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Abstract: Lateral velocity is an important parameter to characterize vehicle stability. The acquisition
of lateral velocity is of great significance to vehicle stability control and the trajectory following control
of autonomous vehicles. Aiming to resolve the problems of poor estimation accuracy caused by the
insufficient modeling of traditional model-based methods and significant decline in performance in
the case of a change in road friction coefficient, a deep learning method for lateral velocity estimation
using an LSTM, long-term and short-term memory network, is designed. LSTM can well reflect the
inertial characteristics of vehicles. The training data set contains sensor data under various working
conditions and roads. The simulation results show that the prediction model has high accuracy in
general and robustness to the change of road friction coefficient.

Keywords: LSTM; lateral velocity; deep learning; state estimation; vehicle stability

1. Introduction

With the continuous growth of car ownership, the frequency of traffic accidents has
increased year by year [1]. To improve vehicle safety and reduce the frequency of accidents,
a large number of active control systems (ACSs) are assembled in vehicles during mass
production. These systems mainly include active front wheel steering (AFS), electronic
stability program (ESP), and traction control systems (TCS). In addition, with the continuous
improvement of vehicle intelligence, advanced driver assistance systems (ADAS) are also
widely used [2], including adaptive cruise control (ACC) and lane keeping assistance
(LKA) systems.

The advanced active control systems and advanced driver assistance systems are
achieved based on the acquisition of some basic states of the vehicle [1,3], such as vehicle
sideslip angle, yaw rate, longitudinal speed, and lateral speed, etc. However, due to limited
sensor accuracy and cost as well as the difficulty in determining the distribution characteris-
tics of measurement noise, some states or parameters cannot be effectively measured using
applicable sensors, or measurement performance cannot meet the accuracy requirements.

Among these states, the sideslip angle of the vehicle is closely related to the kinematic
and dynamic response, which is expressed as an arctangent function of the ratio of vehicle
lateral speed to longitudinal vehicle speed (show in Figure 1). Under linear working
conditions, longitudinal speed can be obtained by fusing the speed sensors placed on
the wheel. However, due to the lack of direct sensors, the lateral velocity cannot be
obtained directly.
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estimation algorithms. These works can be divided into two categories, namely model-
based and neural network (NN)-based methods [4,5], where the former uses kinematic 
and dynamic models to describe the relationship between sideslip angle and other vehicle 
parameters. The performance of a model-based estimator depends on vehicle modeling 
and sensor accuracy. However, the nonlinear characteristics and changing working con-
ditions of the vehicle model make it difficult to obtain satisfactory estimation perfor-
mance. 

The neural network model can be used to describe vehicle dynamics [6,7] without 
understanding the inherent parameters of the vehicle. With an appropriate model struc-
ture as well as rich and diverse training data, the neural network-based method can accu-
rately and effectively estimate the dynamic state of the vehicle, as shown in some prelim-
inary studies [8]. In addition to direct lateral velocity estimation, the estimation results 
can also be used as the input of the model-based comprehensive estimator [9], which is 
known as a pseudo multi-sensor fusion. 

However, at present, the training data and verification data of neural network-based 
methods are not universal because they tend to be obtained under the same road condi-
tions. In addition, the commonly used DNN model cannot reflect the relationship between 
the current state and past state of the vehicle, and thus cannot express the inertia charac-
teristics of the vehicle. 
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Figure 1. Top view of a vehicle with horizontal body fixed coordinate system. 

In this paper, an estimation model of lateral velocity is constructed based on an 
LSTM, long-term and short-term memory network. Compared with a DNN network, 
LSTM can represent the dependence between current state and past state, which is more 
suitable for inertial system modeling. The model takes the timing signal of an on-board 
cheap sensor as the input. The network is simple in structure and can run in real time in 
a real vehicle environment. The verification results show that this method is superior to 
the traditional method under linear conditions and demonstrates certain robustness to the 
change of road friction coefficient. 

The contributions of this paper are as follows: 
• Proposing a method of estimating vehicle lateral velocity based on LSTM using the 

most common sensor measurements in mass production vehicles. 
• Testing on roads with different road friction coefficients. The results show that the 

proposed method is robust to the change of road friction coefficient. 
• Collecting a data set from multiple measurement data under generally standard 

working conditions rather than verification working conditions. The verification re-
sults show that training set can well reflect vehicle characteristics. 
The rest of this paper is arranged as follows. Section 2 briefly introduces the common 

methods of lateral velocity estimation. Section 3 describes the lateral velocity estimation 

Figure 1. Top view of a vehicle with horizontal body fixed coordinate system.

Therefore, it has become a research hotspot in automotive engineering field to estimate
the lateral velocity or sideslip angle using existing low-cost sensors combined with estima-
tion algorithms. These works can be divided into two categories, namely model-based and
neural network (NN)-based methods [4,5], where the former uses kinematic and dynamic
models to describe the relationship between sideslip angle and other vehicle parameters.
The performance of a model-based estimator depends on vehicle modeling and sensor
accuracy. However, the nonlinear characteristics and changing working conditions of the
vehicle model make it difficult to obtain satisfactory estimation performance.

The neural network model can be used to describe vehicle dynamics [6,7] without
understanding the inherent parameters of the vehicle. With an appropriate model structure
as well as rich and diverse training data, the neural network-based method can accurately
and effectively estimate the dynamic state of the vehicle, as shown in some preliminary
studies [8]. In addition to direct lateral velocity estimation, the estimation results can also
be used as the input of the model-based comprehensive estimator [9], which is known as a
pseudo multi-sensor fusion.

However, at present, the training data and verification data of neural network-based
methods are not universal because they tend to be obtained under the same road conditions.
In addition, the commonly used DNN model cannot reflect the relationship between the
current state and past state of the vehicle, and thus cannot express the inertia characteristics
of the vehicle.

In this paper, an estimation model of lateral velocity is constructed based on an LSTM,
long-term and short-term memory network. Compared with a DNN network, LSTM can
represent the dependence between current state and past state, which is more suitable for
inertial system modeling. The model takes the timing signal of an on-board cheap sensor
as the input. The network is simple in structure and can run in real time in a real vehicle
environment. The verification results show that this method is superior to the traditional
method under linear conditions and demonstrates certain robustness to the change of road
friction coefficient.

The contributions of this paper are as follows:

• Proposing a method of estimating vehicle lateral velocity based on LSTM using the
most common sensor measurements in mass production vehicles.

• Testing on roads with different road friction coefficients. The results show that the
proposed method is robust to the change of road friction coefficient.

• Collecting a data set from multiple measurement data under generally standard
working conditions rather than verification working conditions. The verification
results show that training set can well reflect vehicle characteristics.

The rest of this paper is arranged as follows. Section 2 briefly introduces the common
methods of lateral velocity estimation. Section 3 describes the lateral velocity estimation
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method proposed in this paper in detail. The verification results of the model are presented
in Section 4. Finally, the results are discussed and summarized in Section 5.

2. Related Work

On the premise that the vehicle longitudinal speed is known, lateral speed is estimated
to be equivalent to sideslip angle, and their relationship can be expressed as:

β = arctan
(

vy

vx

)
(1)

The methods of lateral velocity estimation or sideslip angle estimation can be divided
into model-based and neural network-based methods.

2.1. Model Based Approach

Model-based methods can be divided into three categories: Luenberger observer (LO),
sliding mode observer (SMO), Kalman filter (KF) and its variants. They are applicable to
both linear and nonlinear systems. Lo and SMO are deterministic observers, and they are
simple, which is their main advantage. However, they assume a complete understanding of
the system and its inputs, regardless of possible modeling errors or measurement noise. The
KF-based method can use an approximate model and deal with measurement noise [10]. In
addition, with robustness and stability, it is relatively simple to implement. Therefore, the
method based on KF and its variants has become a mainstream.

Li et al. [11] proposed a fusion estimation method composed of a kinematics estimator
and a motion geometry estimator. The kinematics estimator uses an extended Kalman filter
(EKF) based on a 3-DOF (degree of freedom) single-track vehicle model as an observer.
The results of the two estimators are fused based on the dynamic characteristic strength
of sideslip angle to accurately estimate sideslip angle under dynamic and steady-state
conditions. The estimation algorithm proposed by Zhou et al. [12] is based on the 7-DOF
non-linear dynamic model, and combines the UKF algorithm with the genetic algorithm to
achieve the adaptive effect of noise, greatly improving the estimation accuracy but with
certain anti-interference ability.

2.2. Neural Network Based Approach

Recently, various neural network models have been proposed in the literature for
estimating lateral velocity or sideslip angle. Liu et al. [13] compared the model-based
method and neural network-based method in their research, and found that the perfor-
mance of the latter is superior to that of the former in all aspects when the data set is
appropriately selected.

Du et al. [14] used a back propagation neural network to predict sideslip angle. The
results show that the estimation algorithm based on the neural network demonstrates
good performance under high-speed conditions. Chindamo et al. [15] proposed a concise
method to obtain training data under specific working conditions. Torben et al. [16]
proposed a scheme based on the recurrent neural network. The results show that the
method demonstrates good generalization performance under different tire, road, and
driving conditions.

Sasaki et al. [17] proposed a simple feedforward neural network (FFNN) using only
yaw rate and lateral acceleration as inputs. It represents the dependency between the
cur-rent state and the past state and is approximated by adding a delay signal to the
network input. The verification results show that the estimation performance is satisfactory
in the linear region, while the estimation error will increase in the nonlinear or more
dynamic region.

Abdulrahim et al. [18] installed four additional accelerometers in each corner of the car,
and took the longitudinal and lateral acceleration output by them as the input of the FFNN
network. When the actual sideslip angle reaches 70◦, the error is as high as 10◦ (about 14%).
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However, its training data are limited to fixed tracks and do not include additional road
conditions, so it is impossible to evaluate the generalization performance of the algorithm.

Melzi et al. [19] used steering wheel angle, chassis longitudinal and lateral acceleration,
yaw rate, and wheel speed as inputs of the neural network. The delay in the way of TDNN
is used to approximate the basic dynamics. The dataset used contains different pavements,
so it has a certain generalization ability. The model shows that the effect is good in the
range of small steering wheel input. The performance is poor when the side deflection
angle is greater than 7◦.

3. Method

In this section, the LSTM neural network is introduced first. Then, the problem of
vehicle lateral velocity estimation is defined. Thirdly, the lateral velocity estimation model
based on LSTM proposed in this article is presented, and finally the training process of
the model.

3.1. Preliminary: LSTM Neural Network

The LSTM network and recurrent neural network (RNN) have similar chain structures,
notwithstanding that each repeated unit of the former contains more complex components [20].

The sequential structure of LSTM network is shown in Figure 2, where the input of
each repeating unit at time t includes sample input data x(t), the state of the previous unit
c(t−1), and the output of the previous unit h(t−1). The detailed structure of the LSTM unit
is shown in Figure 3.

World Electr. Veh. J. 2022, 12, x FOR PEER REVIEW 4 of 14 
 

(about 14%). However, its training data are limited to fixed tracks and do not include ad-
ditional road conditions, so it is impossible to evaluate the generalization performance of 
the algorithm. 

Melzi et al. [19] used steering wheel angle, chassis longitudinal and lateral accelera-
tion, yaw rate, and wheel speed as inputs of the neural network. The delay in the way of 
TDNN is used to approximate the basic dynamics. The dataset used contains different 
pavements, so it has a certain generalization ability. The model shows that the effect is 
good in the range of small steering wheel input. The performance is poor when the side 
deflection angle is greater than 7°. 

3. Method 
In this section, the LSTM neural network is introduced first. Then, the problem of 

vehicle lateral velocity estimation is defined. Thirdly, the lateral velocity estimation model 
based on LSTM proposed in this article is presented, and finally the training process of 
the model. 

3.1. Preliminary: LSTM Neural Network 
The LSTM network and recurrent neural network (RNN) have similar chain struc-

tures, notwithstanding that each repeated unit of the former contains more complex com-
ponents [20]. 

The sequential structure of LSTM network is shown in Figure 2, where the input of 
each repeating unit at time t includes sample input data 𝑥( ), the state of the previous unit 𝑐( ), and the output of the previous unit ℎ( ). The detailed structure of the LSTM unit 
is shown in Figure 3. 

 
Figure 2. Sequential Structure of LSTM Repeat Unit. Figure 2. Sequential Structure of LSTM Repeat Unit.

World Electr. Veh. J. 2022, 12, x FOR PEER REVIEW 5 of 14 
 

 
Figure 3. LSTM Unit Structure. 

In Figure 3, 𝑤  is the weight of the forgetting gate; 𝑤 ,𝑤  is the weight of the update 
door; 𝑤  is the weight of the output gate; 𝑏  is the bias of the forget gate; 𝑏 ,𝑏  is the 
bias of the update gate; 𝑏  is the bias of the output gate. Splicing means merging two 
vectors into one; 𝜎(▪) indicates sigmoid activation function; 𝑡𝑎𝑛ℎ(▪) indicates hyper-
bolic tangent activation function; “ * “ indicates multiplication by elements, and “+” indi-
cates addition by elements. 

The forget gate 𝐺  filters the non-discarded states of the previous unit through the 
sigmoid activation function:  𝐺 = 𝜎 𝑊 ℎ( ), 𝑥( ) + 𝑏  (2)

The update gate 𝐺  determines the part to be updated, and 𝑢( ) provides alternative 
update data:  𝑢( ) = 𝑡𝑎𝑛ℎ 𝑊 ℎ( ), 𝑥( ) + 𝑏  (3)𝐺 = 𝜎 𝑊 ℎ( ), 𝑥( ) + 𝑏  (4)

The updated unit state 𝑐( ) consists of the selected state at the previous time and the 
newly selected alternative variable: 𝑐( ) = 𝐺 ∗ 𝑐( ) + 𝐺 ∗ 𝑢( ) (5)

In the output link, 𝑡𝑎𝑛ℎ 𝑐( )  limits the value of 𝑐( ) to the range of (−1,1). The out-
put gate 𝐺  determines the part to be output to finally obtain the output of the unit ℎ( ): 𝐺 = 𝜎 𝑊 ℎ( ), 𝑥( ) + 𝑏  (6)ℎ( ) = 𝐺 ∗ 𝑡𝑎𝑛ℎ 𝑐( )  (7)

3.2. Definition of Lateral Velocity Estimation Problem 
As shown in Figure 1, the coordinate of the vehicle body is defined with a body-fixed 

coordinate system with the origin located at the center of gravity (CoG). The x-axis points 
in the forward direction of the vehicle, while the y-axis points to the left when the car is 
moving forward. The lateral velocity is the component of the vehicle’s speed at CoG along 
the y-axis.  

Lateral velocity estimation is used to design a method to estimate the lateral velocity 
with cheap on-board sensors’ signals as the input, which can be expressed as: 

Figure 3. LSTM Unit Structure.



World Electr. Veh. J. 2022, 13, 1 5 of 14

In Figure 3, w f is the weight of the forgetting gate; wi,wg is the weight of the update
door; wo is the weight of the output gate; b f is the bias of the forget gate; bi,bg is the bias
of the update gate; bo is the bias of the output gate. Splicing means merging two vectors
into one; σ() indicates sigmoid activation function; tanh() indicates hyperbolic tangent
activation function; “ *” indicates multiplication by elements, and “+” indicates addition
by elements.

The forget gate G f filters the non-discarded states of the previous unit through the
sigmoid activation function:

G f = σ
(

WT
f

[
h(t−1), x(t)

]
+ b f

)
(2)

The update gate Gu determines the part to be updated, and u(t) provides alternative
update data:

u(t) = tanh
(

WT
g

[
h(t−1), x(t)

]
+ bg

)
(3)

Gu = σ
(

WT
i

[
h(t−1), x(t)

]
+ bi

)
(4)

The updated unit state c(t) consists of the selected state at the previous time and the
newly selected alternative variable:

c(t) = G f ∗ c(t−1) + Gu ∗ u(t) (5)

In the output link, tanh
(

c(t)
)

limits the value of c(t) to the range of (−1, 1). The output
gate Go determines the part to be output to finally obtain the output of the unit h(t):

Go = σ
(

WT
o

[
h(t−1), x(t)

]
+ bo

)
(6)

h(t) = Go ∗ tanh
(

c(t)
)

(7)

3.2. Definition of Lateral Velocity Estimation Problem

As shown in Figure 1, the coordinate of the vehicle body is defined with a body-fixed
coordinate system with the origin located at the center of gravity (CoG). The x-axis points
in the forward direction of the vehicle, while the y-axis points to the left when the car is
moving forward. The lateral velocity is the component of the vehicle’s speed at CoG along
the y-axis.

Lateral velocity estimation is used to design a method to estimate the lateral velocity
with cheap on-board sensors’ signals as the input, which can be expressed as:

Vy(t) = f
(

Sensort
input, Sensort−1

input, Sensort−2
input, . . . . . .

)
(8)

Sensort
input represents the vector composed of all sensor measurements at time t. The

estimation method is designed to find a function f. The output of the function is the lateral
velocity at the current time, and its input can be the signals of the sensor at the current and
previous time.

3.3. Lateral Velocity Estimation Model

The architecture of the lateral velocity estimation method proposed in this paper is shown
in Figure 4. It is divided into three layers: sensor input layer, LSTM layer, and fully connected
layer. The sensor input layer is used to transform the original sensor signal into the input
signal sequence required by the model. The LSTM layer is the main layer used to express the
relationship between sensor input and lateral velocity. Due to the large number of units in the
LSTM layer, the fully connected layer is used to limit the output dimension to 1.



World Electr. Veh. J. 2022, 13, 1 6 of 14

World Electr. Veh. J. 2022, 12, x FOR PEER REVIEW 6 of 14 
 

𝑉 ( ) = 𝑓 𝑆𝑒𝑛𝑠𝑜𝑟 ,  𝑆𝑒𝑛𝑠𝑜𝑟 ,  𝑆𝑒𝑛𝑠𝑜𝑟 , … …   (8)𝑆𝑒𝑛𝑠𝑜𝑟  represents the vector composed of all sensor measurements at time t. The 
estimation method is designed to find a function f. The output of the function is the lateral 
velocity at the current time, and its input can be the signals of the sensor at the current 
and previous time. 

3.3. Lateral Velocity Estimation Model 
The architecture of the lateral velocity estimation method proposed in this paper is 

shown in Figure 4. It is divided into three layers: sensor input layer, LSTM layer, and fully 
connected layer. The sensor input layer is used to transform the original sensor signal into 
the input signal sequence required by the model. The LSTM layer is the main layer used 
to express the relationship between sensor input and lateral velocity. Due to the large 
number of units in the LSTM layer, the fully connected layer is used to limit the output 
dimension to 1. 

The output is the lateral speed at the current time, and the input is the sensor signal 
of t steps which can be expressed as:  𝑆𝑒𝑛𝑠𝑜𝑟 ,  𝑆𝑒𝑛𝑠𝑜𝑟 , … … , 𝑆𝑒𝑛𝑠𝑜𝑟  . It is ab-
breviated as 𝑀𝑜𝑑𝑒𝑙 . 

3.3.1. Sensor Input Layer 
It is difficult to accurately express the relationship between lateral speed and other 

vehicle state parameters. The vehicle’s longitudinal speed, longitudinal acceleration, lat-
eral acceleration, yaw rate, steering angle, and wheel speed may affect its lateral speed. In 
these dynamic states, the wheel speed can be obtained from the wheel speed sensor, the 
yaw rate and lateral acceleration of the vehicle can be obtained from the sensor of the ESP 
system or measured by IMU, the longitudinal speed can be obtained from the estimation 
result of the ESP system, the steering angle can be measured by the steering angle encoder, 
and the parameters related to the engine can be obtained from the engine control unit. 

 
Figure 4. Proposed Network Architecture. Figure 4. Proposed Network Architecture.

The output is the lateral speed at the current time, and the input is the sensor signal
of t steps which can be expressed as:

[
Sensor1

input, Sensor2
input, . . . . . . , Sensort

input

]
. It is

abbreviated as Modelinput.

3.3.1. Sensor Input Layer

It is difficult to accurately express the relationship between lateral speed and other
vehicle state parameters. The vehicle’s longitudinal speed, longitudinal acceleration, lateral
acceleration, yaw rate, steering angle, and wheel speed may affect its lateral speed. In these
dynamic states, the wheel speed can be obtained from the wheel speed sensor, the yaw rate
and lateral acceleration of the vehicle can be obtained from the sensor of the ESP system or
measured by IMU, the longitudinal speed can be obtained from the estimation result of
the ESP system, the steering angle can be measured by the steering angle encoder, and the
parameters related to the engine can be obtained from the engine control unit.

The traditional method based on the Kalman filter takes the steering wheel angle,
yaw rate, and lateral acceleration signals as inputs. Table 1 summarizes the sensor inputs
used in proposed estimation method. One step of the input can be expressed as a vector:[

δ, α, ne, G, ω f l , ω f r, ωrl , ωrr, ax, ay, r, Vx

]T
. It is abbreviated as Sensort

input.

Table 1. Sensor Input.

Sensor Symbol Unit

Steering wheel angle δ deg
Throttle opening α %

Engine speed ne rpm
Gear G -

Left front wheel speed ω f l rpm
Right front wheel speed ω f r rpm
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Table 1. Cont.

Sensor Symbol Unit

Left rear wheel speed ωrl rpm
Right rear wheel speed ωrr rpm

Longitudinal acceleration ax g
Lateral acceleration ay g

Yaw rate r deg/s
Longitudinal speed Vx km/h

In the real vehicle, the sampling frequency of the sensors is different and needs to be
unified to the same sampling frequency through down sampling or resampling. In this
paper, the frequencies of 12 kinds of sensor signal are unified to 200 Hz, and the number of
input steps to the LSTM layer is determined by hyperparameter tuning.

3.3.2. LSTM Layer

The LSTM layer can express the relationship between the state and the input at the
current time and that between the state and input at the previous time, which is consistent
with the characteristics of the vehicle as an inertial system, i.e., the lateral speed at the
current time is related to the current input and the previous lateral speed, and its value is
unlikely to change suddenly.

The LSTM layer may contain one or more hidden layers, each of which may contain
multiple LSTM units. The LSTM unit obtains an output after processing one step of the
input sequence. The outputs of multiple LSTM units in each hidden layer form a vector
sequence, and the dimension of the vector is equal to the number of LSTM units. The
out-put of each layer is a vector sequence, and that of the last layer is the last step of the
vector sequence.

The numbers of units and hidden layers of the LSTM layer are also determined by
hyperparameter tuning. Too many hidden layers will lead to the loss of information and
reduce the training speed. Therefore, to improve the fitting ability of the model, the number
of units is suggested to be increased.

3.3.3. Fully Connected Layer

The input of the fully connected layer is the last step of the vector sequence output
by the last hidden layer of the LSTM. Since the output of the overall architecture is one-
dimensional, and the last hidden layer in the LSTM layer may contain multiple units,
a fully connected layer is added after the LSTM layer to limit the output dimension to
one dimension. In addition, the fully connected layer can linearly combine the output
characteristics of the LSTM layer.

The fully connected layer may contain multiple hidden layers, and each layer may
have multiple units. The input of each unit is the output value of the units on the upper
layer, and the unit will linearly combine these input values to obtain the output value
through the activation function. The last layer contains only one unit, whose output value
is the estimated value of lateral velocity.

3.4. Model Training

This section introduces the training process of the model proposed in this article. First,
how to obtain the training data set and the composition of the data set are introduced. Then,
the results of hyperparameter tuning and the training process of the model after tuning
are introduced.

3.4.1. Data Set

It is dangerous and uneconomical to experiment on a real vehicle. In this study, we
used the dynamic simulation software CarSim for experiments. CarSim has been widely
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accepted as a substitute for real vehicle experiments. For more information about Carism
software, please refer to [21,22]

In this study, a light full-size car was selected as the experimental environment.
The experimental data were obtained by fixed driver operation, vehicle speed, and road
friction coefficient. Among them, the driver operated the J-turn on the left and right, the
steering wheel angle was fixed at 40◦, 60◦, 90◦, 100◦, and 120◦, the vehicle speed was set at
20–120 km/h, the interval was 10 km/h, and the road friction coefficient was set at 0.3, 0.5,
0.85, and 1.0.

The total length of the data set was 1 h 28 m 16 s, which was divided into 1,548,633 sam-
ples according to the length of the input sequence.

3.4.2. Hyperparameters Tuning

For the test sample, 10% of the data set was randomly selected, and 10% of the training
samples were randomly selected as the verification set for the hyperparameter tuning. The
final parameter setting is shown in Table 2.

Table 2. Network Model Hyperparameters Setting.

Category Parameter Value

LSTM Layer Hidden Layers 1
Hidden Units 128

Full connection layer Hidden Layers 1
Hidden Units 64

Output Layer Units 1
Overall Architecture Input Sequence length 5

Number of Parameters 80,513
Activation Function Relu

Training Process Batch Size 32
Initial Value of Learning Rate 0.001

Early Stop Patience Value 5
Training Algorithm Gradient Attenuation Factor 0.9

Square Gradient Attenuation Factor 0.99
Bias Term 1 × 10−8

After the hyperparameters were selected, the model was retrained on the training set
and verification set. The training process is shown in Figure 5.
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4. Verification and Discussion

The performance of the estimator was evaluated under four friction coefficients and three
vehicle speeds according to the double line change (DLC) condition of ISO3888-1 standard.



World Electr. Veh. J. 2022, 13, 1 9 of 14

Statistical quantitative indicators are given in the second part. Finally, a discussion of the
results is presented.

4.1. Results

The following are the estimated results of the model proposed in this article under
DLC conditions. Tests were carried out at 30 km/h, 50 km/h, and 70 km/h, followed by a
comprehensive comparison of the results.

4.1.1. DLC at 30 km/h

The estimation results of DLC at 30 km/h are shown in Figure 6. The first 25 s is the
left DLC condition, and the last 25 s is the right DLC condition. The figure shows that the
LSTM estimator performs well at low speed.
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4.1.2. DLC at 50 km/h

The estimation results of DLC at 50 km/h are shown in in Figure 7. The first 15 s is
the left DLC condition, and the last 15 s is the right DLC condition. It can be seen from the
figure that it has good estimation performance at medium speed, and that the estimation
performance changes little in the case of a change in the road friction coefficient.

4.1.3. DLC at 70 km/h

The estimation results of DLC at 70 km/h are shown in in Figure 8. The first 11 s is the
left DLC condition, and the last 11 s is the right DLC condition. It can be seen that the LSTM
estimator has poor performance and large relative error under high-speed conditions.
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4.1.4. Comparison of the Results

At the beginning of each test, there is an obvious error in the estimated value, and
then it quickly fell back to near the true value. At 30 km/h and 50 km/h, the estimated
results of the proposed algorithm have a small deviation from the true value. At some
moments, the result under 50 km/h has a slightly larger deviation, and these moments are
mainly at the positions of wave crests and troughs. However, the test result under 70 km/h
presents a large deviation from the true value.

In addition, at 70 km/h, the fluctuation trend of the true value is different from
30 km/h and 50 km/h. The true value signal tends to have four crests instead of only
two crests. This is manifested when the road friction coefficient increases. However, the
fluctuation trend of the estimated value is consistent with the trend at the previous two
speeds, only two peaks and two troughs appear.

4.2. Quantitative Analysed Metrics

The main quantitative analysis metrics are the prediction relative to reference RMSE
and MAE. RMSE and MAE are defined as:

RMSE =

√√√√ 1
m

m

∑
i=1

(
vy − v̂y

)2
(9)

MAE =
1
m

m

∑
i=1

∣∣∣∣vy − v̂y

∣∣∣∣ (10)

Figure 9 shows the RMSE values estimated by the method proposed in this paper
under three vehicle speeds and four road friction coefficients. The RMSE value at 70 km/h
is significantly higher than that at 30 km/h and 50 km/h, which indicates that this method
performs well at medium and low speeds, but poorly at high speed DLC, which is consistent
with the MAE value in Figure 10.
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4.3. Discussion

According to the results of the previous two parts, the proposed method works well
at low and medium speeds and can accurately estimate the lateral velocity. With the
decrease of the road friction coefficient, the deviation of the estimated value will not change
significantly, and therefore it is robust to the change of the road friction coefficient. Due
to the dynamics of the vehicle itself, the fluctuation trend of the lateral velocity at high
speed is significantly different from that at low and medium speeds, which leads to poor
performance of the proposed method at 70 km/h. It also indicates that the proposed
method has not fully learned the dynamic characteristics of the vehicle. On the one hand,
this may be due to the lack of data representing the characteristics of the vehicle. On the
other hand, it may be due to the model’s hypothesis space being too small to represent all
vehicle dynamics characteristics.

In the real world, it is difficult for a vehicle to complete the DLC test at a higher speed
while maintaining stability, so testing at higher speed is not carried out. The reason why
the test is only performed under the DLC condition rather than other standard conditions
is that the DLC condition is one of the most extreme conditions that can be encountered
in the actual driving environment, and it is also the most common situation for vehicle
stability programs to function. Having good estimation performance under DLC condition
represents the superiority of the method.

Due to the black-box characteristics of deep learning, it is necessary to conduct large-
scale non-parametric testing to ensure that it will not output unreasonable values under
certain circumstances before applying it to safety-critical fields. This study did not conduct
large-scale testing since it requires a lot of time and costs, which is also its limitation.

5. Conclusions

Aiming to resolve the problem of poor accuracy of vehicle lateral velocity estimation
by traditional estimation methods, a lateral velocity estimation neural network based on
LSTM is designed in this paper. Lateral velocity is an important state for vehicle stability
control. As the vehicle is an inertial system, the current state is related to the previous one,
whose correlation can be well manifested by LSTM. The results show that the network can
accurately estimate the lateral velocity at low and medium speeds. At high speed, there is a
relatively larger error. In addition, it is robust to the change of the road friction coefficient.

Future research will focus on the estimation performance at high speed. Furthermore,
the estimated information is used in vehicle active control and automatic driving system to
enhance the control stability and intelligence of vehicles.
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