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Abstract: In order to improve the position tracking precision of dual permanent magnet synchronous
motor (PMSM) systems, a unified nonlinear predictive control (UNPC) strategy based on the unified
modeling of two PMSM systems is proposed in this paper. Firstly, establishing a unified nonlinear
model of the dual-PMSM system, which contains uncertain disturbances caused by parameters
mismatch and external load changes. Then, the position contour error and tracking errors are
regarded as the performance index inserted into the cost function, and the single-loop controller is
obtained by optimizing the cost function. Meanwhile, the nonlinear disturbance observer is designed
to estimate the uncertain disturbances, which is used for feed-forward compensation control. Finally,
the proposed strategy is experimentally validated on two 2.3 kW permanent magnet synchronous
motors, and the experimental results show that effectiveness and feasibility of proposed strategy.

Keywords: permanent magnet synchronous motor; position control; unified nonlinear predictive
control; high-precision cooperative control

1. Introduction

Over recent years, position control of multi-motor systems have been widely used
in electric vehicles, robots, and other fields [1–3]. However, the high-precision position
cooperative control of multi-motor system is difficult to be realized due to positional
changes and the uncertain disturbances of the motor system. Hence, research on position
control strategy is important for achieving the efficient and stable operation of a dual-
PMSM system [4–7].

Contour error is the key index for evaluating the position tracking performance of the
multi-motor system, which is defined as the shortest distance between the actual position
trajectory and the reference position trajectory. Generally, the contour error of a dual motor
system can be reduced by improving the position tracking precision of the single motor.
In recent years, several studies have been developed to improve the position tracking’s
precision by designing a high-performance controller such as feed-forward control [8,9]
and friction compensation control [10,11]. However, the conventional dual motor system is
with the independent and uncoupled control structure, and the dynamic performance of
each motor is different, only improving the position tracking’s accuracy of a single motor
cannot effectively reduce the contour error. Thus, the cross-coupled control (CCC) structure
was proposed in [12] to improve the position accuracy of the dual motor system. In the
CCC structure, each motor revises its state through feed the contour error calculated by the
CCC system to the position-loop of the motors and realizes the reduction in the contour
error. Although the CCC control structure is an effective method to improve position
tracking’s accuracy in dual motor systems, the application of the CCC control structure
is restricted due to the complicated parameter adjustment of the PID controller in CCC
system. For this reason, several studies have been carried out to improve the performance
of the CCC as a control structure. Among them, the variable gain cross-coupled control
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structure was proposed in [13]. This method adjusted the coupling gain coefficient in real
time based on the changing rules of the position trajectory, so that the position tracking’s
performance on a multi-motor system increased. In [14], the proposed CCC design method
was based on the optimal control theory, which can achieve high precision position control
by converting the position control problem into the linear quadratic regulator problem. In
addition, model predictive control (MPC) presents a fast dynamic response performance,
and it has been widely applied in the PMSM drive systems, which provide an new idea
for the improvement of the multi-motor control structure [15–17]. In Refs. [18,19], the
MPC for dual motor servo system has been presented, and the tracking errors and contour
error are introduced into the cost function at the same time. The CCC is formulated as a
model predictive control problem and the controller structure of the system is determined
by solving the control law based on the optimal control theories, which presents better
dynamic performance and better position tracking performance. However, this type of
predictive control method can obtain better position tracking performance only when the
accurate modeling of the control system is achieved. Moreover, it does not consider the
suppression of the parameters time-varying disturbances in the system.

Different from the classical MPC strategy [18,19], the UNPC considers the nonlinear
parameters time-varying characteristics of the control object and establishes the unified
system model with uncertain disturbances. The optimal control law is solved based on
state feedback linearization methodology. In addition, in order to guarantee the offset-
free performance under the uncertain disturbances, the nonlinear disturbance observer
(NL-DOB) is adopted to estimate the uncertain disturbances, so it shows better control
performance and application prospects in multiple-input and multiple-output system
(MIMO) [20,21].

This paper simplified the traditional position control structure based on the idea of
unified modeling, and a UNPC strategy suitable for the dual-PMSM system was proposed.
In the designed algorithm, the PMSMs were treated as a whole to establish a unified
nonlinear model. The tracking errors and contour error were regarded as the performance
index and introduced into the cost function simultaneously, which can coordinate the
tracking error and the position contour error. Meanwhile, the NL-DOB was designed to
estimate the disturbances of the PMSMs and feed the disturbance observed values to the
NPC controller.

This paper is organized as follows: In Section 2, the traditional position control
structure and the contour error model are analyzed. Section 3 gives the nonlinear PMSMs
model and presents the design process of the UNPC scheme, and Section 4 given the
stability analysis of closed-loop system and parameters tuning rules, respectively. The
experimental results are shown in Section 5. Section 4 concludes this paper.

2. Contour Errors of Traditional Dual Motor System

In the position tracking process of the dual-PMSM system, the two main trajectories
were the linear position trajectory and the curve position trajectory. A schematic diagram
of the contour errors of the linear position trajectory and the curve position trajectory are
shown in Figure 1.
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Figure 1. Schematic diagram of the contour errors of the trajectory: (a) linear position trajectory;
(b) curve position trajectory.

In Figure 1, p* is the point of reference position trajectory, p is the point of actual posi-
tion trajectory, β is the angle between the position trajectory tangential speed and x-axis pos-
itive direction, |pp*| is the tracking error e, and R is radius of the curve position trajectory.

From Figure 1a, the x-, y-axis tracking errors, ex, ey, and the contour error, ε, of the
linear position trajectory can be expressed as:

ex = p∗x − px, ey = p∗y − py (1)

ε = ex · Cx + ey · Cy (2)

where Cx = −sin β, Cy = cos β.
Similarly, x-, y-axis tracking errors, ex, ey, and the contour error, ε, of the curve position

trajectory can be expressed as:

ex = p∗x − px, ey = p∗y − py (3)

ε = ex · Cx + ey · Cy (4)

where Cx = −sin β + ex/2R, Cy = cos β + ey/2R.
The traditional dual-PMSM system usually adopts a position, velocity, and current

three-closed-loop structure and combined with a cross-coupling control structure to control
two motors. The contour error, ε, is calculated by the cross-coupling controller and feeds the
output of CCC to the position loop of each motor, which is used to achieve to coordinated
control of two motors. The control block diagram is presented in Figure 2.

Figure 2. Block diagram of the traditional dual-PMSM system.

In Figure 2, px* and py* are the reference position of each motor. px and py are the actual
positions of each motor. pcx and pcx are the position compensation values of each motor
after adding the cross-coupling structure. Kpx and Kpy are the proportional coefficients of
the position loop. Wox(s) and Woy(s) are the position control system of motors. Kc is the
gain coefficient of the cross-coupling controller.
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According to Figure 2, the position tracking errors of the traditional dual-PMSM
system can be obtained as follows:

ex =
1

1 + KpxWox(s)
p∗x −

εKcCxKpxWox(s)
1 + KpxWox(s)

(5)

ey =
1

1 + KpyWoy(s)
p∗y −

εKcCyKpyWoy(s)
1 + KpyWoy(s)

(6)

It can be seen from Equations (5) and (6) that as Kc gradually increases, the position
tracking errors, and the contour error are smaller under the premise that the system stability
is guaranteed. Nevertheless, when Kc is too large, the position tracking precision of servo
system decreases. In addition, when the reference position signal is, the high-order signa
and the tracking speed of position will be limited by the proportional coefficients, Kpx and
Kpy, which makes it difficult to achieve fast and precise tracking control of the desired
position trajectory.

3. Design of UNPC System

In order to simplify the structure of traditional dual-PMSM system and achieve fast
and high-precision cooperative control of the position trajectory, the PMSMs of dual motor
systems are treated as a whole to establish a unified nonlinear model, and a compact
controller of double motors is designed by UNPC algorithm. The structural diagram of the
UNPC system is shown in Figure 3.

Figure 3. Structural diagram of the UNPC.

3.1. Mathematical Model of PMSM Systems

The mathematical model of the dual-PMSM system in the d–q rotor reference frame
can be expressed in the nonlinear form as{ .

x(t) = f(x) + g1(x)u(t) + g2(x)b(t)
y(t) = h(x)

(7)

where x = (idx, iqx, ωx, θx, idy, iqy, ωy,θy)T are the vectors of the states (the d-axis and
the q-axis components of the armature current and rotor speed and rotational angel of
the motors), u = (udx, uqx, udy, uqy)T are the control input vectors (the d-axis and q-axis
components of the motor’s stator voltage), y = (idx, θx, idy, θy)T are the output vectors (the
d-axis components of the armature current and the rotational angel of motors), b represents
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the disturbances caused by the parameter mismatch of motors and load torque, and b is
given by

b(t) =
[

bdx bqx bωx bθx bdy bqy bωy bθy
]T (8)

For the PMSMs, f (x), g1(x), and g2(x) are defined as:
f(x) =

[
fx fy

]T

g1(x) =
[

g11 04×2
04×2 g11

]
g2(x) =

[
I4×4 04×4
04×4 I4×4

] (9)

where I4×4 is the identity matrix, 04×2 and 04×4 are the zero matrix, f i (i = x, y), and g11 are
given by:

fi =


1
Ls
(−Rsidi + pωiLsiqi)

1
Ls
(−Rsiqi − pωi(ψf + Lsidi))

1
Jm
(1.5pψfiqi − Bωi)

ωi

, i ∈ {x, y} (10)

g11 =

[
1
Ls

0 0 0
0 1

Ls
0 0

]T

(11)

In Equations (10) and (11), i = x, y represent the motors of the x- and y-axis. Rs, Ls, ψf,
p, Jm, and B are the stator resistance, inductance, rotor permanent magnetic flux, pole pairs,
inertia, and friction coefficient of the motor, respectively.

Define pi as the displacement of the end device of individual motor, Θi is the move-
ment of the end device of every motor when the motor rotates one turn; then, there is

pi =
Θi
2π

θi (12)

3.2. Design of Nonlinear Disturbance Observer

In order to achieve high-precision control of the position tracking of the dual-PMSM
system, the b(t) should be obtained through real-time computing, which is used for the
feed-forward compensation control.

Based on the PMSMs system model, the NL-DOB is designed as follows [22]:{ .
z = −Lz− L(f(x) + g1(x)u(t) + q(x))
^
b = z + q(x)

(13)

where
^
b is the disturbance observation value, q(x) is the nonlinear function which needs to

be designed, z is the internal state variable of the NL-DOB, and the gain L of the NL-DOB
is given by:

L =
∂q(x)

∂x
(14)

The nonlinear function q(x) can be designed as:

q(x) = Lx (15)

where L = diag(ld, lq, lω, lθ, ld, lq, lω, and lθ) and ld, lq, lω, and lθ are the constants.
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Considering that the control period of the PMSM is short enough, and the disturbance
b(t) is assumed to change slowly and is bounded, so that:

.
b(t) = 0 (16)

Thus, the disturbance observation error of the NL-DOB can be defined as:

eb(t) = b(t)−
^
b(t) (17)

The derivative of the Equation (17) with respect to time, we can get:

.
eb(t) = −Leb(t) (18)

The Lyapunov function is defined as:

Vb = eb
TPbeb (19)

where Pb is a real positive definite symmetric matrix, and Pb = diag(p1, p2, p3, p4, p5, p6, p7,
and p8). By taking derivative of (19) with respect to time, we can get

.
Vb = eb

TPb
.
eb +

.
eb

TPbeb
= eb

T(−PbL− LTPb
)
eb

(20)

For the NL-DOB designed by Equation (13), when Equation (20) satisfies the non-
positive definite condition by designing L (ld, lq, lω, and lθ > 0), the disturbance observer
is asymptotically stable. That is, when t→ ∞, eb = 0.

In the practical applications, to ensure that
^
b(t) will converge to b(t) as soon as possible,

a suitable L needs to be designed. For this reason, the time constants of the observer shown
in Equation (13) is deduced, and the parameters design principle of NL-DOB are given by

1
ld

s + 1 = 0
1
lq

s + 1 = 0
1

lω
s + 1 = 0

1
lθ

s + 1 = 0

(21)

Based on (21), it can be seen that the time constants of the NL-DOB are 1/ld, 1/lq, 1/lω,
and 1/lθ, respectively. And the poles of observer are −ld, −lq, −lω and −lθ, respectively
Therefore, when the absolute values of ld, lq, lω, and lθ are larger, the response speed of
the observer is faster. Nevertheless, the absolute values of ld, lq, lω, and lθ are too large,
which will cause measurement noise in a certain extent.

To ensure the estimation accuracy of the NL-DOB, the poles of observer are usually
assigned 2~5 times of the system poles. Thus, combined with Equation (26), the sizing of
the observer’s parameters is given by{

ld = lq = (2 ∼ 5) 3
2T1

lω = lθ = (2 ∼ 5) 1.95
T2

(22)

3.3. Design of Unified Nonlinear Predictive Controller

To make the actual outputs tracking the reference inputs as fast and accurate as
possible and reduce the contour error of dual-PMSM system, the cost function is defined as:

J =
1
2

∫ T1

0
ET

1 (t + τ)E1(t + τ)dτ +
1
2

∫ T2

0
ET

2 (t + τ)E2(t + τ)dτ +
1
2

∫ T2

0
εT(t + τ)ε(t + τ)dτ (23)
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where T1 and T2 represent the predictive horizon of the current-loop and the position-loop,
respectively. E1(t + τ) is the tracking error of d-axis current, E2(t + τ) is the tracking error
of the rotational angel of motors, and ε(t + τ) is the contour error, and E1, E2, and ε are
given by: 

E1 =
[

i∗dx − idx i∗dy − idy

]T

E2 =
[

θ∗x − θx θ∗y − θy

]T

ε = CE2

(24)

where C = (Cx Cy) is the gain matrix of the contour error. i∗dx and i∗dy are the reference
values of the d-axis current of the x-, y-axis motor, θ∗x and θ∗y are the reference values of the
rotational angel of the x-, y-axis motor.

According to (23) and (24), the cost function can be rewritten as:

J =
1
2

∫ T1

0
ET

1 (t + τ)E1(t + τ)dτ +
1
2

∫ T2

0
ET

2 (t + τ)(I + CTC)E2(t + τ)dτ (25)

where I is the identity matrix.
In order to obtain the control law of the unified nonlinear predictive controller, accord-

ing to the Taylor series expansion, idi(t + τ) and θi(t + τ) (i = x, y) are expressed as:{
idi(t + τ) = H1Y1i
θi(t + τ) = H2Y2i

(26)

where:
H1 =

[
1 τ

]
, H2 =

[
1 τ τ2

2!
τ3

3!

]
,

Y1i =
[

idi(t)
.
idi(t)

]T
, Y2i =

[
θi(t)

.
θi(t)

..
θi(t)

...
θ i(t)

]T

Similarly, i∗di(t + τ) and θ∗i (t + τ) (i = x, y) can be approximated as:{
i∗di(t + τ) = H1Y∗1i
θ∗i (t + τ) = H2Y∗2i

(27)

where:
Y∗1i =

[
i∗di(t)

.
i
∗
di(t)

]T
, Y∗2i =

[
θ∗i (t)

.
θ
∗
i (t)

..
θ
∗
i (t)

...
θ
∗
i (t)

]T
.

According to the theory of Lie derivative [23], the derivatives of the outputs with
respect to time can be derived as:

.
idi = L f idi + Lg1 idiu(t) + Lg2 idib(t).
θi = L f θi + Lg2 θib(t)..
θi = L2

f θi + Lg2 L f θib(t)...
θ i = L3

f θi + Lg1 L2
f θiu(t) + Lg2 L2

f θib(t)

(28)

From Equations (25)–(27), the cost function can be expressed as follows:

J =
1
2

∫ T1

0

(
¯
Y
∗

1 −
¯
Y1

)T

ΓT
1 Γ1

(
¯
Y
∗

1 −
¯
Y1

)
dτ +

1
2

∫ T2

0

(
¯
Y
∗

2 −
¯
Y2

)T

ΓT
2

(
I + CTC

)
Γ2

(
¯
Y
∗

2 −
¯
Y2

)
dτ (29)

where:

¯
Y
∗

1 =

[
Y∗1x
Y∗1y

]
,

¯
Y1 =

[
Y1x
Y1y

]
, Γ1 =

[
H1 01×2

01×2 H1

]
,

¯
Y
∗

2 =

[
Y∗2x
Y∗2y

]
,

¯
Y2 =

[
Y2x
Y2y

]
,

Γ2 =

[
H2 01×4

01×4 H2

]
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Substituting (25)–(28) into (29), and solving δJ/δu = 0, the control law of the dual-
PMSM system were obtained as:

u(t) = −G(x)−1



1
∑

j=0
δ1

j (Lj
f idx − i∗(j)

dx ) + K1b(t)

1
∑

j=0
δ1

j (Lj
f idy − i∗(j)

dy ) + K2b(t)

3
∑

j=0
δ3

j (Lj
f θx − θ

∗(j)
x ) + K3b(t)

3
∑

j=0
δ3

j (Lj
f θy − θ

∗(j)
y ) + K4b(t)


(30)

where:

G(x) =


1
Ls

0 0 0
0 0 1

Ls
0

0 1.5pψf
JmLs

0 0

0 0 0 1.5pψf
JmLs

,

{
δ1

0 = 3
2T1

δ1
1 = 1

δ3
0 = 21

2T3
2

δ3
1 = 42

5T2
2

δ3
2 = 7

2T2
δ3

3 = 1 ,

K1 =
[

1 0 0 0 0 0 0 0
]
, K2 =

[
0 0 0 0 1 0 0 0

]
,

K3 =
[

0 1.5pψf
Jm

7
2T2
− B

Jm
42

5T2
2

01×4

]
, K4 =

[
01×4 0 1.5pψf

Jm
7

2T2
− B

Jm
42

5T2
2

]
.

In order to obtain the robust controller of dual-PMSM system that can suppress the

disturbances, we substituted the estimated disturbances value
^
b(t) by the NL-DOB in

Equation (13) into Equation (30), and we can obtained:

u(t) = −G(x)−1



1
∑

j=0
δ1

j (Lj
f idx − i∗(j)

dx ) + K1
^
b(t)

1
∑

j=0
δ1

j (Lj
f idy − i∗(j)

dy ) + K2
^
b(t)

3
∑

j=0
δ3

j (Lj
f θx − θ

∗(j)
x ) + K3

^
b(t)

3
∑

j=0
δ3

j (Lj
f θy − θ

∗(j)
y ) + K4

^
b(t)


(31)

4. Stability Analysis and Parameters Tuning

To analyze the stability of the closed-loop system, substituting Equation (31) into
Equation (7), the characteristic Equation of the closed-loop system could be obtained as:{

s + δ1
0 = 0

s3 + δ3
2s2 + δ3

1s + δ3
0 = 0

(32)

Based on (32), the eigenvalues of the closed-loop system are given by:{
s1 = − 3

2T1

s2 = − 1.95
T2

, s3,4 = −0.774±j2.19
T2

(33)

Considering that the prediction horizon T1 and T2 are positive, the real parts of the
closed-loop eigenvalues of the UNPC system are negative. Thus, the system is asymptoti-
cally stable.

The change årule of the closed-loop poles with the predictive horizon T1 and T2 can
be presented in Figure 4. It should be noted that s1 is the current pole, s2 and s3,4 are the
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position poles, and the direction of the arrow represents the increasing direction of T1 and
T2. Then, we can know that:

Figure 4. The relationship between the predictive horizon and the poles distribution.

(1) With the increasing in the T1 and T2, the poles s1, s2, and s3,4 will continue to approach
the imaginary axis, the dynamic response speed of the system will slow down, and
the stability of the system will deteriorate;

(2) The position poles s3,4 are closer to the imaginary axis than the pole s2. That is,
when the T2 changes, the poles s3,4 will play a dominant role in the position tracking
performance.

(3) With the increasing in T1 and T2, the position poles s3,4 are closer to the imaginary axis
than the current pole s1, that is, the position response speed is slower than the current
response speed of the PMSM control system. Thus, the corresponding requirement is
T2 > T1.

In summary, the values of T1 and T2 should not be selected too large, so that it ensures
the system has a better dynamic performance and certain stability.

5. Experimental Verification

To verify the feasibility of the proposed UNPC algorithm, the experiments were carried
out on an experimental platform with a two 2.3 kW surface mounted PMSM system driving
the end devices of the motors to achieve position control. The parameters of the PMSM
system are shown in Table 1. In the experiments, the control algorithm was implemented
with the TMS320F28377D DSP produced by TI, and Cyclone V FPGA produced by Intel.
DSP was used to execute the algorithm, and FPGA was used to implement the high-
precision analog-to-digital conversion (ADC) sampling, digital-to-analog conversion (DAC)
conversion, and PWM pulse generation. The switching frequency of the IPM was 10 kHz,
and the sampling period of the system was 100 µs.

In the experiments, the control period Ts as 100 µs, and the prediction horizon T1 and
T2 were 20 and Ts, respectively. The tracking performance of the position trajectory was
evaluated by means of the maximum value of the contour error, εmax, and the mean value
of the steady-state error, δrms, and the calculating formulas were as follows:

εmax = max
k

(|ε(k)|) (34)

δrms =

√√√√√ n
∑

k=1
δ2(k)

n
(35)

where δ(k) means x-axis tracking error ex(k), y-axis tracking error ey(k), contour error ε(k)
at kTs.
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Then, the q-axis current standard deviation, σq, was used to evaluate its performance,
and the calculating formula is given by:

σq =

√√√√ 1
n− 1

(
n

∑
k=1

(
ξk − ξ

)2
)

(36)

where ξ = 1
n

n
∑

k=1
ξk, n is the number of sampling points.

Table 1. Parameters of the PMSM system.

Parameters Symbol Value Units

Rated power PN 2.3 kW
Rated torque TN 15 Nm

Number of pole–pairs p 2 -
Stator resistance Rs 0.635 Ω

Stator inductance Ls 4.025 mH
Permanent magnet

flux ψf 0.5 Wb

Inertia Jm 0.00272 kgm2

Friction coefficient B 0.002 -
Movement of the end Θi 0.145 m

5.1. Linear Trajectory Comparative Experiments

In order to verify that the control strategy proposed in this paper had a better position
tracking precision at the turning point of the trajectory, the constant velocity tracking exper-
iment was conducted. The diamond position trajectory with O point as the starting point
was given to the dual-PMSM system: O (0, 0)→ A(145, 145)→ B(0, 290)→ C(−145, 145)
→ O(0, 0), The proposed UNPC strategy (Case IV) was compared with the traditional
PI single-axis decoupling control strategy (Case I), and cascade PI-CCC control strategy
(Case II), and the cascade predictive method [19] (Case III). The experimental results are
shown in Figure 5.

The curves of diamond position trajectory of three control strategies are given in
Figure 5a. The experimental waveforms of the positions px, py, the speeds of motors nx,
ny, q-axis currents, iqx, iqy, position tracking errors, ex, ey, and contour error, ε, are given in
Figure 5b.

It can be seen from Figure 5 that compared with the traditional control strategy, the
dynamic performance of the speed of motors and the steady-state performance of the q-axis
current were significantly improved when adopting the proposed UNPC strategy in this
paper. When the PI single-axis decoupling control strategy was adopted, the mean values
of the steady-state tracking errors of the x-, y-axis position and the maximum contour
error (εmax) were 2.77, 2.29, and 36.28 mm, respectively. When the PI-CCC control strategy
was adopted, the mean values of the steady-state tracking errors of the x-, y-axis position
and the maximum contour error (εmax) are 2.19, 1.67, and 24.8 mm, respectively. When
Case III was adopted, the mean values of the steady-state tracking errors of the x-, y-axis
position and the maximum contour error (εmax) were 1.87, 1.58, and 14.7 mm, respectively.
Nevertheless, adopting the UNPC strategy, the mean values of the steady-state tracking
errors of the x-, y-axis position and the maximum contour error (εmax) were 1.62, 0.79, and
10.1, respectively. Through the above experimental results, it can be known that compared
with the traditional PI single-axis decoupling control strategy, the UNPC control strategy
can reduce the mean values of the steady-state tracking errors of the x-, y-axis position
and the maximum contour error (εmax) by 41.5%, 65.5%, 72.1%, and compared with the
PI-CCC control strategy, the UNPC control strategy can reduce the mean values of the
steady-state tracking errors of the x-, y-axis position and the maximum contour error (εmax)
by 26.0%, 52.1%, and 59.25%, and compared with Case III, the UNPC control strategy can



World Electr. Veh. J. 2021, 12, 266 11 of 16

reduce the mean values of the steady-state tracking errors of the x-, y-axis position and the
maximum contour error, εmax, by 13.36%, 50.0%, and 31.29%. Hence, when utilizing the
UNPC strategy, the output trajectory can track the desired trajectory accurately and the
position tracking effect is better.

Figure 5. Experimental comparison of traditional control strategy and UNPC: (a) output trajectory of
diamond; (b) waveforms of steady-state experimental.
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5.2. Circular Trajectory Experiments

The circular position trajectory with the origin O as the starting point. Meanwhile, the
proposed UNPC control strategy was applied, and the corresponding experimental results
are shown in Figure 6.

Figure 6. Circular tracking experiment of PI-CCC and UNPC: (a) Output trajectory of circular; (b) waveforms of steady-state
experiment.
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The formula of the circular reference trajectory is:{
x = 145 sin t (mm)
y = 145 cos t− 145 (mm)

(37)

The contour error calculating formula is:

ε = 145−
√

p2
x + (py+145)2 (38)

As shown in Figure 6, the speed of two motors can make real-time changes along
with the reference position. In addition, when the traditional PI-CCC was adopted, the
maximum contour error (εmax) and the mean values of the contour error (εrms) were
16.5 mm and 3.45 mm, respectively. Nevertheless, when the proposed UNPC was applied,
the maximum contour error (εmax) and the mean values of the contour error (εrms) were
12.3 mm and 2.21 mm, respectively. Thus, compared with the PI-CCC control strategy, the
proposed UNPC can reduce the maximum contour error (εmax) and the mean values of the
contour error (εrms) by 25.5% and 35.9%. The above phenomenon shows that the proposed
UNPC can more accurately track the s trajectory than the PI-CCC method.

5.3. Motor Parameters Mismatch Experiment

In order to verify the control performance of the UNPC strategy under the condition of
motor’s parameters mismatch, the parameters mismatch experiments were implemented
by setting inertia, Jm, stator inductance, Ls, and stator resistance, Rs, in the controller are
equal to 1.0 Jm, 1.0 LS, 1.0 Rs, 0.8 Jm, 0.8 LS, 0.8 Rs, and 1.2 Jm, 1.2 LS, and 1.2Rs, respectively.
Let the dual motor system follow the 45◦ slope position signal, the experimental results are
shown in Figure 7.

By comparison with Figure 7a–e, it can be seen that each motor can track the reference
position smoothly under the condition of motor parameter mismatch. At the same time,
the steady-state performance of speed is better, and the standard deviations (σq) of the
q-axis current and the harmonic content of stator current change slightly. The experimental
results indicate that the designed controller in this paper has a good steady-state control
performance in case of that the motor’s parameters are mismatch.
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Figure 7. Cont.
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Figure 7. Experimental results of UNPC under the condition of motor parameters mismatch:
(a) 1.0 Jm, 1.0 LS, and 1.0 Rs; (b) 0.8 Jm, 0.8 LS; (c) 1.2 Jm, 1.2 LS; (d) 0.8 RS; (e) 1.2 RS.

6. Conclusions

To improve the position control performance of dual-PMSMs system, a UNPC strategy
based on the unified modeling of the double PMSMs is proposed in this paper. On the
one hand, the single-loop controller of double motors was designed by solving the UNPC
optimal control law, which can reduce the contour error of the dual-PMSMs system under
the premise of ensuring the single-axis tracking precision. On the other hand, an NL-DOB is
designed to estimate the uncertain disturbances that can weaken the influence of uncertain
disturbances on the position trajectory tracking precision. The experimental results show
that the proposed UNPC strategy is effective and feasible. In addition, the idea of UNPC
can also be applied in the multi-motors drive system.
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