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Abstract: Lithium batteries are widely used in energy storage power systems such as hydraulic,
thermal, wind and solar power stations, as well as power tools, military equipment, aerospace and
other fields. The traditional fusion prediction algorithm for the cycle life of energy storage in lithium
batteries combines the correlation vector machine, particle filter and autoregressive model to predict
the cycle life of lithium batteries, which are subjected to many uncertainties in the prediction process
and to inaccurate prediction results. In this paper, a probabilistic prediction algorithm for the cycle
life of energy storage in lithium batteries is proposed. The LS-SVR prediction model was trained by a
Bayesian three-layer reasoning. In the iterative prediction phase, the Monte Carlo method was used
to express and manage the uncertainty and its transitivity in a multistep prediction and to predict the
future trend of a lithium battery’s health status. Based on the given failure threshold, the probability
distribution of the residual life was obtained by counting the number of particles passing through
the threshold. The wavelet neural network was used to study the sample data of lithium batteries,
and the mapping relationship between the probability distribution of the residual life of lithium
batteries and the unknown values were established. According to this mapping relation and the
probability distribution of the residual life of lithium batteries, the health data could be deduced and
then iterated into the input of the wavelet neural network. In this way, the predicted degradation
curve and the cycle life of lithium batteries could be obtained. The experimental results show that
the proposed algorithm has good adaptability and high prediction efficiency and accuracy, with the
mean error of 0.17 and only 1.38 seconds by average required for prediction.

Keywords: lithium battery; cycle life; probability prediction; uncertainty; residual life; wavelet
neural network

1. Introduction

With the worsening of the energy crisis and environmental problems in recent years, the new
energy industry has developed rapidly, especially in the battery industry. Lithium batteries have
been widely used in various fields, such as electronic products, electric tools, electric vehicles and
energy storage fields because of their high energy density, no memory effect, small self-discharge and
long cycle life. The research and development of power batteries with high energy density and long
cycle life have become hot issues in the field of electric vehicle (EV). Based on the current research
progresses and the accumulation of experience, lithium batteries with capacities above 300 Wh/kg can
be realized [1,2]. However, at a specific point in time, the problem of energy storage will be inevitably
encountered, i.e., the battery performance will continue to decline with the cycling and material aging
until the battery is discarded [3]. In addition, the degradation of the battery performance cannot be
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directly measured but needs to be estimated in advance to decide whether to replace the battery to
avoid some unnecessary events. The performance of batteries can be divided into two categories:
electrical performance and reliability. Battery life is one of the important indicators to measure the
electrical performance of batteries. Charge–discharge cycles include a charge operation and a discharge
operation. The number of charge–discharge cycles that a battery can carry out while maintaining a
certain output capacity is called the cycle life (service life) of the battery. For energy storage batteries, it
is generally believed that the life of the battery is terminated when the available capacity of the battery
decreases to 70% of the initial level [4]. Battery life includes cycle life and calendar life, where the
former refers to the number of cycles of the battery from a certain charging and discharging system to
the end of life and the latter refers to the time required for the battery to be stored in a certain state until
the end of life. There are many complex physical and chemical reactions in the charge and discharge
processes of Li-ion batteries, and many factors can affect the cycle life of Li-ion batteries. On the other
hand, cycle life testing is often time-consuming and costly. The correct evaluation of battery life is
of guiding significance in the production and development of Li-ion batteries and affects the health
management system of batteries.

The third industrial revolution proposed by Jeremy Rifkin is actually a new energy revolution,
which significantly drives the development of smart grid. Among them, energy storage control
technology is the core technology supporting the development of smart grid, and the system-on-chip
technology is the core technology of energy storage control technology. State of Health (SOH) is a
byte that must be attached to ensure the normal and flexible transmission of information payload for
the network to operate, manage and maintain OAM (Operation, Administration and Maintenance).
However, with the increasingly widespread use of lithium batteries, SOH estimation and life prediction
technology will become an important core technology in the future. The prediction accuracy of
lithium battery life will directly affect the maintenance plan and maintenance cost of users. Related
literatures point out that battery life prediction methods can mainly be categorized into experience-based
methods and performance-based methods [5,6]. Experience-based methods include the cycle number
method, the ampere–time method, the weighted ampere–time method and the event-oriented
aging accumulation method [7]. Performance-based methods include mechanism-based predictions,
feature-based predictions and data-driven predictions [8]. The test of mechanism-based prediction
is rather complicated as it is difficult to establish a perfect aging model. The measurement of the
feature-based prediction is even more complex as it needs special measuring instruments. If the
Electrochemical Impedance Spectroscopy (EIS) impedance spectrum is carried out online rapid
measurement, further researches are needed. Relatively speaking, the testing method of data-driven
predictions is more simple, which does not need to consider the mechanism and characteristics of the
complex physical and chemical evolution process of lithium batteries. The fitting life curve of lithium
batteries can be obtained by using the mathematical statistics method or artificial neural network
model on the basis of test data. However, this method is also subjected to some limitations such
as the requirement for large amounts of data accumulation and a long time for data accumulation.
The artificial neural network model can well predict the life of lithium batteries in the early stage but is
not suitable for predicting the life of lithium batteries in the late stage, which indicates the complexity
of lithium batteries’ aging process. Battery health is related to battery operation, performance, cycle
life observation and so on. No one estimation method has the absolute advantage in precision for
all states of lithium batteries [9]. The training dimension of the artificial neural network model is
much more complex, and limited data will bring about considerable deviation. Due the differences
in usage occasions, the cycle life of lithium batteries used in different energy storage systems will
be different. Apparently, the reliability of accuracy and the accuracy are doubtful when using the
same fitting parameter set, which brings great challenges to the development of lithium battery life
prediction technology.

The Bayesian LS-SVR method derives model parameters by introducing a multilayer Bayesian
probabilistic reasoning framework based on the basic LS-SVR algorithm. While shortening the modeling



World Electric Vehicle Journal 2019, 10, 7 3 of 17

time, the framework makes the LS-SVR model have the ability to generate probabilistic predictive
output. In order to improve the accuracy and practicability of prediction, it is necessary to combine
the internal structure of the lithium battery with the external working environment so that a suitable
method can be obtained for predicting the cycle life of the energy storage in a lithium battery [10]. This
will be conducive to expressing and managing the inherent uncertainty in the prediction issue.

In 1992, Zhang Qinghua and Benvenist Albert proposed the wavelet neural network (WNN) by
wavelet expansion and translation, which is a feedforward neural network with the wavelet element
function as the neuron function. The wavelet neural network has a good approximation ability, adaptive
ability and information fusion ability of nonlinear systems [11]. In recent years, the wavelet neural
network has been extensively used in many fields, such as fault detection and identification, traffic
prediction and intelligent optimal control.

To solve the shortcomings of traditional prediction algorithms for the cycle life of lithium batteries,
a probabilistic cycle life prediction algorithm for lithium batteries was proposed. The algorithm draws
lessons from the successful application of the LS-SVR method in the time-series prediction and uses
Bayesian framework to express the uncertainty of the model. The Monte Carlo method was used to
transfer the uncertainty and to calculate the probability distribution of the residual life. Combining the
idea of a cyclic multistep prediction with the single-step prediction of the wavelet neural network, the
mapping relationship between the probability distribution of the residual life of lithium batteries and
the unknown values was established. By comparing the predicted value with the failure criterion, the
life end point is determined and a more accurate probability prediction of battery cycle life is realized.

This paper introduces two prediction methods, namely the probability prediction algorithm of
lithium battery residual life based on the Bayesian LS-SVR and the prediction algorithm of lithium
battery cycle life based on the wavelet neural network. To analyze the prediction performance of the
newly proposed probabilistic prediction algorithm of lithium battery cycle life, a comparative study
was conducted among the proposed algorithm, the prediction algorithm based on the Mean Impact
Value (MIV) Back Propagation (BP) neural network and the algorithm based on the correlation vector
machine particle filter and autoregressive model. Finally, the application of the proposed algorithm in
lithium battery life prediction as well as its practicability, efficiency and precision were analyzed.

2. Materials and Methods

2.1. Probabilistic Prediction Algorithm for the Cycle Life of Energy Storage in a Lithium Battery

2.1.1. Probabilistic Prediction Algorithm for the Residual Life of a Lithium Battery Based on the
Bayesian LS-SVR

The prediction framework for the residual life of a lithium battery based on the Bayesian LS-SVR
is shown in Figure 1.

A capacitor is used to discharge the battery at a constant current. The capacity of the battery is
equal to the time of discharge times the discharge current. Like most methods, the SOH is characterized
using the capacity in this paper:

SOH =
Ci
Co
× 100% (1)

where Co is rated capacity and Ci is the capacity of the ith charge–discharge cycle. When the capacity
is reduced to 70% of the rated capacity, the lithium battery function is judged to be invalid.

(1) Training sample selection

When training samples are few, all historical data can be used as training samples [12,13]. When
the sample size is large, the rolling time window method is used to extract the training data in view of
the demand of the online prediction. Assuming that the length of the window is n, the latest n data at
any current time is selected as training data. This method has a small amount of computation, which



World Electric Vehicle Journal 2019, 10, 7 4 of 17

is a significant advantage compared with others. Moreover, the model training in this method can also
be focused on learning the latest evolution trend of lithium battery health.
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(2) Phase space reconstruction

The selected training sample sequence of lithium battery’s health status is {xk−n+1, xk−n+2, · · · , xk}.
Takens’ Theorem is a basic proposition for calculating the dimension of the embedded phase space,
which is also the theoretical basis of phase space reconstruction technology. An important problem in
chaotic applications is to reconstruct an n-dimensional phase space containing the chaotic motion from
the time series of a single variable. According to Takens’ Theorem [14], the inherent evolution rule can
be restored in a high dimensional space, that is, when the embedding dimension d of the phase space
is greater than a certain value, there exists a smooth mapping f, making the time-series delay time τ

Equation (1). Then, there is
xk+1 = f ([xk xk−1 · · · xk−d+1]) (2)

Equation (2) is a one-step prediction formula in which the high-dimensional mapping function f
can be trained by the Bayesian LS-SVR method. In order to reduce the computational complexity, it is
necessary to determine the minimum embedding dimension m. In this paper, Cao’s method was used
to determine such a minimum embedding dimension m. [15]. The ith phase point in the phase space
can be expressed as xi(d) = [xi xi+1 · · · xi+d−1], where the nearest neighbor point is represented
by x(i,d)(d), as shown by
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a(i, d) =
‖xi(d + 1)− x(i,d)(d + 1)‖
‖xi(d)− x(i,d)(d)‖

(3)

where i = 1, 2, . . . , n − d.

E(d) =
1

n− d

N−d

∑
i=1

a(i, d) (4)

where E(d) is the function of the embedding number d, which can be expressed as follows:

E1(d) =
E(d + 1)

E(d)
(5)

When the value is greater than d0, E1(d) no longer changes significantly but approaches to 1, then
m = d0 + 1 is the minimum embedding dimension that is looked for.

(3) Bayesian LS-SVR Model Training

After determining the minimum embedding dimension, the training of the model can be started.

(i) Data preprocessing: In order to obtain more accurate prediction results, all input and output
data are normalized before being used for training, i.e., converted to the value range of [0,1].
According to the degradation characteristics of a lithium battery’s health state,

g(x) = x∗ =
x− xmin

xmax − xmin
(6)

where xmax and xmin are the maximum and minimum values of the training samples respectively.
(ii) To establish training sample pairs: At the current k moment, n–m training samples pairs can be

obtained according to the selected samples and the minimum embedding dimension.

X =


x1

x2
...

xn−m

 =


xk−n+1 xk−n+2 · · · xk−n+m
xk−n+2 xk−n+3 · · · xk−n+m+1

...
... · · ·

...
xk−m xk−m+1 · · · xk−1



y =


y1

y2
...

yn−m

 =


xk−n+m+1
xk−n+m+2

...
xk


(7)

(iii) Bayesian LS-SVR model training: According to the training steps of the Bayesian three-layer
reasoning, the kernel parameter σ0 and regularization parameter γ0 are initialized first, then a
linear search is performed from σ0 until finding σMP, which makes the p(D|σ) be the max in the
third layer reasoning. Then γMP and the LS-SVR model are derived.

yMP = ωT
MP ϕ(xtest) + bMP (8)

(4) Iterative Prediction and Uncertainty Management

The life of Li-ion batteries is defined to be terminated when the actual discharge capacity of the
Li-ion batteries is lower than 70%.

Generally, there are two kinds of prediction methods for the Li-ion battery life cycle [16]: direct
predictions and iterative predictions. Since the time range of lithium batteries entering the failure
state is uncertain and unknown, direct prediction is not feasible. The Bayesian LS-SVR prediction
model obtained in the previous section is used to iteratively predict the SOH of lithium batteries until
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it crosses the failure threshold. The Bayesian LS-SVR prediction model has the ability to obtain the
probability distribution output. However, the residual life prediction is a multistep prediction problem,
which needs to consider the transfer of the prediction uncertainty between steps [17], that is, how
the uncertainty of the previous prediction output is accurately transmitted as input to the next step
and ultimately to the predicted output. In this paper, the Monte Carlo method was used to realize
the representation and management of the prediction uncertainty in the multistep prediction [18].
The Monte Carlo method is a random simulation method, which is also known as a statistical simulation
or random sampling technology. It is a calculation method based on probability and statistical theory,
which uses random numbers or more common pseudorandom numbers to solve many computational
problems. As shown in Figure 2, the starting time of the prediction is assumed to be k.
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In the first step, xn−m+1 = [xk−m+1 xk−m+2 · · · xk] is the input and x̂k+1 and σ̂k+1 are
obtained from the expected value and difference of the probabilistic predictive output, where

x̂k+1 = ωT
MP ϕ(xn−m+1) + bMP (9)

In the second step, the Gauss distribution N
(

x̂k+1, (σ̂k+1)
2
)

is sampled by the Monte Carlo

method. All particles are sorted from large to small, so as to get the set
{

x̂i
k+1

}M

i=1
where M is the

number of sample particles. Then, M input vectors
{

xi
n−m+2 =

[
xk−m+2 · · · xk x̂i

k+1

]}M

i=1
are

constructed, the Bayesian LS-SVR prediction model is input and the outputs of M particles and M

Gaussian density distribution N
(

x̂i
k+2,

(
σ̂i

k+2

)2
)

are obtained.

x̂i
k+2 = ωT

MP ϕ
(

xi
n−m+2

)
+ bMP (I = 1, 2, · · · , M) (10)

It can be seen that the output of the second step prediction is equal the weight Gauss mixture
distribution, that is,

q(x̂k+2) =

M
∑

i=1
N
(

x̂i
k+2,

(
σ̂i

k+2

)2
)

M
(11)

From the second step, it can be seen that the prediction uncertainty in the multistep prediction
consists of two parts: One is the uncertainty of the prediction model itself, corresponding to the
Gaussian output of each particle, and the other is the uncertainty introduced when using the previous
step prediction output as the next step prediction input, which is manifested in the mixture of
Gaussian distribution.
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In the third step, since q
(
x̂k+2

)
is a Gaussian mixture distribution composed of M Gaussian

distributions, it is difficult to obtain a satisfactory discrete approximation if the distribution is sampled
with M as the sample number. If the number of samples is increased, the number of samples will
increase exponentially in the later iteration, which is not feasible in long-term predictions. In this paper,
the deterioration of the lithium battery’s health status is considered as a Gaussian process. A normal
distribution N

(
x̂∗k+2,

(
σ̂∗k+2

)2
)

of equal mean and equal force-difference is used to approximate

q
(

x̂k+2
)
, where

x̂∗k+2 = E(x̂k+2) =

M
∑

i=1
x̂i

k+2

M
(12)(

σ̂∗k+2
)2

= E
(
(x̂k+2)

2
)
−
(

E(x̂k+2)
2
)
=

M
∑

i=1

(
(x̂i

k+2)
2
+(σ̂i

k+2)
2)

M −

(
M
∑

i=1
x̂i

k+2

)2

M2

(13)

Then the Gauss distribution N
(

x̂∗k+2,
(
σ̂∗k+2

)2
)

is sampled by the Monte Carlo method, and

all the M particles are sorted from large to small to obtain set
{

x̂i
k+2

}M

i=1
. Then the M input

vectors
{

x̂i
n−m+3 =

[
xk−m+3 · · · xk x̂i

k+1 x̂i
k+2

]}M

i=1
are established, and the next Gaussian mixture

distribution is obtained by the input prediction model.
In step p (p > 3), the step 3 for the iterative prediction is repeated until all particles pass through
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particles according to an identical rule after each sampling. In this paper, it is assumed that the principle
of “degenerate trajectories do not intersect each other” is satisfied [19], i.e., the relationship between
the degradation magnitude of each branch track remains unchanged at any time. As shown in Figure 3,
if the relationship between any two particles at an k + 1 time satisfies x̂i

k+1 ≥ x̂j
k+1(1 ≤ i, j ≤ M, i 6= j),

their subsequent sub-particles at any time also satisfy x̂i
k+t ≥ x̂j

k+t(t > 1). This principle reflects
the trend consistency of each branch’s degeneration trajectory derived from the same degeneration
trajectory in the future, which is consistent with the actual situation and is beneficial to reducing the
uncertainty of the prediction.
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(5) Probability Distribution Approximate of Residual Life

According to Section 2.1.1 (4), the approximate distribution
{

x̂i
t
}M

i=1 of the health state of lithium
batteries can be obtained at any time t within a given prediction step. Firstly, the inverse function
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g−1 of Equation (6) is used to inversely transform
{

x̂i
t
}M

i=1 and obtain the actual health state value{
x̃i

t
}M

i=1. Combined with the failure threshold η, there are two methods for calculating the residual life
of lithium batteries. (I) The bilateral failure definition [20] is used to count the number of particles in
the symmetrical region above and below the failure threshold, so that the probability distribution of
the residual life can be calculated. The weight of each particle is 1/M. (II) Since the health degradation
process of lithium batteries is a monotonic process in theory, the cumulative failure probability at time
t can be expressed as follows according to the single threshold failure definition [21]:

F(t) = Pr(x̃t ≤ η) =
∫ η

0
q(x̃t)dxt (14)

where Pr(•) is the probability of satisfying the condition.
For the Monte Carlo approximation, there is

F(t) ≈ x̃i
tnumber : x̃i

t ≤ η

M
(i = 1, 2, · · · , M) (15)

Therefore, the probability distribution of residual life is

r(t) = F(t)− F(t− 1) (16)

2.1.2. Prediction of the Lithium Battery Cycle Life Based on the Wavelet Neural Network

Cycle life refers to the number of charge–discharge cycles that the battery can withstand before its
capacity decreases (attenuates) to a certain specified value under a certain charge/discharge current
profile. In this paper, the charge/discharge current profile is set as 10 C. Before using the wavelet
neural network to predict, the parameters of the network need to be set [22]. According to the demand
of the cyclic multistep prediction, the number of output nodes is selected to 1, and then the wavelet
basis function as well as the number of input layer and hidden layer nodes are discussed. Appropriate
settings can be obtained according to the probabilistic distribution of the residual life of lithium
batteries based on the Bayesian LS-SVR. The number of nodes in the input layer and hidden layer is set
to be within a suitable range. The effects of different wavelet basis functions on the sample processing
of lithium batteries are compared [23]. Using the same method, the number of input layer nodes and
hidden layer nodes can be determined [24].

The number of input layer nodes was set to 6 and that of hidden layer nodes was set to 8.
The convergences of the training error in the WNN training with respect to the Mexican Hat wavelet,
the Marr wavelet and the Morlet wavelet as wavelet basis functions were compared. It can be seen
that the convergence speeds of the 3 wavelet basis functions are similar with each other. In order to
obtain the best prediction effect, the wavelet basis function with the least convergence error should be
selected, that is, the Morlet Wavelet should be selected. Similarly, the number of input layer nodes was
set to 4 and that of the hidden layer nodes was set to 6.

The wavelet neural network has a strong stability. In structural design, it avoids the appearance
of the local optimal problem and has a strong function learning ability. Therefore, the wavelet neural
network is used to predict the cycle life of batteries. After completing the WNN network setup, it
can complete the network learning by using sample training. The life cycle data of battery No. 1
was selected as the training samples to train the neural network, and then the cycle life of batteries
No. 2–4 were predicted. Generally, the failure of a battery is defined when its capacity is deteriorated
by 70% [25–27]. However, in this paper, the failure of battery is reached when battery capacity is
deteriorated by 25%; that is, when SOH = 75%, the failure of battery occurs.

The cycle life of No. 2 battery was predicted when the SOH of the batteries decreased to 90%, 85%
and 80%. The predicted results are shown in Table 1.
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Table 1. The probability prediction results of the No.2 lithium battery cycle life.

Forecast Starting Point SOH = 90% SOH = 85% SOH = 80%

predicted value 150 155 159
actual cycle life 159 160 172
relative error/% 5.7% 3.1% 7.6%

Among them, the relative error formula is as follows:

ϕ =

∣∣Lr − Lp
∣∣

Lr
× 100% (17)

where Lr refers to the actual cycle life of the battery and Lp refers to the battery’s predicted cycle life.

3. Results

The probabilistic prediction algorithm presented in this paper is used to predict the cycle life of
energy storage in lithium batteries. The results are shown in Tables 2–4.

Table 2. Probability prediction results of No. 3 lithium battery cycle life.

Forecast Starting Point SOH = 90% SOH = 85% SOH = 80%

predicted value 150 151 154
actual cycle life 159 159 159
relative error/% 5.7% 5.1% 3.1%

Table 3. Probability prediction results of No. 4 lithium battery cycle life.

Forecast Starting Point SOH = 90% SOH = 85% SOH = 80%

predicted value 109 154 152
actual cycle life 165 162 168
relative error/% 33.9% 4.9% 9.5%

Table 4. Probability prediction results of No. 18 lithium battery cycle life.

Forecast Starting Point SOH = 90% SOH = 85% SOH = 80%

predicted value 130 163 152
actual cycle life 180 180 168
relative error/% 27.8% 9.4% 9.5%

It can be seen from Tables 2–4 that the predicted value is more accurate when the suitable starting
point is chosen in the midlife of lithium batteries. The starting point of prediction when SOH = 85% is
more suitable. The predicted error of No. 4 lithium battery at SOH = 85% is larger than that of No. 3
lithium battery and No. 18 lithium battery at SOH = 85%, but the change is not significant. It is worth
noting that the predicted error of the No. 4 lithium battery is larger than that of the No. 3 lithium
battery and No. 18 lithium battery at SOH = 90%. This is due to the fact that the SOH value of the
No. 4 lithium battery produces a drastic change around 90%, especially the early change has a great
impact on the prediction. Moreover, a more accurate prediction of the cycle life can be obtained in the
later prediction.

The algorithm cannot effectively predict the change of SOH but has a good adaptability to the
change of the actual value. Tests were conducted during four different periods, as shown in Figure 4
and Table 4. During the mid-cycle life, the measured value of the capacity of the No. 4 lithium battery
changed sharply during the 40th cycle and 46th cycle, resulting in a sharp rise (i.e., a sharp change) of
SOH value. In the 65th cycle and the 75th cycle, the measurements of the capacity of the No. 4 lithium
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battery showed wavelet changes, and the SOH value increased slightly. The prediction error of the
cycle life of the No. 4 lithium battery during this period was large, with the prediction starting point
being 39 times, 40 times and 46 times. Fitting linear attenuation curves before and after the change
point are shown in Figure 4 and Table 5. The health level represents the surplus usage of the battery.

 
Figure 4. Fitting linear attenuation curves before and after the change point. 
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change point was significantly more accurate than that before the change. If the capacity of lithium 
batteries is observed to have a change, the prediction should be conducted again in order to obtain a 
reliable cycle life prediction value. 

In this paper, the experiment was conducted based on “battery data set 1” published by NASA 
Arms Research Center. These data were collected by a self-defined battery prediction test bench, 
which consists of a commercial lithium battery typed by 1850, a programmable DC electronic load, a 
power supply, a voltmeter, an ammeter, a thermocouple sensor, an electrochemical impedance 
spectrometer and a PXI cabinet for data acquisition and experimental control. Four lithium batteries 
(No. 5, No. 6, No. 7 and No. 18) were repeatedly operated in charging mode, discharging mode and 
impedance measurement mode at room temperature, respectively. The operation of charging was 
carried out under a constant current of 1.5 A until the lithium battery voltage reached 4.2 V and 
stopped when the charging current dropped to 20 mA. The operation of discharging was carried out 
at a constant current of 2 A until the voltage of the lithium battery dropped to 2.7 V, 2.5 V, 2.2 V and 
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charge–discharge operation led to the accelerated degradation of the lithium battery performance. 
When the capacity of the lithium battery was reduced to 70% of the rated capacity (from 2.0 to 1.4 
Ahr), the battery was defined to be invalid and the test was stopped. The capacity degradation data 
of two energy storage lithium batteries, No. 5 and No. 7, are shown in Figure 5. 

Figure 4. Fitting linear attenuation curves before and after the change point.

Table 5. Comparison of the prediction results before and after the battery change point.

Forecast Starting Point The Thirty-Ninth Cycle The Fortieth Cycle The Forty-Sixth Cycle

predicted value 150 150 168
actual cycle life 180 176 175
relative error/% 16.67% 14.77% 4.00%

From Figure 4 and Table 5, it can be seen that the proposed algorithm has a good adaptability to
change. The prediction values before and after change were quite different. The prediction from the
change point was significantly more accurate than that before the change. If the capacity of lithium
batteries is observed to have a change, the prediction should be conducted again in order to obtain a
reliable cycle life prediction value.

In this paper, the experiment was conducted based on “battery data set 1” published by NASA
Arms Research Center. These data were collected by a self-defined battery prediction test bench, which
consists of a commercial lithium battery typed by 1850, a programmable DC electronic load, a power
supply, a voltmeter, an ammeter, a thermocouple sensor, an electrochemical impedance spectrometer
and a PXI cabinet for data acquisition and experimental control. Four lithium batteries (No. 5, No. 6,
No. 7 and No. 18) were repeatedly operated in charging mode, discharging mode and impedance
measurement mode at room temperature, respectively. The operation of charging was carried out
under a constant current of 1.5 A until the lithium battery voltage reached 4.2 V and stopped when the
charging current dropped to 20 mA. The operation of discharging was carried out at a constant current
of 2 A until the voltage of the lithium battery dropped to 2.7 V, 2.5 V, 2.2 V and 2.5 V, respectively; the
impedance measurement was performed by frequency scanning within the range of 0.1–5000 Hz with
an electrochemical impedance spectroscopy detector. The cyclic charge–discharge operation led to the
accelerated degradation of the lithium battery performance. When the capacity of the lithium battery
was reduced to 70% of the rated capacity (from 2.0 to 1.4 Ahr), the battery was defined to be invalid
and the test was stopped. The capacity degradation data of two energy storage lithium batteries, No. 5
and No. 7, are shown in Figure 5.
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Figure 5. The capacity degradation trajectories of No.5 lithium battery and No.7 lithium battery.

As can be seen from Figure 5, the capacity of lithium batteries did not present a perfect monotonic
decreasing trend due to self-charging, especially near the 90th cycle where a large fluctuation was
observed. The degradation trajectories of the two lithium batteries did not conform to the bi-exponential
model in the previous literature [28]. Moreover, the degradation trajectories and cycle life of the two
lithium batteries were still quite different under similar experimental conditions, and the battery
capacity did not decrease with the change of environment. Therefore, it was difficult to establish other
unified and accurate degradation models. The experimental results show that the proposed algorithm
has high practicability in predicting the cycle life of lithium batteries.

The efficiency of the proposed algorithm was experimentally verified by measuring the budget
lifecycle time of energy storage in lithium batteries. The annual working power consumption of
the battery was calculated, and the estimated service life of the battery was calculated according
to the residual capacity of 10%. By using fifteen lithium-ion batteries as experimental objects, the
cycle life of lithium batteries was predicted by using the proposed algorithm, BP neural network life
prediction algorithm for LiFePO4 battery based on MIV, correlation vector machine, particle filter and
autoregressive model fused algorithm. The comparison of the prediction time of different algorithms
is shown in Table 6.

Table 6. The comparison of the cycle life budget (s) of energy storage in a lithium battery by using
different algorithms.

Lithium
Battery

Number

Algorithm in
This Paper (s)

Life Prediction Algorithm
of LiFePO4 Battery Based

on BP Neural Network
Based on MIV (s)

Prediction Algorithm for Residual Life of
Li-ion Batteries Based on Correlation
Vector Machine Particle Filtering and

Self-Regression Model (s)

1 1.35 1.78 1.73
2 1.38 1.74 1.84
3 1.38 1.78 1.81
4 1.41 1.82 1.85
5 1.43 1.83 1.85
6 1.37 1.95 1.91
7 1.38 1.81 1.84
8 1.43 1.86 1.88
9 1.36 1.87 1.91
10 1.41 1.84 1.87
11 1.38 1.83 1.87
12 1.37 1.85 1.87
13 1.35 1.77 1.82
14 1.35 1.86 1.88
15 1.35 1.86 1.88

Average value 1.38 1.83 1.85
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Three algorithms in Table 6 were used to estimate the cycle life of lithium batteries. The results
are shown in Figure 6.

13 1.35 1.77 1.82 
14 1.35 1.86 1.88 
15 1.35 1.86 1.88 

Average 
value 

1.38 1.83 1.85 

Three algorithms in Table 6 were used to estimate the cycle life of lithium batteries. The results 
are shown in Figure 6. 
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As shown in Table 6, the time required to predict the cycle life of lithium batteries using the
proposed algorithm was shorter, and all of them were completed within 1.41 s. The life prediction
algorithm of a LiFePO4 battery based on the MIV BP neural network was completed within 1.82 s.
The prediction algorithm for the residual life of a lithium ion battery based on the correlation vector
machine particle filtering and self-regression model was completed in 1.85 s. With the increase of the
number of experimental subjects, the time required for predicting the cycle life of lithium batteries
tended to be stable, which was maintained at 1.35 s, with the average value of 1.38 s. The time required
for the algorithm based on MIV to predict the cycle life of a lithium iron phosphate battery fluctuated
from 1.74 to 1.95 s, with an average value of 1.83 s. In contrast, the prediction algorithm based on
the correlation vector machine particle filtering and self-regression model took the longest time for
prediction, which was 1.85 seconds by average. Through a comprehensive analysis based on Tables 5
and 6, it can be known that the proposed algorithm takes the least time and achieves the highest
efficiency in predicting the cycle life of lithium batteries.

Aging generally occurs as the battery has been recharged and cycled multiple times after the
battery has been filled with liquid. Normally, it can be divided into normal temperature aging or high
temperature aging. The aging effect is to stabilize the properties and composition of the solid electrolyte
interface (SEI) films formed after the first charge. The aging temperature at room temperature is 25 ◦C,
and sometimes it can be 38 or 45 ◦C.

Aging is usually predicted to accelerate between 70% and 80% SOH. In this study, the prediction
accuracy of the LiFePO4 battery life prediction algorithm based on the MIV BP neural network was
compared with that of the Lithium ion battery life prediction algorithm based on the correlation vector
machine particle filter and autoregressive model when the cycle life of a lithium battery occurs between
70% and 80% SOH, as shown in Figure 7.

Figure 7 shows that when SOH is 70, the accuracy of the proposed algorithm, the prediction
algorithm based on the MIV BP neural network and the algorithm based on the correlation vector
machine particle filter and autoregressive model are 82%, 42% and 30%, respectively. When SOH is
76%, the accuracy of the proposed algorithm, the prediction algorithm based on the MIV BP neural
network and the algorithm based on the correlation vector machine particle filter and autoregressive
model are 84%, 43% and 20%, respectively. When SOH is 80%, the accuracy of this algorithm, the
prediction algorithm based on the MIV BP neural network and the algorithm based on the correlation
vector machine particle filter and autoregressive model are 82%, 42% and 18% respectively. It can be



World Electric Vehicle Journal 2019, 10, 7 13 of 17

concluded that the accuracy of the proposed algorithm has a higher prediction accuracy and stable
prediction performance compared with the other two algorithms.

 
Figure 7. The comparison of the life prediction accuracy of three algorithms between 70% and 80% 
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76%, the accuracy of the proposed algorithm, the prediction algorithm based on the MIV BP neural 
network and the algorithm based on the correlation vector machine particle filter and 
autoregressive model are 84%, 43% and 20%, respectively. When SOH is 80%, the accuracy of this 
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In order to test the performance of the algorithm, 10 groups of lithium batteries with different cycle
lives were predicted under the same experimental environment, as shown in Tables 6–8. The predicted
results of the different algorithms were compared with the actual cycle life of lithium batteries, as
shown in Tables 7–9.

Table 7. The prediction results of the proposed algorithm.

Object
Number

Actual Measurement
Cycle Life (Times)

The Measuring Life of the
Algorithm in This Paper (Times)

Error Value
(Times)

1 8.5 8.3 0.2
2 13.5 13.3 0.2
3 20.4 20.3 0.1
4 31.3 31.5 0.2
5 40.3 40.4 0.1
6 49.2 49.6 0.4
7 58.5 58.5 0
8 65.5 65.5 0
9 72.6 72.9 0.3

10 80.1 80.3 0.2
Average value 0.17

Table 8. The prediction results of the LiFePO4 battery life prediction algorithm based on the MIV BP
neural network.

Object
Number

Actual Measurement
Cycle Life (Times)

Life Prediction Algorithm of
LiFePO4 Battery Based on MIV BP

Neural Network (Times)

Error Value
(Times)

1 8.1 8.6 0.5
2 13.5 13.7 0.2
3 20.2 20.1 0.1
4 31.3 31.9 0.8
5 40.4 40.0 0.4
6 49.2 49.6 0.4
7 58.7 58.2 0.5
8 65.5 65.3 0.2
9 72.1 72.8 0.7

10 80.1 80.9 0.8
Average value 0.46
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Table 9. A detection system for the residual life prediction of lithium-ion batteries based on the
correlation vector machine, particle filter and autoregressive model.

Object
Number

Actual
Measurement Cycle

Life (Times)

Residual Life Prediction Algorithm of Lithium
Ion Battery Based on Correlation Vector Machine
Particle filter and Autoregressive Model (Times)

Error Value
(Times)

1 8.1 8.9 0.8
2 13.2 13.9 0.7
3 20.4 20.9 0.5
4 31.0 31.3 0.3
5 40.1 40.6 0.5
6 49.2 49.7 0.5
7 58.3 58.9 0.6
8 65.4 65.9 0.5
9 72.1 72.9 0.8

10 80.1 80.6 0.5
Average value 0.57

In order to compare the average error values of the three algorithms more clearly, the average
error values obtained by the different algorithms are represented by histograms, as shown in Figure 8.

 
Figure 8. The average error values of the different algorithms. 
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does not need a large number of historical data and model offline training. The proposed algorithm 
is flexible, versatile and suitable for the cycle life prediction of lithium batteries. 

4.3. The Efficiency and Accuracy of the Proposed Algorithm  
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As shown in Tables 7–9, the average error value of the proposed algorithm, the prediction algorithm
based on the MIV BP neural network and the algorithm based on the correlation vector machine particle
filter and autoregressive model are 0.17%, 0.46% and 0.57%, respectively. The error value of the proposed
algorithm is significantly smaller than that of the other two algorithms. The experimental results show
that the proposed algorithm has a higher accuracy in predicting the cycle life of lithium battery.

4. Discussion

In this paper, the Bayesian LS-SVR algorithm is applied to the prediction of the cycle life of lithium
batteries. The performance of the proposed algorithm was investigated from different aspects through
experimental analyses.

4.1. Analysis of the Discontinuous Changes in the Life Prediction of Energy Storage in a Lithium Battery

From the experiment on the discontinuous changes in the probability prediction of the cycle life of
lithium batteries, it can be seen that the predicted value is more accurate when the suitable starting point
is chosen in the midlife of the lithium battery, the relative error of the cycle life prediction is less than 10%,
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and the proposed algorithm has a good adaptability to the discontinuous changes. This is due to the
fact that the proposed algorithm is a probabilistic prediction algorithm, which can effectively manage
the uncertainties generated in long-term predictions and its transmission in multistep predictions and
thus can obtain the probability distribution of the cycle life of energy storage in lithium batteries.

4.2. Analysis of the Practicability of the Proposed Algorithm

From the experiment on the practicability of the probabilistic algorithm in predicting the cycle
life of lithium batteries, it can be seen that the degradation trajectory and cycle life of the two lithium
batteries are quite different. Compared with the previous prediction algorithm, the proposed algorithm
is more practical. The reason is that this algorithm is a pure data-driven algorithm, which does not
need a large number of historical data and model offline training. The proposed algorithm is flexible,
versatile and suitable for the cycle life prediction of lithium batteries.

4.3. The Efficiency and Accuracy of the Proposed Algorithm

From the experiment on the accuracy of the probabilistic prediction algorithm in predicting the
cycle life of lithium batteries, it can be seen that compared with the prediction algorithm based on
the MIV BP neural network and the algorithm based on the correlation vector machine particle filter
and autoregressive model, the proposed algorithm has a higher prediction efficiency and accuracy.
This is mainly due to the fact that the proposed algorithm combines the Bayesian LS-SVR algorithm
(predicting the probability distribution of the residual life of lithium batteries through model training,
iterative operation and uncertainty management) and the wavelet neural network (determining the
number of input nodes and hidden nodes of the training model), which saves lots of prediction time.

5. Conclusions

In this paper, a probabilistic prediction algorithm for the cycle life of lithium batteries is proposed
through combining the probabilistic prediction algorithm based on the Bayesian LS-SVR with the
prediction algorithm based on the wavelet neural network. The advantage of the proposed algorithm
is that the neural network can be trained by using the life-cycle data of one battery without the need
to update the model parameters online after training. At the same time, the prediction algorithm
proposed in this paper has a good adaptability to the discontinuous changes occurring in the actual
value. As long as the appropriate prediction starting point is selected, more accurate prediction results
of the cycle life can be obtained. It is worth noting that the proposed algorithm took a very short time
to finish the prediction, which is normally completed within 1.41 s. With the increase of the number of
experimental objects, the time required for a prediction by the proposed algorithm tends to be stable,
and the average error is only about one third of that of the traditional algorithm. The experimental
data shows that the proposed algorithm can predict the cycle life of a lithium battery more accurately
and more efficiently, which lays a foundation for the further research in the battery industry.

Author Contributions: Conceptualization, X.W. and C.G.; methodology, X.W.; software, M.S.; validation, X.W.,
C.G. and M.S.; formal analysis, X.W.; investigation, M.S.; resources, C.G.; data curation, X.W.; writing—original
draft preparation, X.W., C.G. and M.S.; writing—review and editing, X.W.; visualization, M.S.; supervision, C.G.
and M.S.; project administration, X.W.; funding acquisition, X.W.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
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