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Abstract: This work presented a nonlinear control for a reversible power buck–boost converter (BBC)
in order to control energy storage in a supercapacitor (SC) used in hybrid electric vehicles (HEV).
The aim was to control a power converter in order to satisfy the following two requirements: (i) perfect
tracking of SC current to its reference signal and (ii) asymptotic stability of the closed-loop system.
The two objectives were achieved using an integral sliding mode control. In order to validate the
proposed approach, an experimental prototype was built. The controller was integrated into dSPACE
prototyping systems using the DS1202 card. It was clearly shown, using formal analysis, simulation,
and experimental results, that the designed controller metall the objectives, namely, the stability of
the system and the control of the current at its reference.

Keywords: hybrid electric vehicle (HEV); supercapacitor (SC); integral sliding mode control (ISMC);
Lyapunov theory; dSPACE DS1202 real-time control (RTC) card; experimental validation

1. Introduction

Nowadays, much research has been undertaken on technologies for future vehicles. Among
these technologies, the hybrid electric vehicle (HEV) is an efficient and promising solution [1–3].
The hydrogen-based HEV is a concept that combines between two sustainable and clean fields because
the main source of energy for this vehicle is based on hydrogen, which is licensed as renewable
resources [4,5], and the goal is to contribute to reduce CO2 emissions and global warming effects,
to present a mean of transportation capable to concur the classical vehicles in performances with zero
emissions [6]. Owing to their economic and environmental benefits, the State invites and encourages
by scholarships and by tax exonerators the researchers and industrialists to combine them and to dig
in the field of the hybrid automobile in order to develop the infrastructure of the HEV [7].

Hybrid electric vehicles have two sources of energy, namely, the main energy source (MES)
and auxiliary energy source (AES). The MES based on a fuel cell provides autonomy for the normal
operation of the vehicle, and the AES is used to supply electrical energy through a buck–boost converter
(BBC) to the direct current (DC) bus at the time of acceleration of the vehicle or to recover energy when
applying brakes. As a result, fuel cell (FC) vehicles have the potential to significantly improve fuel
economy and can be more efficient than traditional internal combustion engines [8–10].

The FC-based energy source is not always sufficient to meet the requirements of an electric
vehicle [11]. In order to provide the necessary power during transient phases, such as starting,
acceleration, or sudden changes in vehicle speed, a supercapacitor (SC) bench is required for the
HEV [12–14]. This SC bench also allows us to recover energy when the brakes are applied in a vehicle.
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To ensure the exchange of energy between the different elements of the vehicle system, a robust
control law is needed, in order to control the different converters of the studied system. There are
several topologies for HEV [15,16]. The topology of the system studied is shown in Figure 1, which is
generally called a hybrid energy storage system (HESS).
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Figure 1. The power circuit of a typical hybrid electric vehicle.

The full cell is connected with the DC bus through the unidirectional boost power converter.
The SC module is connected with the DC bus via the reversible buck–boost current converter to ensure
the exchange of energy between the organs of the system (FC, SC, and motor). The motor is connected
to the DC bus through the three-phase reversible current inverter to recover electrical energy when the
brakes are applied in HEV.

Lately, many control strategies for power converters have been proposed. In the research of
Ouyang, M. and Yang, W. [17,18], by the sliding mode control, a controller based on the Lyapunov
function has been proposed to regulate the SC and battery currents. The references mentioned above
relate only to the permanent regime of the system, and the authors have neglected the study of the
transient regime, that is to say, the overshoot and the response time of the system. For the study of
the stability of the system, they are based on the convergence of the error in steady-state. However,
many nonlinear control strategies take into consideration the improvement in the performance of the
transient regime and its balance [19–21]. In the research of Song, H. [19], the authors have proposed a
robust dynamic surface controller to improve the performance of nonlinear systems. In the research
of Liu, Q. [20], the authors have proposed a controller that estimates the unknown parameters of
the electric vehicle system; this controller is based on an adaptive law. However, the results of [20]
have a significant tracking error from the SC current isc to the reference current Iscref and also show
significant ripple in the current isc, which influences the DC–DC bus voltage. Indeed, the robustness
of the control proposed by [20] is low. The authors of [21] have presented an interleaved two-phase
bidirectional DC–DC converter topology to control the SC current; this topology includes a small
number of components based on a classical Proportional-Integral-Derivative (PID) control through the
linearization of the nonlinear system. But the results of [21] show a significant ripple in the SC current,
which introduces measurement and control errors. This is due to the fact that the system parameters
are incorrectly dimensioned. Indeed, the control law proposed by [21] is not robust.

This paper dealt with the modeling of a reversible power buck–boost converter and then a
nonlinear control strategy, in order to control the current of the SC in both charge and discharge
cases. Finally, the experimental results by dSPACE DS1202 card from this study were presented.
The contributions of the proposed control system were the simplicity of the process for controlling
energy storage in an HEV. Then, the perfect control of charge and discharge current and the system
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dynamics were improved compared to [20,21] due to the nonlinear control by integral sliding mode
control (ISMC). On the other hand, the stability of the system and the robustness of the control law
were proven by experimental validation. Finally, the methodology proposed in this paper could be
used in an HEV.

The flow of this document is organized as follows: Section 2 is devoted to the modeling of a
reversible power buck–boost converter; the design of the controller and the closed-loop analysis
are presented in Section 3; the controller performance is illustrated by numerical simulation and by
experimental validation in Section 4; Section 5 provides a conclusion to the document.

2. Storage System Presentation and Modeling

2.1. Storage System Presentation

Figure 2 shows the studied part of the HEV. It consisted of a 24 V DC bus provided by an FC;
it was the main source of the vehicle, which was connected to the DC bus via a DC–DC converter
reversible in current. The SC was used as an auxiliary source: it supplied transient power demand and
peak loads required during acceleration and deceleration of HEV.
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Figure 2. Supercapacitor energy storage system.

L represents the inductor used for energy transfer and filtering. The inductor size is classically
defined by switching frequency and current ripple [22]. The converter is driven by means of binary
input signals u1 and u2 applied on the gates of the two Insulated Gate Bipolar Transistor (IGBTs) S1

and S2, respectively. The resistance RL represents the equivalent series resistance (ESR) of the inductor.
The SC is represented by its capacity Csc and by its series resistance Rsc.

2.2. Modeling of a Reversible Power Buck–Boost Converter

The buck–boost converter could operate as a boost converter or a buck converter. Indeed, in the
discharging mode of the SC (isc < 0), the converter operated as a boost converter, and in the charging
mode of SC (isc > 0), it operated as a buck converter. As our goal was to enforce the SC current isc to
track its reference Iscref provided by the energy management system, in order to control this converter,
we have defined a binary variable k as follows:

k =

{
1 i f Iscre f < 0 (Boost mode)
0 i f Iscre f > 0 (Buck mode)

(1)

• Boost mode operation (k = 1)
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In this case, the control input signal u2 was fixed to zero (u2 = 0), and u1 was a PWM variable
input. From inspection of the circuit, shown in Figure 2, and taking into account that u1 could take the
binary values 1 or 0, the following bilinear switching model could be obtained:

disc

dt
= −(1− u1)

vdc
L
−

RL

L
isc +

vsc

L
(2a)

idc = (1− u1)isc (2b)

• Buck mode operation (k = 0)

The control input signal u1 was fixed to zero (u1 = 0), and u2 acted as the Pulse Width Modulation
(PWM) variable input. From Figure 2, and taking in account that u2 ∈ [0,1], the Buck model could be
obtained by:

disc

dt
= −u2

vdc
L
−

RL

L
isc +

vsc

L
(3a)

idc = u2isc (3b)

The next step was to get a global model for buck–boost converter. From Equations (2a) and (2b)
and Equations (3a) and (3b), we could obtain the following global model of BBC by:

disc

dt
= −[k(1− u1) + (1− k)u2]

vdc
L
−

RL

L
isc +

vsc

L
(4a)

idc = [k(1− u1) + (1− k)u2] isc (4b)

Equation (4a) could be rewritten as follows:

disc

dt
= −u12

vdc
L
−

RL

L
isc +

vsc

L
(5a)

where u12 is the control input of BBC defined as follows:

u12 = k(1− u1) + (1− k)u2 (5b)

In order to establish the control law of this BBC, by averaging the model (5a) over a switching
period, the average model was:

dx1

dt
= −µ12

vdc
L
−

RL

L
x1 +

vsc

L
(6)

where x1 the average value of the SC current (x1 = < isc >), and µ12 is the duty cycle, i.e., average
values of the binary control input u12 (µ12 = < u12 >), which takes values in [0,1]. The generation of
effective control input signals u1 and u2 from u12 is represented in Figure 3.
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3. Storage Sliding Mode Control and Stability Analysis

Our contribution consisted of implementing a robust nonlinear controller to control the charge
and discharge current of the SC, for an objective of protecting the SC against misuse, allowing us to
make good use of the normal functioning of the SC and to extend its life as much as possible [23].

3.1. Control Objective

In order to define the control strategy, the first one had to establish the control objectives, which
could be formulated as follows:

(i). Monitoring of the supercapacitor current up to its reference,
(ii). Asymptotic stability of the system.

3.2. Sliding Mode Control

The sliding mode technique changed the structure of the controller in response to the changing
state of the system. This was realized by the use of a high speed switching control, forcing the trajectory
of the system to move to and stay in a predetermined surface, which is called a sliding surface. In sliding
mode, a system’s response remained insensitive to parameter variations and disturbances. The sliding
mode control technique could be a possible option to control this kind of circuits. The following
trajectory was defined by:

S = K1e + K2

t∫
0

edt (7)

where K1 and K2 are sliding surface coefficients, and Iscre f is the current reference, and e = x1 − Iscre f is
the surface error.

The derivative of the surface (Equation (7)) was given by:

.
S = −µ12K1

vdc
L

+
(
K2 −K1

RL

L

)
x1 + K1

vsc

L
−K2Iscre f (8)

In this paper, we considered that the control law µ12 consisted of two components: an equivalent
component µ12eq and a nonlinear component µ12n:

µ12 = µ12eq + µ12n (9)

The equivalent control component constituted a control input, which, when exciting the system,
produced the motion of the system on the sliding surface whenever the system was on the surface.
The existence of the sliding mode implied that

.
S = 0 [24,25].

It followed that the equivalent control µ12eq could be obtained, using Equation (8) and the fact

that in sliding mode,
.
S = 0 as follows:

µ12eq =
L

vdc

((
K2

K1
−

RL

L

)
x1 +

vsc

L
−

K2

K1
Iscre f

)
(10)

The objective of the second component µ12n was to ensure the equilibrium S = 0 to be globally
asymptotically stable. To this end, we considered the following positive definite Lyapunov function:

V =
1
2

S2 (11)

The derivative of the Equation (11) was given by:

.
V =

.
SS (12)
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This equation gave, using Equations (8) and (9):

.
V = S

 −µ12nK1
vdc
L − µ12eqK1

vdc
L +(

K2 −K1
RL
L

)
x1 + K1

vsc
L −K2Iscre f

 (13)

which, in turn, gave, using Equation (10):

.
V = S

(
−µ12nK1

vdc
L

)
(14)

This equation clearly showed that the nonlinear component µ12n could be chosen as follows:

µ12n =
L

K1vdc
λS (15)

where λ is a positive design parameter.
Indeed, with this choice, Equation (14) became:

.
V = −λS2 (16)

which is negative definite.
This ensured that the equilibrium S = 0 was globally asymptotically stable (GAS).
Finally, combining Equations (9), (10), and (15), the sliding mode control law of the system

was obtained:

µ12 =
L

vdc

[
K2

K1
e +

1
K1
λS−

RL

L
x1 +

vsc

L

]
(17)

3.3. The Limitations of SMC Technique

Like all nonlinear controllers in the literature [26,27], there were advantages and disadvantages.
The key point of the sliding mode control law was robustness, but it was also characterized by a
problem of chattering on the sliding surface in the case where the reference was very frequent.

Practically, the implementation of such discontinuous controllers was characterized by the
phenomenon of chattering. Chattering could be reduced by dividing the control into continuous and
switching components so as to reduce the amplitude of the switching one [28].

4. Simulation and Experimental Results

The performances of the proposed nonlinear controller were illustrated by simulation and
experimental results.

4.1. System Characteristics

The controlled system characteristics are listed in Table 1.

Table 1. Parameters of the Controlled System.

Parameter Value

Inductance L 4 mH
Inductances ESR, RL 620 mΩ
Supercapacitor, Csc 500 F

Supercapacitor ESR, Rsc 2.1 mΩ
Switching frequency, f simulation

Switching frequency, f experimental

25 kHz
15 kHz

The type of transistor used in the simulation was a MOSFET transistor. According to the Datasheet
of this transistor, the current/frequency ID(fs) graph allowed us to choose the suitable switching
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frequency for our system, which was 25 kHz. Likewise, for the experiment, the type of transistor
used was an IGBT transistor under the reference IG15 and its control box under the reference IG10.
According to the Datasheet for this transistor, its suitable switching frequency was 15 kHz.

4.2. Simulation and Experimental Bench for SCSS Control

The technology of dSPACE via MicroLabBox DS 1202 has simplified the implementation of the
control law by the link between control Desk® and Matlab®/Simulink®, to easily test the systems or
measure its quantities (Voltage, Current). The key point of this technology is the real-time control
(RTC) process of the system. dSPACE systems are the solution for the development of embedded
software in the automotive, aerospace, and industrial control [29,30].

The simulation bench of the SC energy storage system control is described in Figure 4 and was
simulated using the MATLAB®/software®. In this figure, µ12 is the control law (the duty ratio), u1

and u2 are the binary input signals, isc, Vsc, and Vdc are the measured variables, and Iscref is the SC
current reference.
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To implement the proposed control system, it consisted essentially of:

- a power supply from BK Precision,
- a dSPACE DS1202 with Control Desk®/software® plugged in a Pentium 4 personal computer,
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- a Semikron IGBT module (SEMITEACH),
- a 16 V supercapacitor module of Maxwell,
- one ferrite inductance,
- one Hall effect current sensor,
- one voltage sensor,
- a load.

The DC bus voltage was set to 24 V, and the initial voltage of SC was set to 2 V in the case of
charging and 9 V in the case of discharging. The DC bus was represented by a voltage source in
series with a full return diode. The load for this validation was a variable resistance characterized by
11.2 Ohm and 10 A.

The design control parameters were chosen as follows, which proved to be convenient: λ = 1580
and K1 = 7 and K2 = 18. Note that the parameters K1 and K2 and λ were nonlinear control parameters
of the reversible buck–boost current power converter. The values of its parameters were determined
from the simulation.

4.3. Figures and Simulation Results

The simulation was performed under Matlab®/Simulink® over a reduced duration compared
to the duration of the experiment because we were limited by the memory of the PC opposite to the
number of points that were taken.

The resulting control performances of buck–boost power converter are shown in Figures 6–13.
Figures 6 and 10 illustrate the current measurement of isc and its reference signal Iscref for two

scenarios: charging mode and discharging mode, respectively. In these figures, one could see that
the controller behavior was satisfactory. Indeed, the SC current isc perfectly tracked its reference
Iscref. The overshoot was zero, the system response time was less than 0.7 s, and the signal ripple was
tolerable, less than 0.08 A.World Electric Vehicle Journal2020, 11, x FOR PEER REVIEW 9 of 15 
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Figure 6. SC (supercapacitor) current isc and its reference Iscref with zoom.
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Figure 7. The sliding surface S with zoom.
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Figure 8. SC voltage Vsc with zoom.
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Figure 9. The control signal µ12 with zoom.
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Figure 10. SC current isc and its reference Iscref with zoom.
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Figure 11. The sliding surface S with zoom.
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Figure 12. SC voltage Vsc with zoom.
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Figure 13. The control signal µ12 with zoom.

Figures 7 and 11 illustrate the trajectory of the sliding surface S. This figure clearly shows that the
equilibrium S = 0 was attractive. The signal ripple was tolerable, less than 0.08 A. On the other hand,
the enlarged parts in the figures show that the sliding surface was maintained at zero, despite variations
in the value of the reference current. Hence, the robustness of our proposed control law ISMC.

Figures 8 and 12 show, respectively, charge and discharge mode of the SC voltage Vsc, and this
mode was based on the value of Iscref. The value of the difference that existed in the Vsc curve was a
function of the deviation of Iscref at the time of its change.

Figures 9 and 13 illustrate the control signals µ12. This signal was mainly a function of the values
of Vsc and isc because the sliding surface was almost zero. On the other hand, the enlarged parts in the
figures show the effect of the change of the value of the current on the control law because control law
in Equation (17) was in function of the current isc and Vsc.

� Charging mode of SC (Buck operation, k = 0):
� Discharging mode of SC (Boost operation, k = 1)

4.4. Figures and Experimental Results

The control system had been implemented in the dSPACE DS1202 via MicroLabBox and used with
a real-time interface (RTI). The DS1202 was fully programmable from the Simulink® block diagram
environment, and all input/output were configured graphically.

The experiment results of buck–boost power converter are illustrated in Figures 14–21.
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Figure 14. SC current isc and its reference Iscref with zoom.
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Figure 15. The sliding surface S with zoom.
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Figure 16. SC voltage Vsc with zoom.
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Figure 17. The control signal µ12 with zoom.
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Figure 18. SC current isc and its reference Iscref with zoom.
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Figure 19. The sliding surface S with zoom.
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Figure 20. SC voltage Vsc with zoom.
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Figure 21. The control signal µ12 with zoom.

Figures 14 and 18 show that the controller behavior was satisfactory. Indeed, the SC current isc

perfectly tracked its reference Iscref. The overshoot was almost zero, the system response time was
around 0.7 s, and the signal ripple was tolerable, less than 0.08 A due to measurement noise. Its results
were better compared to the results of [21]. Indeed, the authors of [21] control the current indirectly by
controlling the voltage, which generates significant undulations at the level of the current (iL = isc) and,
consequently, the aging of the SC. On the other hand, it was necessary to control the current of SC
instead of the voltage to protect the SC.

Figures 15 and 19 illustrate the trajectory of the sliding surface S. This figure clearly shows that the
equilibrium S = 0 was attractive. The signal ripple was tolerable, less than 0.04 A. On the other hand,
the enlarged parts in the figures show that the sliding surface was maintained at zero, despite variations
in the value of the reference current. Hence, the robustness of our proposed control law ISMC.

Figures 16 and 20 show, respectively, charge and discharge mode of the SC voltage Vsc, the difference
between the experimental and simulation signals due to the voltage drop in the connection cables, and
also the difference in the type of MOSFET transistor compared to IGBT. On the other hand, the enlarged
parts in the figures show the effect of the internal resistance of the SC, in both cases, on the charge and
discharge of the latter.

Figures 17 and 21 illustrate the control signals µ12. This signal was mainly a function of the values
of Vsc and isc because the sliding surface was almost zero. On the other hand, the enlarged parts in the
figures show the effect of the change of the value of the current on the control law because control law
in Equation (17) was in function of the current isc and Vsc.

We could note that:

- The simulation and experimental results responded perfectly to the theoretical approach (ISMC,
integral sliding mode control) used in this paper.

- The results of the simulation of the reversible buck–boost current converter on Matlab®/Simulink®

were identical to the experimental results that were taken by the dSPACE DS1202 card.

This would encourage researchers who do not have the equipment to conduct experimental
validation by using our buck–boost model as a reference.

� Charging mode of SC (Buck operation, k = 0)
� Discharging mode of SC (Boost operation, k = 1)

5. Conclusions

The problem of developing a suitable controller for a buck–boost converter, which generates
the charging and discharging current of the SC used in an electric vehicle, was studied, in order to
satisfy the following requirements: (i) monitoring of the supercapacitor current up to its reference and
(ii) asymptotic stability of the closed-loop system. The system studied consisted of a supercapacitor
connected to the DC bus through a buck–boost power converter reversible in the current. The controller
was obtained from the nonlinear averaged model (6) using an integral sliding mode control. Using
both formal analysis and simulation and experimental results, it was shown that the obtained controller
achieved the performances for which it was designed.
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For future work, the focus will be on the energy management system, whose objective will be
to develop the SC current reference, taking into account the constraints of the load and of the main
source, which is the fuel cell.
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