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Abstract: To solve the problems of the decreased reliability and safety of battery pack due to the
inconsistency between batteries after single batteries are grouped is of great significance to find
an appropriate sorting method of single batteries. This study systematically reviews the available
literature on battery sorting applications for battery researchers and users. These methods can be
roughly divided into three types: direct measurement, sorting based on the model, and sorting
based on the material chemistry of batteries. Among them, direct measurement is about the direct
measurement of the state parameters of batteries using some professional instruments or testing tools
to sort and group batteries with similar or close parameters. Sorting based on the model classifies
batteries into groups by establishing a battery equivalent model and carrying out model identification
and parameter estimation with machine learning or artificial intelligence algorithm. Sorting based on
the material chemistry of batteries is to explore some characteristics related to the chemical mechanism
inside the battery. On the basis of reading extensive literature, the methods for classification of battery
are provided with an in-depth explanation, and each corresponding strengths and weaknesses of
these methods are analyzed. Finally, the future developments of advanced sorting algorithms and
batteries prospect.

Keywords: battery sorting; battery grouping; method review; direct measurement method; equivalent
model method; electrochemical analysis method

1. Introduction

With the rapid popularization of new energy vehicles, a single battery can no longer satisfy the
needs of whole vehicle voltage and energy. Therefore, in the power battery system of new energy
vehicles, single batteries need to be grouped, such as in series, in parallel, and in series-parallel,
and applied to electric vehicles in the form of the battery pack. Power battery grouping technology
has also become a technical bottleneck, restricting the marketization of electric vehicles. However,
there are always some slight differences in the manufacturing process of single batteries, making it
impossible for the capacity, internal resistance, and other parameters of the same model of batteries
to be completely consistent [1]. Due to the limitation of the equipment and manufacturing process,
this absolute difference between single batteries cannot be completely eliminated in a short time.
Such kind of difference between single batteries is acknowledged as the inconsistency between
single batteries after grouping, leading to a significant decline in battery life and failure to guarantee
performance and safety [2]. When battery packs of new energy vehicles are used, the inconsistency
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between single batteries inside the packs will be amplified with the increase of cycles, accelerating
the aging of the packs. We are unable to change this difference between single batteries within a
short time. Moreover, the method of improving battery cell linking technology has little significance
for improving inconsistency [3]. There are still inconsistencies, even though new energy sources,
such as supercapacitors, will be used in the future [4]. To improve the service life and utilization rate of
batteries, we have to minimize this inconsistency between single batteries as far as possible and take
an appropriate measure to sort batteries to be grouped in order to make the single batteries that are
grouped as consistent as possible.

From another perspective, the popularization of new energy vehicles is bound to be accompanied
by the retirement of more and more powerful battery packs of new energy vehicles. As predicted by
the China Automotive Technology and Research Center, the accumulative scrap of power batteries of
new energy vehicles in China will amount to 120,000–170,000 tons this year. How to deal with these
retired batteries is a problem, demanding a prompt solution. At present, there are mainly two methods
to deal with them. The first is to disassemble and recycle, that is, to discharge and disassemble the
retired batteries, and then extract raw materials for recycling. Since the disassembled battery still has
60%–80% of the initial capacity, this method is not very economical. The second is to utilize them in
cascade, that is, to use power batteries that are soon to be retired as a carrier of electric energy in fields
like energy storage. This method can give full play to the remaining value of retired battery packs.
The cascade utilization of power batteries refers to the detection, sorting, recombination, and reuse
of retired batteries. If a single battery is directly recombined without being sorted, the service life of
the battery pack will be greatly reduced and almost as poor as retired battery packs in severe cases.
Therefore, to sort a single battery consistently is a key step in the cascade utilization of retired batteries.

With the gradual marketization of electric vehicles, there are increasingly pressing demands
for battery sorting. Finding a more suitable sorting method has become a challenge. Scholars have
proposed many distinct methods, while only a few pieces of reference [5–11] have summarized some
of the methods. These reviews are splendid, while their summaries are not all-round enough. In this
paper, some of the sorting methods of power batteries are reviewed and summarized according to the
research direction. As illustrated in Figure 1, the author explores the advantages and disadvantages
of different methods through a detailed analysis of the sorting bases of different methods, providing
a reference for looking for a more effective sorting method of power batteries in the future; this can
adapt to the development trend of battery manufacturing technologies.
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The organizational structure of this paper is arranged as follows. Section 1 gives a brief introduction
to the background of this article. Section 2 illustrates the sorting method of direct measurement.
Section 3 introduces the sorting method of power batteries based on the model. Section 4 describe the
sorting method relying on the material chemistry of power batteries. Section 5 compares and predicts
the sorting methods of power batteries. Section 6 draws a conclusion.

2. Direct Measurement

The main parameters of power batteries include voltage, internal resistance, temperature,
self-discharge rate, battery weight, and capacity decay rate. Traditional sorting methods sort batteries
based on these parameters of power batteries, which can be divided into static parameters and
dynamic parameters. Static parameters refer to parameters of batteries at a certain time point, namely,
the parameters when batteries have no energy input or output. They are usually measured on batteries
rather than in a working state. Dynamic parameters refer to the integration of parameters concerning
time in a certain period, or the change of battery parameters in a period when there is energy input or
output. This method sorts batteries by finding out similarities among single batteries depending on
the characteristic of every single battery.

2.1. Sorting Based on the Static Parameters of Power Batteries

Static parameters refer to the state parameters of batteries when they are open or idle, that is, in
the absence of energy input and output. Scholars in the industry generally believe that voltage, internal
resistance, and capacity are the three parameters reflecting battery conditions best. Most sorting
methods are also based on these three parameters to sort batteries. Feng Jianjun et al. conducted
experiments on these three methods, and the results indicated that all three methods could be used
as indicators for battery sorting. Figure 2 illustrates the voltage drop of a single battery in different
storage periods. Figure 3 presents the influence of the consistency between the internal resistances of a
single battery on battery grouping. Figure 4 exhibits the voltage difference between single batteries at
different discharge rates [12].
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Apart from these three parameters, there are other parameters available for sorting, including
the self-discharge rate of the battery. Sorting based on the static parameter of voltage typically puts
a fully-charged battery on hold for dozens of days, and then its open-circuit voltage is measured.
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Due to the different self-discharge rates between single batteries, these batteries are selected and sorted
according to the open-circuit voltages before and after they are put on hold. Sorting based on the static
parameter of internal resistance directly measures the internal resistance of battery using a professional
instrument. Accurate measurement of the internal resistance of the battery requires high requirements
on the test instrument and its method. This can increase the internal resistance of the battery. Sorting
based on the static parameter of capacity often charges and discharges batteries under set conditions,
identifies the capacity of batteries by the discharge current and discharge time, and then sorts batteries
according to the capacity range identified. Besides, sorting based on static parameters is simple and
easy to operate, while it can only demonstrate that the batteries are consistent under set conditions.
In actual work, the conditions of batteries are complex, and this method cannot reflect the working
characteristics of batteries. Therefore, it is subject to certain limitations and is often used as a means of
primary selection before sorting or applied to a sorting machine or system. Reference [13] sorts batteries
according to the weight of the battery. References [14–16] adopt a sorting system based on voltage.
References [17–19] use a sorting device based on internal resistance. Reference [20] employs a sorting
system based on capacity. Reference [21] designs a field-programmable gate array (FPGA) fast sorting
system based on the voltage and impedance of battery, contributing to a significant improvement of
the sorting efficiency.

The kind of sorting, that is, sorting based on the main characteristic parameters of a single battery,
such as voltage, internal resistance, and capacity, allows the easy measurement and quick sorting.
It can realize sorting with simple testing tools; for example, a multimeter is very suitable for scenarios
with low sorting requirements. This method is also a mainstream process in recent years, adopted by
battery manufacturers before delivering battery products out of the factory.

2.2. Sorting Based on the Dynamic Parameters of Power Batteries

Different from sorting by static parameters, sorting by dynamic parameters is based on the
parameters of a single battery in the presence of energy input or output. This method is closer to
the normal working state of batteries. It sorts batteries by finding out the same parameters between
single batteries, such as dynamic internal resistance and volt-ampere (VA) characteristic curve, through
different energy inputs or outputs of batteries. References [22–27] group batteries by comparing
the variation of positive VA characteristics and charge-discharge characteristic curves of different
single batteries and selecting single batteries with the same curves. Figure 5 presents the discharge
characteristic curves of batteries that satisfy sorting conditions. There are seven single batteries curves
in Figure 5. Thus, the closest battery curve is matched into a group, which is divided into group 1 and
group 2. Reference [28] sorts batteries by comparing the capacity increment curves of different single
batteries. References [29–31] sort batteries by selecting dynamic voltage parameters in a certain state of
charge (SOC). An experiment in reference [32] demonstrates that the consistency between the dynamic
characteristics of batteries mainly depends on the consistency between low-frequency impedance
of batteries. References [33,34] sort batteries by extracting feature points. Reference [35] defines
the concept of available capacity through the relationship between battery capacity and impedance
spectroscopy and sorts batteries based on available capacity. References [36] sort single batteries by
connecting them in series. Reference [37] uses the same current to circulate the series battery pack
at the same time to quickly realize the battery classification. Reference [38] adopts electrochemical
impedance spectroscopy (EIS) as an indicator of classification. Single batteries are first connected in
series and then charged, discharged, and sorted by charge-discharge curves. This method also achieves
certain success.

The static parameters mainly focus on the parameter characterization of the battery at a certain
moment. For example, the battery’s voltage, current, internal resistance, and other parameters can
be directly obtained through the battery test device when the battery is in a static state. The static
parameters can also be understood as the parameters at this moment. Static sorting is to use the
difference of the parameters at the moment for classification.
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The dynamic parameters are evolved based on static parameters and focus more on the
characteristic parameters of the battery over time. According to the rate of change over time,
the parameters used in dynamic sorting may not include all the parameters at time T and may
also include T-1, T-2, and more parameters of the changing process. Compared with static sorting,
dynamic sorting pays more attention to the rate of change of battery parameters during the use period.
It solves the input and output conditions of battery energy that are not involved in sorting by static
parameters and can better reflect the actual service condition of batteries. Particularly, this method
significantly improves the service life of battery packs, is well-received by battery manufacturers,
and gradually replaces sorting by static parameters.

2.3. Sorting by Multiple Parameters

Sorting by multiple parameters selects qualified single batteries based on such parameters as
discharge capacity, self-discharge rate, and internal resistance. These parameters can be either static
or dynamic. Sorting by multiple parameters selects a wide range of parameters. Therefore, it is
more comprehensive compared with sorting by dynamic parameters and sorting by static parameters,
and the single batteries it sorts can almost form battery packs with preferable consistency. Although this
method has high accuracy, it has obvious shortcomings, such as complicated operation, low efficiency,
and long sorting cycle. References [39–65] analyze the changes in some key parameters, that is, capacity,
EIS, energy (voltage or temperature), and internal resistance, during the discharge of batteries, reveal
the regularity of changes of curves, and compare changes of parameters and dynamic characteristic
curves, completing the sorting of batteries in combination with different functions. Among them,
reference [40] sorts batteries by establishing the three-dimensional coordinates of capacity, voltage,
and internal resistance, selects different parameter influence factors, and evaluates their diversity factor.
Reference [41] sorts and utilizes retired batteries in cascade through the relationship between internal
resistance and state of charge (SOC) and the relationship between temperature and charge-discharge
rates. Reference [42] first adopts sorting by multiple static parameters to sort batteries using static
parameters, such as capacity, internal resistance, voltage, self-discharge rate, and date of manufacture,
and then simulates the actual working conditions of power battery packs to test the charge, discharge,
and aging of batteries. Based on static parameters, it takes dynamic parameters into account
and improves the sorting accuracy. Reference [66] screens the retired batteries of electric vehicles
with the combination of pulse characteristic curve and electrochemical impedance spectroscopy.
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References [67,68] carefully consider many factors affecting the consistency of a single battery and
conduct careful sorting.

Sorting by multiple parameters is a combination of sorting by dynamic parameters and sorting by
static parameters. As illustrated in Figure 6, it increases sorting parameters and conditions, resulting
in guaranteeing the sorting accuracy. However, this method is not suitable for battery manufacturers’
mass sorting due to the high complexity of the sorting process, long sorting cycle, and low efficiency.
However, sorting by multiple parameters has high utility value if it is applied to aerospace, military
industry, and other fields that require high accuracy and long service life of the battery pack.
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3. Sorting Method of Power Batteries Based on Model

This sorting method sorts batteries by establishing a model with all kinds of algorithms or
measurement methods based on the internal mechanism of batteries or machine learning. The most
common clustering algorithm for sorting is an unconventional one, which first assumes that a known
data set satisfies a certain model and then finds out a model conforming to the data distribution.
Figure 7 exhibits a flowchart for sorting based on the model. During the training of the model,
the number of clusters can be determined dynamically. Through the training of the model, the preset
samples are divided into clusters, and data points with similar characteristics in the clusters are
grouped as one cluster; thus, data clustering is completed. No matter the clustering algorithm is used
or not, modeling is a convenient and fast method. Some complex methods tend to finish sorting by
establishing various models.
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3.1. Equivalent Circuit Model

The equivalent circuit model is a model reflecting the internal mechanism of battery by combining
capacitor, inductor, and resistor into different circuits. During battery sorting, equivalent circuit models,
such as the equivalent circuits of electrochemical impedance spectroscopy and battery module, are often
used. Electrochemical impedance spectroscopy is a technology that can simulate the electrochemical
system of batteries. By applying an alternating current potential wave with different frequencies and a
small amplitude to the electrochemical system, the internal mechanism of the battery can be further
explored without damaging that battery. Electrochemical impedance spectroscopy is often used based
on the equivalent circuit model. This equivalent circuit model is composed of basic components,
such as resistance (R), capacitance (C), and inductance (L), which are connected in series and parallel.
Sorting is completed by measuring the impedance in the equivalent circuit model and simulating the
impedance spectroscopy curve using the measurements. Figures 8 and 9 illustrate the second-order
Randles equivalent circuit model and the Thevenin equivalent circuit model, which are commonly
used in sorting. The equivalent circuit model approximately represents some phenomena inside
the battery. In Figure 8, Re represents the ohmic internal resistance, and Rct and Rw represent the
charge transfer internal resistance and polarization internal resistance, Cdl represents the electric
double-layer capacitance, and in Figure 9, R1 represents the ohmic polarization process, R2C1 represents
the electrochemical polarization phenomenon. In the equivalent circuit model of the battery module,
the model simulates the aging process of battery and the changes in such parameters as internal
resistance and capacity, contributing to the identification of the influence of different parameters on
the sorting [69]. Based on the electrochemical impedance spectroscopy, references [70–72] select the
characteristic frequency responses of several characteristic points of impedance spectroscopy curve
to complete sorting. Reference [73] sorts batteries by establishing an equivalent circuit model first
and then uses an solid electrolyte interphase (SEI) film growth model to derive the self-discharge rate.
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Reference [74] proposes a method to make the battery pack reach its maximum initial capacity and
uses the equivalent circuit model to analyze the dynamic modeling of the battery pack.
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Although it is hard for an equivalent circuit model to sort directly, it can serve as a springboard of
many complex sorting methods. For different sorting methods, how to select an appropriate equivalent
circuit model and how to optimize this model to make it more applicable to sorting is a direction worth
exploring, regarding equivalent circuit models applied to battery sorting.

3.2. Clustering Algorithm

The clustering algorithm is unsupervised. If it is difficult to classify data at the beginning,
the algorithm can judge the similarity between data at its discretion and cluster together similar
data. Common clustering algorithms for battery sorting include K-means, fuzzy C-means (FCM),
and system clustering. In battery sorting, sorting parameters are first selected. A reasonable selection
of parameters can make the clustering results more accurate. Reference [75] selects three algorithms to
compare, including principal component analysis, kernel principal component analysis, and random
forest, and ultimately verifies that random forest (RF) has the best sorting effect. References [76–81]
adopt K-means, take a variety of factors into account, and demonstrate that it has high reliability.
Reference [82] uses k-means to judge the condition of charging facilities. References [83,84] employ
improved K-means algorithms based on the characteristic distribution model and the EIS model.
Experimentally, this improved algorithm greatly improves the sorting results compared with the
traditional K-means algorithm. Reference [1] adopts a subtractive clustering sorting method based on
the sorting index of feature points on the charge-discharge curve. Reference [85] uses a combination of
factor analysis and systematic clustering. Both methods are worthy of reference. References [86–90] sort
batteries based on the discharge voltage platform of battery, combined with FCM. References [91–93]
employ the combination of FCM and support vector machines to complete sorting and obtain good
results. References [94,95] propose a new sorting method of lithium batteries based on improved
FCM. Reference [96] uses a combination of multi-parameter sorting and FCM to complete battery
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sorting. Reference [97] uses the multi-step FCM algorithm (MSFCM). The method uses the clustering
validity function to determine the optimal class number, two times of FCM sorting algorithm in
optimal results, using an extrusion algorithm. Reference [98] uses a combination of FCM and particle
swarm optimization algorithm-least squares support vector machine (PSO-LSSVM) for battery sorting;
the method breaks the limitation of building battery classification model based on prior knowledge,
reduces the dependence on parameter selection, and enhances model training speed and accuracy.
Reference [99] clusters charge-discharge characteristic curves to finish sorting. Reference [100] clusters
and sorts batteries using distance approach and correlation coefficient approach. Reference [101]
proposes a fast battery sorting method based on hierarchical clustering, with the state voltages and state
resistances at different discharge rates as the indexes. Experiments have indicated that this method
can greatly improve sorting efficiency. Reference [102] uses a battery grouping method based on time
series clustering for sorting. Reference [103] proposes a retired battery clustering algorithm based on
traversal optimization for sorting. This method does not need to define the number and center of
clusters in advance and has immunity to outliers. Reference [104] employs a novel grouping scheme
based on distributed time series clustering and uses cloud data to achieve rapid battery grouping,
which not only reduces time costs but also improves sorting efficiency.

In this paper, the actual applications of the clustering algorithm are introduced by taking the most
commonly-used algorithm, fuzzy C-means (FCM), as an example. FCM clustering algorithm is an
unsupervised machine learning method calculating in Euclidean space and determines the object of
optimization by calculating the geometric distance from each battery parameter to the clustering center.
Afterward, the membership matrix of sample data is obtained using iterative operation. According
to the membership degree of each objective in the membership, it classifies objects with the greatest
similarity possible into one category.

The specific steps of fuzzy C-means FCM algorithm are described as follows:

1. Initialize the clustering center or membership matrix U; set the number of clusters C and fuzzy
index m; randomly initialize V (0); set the precision of convergence ε; let the number of iterations
k = 0;

2. Calculate the membership matrix U (k + 1);
3. Calculate the clustering center V (k + 1), let k = k + 1.

Repeat steps 2 and 3 until the following termination conditions are met:

‖V(k)
−V(k−1)

‖ ≤ ε, k ≥ 1

Depending on the number of clusters, the final classification results may vary. Figure 10 exhibits
the clustering results when the number of clusters is 2, 3, and 4.
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The sorting results obtained using clustering algorithms are accurate; however, the effect is not
so ideal and needs improvements in many aspects when many clustering algorithms are applied to
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battery sorting directly. On the other hand, clustering algorithms generally have high complexity
and are sometimes caught up in a local optimum. How to improve the algorithm, perfect the model,
and reduce the complexity to make them be applied to large-scale mass sorting is a direction worthy of
exploration in the future.

3.3. Neural Network Algorithm

A neural network algorithm is a process of reasoning based on logical rules. It is generally
composed of an input layer, a hidden layer, and an output layer. Typically, we select several sets of
battery parameters as the input layer of the neural network. Reference [105], for example, employs
neural networks to control battery power. Reference [106] inputs voltage, capacity, and internal
resistance (as input parameters) into a backpropagation (BP) neural network model. Reference [53]
conducts a comparative analysis of the conventional algorithm and neural network model, concluding
that sorting based on a neural network algorithm is more beneficial. References [107–111] adopt a
self-organizing map (SOM) model based on artificial neural networks to sort batteries. This method
can be used through parameter identification of the equivalent circuit model or by directly obtaining a
battery parameter, to adapt to the weights and find out the optimal solution. For example, reference [110]
classifies nickel-metal hydride (Ni-MH) batteries according to their charging thermal behaviors. In this
SOM neural network model, the job of neurons is to map data from a high dimension to a low
dimension, falling into the domain of the feed-forward neural network. Reference [112] uses a
fast capacity estimation method based on a neural network model to achieve fast battery sorting.
Reference [113] proposes a genetic algorithm based on partial discharge curves and a back-propagation
(GA-BP) neural network for retired battery screening methods and achieves good results. Different
from clustering algorithms, neural network algorithms can be either supervised or unsupervised.
For example, the self-organizing neural network (SOM) commonly used in battery sorting is an
unsupervised algorithm. This model can identify similar vectors through the topology and distribution
of all vectors that are input to it. The schematic of the SOM model applicable to sorting is illustrated in
Figure 11. Pi represents the input vector of the model. The number of input vectors of each battery can
be identified according to battery parameters. If the surface temperature of the battery at the end of
charging at three different rates is taken as the sorting parameter, the number of input vectors is three.
The neurons in the hidden layer perform the main classification task. After each input vector, there is a
weight vector (ωi) connected to it and a bias vector (u) with a constant value; a, b, and c following
them represent three neurons corresponding to the output types I, II, and III, respectively.
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Figure 11. Schematic diagram of the self-organizing model (SOM) applied to batteries sorting.

The neural network algorithm is widely used, while SOM neural network algorithm is subject
to some limitations. For example, it can easily be caught up in a local minimum when the initial
conditions are poor. Therefore, we can conduct in-depth research on the self-organizing feature
map (SOFM) neural network algorithm, an improved version of the SOM neural network algorithm.
Perhaps there will be a certain breakthrough when it is applied to battery sorting. Besides, some
neural network algorithms have not been applied to battery sorting. For example, reference [114]
uses genetic algorithm to optimize the battery grouping topology, thereby reducing the cost of battery
packs and increasing life, reference [115] uses a deep convolutional neural network (DCNN) to
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estimate long-term battery cycle data, reference [116] is based on the DCNN algorithm to measure
the voltage, current, and charging capacity of a part of the charging cycle, so as to realize the capacity
estimation of the battery, reference [117] uses a combined convolutional neural network (CNN)
to infer the state of charge (SOC) of the battery, and reference [118] uses the feed forward neural
networks (FFNN) model and the extended Kalman filter algorithm to implement SOC estimation.
Reference [119] employs a feed-forward neural network, convolutional neural network, and long
short-term memory to estimate battery capacity and health status. Reference [120] uses long short-term
memory (LSTM) recurrent neural network to predict the synchronous multi-parameters of the battery
system. Reference [121] proposes a stacked bidirectional long short-term memory (SBLSTM) neural
network for SOC estimation. Reference [122] adopts a genetic algorithm (GA) and convolutional neural
network (CNN) to form a battery SOC prediction model of GA-CNN to estimate SOC. Reference [123]
utilizes a deep neural network (DNN) method to predict the state of health (SOH) and remaining useful
life (RUL). Reference [124] proposes an integrated deep learning method for lithium-ion battery RUL
prediction by integrating an autoencoder with a deep neural network (DNN). Reference [125] proposes
a method based on support vector regression (SVR) to accurately predict the RUL. Reference [126]
realizes battery SOH prediction based on the gated recurrent unit (GRU). Reference [127] estimates
battery parameters based on a deep Bayesian neural network. References [128] uses the deep Gaussian
process algorithm to realize the health monitoring of lithium-ion batteries. Apparently, there are
many deep learning methods, and we cannot list all of them here. In the near future, more and
more deep learning methods will be applied to battery sorting, opening a brand-new door for battery
sorting technology.

3.4. Statistical Methods

There are many sorting methods based on statistical principles. The commonly-used ones,
such as principal component analysis and fuzzy Bayesian approach, all belong to statistical methods.
There are so many methods that will not be enumerated here. This paper mainly expounds on
several statistical principles that are commonly used in battery sorting, as well as algorithms that can
be applied to battery sorting in the future. In the process of the static grouping of power batteries
based on the statistical model, by comparing open-circuit voltage and internal resistance curves of
batteries, Zhang Chenbin et al. [129] verified that their parameter characteristics conformed to the
normal distribution, as illustrated in Figure 12. Reference [130] uses fuzzy iterative SOM data analysis
technique to perform a fuzzy clustering analysis on the parameters of battery samples through
principal component analysis. Reference [131] compares the traditional sorting method, principal
factor sorting, and total factor sorting; an experiment reveals that the sorting effect is the best when
batteries are first sorted by total factor and then sorted by dynamic parameters. Reference [132] realizes
battery sorting through the sorting algorithm of discharge capacity and the second threshold of the
average amplitude of charging voltage. Reference [133] conducts a comparison of fuzzy rules and
a traditional multi-criteria evolutionary algorithm and identifies a battery sorter, contributing to
increasing the service life of batteries. According to the resistance, voltage, and other parameters that
are input, reference [134] obtains a comparand and sorts batteries by comparing each of them to this
comparand. Using mathematical methods, reference [135] extracts key points of battery performance
to complete sorting. Based on the capacity and internal resistance parameters, reference [136] uses
mathematical models for sorting batteries. Reference [137] employs the Delphi method and gray
correlation analysis to sort batteries. References [138] adopts capacity-based statistical models for
sorting batteries. Reference [139] adopts the cycle probability prediction algorithm to predict the
battery cycle life. Reference [140], according to capacity distribution, order statistics, central limit
theorem, and converter efficiency, optimizes energy efficiency by finding the best number of cells in a
battery pack. Reference [141] analyzes the evaluation method of battery sorting from the perspective
of capacity and internal resistance, combined with mathematical analysis, and proposes an accurate
battery selection strategy.
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Many statistical methods have achieved remarkable success in other aspects, such as decision
tree classification based on particle swarm optimization algorithm, text classification based on deep
convolutional neural network, and remote sensing image classification based on linear regression.
Regarding battery sorting, all of these methods can be improved and utilized. For example, Figure 13
presents a linear least squares estimation diagram of the parameters of lithium iron phosphate battery
samples [142]. It may be difficult to optimize the statistical algorithm in the future. We may improve
the model, analyze other statistical algorithms, fit them into battery sorting, and combine them with
new techniques, such as cloud servers and big data, to lower the requirements for sorting equipment
and improve the sorting efficiency. Figure 14 illustrates a schematic diagram of a sorting method with
feedback. The model can be trained faster due to the feedback link and is a preferable choice for the
model-based sorting method.

World Electric Vehicle Journal 2020, 11, x 13 of 23 

resistance, combined with mathematical analysis, and proposes an accurate battery selection 

strategy. 

  
(a) (b) 

Figure 12. (a) Statistical distribution curve of open-circuit voltage for a group of cells; (b) Statistical 

distribution curve of internal resistance of a group of cells. 

Many statistical methods have achieved remarkable success in other aspects, such as decision 

tree classification based on particle swarm optimization algorithm, text classification based on deep 

convolutional neural network, and remote sensing image classification based on linear regression. 

Regarding battery sorting, all of these methods can be improved and utilized. For example, Figure 

13 presents a linear least squares estimation diagram of the parameters of lithium iron phosphate 

battery samples [142]. It may be difficult to optimize the statistical algorithm in the future. We may 

improve the model, analyze other statistical algorithms, fit them into battery sorting, and combine 

them with new techniques, such as cloud servers and big data, to lower the requirements for 

sorting equipment and improve the sorting efficiency. Figure 14 illustrates a schematic diagram of a 

sorting method with feedback. The model can be trained faster due to the feedback link and is a 

preferable choice for the model-based sorting method. 

 

Figure 13. Linear least square estimation diagram of lithium iron phosphate battery. Figure 13. Linear least square estimation diagram of lithium iron phosphate battery.



World Electric Vehicle Journal 2020, 11, 58 14 of 23
World Electric Vehicle Journal 2020, 11, x 14 of 23 

Battery model
State-space equation

dt

tUd
C

R

tU
ti

ITSOCRtitUTSOCUU

p

p

p

p

p

))(()(
)(

),,()()(),()t( 0oc





{
-

Fuzzy c-means algorithm/

Principal component analysis/

The self-organizing neural 

network/Subtrative clustering 

method/Hierarchical clustering

Parameters

Voltage，

Current， 

Internal resistance

Estimates voltage 

and current

Ut    It Battery 

classification

-

E

0

R

E
RCT RW U

I
+

Rc

R1

Uoc +
-

R2

C1

+

-

U

I

 

Figure 14. Schematic diagram of the identification model parameter flow with feedback. 

4. Sorting Method Based on Material Chemistry 

Both the direct measurement method and the model-based sorting method are sorted based on 

various external parameters of the battery, and the internal situation of the battery is not involved; 

in other words, the battery is just regarded as a “black box”. The method based on battery material 

chemistry is to start from the working principle of the battery and find the relevant electrochemical 

parameters involved in the chemical reaction of the battery. However, it is hard to have a thorough 

understanding of the internal mechanism of the battery without damaging the battery, and most of 

the electrochemical parameters are difficult to measure without damaging the battery. Therefore, 

we have adopted two solutions: easy to use measured electrochemical parameters or build an 

electrochemical model. 

When the charge-discharge voltage is confined to a certain range, Coulombic efficiency can be 

regarded as the proportion of the number of remaining reversible lithium-ion to that of initial 

lithium-ion participating in the current cycle, in a constant current single cycle test. Figure 15 

exhibits the relationship between the number of cycles and Coulombic efficiency. Besides, 

Coulombic inefficiency (CI) is the proportion of the number of remaining irreversible lithium-ion to 

that of initial lithium-ion participating in the current cycle. It is verified through subsequent tests 

that there are some relationships between the number of cycles and Coulombic inefficiency. 

Coulombic inefficiency can be used as a screening index for the cascade utilization of batteries [143]. 

 

Figure 15. Relationship between the number of cycles and Coulombic efficiency. 

By establishing an electrochemical model, we can simulate the internal working state of the 

battery to determine some electrochemical parameters that we cannot directly measure. References 

[144,145] analyze the aging of the battery by forming an electrochemical model. Reference [146] 

combines the electrochemical model with CNN to judge the state of some parameters (such as solid 

Figure 14. Schematic diagram of the identification model parameter flow with feedback.

4. Sorting Method Based on Material Chemistry

Both the direct measurement method and the model-based sorting method are sorted based on
various external parameters of the battery, and the internal situation of the battery is not involved;
in other words, the battery is just regarded as a “black box”. The method based on battery material
chemistry is to start from the working principle of the battery and find the relevant electrochemical
parameters involved in the chemical reaction of the battery. However, it is hard to have a thorough
understanding of the internal mechanism of the battery without damaging the battery, and most
of the electrochemical parameters are difficult to measure without damaging the battery. Therefore,
we have adopted two solutions: easy to use measured electrochemical parameters or build an
electrochemical model.

When the charge-discharge voltage is confined to a certain range, Coulombic efficiency can
be regarded as the proportion of the number of remaining reversible lithium-ion to that of initial
lithium-ion participating in the current cycle, in a constant current single cycle test. Figure 15 exhibits the
relationship between the number of cycles and Coulombic efficiency. Besides, Coulombic inefficiency
(CI) is the proportion of the number of remaining irreversible lithium-ion to that of initial lithium-ion
participating in the current cycle. It is verified through subsequent tests that there are some relationships
between the number of cycles and Coulombic inefficiency. Coulombic inefficiency can be used as a
screening index for the cascade utilization of batteries [143].
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By establishing an electrochemical model, we can simulate the internal working state of the battery
to determine some electrochemical parameters that we cannot directly measure. References [144,145]
analyze the aging of the battery by forming an electrochemical model. Reference [146] combines
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the electrochemical model with CNN to judge the state of some parameters (such as solid particle
conductivity, solid particle areas, and solid electrolyte interface layer thickness) inside the battery.
Owing to relatively few sorting methods based on the material chemistry of the battery, we can conduct
in-depth studies in this regard and find more suitable electrochemical parameters for sorting batteries.
In the future, it is an acceptable choice to combine sorting methods based on materials chemistry with
emerging algorithms, such as deep learning.

5. Comparison and Prospect

Among the numerous sorting methods, direct measurement is the simplest and most direct one.
Direct measurement includes the measurement of static parameters, dynamic parameters, and multiple
parameters. The external characteristic parameters of batteries (usually including voltage, internal
resistance, and self-discharge rate) can be measured with different methods. Generally, only static
parameters or dynamic parameters are used for rough sorting. Nevertheless, multiple conditions can
be used for sorting batteries if there is a high requirement for battery packs. The sorting method of
direct measurement is the basis of other sorting methods. Although direct sorting by some parameters
has a poor effect, it is still of certain research value. For example, some parameters of battery are hard
to be measured, or batteries may be easily damaged during measurement. Under this circumstance,
we can measure these parameters by scanning batteries directly with ultrasound or X-ray, which can
significantly reduce the time required by sorting. Alternatively, we can find one or more parameters
suitable for sorting all battery types, preventing the influence of different battery types on sorting.

Sorting based on the model sorts batteries and can be completed by establishing a model and
applying various algorithms or means. Compared with direct measurement, sorting based on the
model is more accurate and efficient. By setting up the model, all kinds of algorithms can be realized,
such as neural network algorithms, clustering algorithms, and statistical algorithms. They can lower
researchers’ reliance on actual batteries and easily adapt to different types of batteries. Such methods are
usually accurate, while they cannot be directly used in battery sorting. A vast majority of scholars adopt
improved algorithms to enhance the accuracy and stability of battery sorting. With the popularization
of big data, cloud computing, cloud storage, and other emerging technologies, we can combine them
with some algorithms to achieve faster sorting. Moreover, we can also realize high-precision sorting by
increasing the dimensions of calculation or using multiple algorithms concurrently. With the advent of
the 5G era, an online sorting platform can be established, a database can be set up on the cloud side,
and single batteries that can be grouped can be directly found according to the data input.

From the perspective of the material chemistry of batteries, sorting based on the material chemistry
of batteries is performed by their internal electrochemical mechanism. In general, power batteries,
the direct conversion of chemical energy into electric energy, are the result of spontaneous chemical
reactions inside batteries, such as oxidation and reduction. The internal mechanism of a battery can
reflect the parameters of this battery in a more intuitive way, such as the performance and cycle
efficiency. For example, the decay rate of the service life of lithium batteries can be analyzed by judging
the number of reversible lithium-ion. Relatively, this approach is more suitable for sorting the cascade
utilization of batteries. Due to the lack of research data on the material chemistry of batteries, we
can conduct more studies from this aspect in the future and sort batteries by some electrochemical
parameters. Moreover, the working principles of different types of batteries are almost the same. Thus,
this method has high transferability. Once the technology becomes mature, it can be applied to various
types of batteries. This sorting method has significant potential and is worthy of exploration and
practice by researchers.

Most of the above methods can be used in either battery grouping or sorting for the cascade
utilization of batteries. Due to the extremely harsh operating conditions of electric vehicles,
the temperature, self-discharge rate, electrolyte density, and other parameters of every single battery
inside the battery pack are not the same during operation, making it difficult to guarantee the balance
of batteries. Therefore, the sorting of power batteries before grouping is simply to ensure the good
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working conditions of power batteries. To reduce the increase of difference among single batteries
inside the pack during operation is also one of the complications that we should focus on in the future.
Systematic theories and methods are needed for real-time diagnosis of battery packs with strong
time-varying and heterogeneous properties. A comparison of these three main methods is presented
in Table 1.

Table 1. Comparison of power battery sorting methods.

Method Advantage Disadvantages Direction of Development

Sorting by static parameters

The simplest and most
direct method; wide range
of application; fast
sorting speed.

Measure; cannot reflect
battery
operating characteristics.

Improve measurement
methods and accuracy.

Sorting by
dynamic parameters

It can partially reflect the
characteristics of the battery
during operation; compared
with static parameter
sorting, the accuracy is
higher.

It is easy to cause damage to
the battery; it can only
reflect the parameters of the
set working conditions,
and it is difficult to
determine the actual
working parameters.

Dynamic parameters should
be as close as possible to the
actual situation; reduce the
impact of the test on
the battery.

Sorting by
multiple parameters

The sorting accuracy is high;
the consideration conditions
are more comprehensive.

There are many sorting
processes and long-time
consumption; it is difficult
to achieve
large-scale sorting.

Reduce unnecessary
processes and improve
sorting efficiency.

Equivalent circuit model

It can reflect the polarization
phenomenon of the battery;
the model is simple to
establish, and a good model
can ensure the
sorting accuracy.

It is difficult to fully reflect
the battery polarization
phenomenon in
actual operation.

It is difficult to fully reflect
the battery polarization
phenomenon in
actual operation.

Neural network algorithm

No prior knowledge and
category information is
required; high reliability;
wide range of application.

It is easy to fall into the local
optimum; the algorithm is
not fully applicable and
needs to be improved; the
complexity is higher.

Improve the algorithm and
reduce complexity.

Clustering algorithm Can learn independently;
the speed is relatively fast.

High initial parameter
requirements; requires a lot
of data training.

Improve the model and
reduce the number of
training to meet
the requirements.

Statistical algorithm

The requirements on the
model are not high; the
speed is fast; it is easy to
integrate with
other methods.

Strict assumptions are
required; abnormal
parameters are difficult
to handle.

Electrochemical
parameter analysis

Sorting, according to the
battery mechanism and
strong persuasion; good
applicability; can be applied
to large batch sorting.

Electrochemical parameters
are difficult to measure;
laws are difficult to find.

Try to find a simpler method
for measuring
electrochemical parameters;
look for other
electrochemical parameters.

To sum up, the future development of battery sorting methods may focus on the following three
aspects: first, new instruments or technologies will be introduced to increase the capture of internal
characteristics of batteries, such as computed tomography (CT) and ultrasound or X-ray, to scan images
inside the batteries and achieve the purpose of screening [147,148], or use a combination of internal
resistance, capacity testing, and x-ray methods to classify batteries [149]. Second, the model and
algorithm of the battery will be updated and developed to make the model closer to the real polarization
reaction of batteries and make the algorithm more applicable to the sorting of power batteries. Finally,
battery sorting methods should be more closely associated with new technologies, such as big data
and machine learning, which are popular today, to keep up with the trend of technology and times.
For example, reference [150] sorts batteries using the SQL database.
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6. Conclusions

This paper makes a systematic summary of the existing sorting methods of power batteries.
Although a large number of sorting methods have been investigated, each method has its possibilities
and deficiencies for improvement. These methods should be improved by further experiments and
combined with practical engineering. Through this paper, the author expects that people involved
in the battery industry can be inspired. Engineers can choose appropriate methods to sort batteries
according to actual needs. Hopefully, this paper can help researchers develop more effective sorting
methods. In the future, the sorting process can be developed to be more concise, effective, quick,
and accurate, which requires us to make constant attempts and innovations and strive to find a more
appropriate sorting method.
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