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Abstract: This paper proposes a novel interior permanent magnet (IPM) machine with asymmetrical
PM configuration. Different from the traditional IPM counterparts, the proposed machine can
perform a magnet axis shifted (MAS) effect. The magnet axis is shifted towards the reluctance axis
so that a higher resultant torque capability can be obtained. Firstly, the configuration and the basic
principle of the proposed machine are described. The design parameters are optimized to improve
the torque capability, and the effect of the PM asymmetry ratio on the torque performance is then
evaluated in detail. In addition, the major electromagnetic characteristics of the optimized machine
are investigated and compared with those of the Prius 2010 IPM machine by finite element method
(FEM). The results demonstrate that the proposed asymmetrical PM configuration can achieve the
torque improvement due to the MAS effect.

Keywords: asymmetrical permanent magnet configuration; interior permanent magnet (IPM); mag-
net axis shifted; permanent magnet (PM) machine

1. Introduction

Due to high torque density and high efficiency, permanent magnet (PM) machines
have gained extensive attention recently. Amongst the conventional PM machines, interior
PM (IPM) machines are regarded as popular choices for electric vehicles [1,2]. In order
to improve the reluctance torque (RT) component, PM-assisted synchronous reluctance
machines (PM-SynRMs) are extensively investigated in [3–5]. However, the conventional
IPM machines suffer from a compromised utilization ratio of magnet torque (MT) and
RT components, whose optimal current angles differ by 45 electrical degrees theoretically.
In order to deal with this issue, dual rotor [6], hybrid rotor [7,8], and asymmetrical PM-
SynRMs [4,9] were developed in recent years. However, the former two machines have
relatively complicated structure and the latter one suffers from significant flux leakage as
well as sophisticated magnetic flux paths.

The purpose of this paper is to propose a magnet axis shifted (MAS) IPM (MAS-
IPM) machine with an asymmetrical PM arrangement, which aims to improve the torque
component utilization ratio, and hence the torque density. In this paper, the configuration
and the operating principle of the proposed machine are described. The effects of the PM
asymmetry ratio on the torque performance are evaluated, and the design parameters are
optimized to improve the torque capability. In order to validate the MAS effect of the
proposed asymmetrical PM arrangement, the major electromagnetic characteristics of the
optimal MAS-IPM machine are analyzed and compared with those of the Prius 2010 IPM
machine (Toyota Motor Corporation, Tokyo, Japan) by finite element method (FEM).

2. Machine Configuration and Basic Principle

The configurations of the Prius 2010 IPM machine and the proposed MAS-IPM ma-
chine are shown in Figure 1a,b, respectively. For a fair comparison, the two machines
share the same stator structure, active stack length, air gap length, current density and

World Electr. Veh. J. 2021, 12, 189. https://doi.org/10.3390/wevj12040189 https://www.mdpi.com/journal/wevj

https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0002-9631-4703
https://orcid.org/0000-0002-7223-9729
https://doi.org/10.3390/wevj12040189
https://doi.org/10.3390/wevj12040189
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/wevj12040189
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj12040189?type=check_update&version=1


World Electr. Veh. J. 2021, 12, 189 2 of 9

PM usages, as shown in Table 1. The main feature of the MAS-IPM machine refers to an
asymmetrical “5”-shaped PM rotor structure, in which the lengths of the second-layer
two PMs are unequal to achieve the MAS effect.
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Table 1. Key common design parameters of Prius 2010 IPM and Mas-IPM machines.

Items Parameters

Stator outer diameter (mm) 264
Air gap length (mm) 0.75

Rotor outer diameter (mm) 160.4
Rotor inner diameter (mm) 100
Active stack length (mm) 50.8

Peak current (A) 246
Rated speed (rpm) 3000

PM volume per pole (mm3) 12,802

For the conventional IPM machine, the optimal current angles βPM and βR when the
MT and RT components reach their peak values are different, the difference of which is
expressed as

γs = βPM − βR (1)

In the traditional IPM machine with a symmetrical rotor configuration, as we know,
the current angle difference γs is theoretically an electrical angle of 45. On the other hand,
in the proposed machine, since the magnet axis is shifted towards the reluctance axis
due to the asymmetrical PM arrangement, the difference of the current angles γs can be
significantly reduced, which can further improve the torque capability.

The no-load magnetic fields of the two machines for comparison are plotted in Figure 2.
It can be seen that the magnet d-axis is shifted by an angle in the proposed MAS-IPM
machine, while the reluctance d-axis remains unchanged. It means that the magnet and
reluctance axes become closer compared with the Prius 2010 machine. As a result, the
difference of the current angles γs of the proposed machine can be reduced and the
corresponding total torque is improved, confirming the feasibility of the MAS effect.
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Figure 2. No-load magnetic fields. (a) The Prius 2010 machine. (b) The MAS-IPM machine.

3. Optimization of The Proposed MAS-IPM Machine

In order to maximize the torque capability by effectively employing the proposed MAS
effect, some design variables are selected to be optimized, as shown in Figure 3. The peak
current 246 A was used for obtaining the maximum torque, which is accordance with that of
Prius 2010 machine. A coefficient α is defined as lpm1/lpm2 to describe the asymmetry level
of PM1 and PM2, which is associated with the MAS effect. The design global optimization
is performed by a multi-objective genetic algorithm with the constraints of the overall
sizing, e.g., stator outer diameter and stack length, as shown in Table 1. The optimization
target is to maximize the average torque and minimize the torque ripple, the corresponding
weight factors of which are 1 and 0.5, respectively. In addition, the major design parameters
of the optimized IPM machines and their variation ranges are presented in Table 2.
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Table 2. Definitions and variation range of the design parameters of proposed MAS-IPM machine.

Items Descriptions The MAS-IPM Machine

h1 (mm) thickness of PM1 3.5~4.5
h2 (mm) thickness of PM3 2.5~3.5

lpm1 (mm) length of PM1 7~21
lpm2 (mm) length of PM2 20~25
lpm3 (mm) length of PM3 25~35

α lpm1/lpm2 (the asymmetry ratio) 0.3~0.9

For illustrating the definition of the torque component utilization ratio, the diagram
for the torque separation of a conventional IPM machine is shown in Figure 4. The torque
component utilization ratios of the MT and RT upm and ur are defined as follows

upm =
MTcomp

MTmax
(2)

ur =
RTcomp

RTmax
(3)
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where MTcomp and RTcomp are MT and RT when the total torque reaches the peak value,
and MTmax and RTmax denote their maximum values of MT and RT.
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A preliminary model is obtained based on the global optimization. To better illustrate
the influence of α on torque performance, the single parameter optimization is performed.
The torque component utilization ratios of MT and RT as functions of different asymmetry
coefficients α are presented in Figure 5. With the increment of α, the RT utilization ratio ur
is increasing proportionally until α reaches 0.8, where ur reaches the peak value of 93.77%.
At the same time, the MT utilization ratio upm decreases with the increase in α, which is
attributed to the weakening of the MAS effect in that case. Nevertheless, Figure 6 shows the
toque component variation with the asymmetry coefficient. It shows that the total torque
and the MT component can be improved with the increment of α until it reaches 0.8. The
improvement in the MT component can be explained by the increase in PM usage, despite
upm decreasing. The RT component is almost invariant because the rotor steel lamination
remains unchanged.
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After the optimization, the optimal asymmetrical structure is confirmed. The opti-
mized design parameters of the proposed MAS-IPM machine are obtained, i.e., h1 = 3.9 mm,
h2 = 2.7 mm, lpm1 = 18.4 mm, lpm2 = 23 mm, lpm3 = 33 mm, and α = 0.8.

4. Performance Comparison
4.1. No-Load Performance

The back-EMFs at rated speed of the two investigated machines are shown in Figure 7.
It can be found that the root-mean-square (RMS) EMF of the proposed machine is 20.2%
higher than that of the Prius machine. Meanwhile, it shows that the MAS-IPM machine
exhibits better sinusoidal back-EMF than the conventional machine. The cogging torque
waveforms are illustrated in Figure 8. It can be seen that the Prius 2010 machine exhibits
higher cogging torque than the MAS-IPM machine. This is mainly attributed to lower THD
of the back-EMF of the proposed MAS-IPM machine.
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monic spectra.
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4.2. Torque Characteristics

The on-load torque characteristics of the Prius 2010 and the MAS-IPM machines
are shown in Figures 9 and 10. The torque separation results obtained by the frozen
permeability method [10,11] are shown in Figure 9a,b, respectively. Due to the asymmetrical
PM configuration, γs of the proposed MAS-IPM machine is reduced by 15 electrical degrees
compared to the Prius IPM machine.
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Figure 9. The torque component segregation. (a) The Prius 2010 IPM machine. (b) The MAS-
IPM machine.
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Figure 10. The steady-state total torque, reluctance torque and magnet torque under maximum
torque conditions. (a) Prius 2010 machine. (b) MAS-IPM machine.

4.3. Torque/Power vs. Speed Curves

The field-weakening capability is a key characteristic for the traction machines for
electric vehicles. The torque/power-speed curves are shown in Figure 11a,b, respectively.
It demonstrates that the proposed machine can achieve higher torque and power capability
over a whole speed range.
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Figure 11. Torque/power-speed curves. (a) The torque-speed curve. (b) The output-speed curve.
(Imax = 246 A, Udc = 650 V).

4.4. Iron Loss and Efficiency Maps

The loss in the machine mainly contains the iron and copper losses. The iron, hystere-
sis, eddy current, and copper losses can be calculated by

Pi = Ph + Pe (4)

Ph = Kh f Bα
m (5)
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Pe = Ke f γBδ
m (6)

Pc = 3Ra I2
a (7)

where Pi, Ph, Pe, and Pc are iron, hysteresis, eddy current, and copper losses, respectively;
Kh and Ke are the coefficients of hysteresis and eddy current losses, respectively; f is the
operating frequency of the machine; Bm is the flux density; α, γ, and δ are the coefficients
of the empiric formula; Ra is the armature winding resistance; and Ia is the phase current
RMS value.

The iron losses of the two machines are given in Figure 12. It can be observed that the
two machines show similar iron losses when the speed is lower than 6000 rpm. Besides,
due to lower THD of the back-EMF, the MAS-IPM machine shows lower iron loss under
high speed range. The efficiency maps of the two machines are illustrated in Figure 13. The
maximum efficiency of the MAS-IPM machine is 0.7% higher than that of the Prius 2010. It
can be seen that the high efficiency over a wider operating region can be achieved in the
MAS-IPM machine due to its lower iron loss. The related electromagnetic performances
of the two machines are given in Table 3. As a whole, the MAS effect of the proposed
asymmetrical PM configuration for the torque improvement is confirmed. Meanwhile,
compared to the Prius IPM machine, the proposed machine exhibits higher RMS flux
linkage, RMS back-EMF and lower cogging torque, as well as higher MT, RT utilization
ratio, and operating efficiency.
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Table 3. The electromagnetic performance of the two investigated machines.

Items Prius 2010 Machine MAS-IPM Machine

RMS back-EMF (V) 104.42 125.31
Rated torque (Nm) 255.44 262.27

Reluctance torque (Nm) 166.36 157.21
Magnet torque (Nm) 89.08 105.09

Peak cogging torque (Nm) 1.21 0.83
γs (elec. deg.) 45 30

Torque pulsation (%) 12.3 18.2
upm (%) 80.21 83.77
ur (%) 91.24 93.31

Maximum efficiency (%) 97.4 98.1

5. Conclusions

A novel IPM machine with a MAS effect is proposed in this paper. Due to the asym-
metrical PM configuration, the proposed machine benefits from the reduced γs, improving
the MT and RT utilization ratios. Hence, the total torque can be further improved. Based on
FEM, the design variables of the proposed MAS-IPM machine are optimized to maximize
the torque capability by defining an asymmetry ratio. Afterwards, the electromagnetic
characteristics of the proposed MAS-IPM machine are investigated and compared with
those of the Prius 2010 machine. It can be found that the proposed machine shows higher
RMS back-EMF, lower total harmonic distortions, and lower cogging torque. In addition,
the MAS-IPM machine exhibits a higher peak torque, a higher high-speed power main-
taining capability, as well as wider high efficiency operating regions. In summary, the
results confirm the MAS effect of the proposed asymmetrical PM configuration due to its
performance improvement. A prototype of the MAS-IPM machine will be manufactured
and the test results will be reported in due course.
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