption of cluster EVs
arriving in residential areas as part of travel chain C.

3.2. Charging and Discharging Model of Cluster Electric Vehicles
3.2.1. Charging and Discharging Constraints

The charging and discharging constraints at nodes in region i that are equipped with
charging stations are as follows:

−
[

ηi,tNall
1
Ni

]
PD

max ≤ uk,t ≤
[

ηi,tNall
1
Ni

]
PC

max (16)

where PD
max and PC

max are the maximum discharge and charging power, respectively, of each
vehicle, and uk,t is the charging and discharging power of node k at time t. By convention,
charging is positive and discharging is negative.

3.2.2. Capacity Constraint

We required the capacity Qk,t of node k at time t to equal or exceed the SOC value
required by the EVs leaving at time below and the sum of the minimum SOC values
required by the remaining EVs, as shown in Formula (17). Conversely, Qk,t could not
exceed the maximum allowable SOC value of the node, as shown in Formula (18).

Qk,t ≥
[

f lv
i,t+1Nall

1
Ni

]
γlv

i C +

[
(ηi,t − f lv

i,t+1)Nall
1
Ni

]
γdwC (17)

Qk,t ≤
[

ηi,tNall
1
Ni

]
γupC (18)

In these two equations, i is the region to which node k belongs, γdw indicates the minimum
SOC requirement for each EV, γlv

i indicates the SOC required for each EV leaving area i,
and C is the battery capacity of each EV.

3.2.3. Continuity Constraints on SOC

We defined the continuity constraints on SOC as:

Qk,t = Qk,t−1 + χuk,t−1δmin +
1
Ni

Nall f arr
i,t γlv

i−1C− ∆Ei,t −
1

Nk
Nall f lv

i,t γlv
k C (19)

where χ indicates the charging and discharging efficiency of EVs and δmin indicates the
minimum time unit, which we set at 15 minutes for this study. Note that the last three
terms of Formula (19) account for the quantity of electricity added by newly arriving EVs
and the quantity of electricity taken away by newly departing EVs.

4. Electric Vehicle Scheduling Model, Accounting for Distribution Network
Security Constraints

min

(
T

∑
t=1

πt · P0t

)
(20)

where πt indicates the electricity price at time t and P0t indicates the injected power of the
root node of the distribution network at time t. The purpose of the objective function is the
minimization of the power purchase cost at the root node.

The power balance constraint equation for each node is given by:

Pk,t = Lk,t + uk,t k 6= 1, t ∈ T (21)
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where T is the set of time points, Pk,t is the net injected power at node k at time t, and Lk,t is
the load of node k at time t.

The power flow equations for each branch and voltage constraint at each node are
given by:

Pk,t = ∑
k:k→m

−Pkm,t k ∈ Z , t ∈ T (22)

Qk,t = ∑
k:k→m

−Qkm,t k ∈ Z , t ∈ T (23)

Skm,t = Pkm,t + jQkm,t
= (gkm − jbkm)(V2

k,t −Vk,tVm,t cos θkm,t − jVk,tVm,t sin θkm,t) k, m ∈ Z , t ∈ T (24)

Vmin
k ≤ Vk,t ≤ Vmax

k k ∈ Z , t ∈ T (25)

where Z is the set of all nodes. Formulas (22) and (23) represent the net injected power at
each node through the power of each branch. In Formulas (24) and (25), Skm,t indicates
the apparent power of branch k-m, and gkm and bkm are the conductance and susceptance,
respectively, of branch k-m. Vk,t is the voltage amplitude at time t, and θkm,t is the voltage
phase angle difference between nodes k and m.

As the quadratic and trigonometric functions in the power flow equation are non-
convex, the optimization calculation cannot be performed directly. We therefore transform
the power flow constraint into a linear constraint using a second order cone relaxation.
Using this method, Formulas (24) and (25) can be transformed into the following constraints,
where k, m∈Z, t∈T.

Pkm,t = gkmRk,t − gkmWkm,t − bkmTkm,t (26)

Qkm,t = −bkmRk,t + bkmWkm,t − gkmTkm,t (27)

(Vmin
k )

2 ≤ Rk,t ≤ (Vmax
k )2 (28)

Wkm,t ≥ 0 (29)∣∣∣∣∣∣
∣∣∣∣∣∣

2Wkm,t
2Tkm,t

Rk,t − Rm,t

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ Rk,t + Rm,t (30)

In these new equations, the nonlinear variables V2
k,t, Vk,tVm,tcosθkm,t, and Vk,tVm,tsinθkm,t

are converted to Rk,t, Wkm,t, and Tkm,t, respectively.
Constraints on this scheduling model also include the charging and discharging model

of cluster EVs described in Section 3.2.

5. Algorithm Flow Chart

The scheduling strategy simulation process used in this paper was based on the EV
and scheduling models of node clusters outlined in Sections 2–4 and is shown visually in
Figure 3. First, we input the parameters required by the probability distribution function to
obtain the travel conditions of EVs under each travel chain. We then used these functions to
obtain the distribution of EVs in each region, including the departure and arrival probability
distribution functions, by considering the proportion variables of each travel chain. Next,
cities were classified into Nc cities according to the travel situation of urban residents, and
we determined the proportion of EV users in various cities who were following each of our
three predefined travel chains. Finally, we scheduled the charging and discharging of cluster
EVs, accounting for the specific conditions of various cities as well as security constraints.
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6. Results and Discussion

In this section, we compare and analyze our scheduling model based on the Institute
of Electrical and Electronics Engineers (IEEE) 14-node distribution network system. We
solved for the optimized scheduling model using the YALMIP and CPLEX toolboxes.

6.1. Basic Parameters

The IEEE 14-node distribution network system topology is shown in Figure 4. The
distribution network has 13 branches with a reference voltage of 23 kV and a reference
capacity of 100 MVA. The network parameters are as follows:
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1. The power factor of each node is 0.85, and the reactive power of the node is determined
based on the active power injected into the node.

2. All nodes, except for nodes 10 and 11, are equipped with EV charging stations. The
total number of EVs is 2400. Other predefined parameters include L12 = 15 km,
L23 = 12 km, L13 = 12 km, v = 30 km/h, and the energy consumption factor E = 0.25.
The network assumes that EVs are evenly distributed in the same functional area. The
specific parameters of EVs are shown in Table 2.

Table 2. Parameters of EVs in the model.

EV Battery
Capacity (kWh)

Maximum
SOC

Minimum
SOC

Max Charging
Power (kW)

Max
Discharging
Power (kW)

Demand SOC

24 0.95 0.2 15 15
Residential 0.9
Working 0.85

Commercial 0.85

3. Electricity prices in Jiangsu Province are divided into three rates based on time of use
(peak, normal, and valley). Prices for each usage period are shown in Table 3.

Table 3. Electricity prices during different time periods.

Time
Peak

(8:00–12:00;
17:00–21:00)

Normal
(12:00–17:00;
21:00–24:00)

Valley
(0:00–8:00)

Price (USD) 169.12 101.47 49.52

6.2. Comparison with Traditional Monte Carlo Sampling

Most studies [8–10] obtain EV trip patterns by conducting Monte Carlo sampling of
the departure and arrival times of EVs based on normal distribution rules. Figure 5 shows
the probability distribution of the time EVs reach the working area in the simple work
chain A (H–W–H). When the number of EVs is small, the time distribution obtained by
Monte Carlo sampling is stochastic and volatile. As the number of cluster EVs increases, the
computational time (t2) required by the traditional Monte Carlo sampling method gradually
increases, as shown in Figure 5. However, the resulting distribution gradually approaches
uniformity. Given the increasing number of EVs in the current city and the uniform
distribution pattern of cluster EVs, we therefore derived the probability distribution formula
mathematically which uses less time (t2) with the growth of the number of EVs.
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Figure 5. Distribution of the time EVs reach the working area in the H–W–H travel chain.
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In addition, our model fully accounts for traffic congestion. As shown in Figure 5,
travel congestion shifts EV arrival times to the later part of the congestion period, and the
probability of arriving at the working area peaks at 9:00. The congestion coefficient ε in our
model can also be adjusted to match actual congestion in the city; for example, Figure 5
shows the probability distribution for congestion coefficients ε of 1.25 and 1.5.

6.3. Distribution of Electric Vehicles in Various Cities

As different cities are in different regions with different levels of economic develop-
ment, pillar industries and residents’ lifestyles and travel rules vary among cities. The
proportions of EV users following each of the three travel chains correspondingly vary
among cities (i.e., the βA, βB and βC parameters are different). In this study, we compared
the following three urban travel chain models :

1. Small cities, where simple work chain A and complex work chain B are considered
but the work–entertainment chain C is absent (βA = 30%, βB = 70%, βC = 0%).

2. Large industrial cities: simple work chain A is more common than work–entertainment
chain C (βA = 70%, βB = 0%, βC = 30%).

3. Large commercial cities: simple work chain A is less common than work–entertainment
chain C (βA = 30%, βB = 0%, βC = 70%).

The probability distribution of EVs in these three different city types is shown in
Figure 6.
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Figure 6. Time distribution of electric vehicles in different functional areas.

Based on the idealized assumption that small cities have simple work chain A and
complex work chain B, both of which do not have a work–entertainment trip, there is
no work–entertainment chain in small cities. EVs are only distributed in working and
residential areas. In addition, because some EV users in small cities return home for lunch,
some EVs are transferred from working to residential areas during the lunch hour. In
large cities, EV users make a trip for entertainment after work, so some electric vehicles
are moved to the commercial area at night. Three distinct shifts can be observed as the
proportion of H–W–E–H trips (i.e., the degree of commercialization) increases: (1) the
proportion of EVs in residential areas from 12:00 to 22:00 decreases; (2) the proportion of
EVs in commercial areas from 12:00 to 22:00 increases; and (3) more EVs in the working
area are transferred to the commercial area from 17:00 to 22:00.

There is also a small fluctuation among in the distribution probability curves for EVs in
the three regions. This fluctuation exists because our model accounts for traffic encountered
in the actual travel process.
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6.4. Charging and Discharging Scheduling Results of Electric Vehicles in Various Cities

In this paper, we determined strategies for scheduling the charging and discharging
of EVs in different functional areas of various cities by considering the optimization model
of distribution network power flow, as shown in Figure 7.
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Nodes 2, 3 and 4 represent residential, working, and commercial areas, respectively, for
which we obtained the charging and discharging strategy of EVs, as shown in Figure 7. The
distribution pattern of EVs in each region was fully considered when coordinating charging
and discharging strategies. Charging and discharging strategies for EVs in residential areas
make full use of the peak-valley electricity use pattern by charging at night to “fill” the
valley and discharging during the evening (17:00 ~ 21:00) to relieve the peak load. The EVs
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in the working area discharge during the peak load period and charge during the normal
load period so that they are fully charged for their next trip. The charging and discharging
power of EVs in commercial areas fluctuates greatly because the residence time of EVs in
commercial areas is shorter and more random.

In addition, because EVs remain in residential and working areas for long periods of
time, V2G technology can be used to transmit power to the power grid during peak hours.
Due to the shorter residence time of EVs in the commercial area (except for in small cities
which lack a commercial area), EVs in commercial areas only release part of their power at
approximately 20:00 to absorb the peak load.

Small cities have a larger charge and discharge limit at nodes 2 and 4, and can maintain
charge for a longer amount of time, due to the proportion of EVs in residential and working
areas. As the proportion of H–W–E–H trips increases, the charging and discharging range
of residential and working areas becomes smaller, but the charging and discharging power
range of commercial areas becomes larger. Although some nodes are in the same functional
area (e.g., multiple nodes in residential areas), the scheduling strategies for different nodes
are not the same because our model considers the power flow of the distribution network.

We lastly calculated the cost of the distribution network in various cities, and the profit
of EVs in various regions, as shown in Table 4:

Table 4. Costs of the distribution network and benefits of electric vehicles in different functional areas.

Network
Cost (USD)

EV Benefit
(USD)

Benefit in
Residential

Areas (USD)

Benefit in
Working

Areas (USD)

Benefit in
Commercial
Areas (USD)

Small cities 72,090 6781 4576 2197 0
Large industrial

cities 74,538 4432 3527 1449 −226

Large commercial
cities 74,688 4270 3517 1332 −579

Costs of the distribution network and benefits of EVs are demonstrated in this table.
Cost of the network is the optimal result of target function (20). EV benefits (or arbitrage)
in total, as well as benefits in different functional areas are achieved through calculating the
difference between cost and profits of EVs in the corresponding areas. Note that the cost of
the distribution network is lower, and the benefit of EVs is higher in small cities relative to
the two large cities. This is because the higher proportion of EVs in residential and working
areas can take full advantage of the peak–valley electricity pricing system. Industrial cities
are second for both costs and benefits. EVs in commercial cities have the highest cost and
the lowest profit because they have more entertainment trips. There is a large amount of
randomness in the E–H trip and a short stay time in the commercial area; EVs are mainly
charged in the commercial area, thus limiting the efficiency of the V2G strategy for EVs.

7. Conclusions

This paper develops a charging–discharging operation strategy for electric vehicles
based on different trip patterns for various city types. Considering the different travel
chain patterns of EVs, we deduced the probability density function for the spatiotemporal
distribution of EVs while accounting for travel time, traffic congestion, and journey energy
consumption. In addition, as different EV users in different types of cities have different
travel patterns, the spatiotemporal distribution of EVs differs among functional areas.
Therefore, we also obtained the distribution of EVs in different cities, where different travel
chains represent different proportions of EV user travel habits. Based on our time and space
distribution model, we combined the power flow and voltage constraints of the distribution
network with the goal of economically optimizing charging–discharging strategies of EVs
at each node in each region.

The key findings of this paper include:
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1. The time distribution obtained by Monte Carlo sampling is stochastic and volatile,
so we derived the probability distribution formula of EVs mathematically based on
different travel chain patterns of EVs in different cities.

2. In our proposed scheduling strategy, the distribution pattern of EVs in each region
was fully considered when coordinating charging and discharging strategies. Fur-
thermore, scheduling results differ among different types of cities due to the different
proportions of EVs in different regions at different time periods.

3. The cost of the distribution network is minimized, and the profit of EVs is maximized
in small cities. EVs prefer charging rather than discharging in commercial areas,
limiting the efficiency of the V2G strategy for EVs in commercial areas. Therefore,
EVs in commercial cities have the highest cost and the lowest profit, and the power
grid economy is relatively low.
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Appendix A

The travel time for EV users making a type 1 trip conforms to the normal distribution:

f (t; µ, σ) =
1

σ
√

2π
exp(− (t− µ)2

2σ2 ) (A1)

where t indicates the start or return time of the EV, µ indicates the mean value of t, and σ
indicates the standard deviation of t.

The mean and standard deviation of the start and return times can vary among
different users [15,20]. The mean value µ was therefore fit to a gamma distribution, as
shown in Equation (A2), and the standard deviation σ was fit with the standard normal
distribution, as shown in Equation (A3).

f (µ; α, θ) =

{
θ−α

Γ(α)µα−1 · exp
(
− µ

θ

)
µ ≥ 0

0 µ < 0
(A2)

f (σ; σ2) =

{
2

σ2
√

2π
exp(− σ2

2σ2
2 ) σ ≥ 0

0 σ < 0
(A3)

In these two equations, α and θ are the scale and shape parameters, respectively, of the
gamma distribution, and σ2 is the standard deviation of the normal distribution.
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Based on the distribution of µ and σ, we solved for the edge probability distribution
of variable t and obtained the probability density formula for type 1 trips, as shown in
Equation (A4):

f1(t) =
∞∫
0

∞∫
0

{
1

σ
√

2π
· exp

(
− (t−µ)2

2σ2

)
· θ−α

Γ(α)µα−1

·exp
(
− µ

θ

)
· 2

σ2
√

2π
· exp

(
− σ2

2σ2
2

)}
dµdσ

=
∞∫
0

∞∫
0

2θ−αµα−1

σσ2π·Γ(α) · exp
(
− (t−µ)2

2σ2 −
µ
θ −

σ2

2σ2
2

)
dµdσ

(A4)

Based on the probability density function parameters obtained by fitting data from pre-
vious studies [8,20], the gamma and standard normal distribution parameters for different
type 1 trips were set as shown in Table A1:

Table A1. Parameters of the distribution functions of µ and σ under different type 1 trips.

α θ σ2

H–W trip of chain A 18.63 28.14 79.36
The first H–W trip of chain B 7.69 68.14 29.36

H–W trip of chain C 18.63 28.14 79.36

Appendix B

The travel time of EV users is normally distributed for type 2 trips, as shown in
Equation (A1). The Weibull and normal distributions were used to fit the mean and
standard deviation, respectively, of the travel time for different users [15,20]. The Weibull
distribution is shown in Equation (A5):

f (µ; k, λ) =

{
k
λ

( µ
λ

)k−1 · exp
(
−
( µ

λ

)k
)

µ ≥ 0
0 µ < 0

(A5)

where k and λ are the shape and scale parameters, respectively, of the Weibull distribution.
We can solve for the marginal probability distribution of variable t based on the

distribution of µ and σ. The derivation of the probability density formula for type 2 trips is
shown in Equation (A6):

f lv
2 (t) =

s
{

1
σ
√

2π
· exp

(
− (t−µ)2

2σ2

)
· k

λ

( µ
λ

)k−1

exp
(
−
( µ

λ

)k
)
· 1

σ3

√
2π
· exp

(
− (σ−µ2)

2

2σ2
3

)}
dµdσ

=
s { k

2πσσ3λ ·
( µ

λ

)k−1 · exp
(
− (t−µ)2

2σ2 −
( µ

λ

)k − (σ−µ2)
2

2σ2
3

)}
dµdσ

(A6)

where µ2 and σ3 are the mean and standard deviation of the normal distribution.
Based on the probability density function parameters obtained by fitting data from

previous studies [8,20], the Weibull and normal distributions for different type 2 trips were
set as shown in Table A2.

Table A2. Parameters for the distribution functions of µ and σ under different type 2 trips.

k λ µ2 σ3

W–H trip of chain A 8.63 1061.4 156.45 91.17
The first W–H trip of chain B 10.63 750 68.45 26.17

The second W–H trip of chain B 10.63 1061 68.45 26.17
W–E trip of chain C 8.63 1061.4 0 79.36
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Appendix C

The values of ∆tmin and ∆tmax for trip type 3 are shown in Table A3.

Table A3. Values of ∆tmin and ∆tmax for different trips.

Time ∆tmin (min) ∆tmax (min)

The second H–W trip of chain B 30 90
E–H trip of chain C 0 120
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