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Abstract: If an accident occurs during charging of an electric vehicle (EV), it will cause serious
damage to the car, the person and the charging facility. Therefore, this paper proposes a fault warning
method for an EV charging process based on an adaptive deep belief network (ADBN). The method
uses Nesterov-accelerated adaptive moment estimation (NAdam) to optimize the training process of
a deep belief network (DBN), and uses the historical data of EV charging to construct the ADBN of
the normal charging process of an EV model. The real-time data of EV charging is obtained and input
into the constructed ADBN model to predict the output, calculate the Pearson coefficient between
the predicted output and the actual measured value, and judge whether there is a fault according
to the size of the Pearson coefficient to realize the fault warning of the EV charging process. The
experimental results show that the method is not only able to accurately warn of a fault in the EV
charging process, but also has higher warning accuracy compared with the back propagation neural
network (BPNN) and conventional DBN methods.

Keywords: charging process of EV; fault warning; deep belief network; NAdam; Pearson coefficient

1. Introduction

Under the dual pressure of the energy crisis and environmental degradation, EVs,
as the main development direction of new energy vehicles, have attracted increasing
attention [1,2]. With the continuous development of the EV industry, the safety and
reliability of charging has become the focus of attention. Various types of power batteries
are the power source of EVs. Once the power battery fails in the process of charging, it
is likely to lead to a fire accident, thus causing serious economic losses. Therefore, in the
process of charging an EV, it is especially important to be able to effectively predict the
occurrence of power battery failures, provide early warning before they occur, and take
measures to deal with them.

Battery fault diagnosis methods can be divided into model-based methods and non-
model-based methods [3,4]. Zhang, et al. [5] propose a method for the monitoring and
warning of EV charging faults based on a battery model is proposed to judge whether the
charging process is normal by comparing the charging response information simulated
by the battery model with the battery charging status information. The method is a
model-based method, which requires the establishment of an accurate electrochemical,
electrothermal or other type of model depending on the type of battery. Tran, et al. [6]
established the equivalent circuit model of a lithium-ion battery that depends on the state
of charge, temperature and state of health, which has a high accuracy and can be effectively
monitored for lithium batteries. In [7], the performance of three different equivalent circuit
models was studied and compared using the chemical composition of four kinds of lithium
battery, and the best model for each lithium battery was determined. Model-based methods
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are required for signal processing and a large amount of calculation when dealing with
complex and non-linear systems, which makes them difficult to apply to a variety of EVs,
so the versatility is poor. The non-model-based method relies less on battery modeling,
has stronger applicability, and has been widely used in the field of battery fault diagnosis.
Reference [8] proposes a fault diagnosis and identification method for an EV based on
BPNN, which can accurately identify charging fault levels and bring some assurance to EV
charging safety.

The structure of BPNN is based on a shallow network model, which belongs to the
traditional machine learning method. However, the EV charging process data contain
rich information about EV charging under different working conditions, which has the
characteristics of strong coupling and multidimensionality. This makes the traditional
machine learning methods easy to fall into local optima and poor generalization ability
during training, so it is difficult to realize the fault warning of an EV during charging. Deep
learning, as a new field of neural networks in machine learning, has been widely applied
to data mining, prediction and classification based on the working principle of human
brain [9]. DBN is a typical data-driven deep learning model with outstanding ability to
extract data features and handle high-dimensional as well as non-linear data [10], and
has achieved good results in the field of fault warning [11–14]. Zheng, et al. [11] used an
improved variational mode decomposition (VMD) and DBN method to achieve the failure
warning of vulnerable parts of the wind turbine, and verify its feasibility and effectiveness.
Li, et al. [12] adopted DBN to achieve a fault warning for inter-turn short circuits in
the excitation winding of synchronous generators, with desired results. Chen, et al. [13]
proposed a fault warning method for unmanned aerial vehicle (UAV) sensors based on
DBN to achieve online fault detection of rotorcraft UAV flight system to realize the purpose
of rapid warning. Huang, et al. [14] used DBN to construct an early warning model for
landslide meteorology and realize the early warning of landslides triggered by rainfall. It
can be seen that DBN has great advantages in the field of warning. However, the charging
process fault warning of EV shows a trend of large data, and the traditional DBN will cause
the problem of slow learning rate and a difficulty choosing the learning rate of the model
when solving samples with high dimension, complex structure and large data volume, and
when the adaptive ability is poor.

Aiming at the fault warning problem of the EV charging process, this paper proposes a
fault warning method for the EV charging process. The method uses NAdam algorithm to
optimize the training process of DBN, which can design adaptive learning rate for different
parameters and realize the dynamic adjustment of learning rate in the model training
process. As a deep learning method, the method deeply mines the historical data of the
EV charging process, and constructs the adaptive deep belief network (ADBN) model of
normal charging process. The real-time EV charging data is input into the ADBN model
to predict the output, and the Pearson coefficient between the predicted output and the
actual measured value is calculated. If the Pearson coefficient is less than the set threshold,
the fault will be warned and the charging of EV will be cut off. The effectiveness and
superiority of this paper’s method are demonstrated by conducting warning experiments
on charging voltage faults and charging current faults of an EV, and comparing them with
other methods.

The rest of the paper is organized as follows. Section 2 briefly describes the principle
of EV fault warning implementation. Section 3 introduces the principle of ADBN, which
involves the structure and training process of DBN, NAdam algorithm, Pearson coefficient,
and fault warning process. In Section 4, an experimental validation is performed to
implement the fault warning for the charging process of an EV. Finally, the paper concludes
in Section 5.

2. Problem Description

The idea of fault warning in an EV charging process is to obtain all physical quantities
of all types of EV during charging through charging piles and store them in a database.
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According to the unique code of an EV and using the historical charging data of this EV
in the database, the deep learning network model belonging to this EV charging process
is constructed. The real-time physical quantities of EV charging are obtained and input
into the constructed exclusive deep network model to obtain the desired prediction data.
The correlation between the predicted data and the actual measurements is observed
to determine whether there is a fault in EV charging, thus realizing fault warning for
the EV charging process. The fault warning of the EV charging process can effectively
avoid charging safety accidents caused by high charging voltage, high current or high
temperature. The charging process of the EV and its warning diagram are shown in
Figure 1.

Figure 1. Electric vehicle (EV) charging process and its warning block diagram.

When the EV is charging, it will communicate with the charging pile. The battery
management system (BMS) sends information such as the required voltage, current and
temperature of the EV power battery to the charging pile, and the charging pile outputs
energy to charge the EV according to the required voltage and current. The required
voltage and current of EV will be changed in real time during charging, and the voltage
and current output of the charging pile will be adjusted accordingly.

The data communication between the EV and charging piles complies with the Chinese
national standard “GB/T 27,930 Communication Protocol between Non-vehicle Conduc-
tive Charger and Battery Management System for Electric Vehicles”. According to this
communication protocol, the physical quantities of the EV charging process that can be
obtained are shown in Table 1.

Table 1. Physical quantities of EV charging process.

Charging Process Physical Quantities Unit Precision Period/ms

Rated capacity of power battery Ah 0.1 250
Rated voltage of power battery V 0.1 250

Maximum allowable individual voltage V 0.01 500
Maximum allowable charging current A 0.1 500

Power battery nominal energy kW·h 0.1 500
Maximum allowable charging voltage V 0.1 500
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Table 1. Cont.

Charging Process Physical Quantities Unit Precision Period/ms

Maximum allowable temperature ◦C 1 500
Power battery initial state of charge (SOC) % 0.1 500

Power battery initial voltage V 0.1 500
Power battery required voltage V 0.1 50
Power battery required current A 0.1 50

Charging voltage measurement value V 0.1 250
Charging current measurement value A 0.1 250

Maximum individual voltage of power battery V 0.01 250
Power battery current SOC % 1 250

Maximum individual temperature of power battery ◦C 1 250

3. Electric Vehicle (EV) Charging Fault Warning Based on Adaptive Deep Belief
Network (ADBN)
3.1. Structure and Training Process of DBN

A DBN is a deep neural network composed of s multiple restricted Boltzmann machine
(RBM) and a BPNN stack [15], which uses an unsupervised greedy learning algorithm to
adjust the connection weights of each RBM layer and a supervised learning approach to
optimize the network parameters.

Figure 2 shows the structure of the DBN model and its training process for normal
charging voltage of EV. As can be seen from Figure 2, each RBM consists of a visible layer
Vk = (v1, v2, · · ·, vn) and a hidden layer Hk = (h1, h2, · · ·, hm). The visible layer V1 and
the hidden layer H1 form RBM1, the hidden layer H1 as the visible layer of RBM2 and the
hidden layer H2 form RBM2, and so on. The lines in Figure 2 represent the weights between
the connected neurons, Wk =

{
wi,j
}
∈ Rn×m is the connection weight between the visible

layer and the hidden layer of the kth RBM, and Ak = {ai} = Rn and Bk =
{

bj
}

= Rm

are the visible layer bias and hidden layer bias of the kth RBM. Thus, only three parameters
are required to determine an RBM.

Figure 2. Structure and training diagram of deep belief network (DBN) model for normal
charging voltage.
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For the DBN model with normal charging voltage, the energy function of its internal
RBM is defined as follows:

E(Vk, Hk | θk) = −Ak
TVk − Bk

THk − Vk
TWkHk (1)

where Vk and Hk denote the binary states of all units in the kth visible and hidden layer.
The lower energy function indicates a more ideal state of the network, that is, the lower
prediction error for the EV charging voltage. By regularizing and exponentializing the
energy function, the joint probability distribution of the RBM can be obtained as follows:

P(Vk,Hk | θk) =
exp(−E(Vk,Hk | θk))

Z(θk)
(2)

Z(θk) = ∑Vk ,Hk
exp(−E(Vk, Hk | θk)) (3)

where Z(θk) is the partition function, which represents the sum of all possible state energy
functions of the set of Vk and Hk nodes in the normal charging voltage DBN model, and is
used as the objective function of the optimization algorithm. According to the structural
characteristics of the RBM, the probability that the ith unit vi of the visible layer Vk and the
jth unit hj of the hidden layer Hk are activated can be expressed as follows:

P(vi = 1 | Hk) = σ(ai +
m

∑
i=1

hjwij) (4)

P(hj = 1 | Vk) = σ(bj +
n

∑
i=1

viwij) (5)

where σ(x) = 1/(1 + e−x) is the sigmoid activation function.
The DBN training process for normal charging voltage contains two stages of pre-

training and fine-tuning. In the pre-training phase, RBM1 receives information on the
EV’s required voltage, required current, charging current and temperature, and trains each
RBM in a bottom-up sequence using a layer-by-layer greedy learning algorithm to achieve
the extraction of high-level features of the input data and the update of the connection
weights of the training network. The output data is the predicted charging voltage. In
the fine-tuning phase, BPNN takes the predicted charging voltage as the input and the
actually measured charging voltage as the output, and continuously adjusts and optimizes
the network parameters from top to bottom in the way of supervised learning.

3.2. NAdam Algorithm

NAdam is the addition of Nesterov momentum to the adaptive moment estimation
(Adam) [15–20]. Taking the DBN model of optimizing the normal charging voltage as an
example, through literature [19], the update rules of Adam are obtained as follows:

gt = ∇θt J(θt) (6)

mt = β1mt−1 + (1− β1)gt (7)

vt = β2vt−1 + (1− β2)gt
2 (8)

m̂t =
mt

1− βt
1

(9)

v̂t =
vt

1− βt
2

(10)

θt+1 = θt −
η√

v̂t + ε
m̂t (11)
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where θ = {θ1, θ2, θ3, · · · θk} is the parameter of the normal charging voltage DBN model;
gt is the gradient vector during normal charging voltage DBN model training; η represents
the learning rate of the normal charging voltage DBN model training; J(θt) is the partition
function of the RBM in the normal charging voltage DBN model, that is, Equation (3); ∇θt

is the partial derivative of J(θt) and θ; mt and vt are the first-order moment (mean) and
second-order moment (variance) of the gradient during the training of the normal charging
voltage DBN model; m̂t and v̂t represent the deviation correction of mt and vt, which are
used to offset the deviation; β1 and β2 are the exponential decay rates of mt and vt; ε is
the correction parameter to ensure that the denominator is non-zero; t is the number of
iterations in the training of the normal charging voltage DBN model. Bringing Equation (7)
into Equations (9) and (11) yields:

θt+1 = θt −
η√

v̂t + ε
(

β1mt−1

1− βt
1
+

(1− β1)gt
1− βt

1
) (12)

The mt−1/1− βt
1 in brackets is the deviation correction estimate of the momentum

vector at the previous moment of the normal charging voltage DBN model, which can be
obtained by replacing m̂t−1 with:

θt+1 = θt −
η√

v̂t + ε
(β1 m̂t−1 +

(1− β1)gt
1− βt

1
) (13)

Now adding Nesterov momentum, the deviation correction estimate m̂t of the current
momentum vector of the normal charging voltage DBN model is directly used to replace
the deviation-corrected estimate m̂t−1 of the previous momentum, which leads to the
update rule of NAdam of the normal charging voltage DBN model as follows:

θt+1 = θt −
η√

v̂t + ε
(β1 m̂t +

(1− β1)gt
1− βt

1
) (14)

The traditional momentum algorithm has the disadvantage that the learning rate will
not change in the training process and uses a single learning rate to update the weight [17].
However, NAdam designs independent adaptive learning rates for different parameters
by calculating the first-order moments and second-order moments of the gradient, so that
NAdam not only has stronger constraints on the learning rate, but also has a more direct
impact on the update of the gradient. After the optimization of the NAdam algorithm,
DBN can adapt to the corresponding charging data in the prediction of physical quantities
in the normal charging process of different EVs, and has more powerful adaptability.

3.3. Pearson Coefficient

In this paper, Pearson’s correlation coefficient is used as the discriminant condition
for fault warning of the EV charging process, which is used to measure the degree of linear
correlation between the predicted value of the model and actual measured values [21].
When the correlation between the predicted value and the actual measured value is low, it
indicates that a fault may occur in this charging process, and its expression is:

r =

n
∑

i=1
(Xi − X)(Yi −Y)√

n
∑

i=1
(Xi − X)

2
√

n
∑

i=1
(Yi −Y)

2
(15)

where n is the number of predicted value and actual measured value; Xi and Yi are the
observed value of i point corresponding to predicted value X and actual measured value Y
respectively; X and Y are the average number of X and Y samples respectively.
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The value range of the Pearson coefficient is −1~1. When the value is 1, it indicates
that there is a complete positive correlation between the predicted value and the actual
measured value; When the value is 0.8~1, it indicates that there is an extreme correlation
between the predicted value and the actual measured value. In order to ensure the accuracy
of warning, this paper takes the Pearson coefficient as 0.8 as the warning limit.

3.4. EV Charging Process Fault Warning Process

Charging voltage fault, charging current fault, temperature fault and SOC fault may
occur mainly during the charging process of an EV. Through Pearson correlation coefficient
analysis, the fault types and fault discrimination methods are shown in Table 2. The fault
warning of the EV charging process can be mainly divided into two stages: EV normal
charging model training and real-time fault warning. Because the model training method
and fault warning method are the same for each fault, we only take the fault warning of
charging voltage and charging current as an example to realize the charging fault warning
of EV. The warning process diagram of EV charging process is shown in Figure 3, and the
specific implementation process is as follows:

1. Obtain the historical data of EV charging process, and divide it into normal charging
data and fault charging data.

2. Data normalization of normal charging data and fault charging data.
3. Constructing the normal charging voltage model ADBN1 and the normal charging

current model ADBN2 for EV by two stages of pre-training and fine-tuning using
normal charging data.

4. Input the fault charging data into the constructed ADBN1 and ADBN2 models to
predict the charging voltage and charging current, calculate the Pearson coefficient
between the predicted charging voltage and charging current and the measured charg-
ing voltage and charging current, perform fault warning when the Pearson coefficient
is less than the set expectation value. Calculate the ratio between the number of
fault warnings and the actual number of faults to test the warning performance of
the models.

5. The ADBN model that meets the requirements is applied to real-time charging fault
warning for the EV.

Table 2. Fault types and identification methods table.

Number Fault Type Fault Identification Method Fault Description

1 Charging voltage
fault

The Pearson coefficient
between model prediction and

actual measurement is less
than 0.8

Bias fault—charging voltage is
higher or lower than the

required voltage

2 Charging current
fault

The Pearson coefficient
between model prediction and

actual measurement is less
than 0.8

Bias fault—charging current is
higher or lower than the

required current

3 Temperature fault

The Pearson coefficient
between model prediction and

actual measurement is less
than 0.8

Bias fault—the measured value
of temperature is widely

different from the predicted
value

4 SOC fault

The Pearson coefficient
between model prediction and

actual measurement is less
than 0.8

Bias fault—the measured value
of SOC is widely different from

the predicted value
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Figure 3. EV charging fault warning process.

4. Implementation of Fault Warning for EV Charging Process
4.1. Data Selection and Pre-Processing

Taking a Volkswagen Bora electric car with a nominal energy of power battery of
37.2 kWh as the experimental object, the historical charging data are collected and divided
into normal charging data and fault charging data. In order to improve the accuracy of
model prediction, 37,000 pieces of the normal charging data are selected for model training.
By analyzing the update period of the physical quantities obtained in Table 1, the minimum
update period is 50 ms. Considering the frequency of data update and fault warning
detection, a fault detection is performed every 250 ms, i.e., the minimum update period
is updated five times, which means a fault detection is optimal for every five elements of
data. According to the above analysis, the fault charging data is sorted out and divided
into charging voltage fault data set and charging current fault data set. Every five pieces
of data in the fault charging data set are divided into one group, among which there are
2400 groups of charging voltage fault data and 2400 groups of charging current fault data.

In order to better reflect the data characteristics, improve the convergence speed of
the ADBN model, and obtain higher fault warning accuracy, this paper uses the method of
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extreme difference normalization to normalize the data set, and the calculation formula is
as follows:

xout =
xin − xmin

xmax − xmin
(16)

where xmax, xmin are the maximum and minimum values of the same group of data in the
input data respectively; xout is the normalized result of the input data xin, which is used as
the input of ADBN.

4.2. Training of ADBN Model

The training of the ADBN model was built using the Tensorflow library. The ex-
perimental software environment is Python 3.5.7 and tensorflow 1.2.1. The hardware
configuration of the computer is Intel (R) core (TM) i5-3210M CPU @ 2.50GHZ and 8 GB
of RAM.

By analyzing the physical quantities obtained in Table 1, the charging voltage and
charging current are used as output quantities and the remaining variables are used as
inputs, it is determined that the input layers of ADBN1 and ADBN2 are 15. Considering
the accuracy of model prediction and training time, some network parameter settings of
ADBN1 and ADBN2 are shown in Table 3.

Table 3. ADBN network parameters.

Description Symbol Value

Maximum number of pre-training iterations - 50
Fine-tune the maximum number of iterations - 50

Number of pre-trained batch samples - 100
Number of fine-tune batch samples - 100

Learning rate of pre-training - 0.4
Learning rate of fine-tuning - 0.001

Exponential decay rate of first-order moments β1 0.9
Exponential decay rate of second order moments β2 0.99

Correction parameters ε 10−8

In addition to determining the above parameters, it is also necessary to select the
appropriate number of ADBN hidden layers L and the number of hidden layer units n.
Since the number of input and output variables and parameter values are the same for
ADBN1 and ADBN2. Therefore, in this paper, we take ADBN1 as an example to tests the
influence of different number of hidden layers L and different number of hidden layer
units n of ADBN1 on the accuracy of charging voltage warning with the same parameters
in Table 3. The number of hidden layers and the number of hidden layer units of ADBN2
are also determined.

In order to study the influence of the number of hidden layers on the accuracy of
charging voltage fault warning, the ADBN1 networks with L of 1, 3 and 5 are constructed.
Set the number of units in the hidden layer of ADBN1 to 100 and test with conducted
with the same historical normal data and fault data. The accuracy of ADBN with different
hidden layers is plotted with the number of iterations as a curve, as shown in Figure 4.

According to Figure 4, the accuracy of ADBN1 is highest when L = 3, the lower
accuracy when L = 1, and the lowest accuracy with a large change when L = 5. The reason
for the large change of accuracy at L = 5 may be that the DBN model is more complex due
to the increase of the number of hidden layers, which makes the optimization process of
NAdam tortuous. According to the above analysis, the number of hidden layers of ADBN1
is set to three, and then the influence of the number of units of different hidden layers
on the accuracy is determined. Figure 5 is the change of accuracy corresponding to the
number of units in different hidden layers.
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Figure 4. Change of accuracy corresponding to different number of hidden layers.

Figure 5. Change of accuracy corresponding to the number of units in different hidden layers.

As can be seen from Figure 5, when the number of hidden layer units n in ADBN1 is
50, 100 and 150, the warning accuracy is above 90%, and the warning accuracy increases
with the increase of the number of hidden layer units. However, when n is greater than
100, the improvement of accuracy is small. Considering the speed of model training and
over-fitting problem, the network structure with the number of hidden layer units of 100 is
selected in this paper.

Figure 6 shows the change curves of the ADBN1 loss value and accuracy with the
number of iterations in the fine-tuning stage. It can be seen from the observation curve
that the loss error decreases rapidly from 0 to the 5th iteration, and gradually tends to a
stable value after 10 iterations. Finally the loss error reaches 0.0087 at 50 iterations, and the
average accuracy of voltage fault warning reaches 98.61% and stabilizes at this time.

According to the analysis results of Figure 4 to Figure 6, the structure of the voltage
fault warning model for EV charging process is 15-100-100-100-1 (including input layer
and BP output layer), that is, when the number of hidden layers is three and the number of
hidden layer units is 100, it has the best warning effect.

When the structure of ADBN2 is the same as ADBN1, the accuracy of charging current
fault warning can reach 97.75%, which proves that ADBN can be adapted to the correspond-
ing charging data when predicting the physical quantities in different charging processes.
Therefore, the structure of ADBN2 can be the same as ADBN1.
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Figure 6. The change curve of ADBN1 loss value and accuracy.

4.3. Method Validation and Comparison

In order to verify the effectiveness of the method in this paper, a group of charging
data with charging voltage fault and a group of charging data with charging current fault
of the Bolero EV car are randomly selected. The two groups of charging data are input
into ADBN1 and ADBN2 to predict the output, and judge the Pearson coefficient with the
actual measured output in order to analyze whether it can accurately warn the fault. The
change of Pearson coefficients is shown in Figures 7 and 8.

Figure 7. Change of Pearson coefficient of ADBN1 predicted output and measured value.

Figure 8. Change of Pearson coefficient of ADBN2 predicted output and measured value.
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As shown in Figures 7 and 8, when the EV is charged normally, the Pearson coefficient
between the predicted value of the model and the actual measured value is in the range
of 0.8 to 1. When a fault occurs, the Pearson coefficient is less than 0.8. This proves that
the warning limit and the warning method selected in this paper can warn of a fault in the
charging process well.

In order to verify the advancement of the method in this paper, it is compared and
tested with the traditional DBN and the widely used BPNN. In the case of the same data
set, the three are combined with the Pearson coefficient at the same time to compare
the accuracy and the model convergence time. In order to ensure the accuracy of the
experimental results, each test is repeated 10 times, and the average value of 10 tests is
taken as the final warning evaluation index. The experimental results are shown in Table 4.

Table 4. Comparison of algorithm results.

Methods Model Alert Accuracy (%) Model Convergence Time (s)

ADBN1 98.61 424.16
DBN1 94.86 481.37

BPNN1 89.69 13.47
ADBN2 97.75 416.66
DBN2 94.62 487.94

BPNN2 90.65 13.97

In Table 4, DBN1 and DBN2 are DBN models for normal charging voltage and normal
charging current of EV, and BPNN1 and BPNN2 are BPNN models for normal charging
voltage and normal charging current of EV. The fine-tuning learning rate of DBN model
is 0.6 and one momentum parameter is 0.25, and the rest of the network parameters and
network structure are the same as ADBN. BPNN adopts a single hidden layer structure,
the corresponding number of nodes is 15-9-1, the learning rate is 0.05, and the number of
iterations is 1000.

The experimental results show that the accuracy of DBN has significantly improved
compared with BPNN, which indicates that the deep network algorithm can realize deep
data mining, has better processing ability for highly coupled and multidimensional data,
and reflects better generalization ability. In addition, because the training process of DBN is
divided into two stages of pre-training and fine-tuning, and the network is more complex,
so the model convergence time of DBN is longer than that of BPNN. Due to the use of the
NAdam algorithm, ADBN accelerates the gradient descent process and achieves dynamic
adjustment of learning rate with strong adaptivity. Therefore, the accuracy of ADBN is
higher than DBN and the model convergence time is shorter.

5. Conclusions

The method proposed uses NAdam as the optimization algorithm for DBN model
training, which speeds up the parameter optimization process, shortens the training time
of the model, has strong constraints on the learning rate, enhances the adaptability of the
model, and can adaptively find the best parameters according to different input data. The
method fully considers the characteristics of the multidimensionality, complexity and large
amount of data of the EV charging process data, excavates the historical data of the EV
charging process in depth, and solves the defects of the weak generalization ability and
poor data feature extraction ability of traditional machine learning methods to a certain
extent. Experiments prove that the proposed method has better warning effect in the
application of fault warning of the EV charging process, and has higher warning accuracy
than DBN and BPNN. The method proposed in this paper can only determine the charging
voltage fault, charging current fault or other fault in an EV, but it cannot determine the
specific type of fault type, such as charging voltage too high fault, charging current too
high fault, etc. Methods should be added in the future to determine the specific types of
faults that occur.
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Nomenclature
EV electric vehicle
BMS battery management system
SOC state of charge
ADBN adaptive deep belief network
NAdam Nesterov-accelerated adaptive moment estimation
DBN deep belief network
BPNN back propagation neural network
VMD variational mode decomposition
UAV unmanned aerial vehicle
RBM restricted Boltzmann machine
Adam adaptive moment estimation
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