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Abstract: The state-of-health (SOH) estimation is of extreme importance for the performance maxi-
mization and upgrading of lithium-ion battery. This paper is concerned with neural-network-enabled
battery SOH indication and estimation. The insight that motivates this work is that the chi-square of
battery voltages of each constant current-constant voltage phrase and mean temperature could reflect
the battery capacity loss effectively. An ensemble algorithm composed of extreme learning machine
(ELM) and long short-term memory (LSTM) neural network is utilized to capture the underlying cor-
respondence between the SOH, mean temperature and chi-square of battery voltages. NASA battery
data and battery pack data are used to demonstrate the estimation procedures and performance of
the proposed approach. The results show that the proposed approach can estimate the battery SOH
accurately. Meanwhile, comparative experiments are designed to compare the proposed approach
with the separate used method, and the proposed approach shows better estimation performance in
the comparisons.

Keywords: lithium-ion battery; health monitoring; chi-squared statistic; extreme learning machine;
long short-term memory neural network

1. Introduction

Lithium-ion batteries play an imperative role in electrification fields including electric
vehicles, electric grids, and portable electronic devices, thanks to their excellent properties
in weight, power density, cycle life and self-discharging rate [1–6]. However, despite
considerable progress in battery chemistry and material, the degeneracy phenomenon is
always keeping in line with the usage and aging of lithium-ion batteries [7,8]. Therefore, it
is essential to accurately monitor the real-time battery health status avoiding catastrophic
hazards and improving battery durability and safety. As one of the main state parameters
of the battery, state-of-health (SOH) is generally applied to quantify the degree of battery
aging and health status. However, the complexity and non-linearity of the electrochemical
mechanism have always been a technical difficulty in estimating the battery SOH accu-
rately [9,10]. Meanwhile, it constitutes the major incentive for taking advantage of various
advanced theories. A variety of methods were proposed to obtain accurate estimates of
the battery SOH, which can group into three categories: direct measurement, adaptive
approaches and data-driven methods.

Coulomb counting (CC), open circuit voltage (OCV) and impedance spectroscopy
are commonly used to directly estimate the battery SOH. CC means that full charging
and discharging processes are performed to acquire the battery static SOH [11,12]. Ex-
tensive tests are conducted to obtain a relationship between SOH and OCV in the OCV
approach [13,14]; impedance spectroscopy uses a wide frequency spectrum to determine
SOH [15]. This scheme is simple and straightforward, but it is time consuming and only
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for specialized laboratory environment, which led to the limited application of direct
measurement methods.

The adaptive approaches, based on various advanced algorithms, calibrate the battery
SOH by identifying the model parameters. The model is generally an electrochemical
model or equivalent circuit model. Due to the high complexity and incapable of directly
solving the issue of battery SOH estimation, the electrochemical model is still not popular
in practical application [16,17]. The extended Kalman filter (EKF) [18] and particle filter
(PF) [19] are generally utilized for the SOH estimation based on the equivalent circuit
model. Nonetheless, their effectiveness and adaptability are sensitive to the credibility and
robustness of the prescribed battery model, which is affected seriously by the degree of the
complexity of electronic systems and uncertain environments of practical application.

Data-driven methods attract more attention since they can describe the complex
battery degradation process without the need for in-depth mechanism research. These
methods automate the battery SOH estimation work through mapping external character-
istics to capacity loss with available historic data of batteries. This type of methods mainly
includes four principal classes: (1) direct mapping from the aging cycle to SOH; (2) mapping
from achievable variables to SOH; (3) signal processing and (4) statistical metrics [20]. The
method of directly mapping from the aging cycle to SOH has good nonlinear mapping [21].
Artificial neural network [22], fuzzy logic [23], and support vector machine (SVM) [24] are
commonly utilized to map from achievable variables to SOH through a black-box model,
which is automatically build up with the input data to reflect the relationship between
the battery SOH and the measured data. Signal processing includes incremental capac-
ity analysis (ICA) [25], differential voltage analysis (DVA) [26], and differential thermal
voltammetry (DTV) [27]. This kind of differential signal requires to be further manipulated
using regression technique. Statistical metrics involve statistical dependency analysis, the
sample entropy, and so forth. However, these approaches have disadvantages of poor
generation and sensitive to the quantity and quality of battery data. As a deep-learning
neural network, the long short-term memory (LSTM) neural network has been utilized to
estimate the battery SOH, because it is able to store and update the information efficiently
for a long period of time without vanishing gradient [28]. Extreme learning machine (ELM)
is a novel single-hidden layer feedforward neural network learning method, and it has
been used for the battery SOH and state-of-charge (SOC) estimation over the advantages
of high precision and high self-adaptability [29].

To improve the precision of SOH estimation results, classical methods usually wield
a huge amount of data to construct the battery model. However, the measured battery
data are often subject to disturbances, measurement errors, stochastic load and other
unknown factors in the actual application works. Responses to the challenges, this paper is
concerned with ensemble learning-enabled battery SOH indication and estimation. The
insight that motivates this work is that the chi-square of battery voltages of each constant
current-constant voltage phrase and mean temperature could reflect the battery capacity
loss effectively. The ensemble algorithm included by ELM and LSTM neural network
(ELM-LSTM) is further utilized to capture the underlying correspondence between the
SOH, mean temperature, and chi-square of battery voltages. NASA battery data and
battery pack data are used to demonstrate the estimation procedure and performance of
the proposed approach. The results show that the proposed approach can estimate the
battery SOH accurately. Meanwhile, comparative experiments are designed to compare
the proposed approach with the separate used method, and the proposed approach shows
better estimation performance in the comparisons.

The structure of this paper is arranged as follows: Sections 2 and 3 describe the
definition of SOH and chi-square, respectively. The ELM-LSTM algorithm is presented in
Section 4. Section 5 discusses the experiment procedure and results. The key conclusions
are finally summarized in Section 6.
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2. SOH Definition

SOH of the battery can be defined in different ways such as internal resistance and
capacity. In this paper, the SOH is estimated using the capacity approach and defined as:

SOH =
Cpresentedcapacity

Cinitialcapacity
× 100%, (1)

where Cpresentedcapacity and Cinitialcapacity are the discharging capacity of the present time
and the initial time, respectively.

3. Chi-Squared Statistic

Chi-square is a statistic of quantitative measuring the correlation or independence of
two variables, which was introduced by Pearson in 1900. Since the chi-squared statistic
was proposed, it has been extensively used in many other fields of science, such as image
denoising [30], and signal recognition [31]. The chi-squared statistic could offer a better
characterization of dependency for the observed data. The classical chi-squared statistic is
defined as [32]:

S =
n

∑
i=1

(xi − xi)
2

xi
, (2)

where xi is the sampling voltages of the constant current-constant voltage charging phrase
for the cycle i, and n represents the number of battery charging and discharging cycles; xi
is the average voltage of constant current-constant voltage charging phrase for the cycle i.

A large amount of observed battery data is always required for accurate SOH estima-
tion, but the measured battery data are often affected by all kinds of noise pollution. It is
complicated and imprecise to characterize the battery health based on the massive noisy
acquired data. Therefore, it is significantly important to extract the key characteristics from
the noisy acquired battery data. The chi-squared test is used to quantify the correlation and
independence of the battery data and simplify the calculation through makes hundreds or
thousands of sampling points into a chi-squared statistic value in this paper.

4. ELM-LSTM Algorithm
4.1. LSTM Neural Network

Since the SOH degradation of the battery varies with the cycles of charging and
discharging, it could be considered as a time series process. Therefore, the LSTM neural
network, a time series analysis approach, is applied to estimate the SOH value based on
the historical operation data for the batteries. LSTM neural network is a type of recurrent
neural network (RNN), which is skilled in setting sequential data. A simple RNN structure
is showed in Figure 1, whose recurrent layer is unfolded into a full network, where x is
input, and the hidden state h gives the network memory ability, t represent time step and
w, u and v are parameters of different layers. 
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Figure 1. The structure of RNN. 
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It can be observed that the output of the hidden layer with the present information
state is transferred to the hidden layer of the next step time as part of the input. This
distinctive characteristic preserves the message of the previous step, thereby improving
the learning ability for the time series data. However, the gradient of RNN vanishes for
the long-term dependence problem, meaning that the input cannot be far transferred as a
result.

In terms of the gradient vanishing problem of RNN, the most effective solution so
far is the LSTM cell architecture. The key insight in the LSTM design was to incorporate
nonlinear, data-dependent controls into the RNN cell, which can be trained to ensure the
gradient of the objective function concerning the state signal does not disappear. The LSTM
structure is showed in Figure 2. It is obvious that the inner structure of the hidden layer for
the LSTM is more complex than that of RNN. The LSTM mainly includes memory cell state,
forget gate, input gate, and output gate. The forget gate can discard redundant information;
the input gate is able to select key information to be stored in the internal state; and the
output gate is used to determine output information. Adding or removing information is
carried out selectively by the memory cell state with the help of three gates. Accordingly,
LSTM can efficiently store and update key information over a long period of time without
gradients vanishing.
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Figure 2. The structure of LSTM neural network.

The procedures of the measured data processed by the LSTM neural network are
described as follows [32]:

(1) Discard the unneeded message of the previous cell state ct−1 in the forget gate ft by

ft = σ(wfxt + u f ht−1 + bf). (3)

(2) Update the input information it and the candidate cell state
∼
ct through

it = σ(wixt + uiht−1 + bi), (4)

∼
ct = tanh(wixi + uiht−1 + bc). (5)

(3) Update the cell state of the present time step ct according to the candidate memory
∼
ct and the long-term memory ct−1:

ct = ft·ct−1 + it ·
∼
ct. (6)

(4) Generate the outcome ht according to the output information ot and the cell state
ct by

ot = σ(woxt + uoht−1 + bo), (7)

ht = ot·tanh(ct), (8)
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where the w and u are the input weight and recurrent weight, respectively; The f , i and o
are the forget gate, input gate and output gate, respectively; b is bias, and σ is the sigmoid
function which activates the three gate and is described as

σ(x) =
1

1 + e−x . (9)

The tanh is the hyperbolic tangent function and comprised by

tanh(x) =
ex − e−x

ex + e−x . (10)

4.2. ELM Neural Network

The ELM is a new single-hidden layer feedforward neural network learning method.
It has the features of adaptive capability, autonomous learning and optimal computation
for a large number of unstructured and imprecise laws. It only needs to set the appropriate
number of hidden layer nodes before training, and assign random values to the input
weights and hidden layer biases during execution. The whole process is completed in one
pass without iterations and produces a unique optimal solution [33]. The structure of ELM
is shown in Figure 3.
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The basic flows of ELM algorithm are described as follows [34]:
Step 1: Initialize network parameters randomly. The input weight vector and hidden

layer bias are represented as xi = [xi1, xi2, . . . , xiN ]
T and bi respectively, where i is the

number of neurons in hidden layer. The hidden neurons are assigned as Ñ, and the value
of Ñ can be changed for obtaining reasonable accuracy.

Step 2: Calculate the output matrix of the hidden layer. The mathematical expression
is calculated by

Hβ = T

⇔
Ñ
∑

i=1
βi fi(xi) =

Ñ
∑

i=1
βi fi(ai·xj + bj) =tj, j = 1, . . . , N

(11)

where ai = [ai1, ai2, . . . , ain]
T represents the weight vector which connects the input nodes

and ith hidden nodes, βi = [βi1, βi2, . . . , βin]
T is the output weight which connect the

ith hidden layer neuron and output layer neuron, f is the activation function which is
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determined before training and H is the matrix of the output layer of the neural network
determined by randomly allocated input weights and hidden layer biases.

Step 3: Obtain the linear equation Hβ = T.

‖H(a1, a2, . . . , aÑ , b1, b2, . . . , bÑ)β̂− T‖
= minβ‖H(a1, a2, . . . , aÑ , b1, b2, . . . , bÑ)β̂− T‖ (12)

Step 4: The least square solution is used to solve the above equation.
The output weight β is estimated by

β̂ = H+T (13)

where H+ is the Moore–Penrose generalized inverse of H; the optimal solution β̂ features
the lower training error and optimal generalization performance.

It is clearly observed that ELM needs less computation than other algorithms since
it uses a forward pass with series of matrix multiplications, which results in substantial
development in training speed.

4.3. Integrated Approach for the ELM and LSTM Neural Network

ELM-LSTM algorithm refers to the ELM and LSTM neural network modelled sepa-
rately and then integrated output at a specific ratio. In this paper, the standard deviation of
the error sequence of the integrated modelling training is used as an essential reference for
the ratio of the outputs of the two neural networks. The steps to integrating the ELM and
LSTM neural network are described as follows:

(1) Divide the acquired lithium-ion battery aging data into preliminary modelling train-
ing set, integrated modelling training set and testing set.

(2) Initialize the ELM and LSTM neural network parameters, randomly.
(3) Based on the preliminary modelling training set, the initial lithium-ion battery SOH

estimation models are constructed using ELM and LSTM, respectively.
(4) Calculate the output error series of the preliminary lithium-ion battery SOH esti-

mation model based on the integrated modelling training set, and then obtain the
standard deviation of the error series.

(5) Establish the integrated estimation model of lithium-ion battery SOH, and the output
weights of LSTM and ELM are calculated by Equations (14) and (15), respectively.

ωlstm = 1− Sdelstm
Sdelstm + Sdeelm

(14)

ωelm = 1−ωlstm (15)

where Sdelstm is the standard deviation of the error series for the LSTM neural network
based on the integrated modelling training set, whereas Sdeelm represents the standard
deviation of the error series for the ELM.

Most of the current literature for battery health state estimation integrates different
algorithms using series or by forming feedback through variables [35–37]. However, it is
innovative to connect the health state estimation model in parallel with the ELM and LSMT
modeling, and then the standard deviation of the modeling error is used to determine the
contribution of the final output. The proposed hybrid method incorporates the advan-
tages of both algorithms through this manner, which improves the estimation accuracy
consequently. Meanwhile, the aging characteristics of the battery charging data are innova-
tively extracted using the cardinality statistics. It can be observed from the experimental
result that chi-squared statistic could offer a better characterization of dependency for the
observed data.
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5. Experiment Process, Results and Discussions
5.1. Experiment Data

Experiments are conducted to demonstrate the effectiveness and universality of the
proposed SOH estimation approach. The experiment data adopt lithium-ion batteries data
of the public data repository of the NASA Ames Prognostics Center of Excellence and
the battery pack aging data. The NASA batteries were employed in working through
three different operational profiles: charge, discharge and impedance, with a temperature
of 25 ◦C and 43 ◦C, which were corresponding to the batteries 5 and 6. Charging was
performed at a 1.5 A constant current until the battery terminal voltage reached 4.2 V
and then maintaining the 4.2 V constant voltage until the current dropped to 20 mA.
Discharging of batteries 5 and 6 were running at a 2 A constant current until the battery
voltage felled to 2.7 V and 2.5 V, severally. Impedance measurement was implemented
with an electrochemical impedance spectroscopy frequency sweep ranging from 0.1 Hz
to 5 kHz. The SOH data of lithium-ion batteries 5 and 6 are showed in Figure 4. It can
be noted that the SOH of batteries tends to degrade significantly with charge–discharge
cycles. The lithium-ion battery pack, which consists of six high-energy lithium-ion cells of
the same specifications connected in series, was tested using the battery pack examination
equipment at room temperature in the Anqing Normal University (AQNU) laboratory.

5.2. Experiment Procedure

The SOH estimation experiment includes the three cases of the battery 5, battery 6
and battery pack. The specific steps of SOH estimation are showed in Figure 5 and also
described as follows:

(1) Calculate the chi-squared statistic of voltage and mean temperature in each charging
stage to reflect the capacity loss, and then the SOH data of the batteries are obtained
after each discharge stage.

(2) Divide the processed data into preliminary modelling training set, integrated mod-
elling training data and testing set. In this work, the preliminary modelling training
set, integrated modelling training data and testing set are divided according to 1:1:2
of the measured data

(3) Based on the preliminary modelling training data, ELM and LSTM neural network,
respectively, used for the preliminary modelling.

(4) Establish the integrated SOH estimation model for the lithium-ion battery based
on the standard deviation of the error series, which is produced by the preliminary
model with the integrated modelling training set as input.

(5) Generate the estimated battery SOH based on the testing data.

5.3. Experiment Results and Analysis

The chi-squared and mean temperature are implemented to construct the dataset
and yield the processed data, which are divided into preliminary modelling training set,
integrated modelling training data and testing set. Based on the preliminary modelling
training data, ELM and LSTM neural network, respectively, are used for the preliminary
modelling, and then establish the integrated SOH estimation model for the lithium-ion
battery based on the standard deviation of the error series, which produces by the prelimi-
nary model with the integrated modelling training set as input. The established integrated
SOH estimation model is used to estimate SOH for the battery 5, battery 6 and battery
pack, respectively. The results are showed in Figure 6. It can be noted that the proposed
SOH estimation method proposed in this paper is effective, which accurately estimates the
SOH for both batteries with the average error within 1%. The ELM-LSTM ensemble neural
network, taking mean temperature and chi-squared as input, can be trained to ensure
the gradient does not disappear and the estimated target is precisely obtained, owing to
incorporate nonlinear, data-dependent controls into the cell.
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In order to quantify the performance of the presented estimation approach including
stability and universality, a comparative experiment was done with the solo ELM neural
network and LSTM neural network methods for the cases of battery 5, battery 6 and battery
pack, respectively. Meanwhile, to avoid accidental accidents in the experiment, each
approach was run more than ten times and estimated results of every time are displayed in
Figure 7.
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Figure 8 shows the errors for the three cases of battery 5, battery 6 and battery pack,
respectively. Obviously, it can be observed that the SOH is accurately estimated with the
average error (AE) less than 2% in all the two cases, but the proposed method has a better
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performance than the other methods. Meanwhile, this can also be verified by the AE and
maximal error (ME) in Table 1.
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Table 1. Estimation errors of the comparative experiment.

Case
Proposed Method ELM Neural Network LSTM Neural Network BP Neural Network

AE (%) ME (%) AE (%) AE (%) ME (%) ME (%) AE (%) ME (%)

Battery 5 0.95 1.17 1.85 1.22 1.41 2.45 2.40 3.29
Battery 6 0.97 1.19 1.80 1.37 1.77 2.3 2.34 3.26

Battery pack 0.97 1.86 2.04 2.41 1.06 1.73 2.43 3.37

The proposed integrated neural network has stronger stability according to the estima-
tion results. ELM neural network has high adaptive ability and fast convergence. However,
it can be noticed from the estimation results that the processing ability of ELM is obviously
not dominant for the time series, for which the AE in the case of cell 5 and cell 6 is 1.85%,
1.80%, and the ME reaches 2.45% and 2.3%, respectively. With the advantage of time series
problem processing, the LSTM neural network has a long-time memory function, which
can solve the long series training process without the gradient disappearance and gradient
explosion problem. AEs of 1.22%, 1.37% along with MEs of 1.41% and 1.77% are obtained
for cell 5 and cell 6, separately.

The proposed method is significantly better than BP neural network in accuracy for
battery 5, battery 6 and battery pack aging test experiments. In addition, since LSTM
neural network incorporates nonlinear, data-dependent control units into the structural
framework to ensure that the gradient of the objective function associated with the state
signal does not vanish when processing time series problems. At the same time, the
connection weights between the implicit and output layers of the ELM do not need to
be adjusted iteratively, improving the algorithm accuracy and generalization ability. The
proposed method further improves the prediction accuracy by combining the advantages
of the two methods, so the proposed method is significantly better than the other methods
in terms of estimation results.
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Additionally, the conclusion can be obtained from Table 1. The introduced integrated
neural network approach combining two neural networks with different characteristics
can further improves the accuracy of estimation for the lithium-ion SOH compared to the
individual ELM, the separate LSTM neural network and BP neural network. The SOH
estimation model for lithium-ion power batteries established by the integrated neural
network has a better fitting performance for capacity recession tracking and reduced
error. It can be concluded that the ELM-LSTM approach significantly outperforms the
individual ELM approach and the separate LSTM approach on the problem of the battery
SOH estimation.

6. Conclusions

This paper has presented a health estimate approach for lithium-ion batteries based
on the synergy of chi-square statistic and the proposed ensemble ELM-LSTM algorithm.
The chi-square extracted from battery voltages of each constant current-constant voltage
phrase and mean temperature has used as an indicator to characterize the battery SOH loss.
Integrated ELM and LSTM neural network has been utilized to capture the underlying
correspondence between the SOH, mean temperature and chi-square of battery voltages.
NASA battery data and battery pack have been used to demonstrate the procedures of
estimation and performance of the proposed approach.

The results have showed that the proposed approach can estimate the battery SOH
accurately, and the average estimation error only within 1%. Meanwhile, the comparative
experiments have designed to contrast the proposed approach with the solo ELM neural
network, the solo LSTM algorithm and BP neural network, and the proposed approach has
indicated a better estimation performance in the comparisons.
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