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Abstract: With the promotion and financial subsidies of the new energy vehicle (NEV), the NEV
industry of China has developed rapidly in recent years. However, compared with traditional fuel
vehicles, the technological maturity of the NEV is still insufficient, and there are still many problems
that need to be solved in the R&D and operation stages. Among them, energy consumption and
driving range are particularly concerning, and are closely related to the driving style of the driver.
Therefore, the accurate identification of the driving style can provide support for the research of
energy consumption. Based on the NEV high-frequency big data collected by the vehicle-mounted
terminal, we extract the feature parameter set that can reflect the precise spatiotemporal changes
in driving behavior, use the principal component analysis method (PCA) to optimize the feature
parameter set, realize the automatic driving style classification using a K-means algorithm, and build
a driving style recognition model through a neural network algorithm. The result of this paper shows
that the model can automatically classify driving styles based on the actual driving data of NEV
users, and that the recognition accuracy can reach 96.8%. The research on driving style recognition in
this paper has a certain reference value for the development and upgrade of NEV products and the
improvement of safety.

Keywords: driving style; high-frequency bid data; joint distribution characteristics; K-means
algorithm; neural network; new energy vehicle

1. Introduction

With the new four modernizations strategy of automobile industry (electricity, net-
working, intelligence, and sharing), the new energy vehicle (NEV) industry in China has
developed rapidly in recent years. Statistics from the Ministry of Public Security show that,
by the end of 2020, the number of NEVs in China reached 4.92 million [1]. Different from
traditional fuel vehicles, NEVs collect a large amount of operating data, which can reflect
user habits and the product performance of NEVs to a certain extent. In order to improve
the efficiency of NEV product R&D, optimize the product performance, and accelerate
the product upgrade speed, NEV operation big data mining will become an important
foundation for the development of the NEV industry.

At present, NEV technology is far less mature than traditional fuel vehicles. There
are many issues that need to be researched in the R&D and operation of NEV. Among
them, battery life and energy consumption are the most concerning issues of OEM and
consumers, and are closely related to the driving style of the driver. Therefore, the driving
style is an important factor that needs to be considered in the research of NEV products.
As an interactive bridge between the driver and the NEV, the driving style is an important
parameter that indicates the driver’s personal characteristics. The correct recognition
of driving style, which can deepen our understanding of driving behavior, has a great
reference value for the research and development of driving assistance systems. Research

World Electr. Veh. J. 2021, 12, 142. https://doi.org/10.3390/wevj12030142 https://www.mdpi.com/journal/wevj

https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0003-3859-365X
https://orcid.org/0000-0002-6304-5279
https://doi.org/10.3390/wevj12030142
https://doi.org/10.3390/wevj12030142
https://doi.org/10.3390/wevj12030142
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/wevj12030142
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj12030142?type=check_update&version=3


World Electr. Veh. J. 2021, 12, 142 2 of 12

on the recognition of driving style is beneficial for improving the energy efficiency and
safety of NEVs.

Many efforts concerning driving style recognition have been made in recent years.
In past research works, researchers usually use driving data to calculate the maximum,
minimum, average, and other conventional statistical parameters to represent the user’s
driving characteristics. However, conventional statistical parameters can only reflect the
overall status of the driving style, and the detailed information in the driving fragment
is lost. In order to build a model that can accurately recognize the driving behavior of
NEVs, improve NEV products based on different driving behavior characteristics, improve
product intelligence and driving experience, and promote the positive development of
the NEV industry, this paper collects NEV high-frequency big data by CAN bus, extracts
joint distributed feature parameters that can reflect the characteristics of driving behav-
ior in time and space, and builds a driving style recognition model using a BP neural
network algorithm.

The remainder of this paper is organized as follows. Section 2 describes the related
works. Section 3 introduces the methodology. Section 4 presents the results and discussions.
Lastly, conclusions are drawn in Section 5.

2. Related Works
2.1. Data Acquisition

In order to classify and recognize driving styles, it is necessary to collect vehicle data in
actual driving conditions. In recent years, the main methods for collecting driving behavior
data are simulation experiments, smart phones, and CAN bus.

Sun, B. et al. [2] designed the Driver-In-the-loop Intelligent Simulation Platform (DIL-
ISP), which can collect the actual accelerator pedal and brake pedal operation signals of the
driver in real time. In addition, DILISP can collect the sport appearance of two vehicles and
record the drivers actions. Qun Wang et al. [3] designed a data acquisition system based on
an inertial navigation sensor and advanced RISC machine microcontroller that can collect
the driver’s driving behavior and vehicle status in real time. Derick A. Johnson et al. [4]
collected the speed and direction data of the vehicle during driving using the rear camera,
accelerometer, gyroscope, and GPS of a smartphone. Hamid Reza Eftekhari et al. [5] made
use of the accelerometer, magnetometer, and gyroscope of a smartphone to collect the speed
change rate, the rotation of the vehicle, and the angle between the coordinate axis of the
device and the base. Fuwu Yan et al. [6] collected the driver’s EEG signal using the Biopac
MP150 system, and collected the steering wheel angular velocity using the photoelectric
encoder. F. Martinelli et al. [7] collected data through CAN bus in order to identify the
driving behavior, where the acquisition frequency was one frame per second.

2.2. Driving Style Recognition Mehtod

In the current research results, there are mainly two methods for driving style recogni-
tion: the subjective evaluation method and statistical classification method. The subjective
evaluation method needs predefined rules to classify driving styles, so it has a strong
dependence on professional knowledge. The statistical classification method has a strong
generalization capability, so it can recognize the driving behavior easily and accurately.

Ouali, T et al. [8] evaluated the driving style score through the speed, accelerator
pedal position, brake pressure, lateral acceleration, longitudinal acceleration, steering
angle, and cruise control signals in CAN bus, and divided the driving style into three
categories: calm, normal, or aggressive. This research method needs predefined rules
to classify driving styles, so it has a strong dependence on professional knowledge, and
relates to the subjective evaluation of the driver. Based on the historical data of vehicles,
many scholars have conducted much research work on building driving style recognition
models by statistical algorithms and machine learning algorithms [9–15]. The statistical
algorithms and machine learning algorithms have a strong generalization capability, so
they can recognize the driving behavior easily and accurately. At present, the algorithms
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that are commonly used in related works include PCA, KPCA, K-means, SVM, artificial
neural networks, CatBoost, Random Forest, etc. Sun, B. et al. [1] divided driving style
into three categories by particle swarm optimization clustering (PSO clustering), and built
a driving style recognition model using a multidimensional Gaussian hidden Markov
process (MGHMP). Qun Wang et al. also divided the driving style into three categories
and built a driving style recognition model using different algorithms, which were the
K-means and random forest algorithm. Fuwu Yan et al. [6] used K-means for clustering
the driving data, and a support vector machine (SVM) for training in order to build the
driving style recognition model. F. Martinelli et al. [7] built five driving style classification
models using J48, J48graft, J48consolidated, RandomTree and RepTree, and evaluated the
classification results of them by parameters such as false alarm rate (FP), accuracy, recall
rate, F measure, and ROC area quality. Weirong Liu et al. [16] used CatBoost as the basic
classifier to establish a Tri-CatBoost-based driving style recognition method that can reduce
the dependence on data labels. Gqa B et al. [17] discovered distinguishable driving style
information with a hidden structure from the real-world driving behavior data using two
kinds of topic models: mLDA and mHLDA. Campo I D et al. [18] proposed modelling
the driving style classifier based on a single layer data-driven extreme learning machine
(ELM) algorithm. Chen D et al. [19] used the Labeled Latent Dirichlet Allocation model to
understand the latent driving styles from individual driving with driving behaviors.

In addition to the above two types of methods, in recent years, some scholars have
adopted probabilistic methods to establish driving style recognition models. Deng C et al. [20]
realized the effective discriminant of the driving style based on the hidden Markov model
algorithm, and three driving styles (aggressive, moderate, and mild) were modeled rea-
sonably. Han W et al. [21] extracted discriminative features using the conditional kernel
density, and computed the posterior probability of each selected feature to classify driving
styles into seven levels from normal to aggressive. Deng Z et al. [22] extracted maximum
lateral acceleration as a crucial indicator, and determined driving style using the point
estimation model and interval estimation model.

In the above related works, in order to represent the driving styles, many researchers
extracted statistical parameters, such as the maximum [22], and many researchers calcu-
lated the time gap (division of range and speed) and speed difference [17]. However, these
parameters lost the detailed information of the driving behavior, and ignored the simultane-
ity and correlation between different data fields. In order to maintain the characteristics of
driving behavior to the greatest extent and consider the relationship between different data
fields, we propose building a driving style recognition model based on a joint distribution
feature parameter in this paper.

3. Methodology

In this paper, the main steps of driving style recognition method is: (1) NEV high-
frequency big data acquisition; (2) joint distribution feature parameters extraction; (3) fea-
ture parameters optimization; (4) driving style classification; (5) driving style recognition.

3.1. NEV High-Frequency Big Data Acquisition

At present, according to national requirements in GB/T32960 [23] of China, companies
need to acquire real-time data on NEVs and upload the data to the national big data
platform. The data acquisition frequency is usually 10 s per frame. At the highest frequency,
it can reach 1 s per frame, whereas the data uploaded to the national big data platform is
30 s per frame. This data frequency is far from enough to study the driving behavior of
NEV users. Take the NIO ES6 as an example: its 100 km acceleration time is only 4.7 s. If the
data acquisition frequency is 10 s, the data characteristics of the vehicle during acceleration
cannot be captured. Even if the data frequency is 1 s per frame, up to 5 frames of data can
be obtained, and it is difficult to accurately represent the user’s actual accelerator pedal
operation characteristics at this stage. In order to cover the important characteristics of
the user’s driving behavior, we used the CAN bus to collect high-frequency big data; the
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frequency can be up to 100 Hz, which is 0.01 s per frame. Similarly, taking the NIO ES6
100 km acceleration test as an example, the number of data frames we can collect reaches
470 frames, which is sufficiently detailed to describe the characteristics of the user’s driving
behavior changes during this time period.

In this paper, a certain brand of BEV operating in Tianjin is used to collect NEV
high-frequency big data. The five selected vehicles have close on-line dates and are
operated in the same region, which can reduce the influence of factors, such as region,
driving conditions, and battery life. The pure electric driving range of the selected vehicles
is 320 km.

According to the collected data field requirements in GB/T32960 “Technical specifica-
tions of remote service and management system for electric vehicle”, we acquired NEV
operation data using on-board OBD system and CAN bus, and transmitted the data to
NEV data remote monitoring platform, as shown in Figure 1. The acquired NEV high-
frequency big data mainly includes driving behavior data, charging data, battery data,
motor data, DCDC data, etc. In addition to the data fields required by GB/T32960, we also
collected steering wheel angle and longitudinal acceleration. By using big data clusters as
support, the NEV data remote monitoring platform is based on the ADC-DA efficient R&D
architecture, and monitors the real-time data of NEVs through the high concurrency of the
clusters. The real-time data are stored in Oracle database.
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Figure 1. Flow chart of high-frequency big data collection for new energy vehicles.

In this paper, the data fields we focus on are those that reflect characteristics of driving
behaviors, including timestamp, vehicle speed, steering wheel angle, and longitudinal
acceleration. We extracted the monitoring data of five selected vehicles from February
2019 to September 2019 from the database. To reduce storage and improve computational
efficiency, we only extracted the required data fields and few data fields for auxiliary
analysis, as shown in Table 1. Among them, the voltage and current are used to confirm
the vehicle status and the subsequent energy consumption analysis. The total data volume
is 18 GB.

Table 1. The required data fields for driving behaviors.

No. Date Name Description

1 Time Data style: year-month-day hour:minute:second

2 Vehicle status “0” means flameout state; “1” means start state;
“2” means invalid state

3 Speed The unit is km/h, accurate to one decimal place
4 Steering wheel angle The unit is ◦, accurate to one decimal place
5 Longitudinal acceleration The unit is m/s2, accurate to two decimal places
6 Total voltage The unit is V, accurate to one decimal place
7 Total current The unit is A, keep integer
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3.2. Driving Style Feature Parameter Extraction

Generally, the data used in evaluating driving behavior mainly include vehicle speed,
steering wheel angle, longitudinal acceleration, braking deceleration, etc. The statistical
parameters are extracted to reflect the driving characteristic, such as maximum, minimum,
mean, median, mode, standard deviation, etc. The statistical parameters can represent the
driving behavior characteristics in the time dimension, but the simultaneity between vehicle
speed and longitudinal acceleration, braking deceleration, or steering wheel rotation speed
is missed. In order to distinguish acceleration segments and deceleration segments, we re-
define the segment data with positive longitudinal acceleration as longitudinal acceleration,
and the data with negative longitudinal acceleration as braking deceleration.

In order to characterize the driving style of drivers precisely, especially vigorous
driving behaviors, such as rapid acceleration, rapid deceleration, and sharp turning,
we propose using the joint distribution of vehicle speed and other fields for evaluating
driving style. The joint distribution characteristic parameters [24] can reflect the spatial
relationship between vehicle speed and longitudinal acceleration, braking deceleration
or steering wheel speed, and evaluate the temporal and spatial characteristics of driving
behavior comprehensively.

Taking a trip of driver A and a trip of driver B as examples, the joint distribution char-
acteristic parameters of vehicle speed and longitudinal acceleration, braking deceleration,
or steering wheel speed are extracted, respectively, as shown in Figures 2–4.
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In Figure 2, when the steering wheel speed is higher than 20◦/s, the vehicle speed
of driver A is concentrated below 30 km/h, whereas the vehicle speed of driver B is
concentrated in the range of 10–50 km/h. Figure 2 shows that the turning speed of driver
B is higher than driver A. It can be seen from Figures 3 and 4 that the joint distribution
between vehicle speed–longitudinal acceleration and vehicle speed–brake deceleration
of driver B is relatively scattered, and the vehicle speed, longitudinal acceleration, and
braking deceleration are all higher than that of driver A. Figures 3 and 4 show that the
driving style of driver B is more intense than driver A.

3.3. Optimization of Driving Style Characteristic Parameters

The driving style characteristic parameters of this paper include a plurality of sta-
tistical parameters of NEV big data, the percentage of intervals, and three different joint
distribution characteristics, totaling 383 dimensions. In order to minimize the resources
required for calculation and maximize the retention of the information contained in the driv-
ing behavior characteristic parameters, the characteristic parameters need to be optimized
for dimensionality reduction.

In this paper, we used principal component analysis algorithm to orthogonally trans-
form the characteristic parameters of driving behavior. The characteristic parameters that
may have a certain correlation with each other can be transformed into a linear and uncor-
related principal component. As shown in Figure 5, the cumulative contribution rate of
the first 35 principal components is over 85%. Therefore, the first 35 principal components
can be used to represent the driving styles. The dimensionality reduction optimization
processing reduces the complexity of the characteristic parameter matrix and can improve
the calculation efficiency.
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3.4. Automatic Classification of Driving Style

At present, the driving behaviors are usually divided into aggressive, normal, and
mild driving behaviors based on the intensity of driving. Based on the characteristic
parameters of driving behaviors in this paper, we use the clustering algorithm to realize
the automatic classification of driving behavior intelligently and objectively.

The K-means algorithm randomly selects K points from the dataset as cluster center
points, calculates the Euclidean distance between the data points of dataset and the cluster
center points, and assigns them to the cluster center point with the smallest Euclidean
distance. Then, it replaces original cluster center with the mean value of K-cluster, and
iterates until the cluster center point remains unchanged or the sum of the squared errors
reach local minimum. Among them, the formula for calculating Euclidean distance is

d =

√
n

∑
i=1

(xi − ki)
2 (1)

where d is the Euclidean distance from the data point to the cluster center point, n is the
dimension of the data point, xi is the characteristic parameter of the data point, and ki is
the characteristic parameter of the cluster center point.

The sum of the squared errors refers to the sum of clustering errors of all data points
in the dataset, which can represent the clustering effect to a certain extent. The calculation
formula is

SSE =
k

∑
i=1

∑
x∈Ci

|x− ki|2 (2)

where SSE is the sum of squares of errors, Ci represents the i-type of data, ki is the cluster
center point of Ci, and x is any point in the i-type of dataset.

3.5. Driving Style Recognition Model Construction

By K-means clustering algorithm, driving behavior is divided into five categories,
and category labels are automatically generated. The classification results and data labels
can be used as a training dataset for building a driving style recognition model. In this
paper, BP neural network algorithm, which has strong inductive ability, is used to build a
driving style model. BP neural network algorithm can obtain hidden data relationships
from training data without prior assumptions, and deal with problems with unclear rules
or complex internal relationships. The training optimization method of BP neural network
is the gradient descent method. The input data of each neuron is

net =
n

∑
i=1

xiwi (3)

where xi is the input feature and wi is the connection weight.
If the Sigmoid function is used as the activation function, the hidden layer neuron

output is

y′ = f (net) =
1

1 + e−net (4)

The training process of BP neural network includes forward propagation of informa-
tion and back propagation of error. In the forward propagation process, the input of the
previous layer is weighted, and becomes the input of the next layer, namely net. In the
back propagation process, according to the difference between the actual output y′ and the
ideal output y, the weight matrix is adjusted to minimize the error, and finally the error is
controlled within a certain required range. The error of the sample data can be described as

Ep =
1
2

m

∑
j=1

(ypj −Opj)
2 (5)
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The total error of the sample data set is E = ∑ EP. The algorithm will iterate until the
parameters meet the requirements.

4. Results and Discussions

In this paper, the model was built and solved by Python. The output results are the
driving behavior levels of all of the driving behavior fragments.

In theory, the larger the K value of the cluster number, the more accurate the classi-
fication. However, the larger K value is not conducive to the classification and analysis
of real data. Therefore, it is necessary to first define the optimal cluster number K value.
In this paper, we test the clustering effect of different clustering numbers K based on the
driving behavior feature parameter set after the dimensionality reduction, as shown in
Figure 6. When K is less than 5, SSE drops sharply, indicating that, as K increases, the
clustering effect is significantly improved. When K is greater than 5, the downward trend
of SSE gradually weakens, indicating that the increase in K does not obviously improve the
clustering effect. Therefore, we use 5 as the optimal number of clusters, and divide driving
style into 5 levels, as shown in Figure 7.
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There are 4563 effective driving fragments in the high-frequency big data of this paper.
Seventy percent of them are selected randomly as training samples, and the remaining
30% are selected as test samples. In order to speed up the learning process and avoid
training non-convergence, the feature vector parameters are standardized and limited to
the interval [0, 1].

After experimental testing, a three-layer neural network driving style recognition model
is established, as shown in Figure 8. In Figure 8, Xi is a input layer node and represents a
driving parameter, and yi is an output layer node and represents the driving style level. The
input layer has 383 driving style characteristic parameters, the output layer has 5 driving
style levels, and the number of hidden layer nodes is 20. We select the BP algorithm training
function tradingdx for network training, define the training parameters, and train the network
combined with the number of hidden layer nodes in order to determine the driving style
model parameters. The training parameters include a maximum network training times of
10,000, a learning rate of 0.02, and a target error of 1.0 × 10−8.
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We apply the driving behavior recognition model in Figure 8 to the dataset of this
paper, and recognize the driving styles of the 4563 effective driving fragments. In the results,
4417 driving styles are the same as in Figure 7, and the recognition accuracy is 96.8%.

This paper uses joint distribution parameters and statistical parameter characteristic
parameter sets. The characteristic parameter has 383 dimensions, among which, the joint
distribution parameter has 320 dimensions, and the traditional statistical characteristic
parameter has only 63 dimensions, as shown in Table 2. Compared with the traditional
driving behavior recognition method that only uses statistical feature parameters, this
paper adds 320-dimension joint distribution feature parameters, which can describe the
correlation between the vehicle speed and the steering wheel speed, acceleration, and
deceleration during the driving stage. For example, in Figure 2, when the steering wheel
speed is in the range of 10–20◦/s, the speed distributions of driver A and driver B are
different, which expresses the difference in the driving style of the two drivers. Only
statistical parameters extracted for the vehicle speed or steering wheel angle cannot express
this information.
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Table 2. The 63-dimension statistical characteristic parameters.

Speed Steering Wheel Speed Longitudinal Acceleration Braking Deceleration

Maximum Maximum Maximum Maximum
Mean Mean Mean Mean
Mode Mode Mode Mode

Common value Common value Common value Common value
Standard deviation Standard deviation Standard deviation Standard deviation

Ratio of range
(km/h)

[0, 10)

Ratio of range
(◦/s)

[0, 10)

Ratio of range
(m/s2)

[0, 0.25)

Ratio of range
(m/s2)

[0, 0.25)
[10, 20) [10, 20) [0.25, 0.5) [0.25, 0.5)
[20, 30) [20, 30) [0.5, 0.75) [0.5, 0.75)
[30, 40) [30, 40) [0.75, 1) [0.75, 1)
[40, 50) [40, 50) [1, 1.25) [1, 1.25)
[50, 60) [50, 60) [1.25, 1.5) [1.25, 1.5)
[60, 70) [60, 70) [1.5, 1.75) [1.5, 1.75)
[70, 80) [70, 80) [1.75, 2) [1.75, 2)
[80, 90) [80, 90) [2, 2.25) [2, 2.25)

[90, 100) [90, 100) [2.25, 2.5) [2.25, 2.5)
- [100, ∞) [2.5, ∞) [2.5, ∞)

In order to discuss the influence of the feature parameter set on the driving style
recognition result, we built a driving style recognition model using 63-dimension statistical
feature parameters using the same method in Figure 8. The number of input layer nodes is
the same as the dimension of feature parameters, and the number of output layer nodes
is the same as the number of driving style levels. Due to the reduction of input feature
parameters, the number of nodes in the input layer of this model is reduced to 63. However,
since the driving behavior is still divided into five levels according to Figure 7, the number
of nodes in the output layer remains unchanged. The number of nodes in the input layer is
reduced, and the complexity of the model solution is reduced, so we redefine the number
of nodes in the hidden layer to 10. Compared with the model in Figure 8, the complexity
of the new model is reduced, and the computing resources occupied are reduced. The
parameters of the two driving behavior recognition models are shown in Table 2.

Using the statistical parameters model and the 63-dimension statistical parameters
of 4563 driving behavior fragments for driving style recognition, 4248 fragments can be
correctly recognized, as shown in Table 3. Compared with the joint analysis parameter
sets model, the number of correct recognition fragments is reduced by 169. Most of the
169 driving behaviors with recognition errors are level 1, level 2, and level 3. In our opinion,
the reason for the recognition error is that their statistical parameters are close to each
other, and the subtle differences between driving behaviors in level 1 to level 3 cannot
be distinguished.

Table 3. Comparison of models and results.

Comparison Item Joint Distribution
Parameters Sets

Statistical
Parameters

Dimensions 383 63

Models
Input layer 383 63

Hidden layer 20 10
Output layer 5 5

Results
Number of accurately
identified fragments 4417 4248

Recognition accuracy 96.8% 93.1%

The focus of this paper is to use new joint distribution feature parameters to represent
driving behavior, instead of conventional statistical parameters, and to build a driving
style recognition model based on these new parameters. We use the BP neural network
algorithm because the BP algorithm has a strong generalization ability. Furthermore, the
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new joint distribution feature parameters can be applied to other modeling algorithms,
such as SVM, random forest, Tri-CatBoost, ELM, etc.

It should be noted that we need to extract the joint distribution characteristic param-
eters from NEV high-frequency big data, so the method in this paper is not suitable for
the low-frequency real-time big data currently being collected by the new energy vehicle
industry in China. In addition, NEV high-frequency big data requires much higher storage
equipment and computing resources than low-frequency data.

5. Conclusions

Driving behavior has an impact on safety, energy consumption, and battery life. A
deep understanding of driving style will have important guiding significance for the
innovative development of new energy vehicles. This paper studies a NEV driving style
recognition model relying on high-frequency big data, and extracts the joint distribution
characteristic parameters of different data types, which can more fully reflect the temporal
and spatial characteristics of driving behavior. The model has been tested with real-world
driving segment data, and the accuracy can reach 96.8%.

Next, we will expand the sample size of driving fragments and analyze the correlation
between the driving style and energy consumption of NEV in order to improve the quality
of research results and clarify the impact of driving style on energy consumption.
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