
Citation: Li, J.; Zhang, C.; Zhang, J.;

Shao, Y. Research on Blockchain

Transaction Privacy Protection

Methods Based on Deep Learning.

Future Internet 2024, 16, 113.

https://doi.org/10.3390/fi16040113

Academic Editor: Daniel

Gutiérrez Reina

Received: 23 February 2024

Revised: 15 March 2024

Accepted: 20 March 2024

Published: 28 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Research on Blockchain Transaction Privacy Protection
Methods Based on Deep Learning
Jun Li 1,*, Chenyang Zhang 1, Jianyi Zhang 2 and Yanhua Shao 3

1 School of Information Management, Beijing Information Science and Technology University,
Beijing 100192, China; 2022020966@bistu.edu.cn

2 School of Computing and Informatics, The University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
jianyi.zhang@louisiana.edu

3 National Computer System Engineering Research Institute of China, Beijing 100083, China;
stephen_yanhuashao@outlook.com

* Correspondence: lijun@bistu.edu.cn

Abstract: To address the challenge of balancing privacy protection with regulatory oversight in
blockchain transactions, we propose a regulatable privacy protection scheme for blockchain trans-
actions. Our scheme utilizes probabilistic public-key encryption to obscure the true identities of
blockchain transaction participants. By integrating commitment schemes and zero-knowledge proof
techniques with deep learning graph neural network technology, it provides privacy protection and
regulatory analysis of blockchain transaction data. This approach not only prevents the leakage of
sensitive transaction information, but also achieves regulatory capabilities at both macro and micro
levels, ensuring the verification of the legality of transactions. By adopting an identity-based en-
cryption system, regulatory bodies can conduct personalized supervision of blockchain transactions
without storing users’ actual identities and key data, significantly reducing storage computation and
key management burdens. Our scheme is independent of any particular consensus mechanism and
can be applied to current blockchain technologies. Simulation experiments and complexity analysis
demonstrate the practicality of the scheme.

Keywords: deep learning; blockchain; privacy protection; regulatory functionality; cryptography

1. Introduction

Blockchain was originally proposed by Satoshi Nakamoto [1] as the underlying tech-
nology for Bitcoin [2]. Blockchain 1.0 is represented by Bitcoin, which focuses on solving
the problem of decentralization of currencies and payments. Blockchain 2.0 is represented
by Ethereum [3], which uses smart contracts to solve the trust issues of decentralization
in the financial sector. Blockchain transaction involve three main components: the sender,
the receiver, and the transaction amount. But both Bitcoin and Ethereum have limitations
in privacy protection [4]. The identities of the sender and receiver are realized through
user public key addresses, which has a certain degree of anonymity [5]. However, it is still
possible to obtain the real identities of the traders by mining their associated information
through data analysis or machine learning techniques. Furthermore, since the transaction
amount is completely exposed on the blockchain and anyone can access it by querying the
blockchain full node, attackers can deduce information such as account balances and fund
flows [6], thereby compromising transaction privacy. Current anonymous cryptocurrencies
like Dash, Monero and later Beam/Grin [7] utilize ZKPs (zero-knowledge proofs), ring
signatures, and cryptographic commitments to protect the privacy of transaction details
and participant identities [8]. However, these methods lack regulatory functions and may
be used for illegal trading activities.

In order to address the issues mentioned above, we propose a scheme that balances
privacy protection and regulatory functions. Our main contributions are summarized below:

Future Internet 2024, 16, 113. https://doi.org/10.3390/fi16040113 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16040113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-8765-053X
https://doi.org/10.3390/fi16040113
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16040113?type=check_update&version=2


Future Internet 2024, 16, 113 2 of 20

1. We propose a blockchain transaction scheme that integrates a variety of crypto-
graphic technologies to balance privacy protection and regulatory functions. Specif-
ically, it adopts probabilistic public-key encryption to protect the user’s identity
from being exposed.

2. To validate the basic legality of blockchain transactions, our scheme employs crypto-
graphic commitment schemes and zero-knowledge proof technology. It further inte-
grates graph neural networks (GNNs) technology for anomaly detection in blockchain
transaction data, thus meeting the requirements for transaction privacy protection and
regulatory compliance without disclosing sensitive transaction information.

3. Our scheme allows regulatory authorities to avoid storing users’ real identities and
key information, significantly reducing storage and computational burdens. Under
the premise of ensuring transaction efficiency as much as possible, it balances the
implementation of privacy protection and regulatory functions.

This paper is organized as follows: Section 2 introduces the prerequisite knowledge
necessary for constructing the scheme. Section 3 explores the blockchain transaction privacy
protection model. Section 4 makes a comprehensive analysis of the scheme. Section 5
provides the conclusions and discussions of this study.

2. Preparatory Knowledge
2.1. Literature Review

Blockchain features include decentralized storage, data immutability, and consensus
mechanisms. These features ensure the transparency and security of blockchain data, but
they also create challenges for users’ privacy protection. Researchers have introduced
numerous privacy protection technologies to safeguard privacy.

Coin mixing is a significant privacy protection scheme that obscures the relationship
between inputs and outputs in blockchain transactions to protect privacy. CoinJoin is a
specific type of coin mixing scheme, its core idea is to merge transactions from multiple
users into a single transaction to hide the source and destination of each user’s funds.
Dash [9] uses CoinJoin technology to ensure privacy by facilitating coin mixing through
network master nodes. This process involves master nodes in chain mixing, where the
output of one node becomes the input of another, undergoing multiple rounds of mixing to
enhance anonymity.

Besides coin mixing, cryptographic privacy protection mechanisms are also a key
research direction. Researchers use technologies like ZKP and ring signatures to secure
transaction data confidentiality. Zerocoin [10] employs non-interactive ZKP and RSA
accumulators within a cryptocurrency framework that allows Bitcoin conversion into Ze-
rocoin, concealing the identities of both the sender and the receiver during transactions.
However, Zerocoin faces issues like high costs and low transaction efficiency. Building
on Zerocoin, Zerocash [11] introduces improvements using zk-SNARKs technology to
reduce the transaction verification time required by Zerocoin, enhancing transaction effi-
ciency. Moreover, Zerocash enables private transactions of differing amounts and allows
direct transfers to user addresses. Monero focuses on privacy protection, it uses a ring
signature framework to keep transaction senders anonymous. Additionally, it employs
stealth address technology, generating a one-time address for each transaction to prevent
address reuse.

Beyond privacy protection, regulatory technology is another vital aspect of blockchain
transactions, which can effectively prevent illegal activities. Thus, balancing transaction
regulation with privacy protection is an essential research direction. Li et al. [12] proposed
a traceable Monero system that adds an accountability mechanism to the original system. It
can trace the flow of funds and infer users’ long-term addresses from one-time anonymous
addresses. Sun et al. [13] proposed an MBDC framework for CBDC, which employs
permissioned blockchain technology and utilizes a multi-blockchain structure and ChainID
to improve scalability. However, MBDC focuses on regulatory features and has limitations
in privacy protection. Zhang et al. [14] introduced Gemini-Chain, which adopts a dual-
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chain structure to store and access complete transaction and verification information,
maintaining a balance between privacy security and regulatory functions. But its structure
is relatively complex.

2.2. UTXO Model

UTXO (unspent transaction output) represents the outputs of transactions that have
not yet been spent [15]. Multiple transactions are recorded on the Bitcoin ledger, each with
several transaction inputs (transferors) and outputs (recipients). These outputs constitute
the UTXO. Figure 1 shows an instance of the Bitcoin UTXO model. In this model, Trans-
action 1 has an input of 1 BTC, distributing two outputs, one of 0.4 BTC and another of
0.5 BTC, where the 0.1 BTC discrepancy acts as the transaction fee. Transaction 2 is the same
as Transaction 1, with its output becoming the input for Transaction 3, thereby establishing
a sequential linkage of transactions.

Figure 1. Example of a Bitcoin UTXO trading model.

2.3. Probabilistic Public-Key Cryptosystems

Probabilistic public-key encryption is a non-deterministic cryptography that generates
randomly varying ciphertexts for the same plaintext. Under the computational security
assumption, it is impossible to acquire any reliable information about the plaintext within
polynomial time by using ciphertext correlation attacks. Goldwasser and Micali designed a
probabilistic public-key scheme [16] (referred to as the GM probabilistic public-key encryp-
tion algorithm) using the quadratic residual theorem. However, the GM scheme has a high
ciphertext expansion rate, leading to low transmission efficiency. Blum and Goldwasser
proposed a more efficient probabilistic encryption scheme [17] (referred to as the BG cryp-
tosystem), significantly reducing the expansion of ciphertext data. Hence, we primarily
employ the BG scheme for encrypting user identity information. The BG probabilistic
encryption mainly utilizes the BBS [18] generator to enhance ciphertext randomness. The
detailed algorithm is as follows:

Parameter Setting: Let n = p·q, where p and q are large primes, and p ≡ q ≡ 3mod4.
Here, n is the public key, while p and q serve as the private keys. Define the plaintext
space as P =

(
Z2)m , the ciphertext space as C =

(
Z2)m × Z∗n , and the key space as

K = {(n, p, q)}.
Encryption: For plaintext message x ∈

(
Z2)m to be encrypted, the process is

as follows:

1. Randomly select a seed so and use the BBS generator to produce m random bits
z1 · · · zm as the keystream;

2. Calculate sm+1 = s2m+1
o modn;

3. Calculate yi = (xi + zi)mod2, 1 ≤ i ≤ m;
4. The ciphertext is c = EK(x, r) = (yi, · · · , yi, sm+1).

Decryption: The process of decrypting the ciphertext c = (yi, · · · , yi, sm+1) is
as follows:
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1. Calculate a1 =
(

p+1
4 )m+1mod(p− 1) ;

2. Calculate a2 =
(

q+1
4 )m+1mod(q− 1) ;

3. Calculate b1 = sa1
m+1modp;

4. Calculate b2 = sa2
m+1modq;

5. Utilize the Chinese remainder theorem to calculate r, satisfying r ≡ b1modp and
r ≡ b2modq;

6. Using the BBS generator, derive z1 · · · zm from the seed so = r;
7. For each bit 1 ≤ i ≤ m, compute xi = (yi + zi)mod2;
8. The decrypted plaintext is x = x1 · · · xm.

2.4. Identity-Based Cryptosystems

IBC (identity-based cryptography) [19] addresses the challenges associated with the
supervision of digital certificates in public-key infrastructure (PKI). Within IBC, an entity’s
identification ID serves as its public key, while the private key is created using the KGC’s
(key generation center) master keys alongside the entity’s ID. We employ the Chinese
national standard algorithm SM9 as an example of IBC, and the SM9 algorithm is introduced
as follows [20]:

Define P1 as the generator of an additive cyclic group on an elliptical curve G1, P2 as
the generator of a similar group on an elliptical curve G2, H(·) as a hash function, and e(·)
as a bilinear pair. Considering A as the signer and B as the verifier, the digital signature
process for SM9 is as follows:

Key Generation: The KGC selects a random number ks ∈ [1, N − 1] as the master
private key for signing and computes Ppub−s = [ke]P2 as the master public key. Therefore,

the master key pair is established as
(

ke, Ppub−s

)
. The identification of user A is IDA. To

create A’s private signing key dsA, the KGC computes t1 = H(IDA, N) + ks and t2 = ks·t−1
1

within the field FN , subsequently obtaining dsA = [t2]P1.
Signing: To sign a message M, A’s signing process is as follows:

1. g = e
(

P1, Ppub−s

)
;

2. Select a random number r ∈ [1, N − 1];
3. w = gr, h = H2(M‖w, N), l = (r− h)modN;
4. S = [l]dsA. Then, M’s signature is (h, S).

Verification: For verifying a signature
(
h′, S′

)
on the message M′, B follows the follow-

ing steps:

1. g = e
(

P1, Ppub−s

)
;

2. t = gh′ , h1 = H(IDA, N);
3. P = [h1]P2 + Ppub−s, u = e(S′, P), w′ = u·t;
4. h2 = H2

(
M′‖w′, N

)
, if h2 = h′, the signature verification is successful; if not, it fails.

2.5. Password Commitment Program

Cryptographic commitment is a two-stage interactive protocol involving a sender
and a receiver. In Monero, the Pedersen commitment is a widely utilized homomorphic
commitment scheme; it satisfies perfect hiding and computational binding properties and
is used to protect the confidentiality of transaction values. The formula is:

P = r·G + v·H (1)

P represents the concealed transaction amount, G and H are base points in elliptic
curve cryptography, r is a random number, and v is the transaction amount. Additionally,
the Bulletproofs zero-knowledge proof technique [21] is utilized to efficiently prove the
range of transaction amounts.
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2.6. Graph Neural Networks

GNNs (graph neural networks) [22] are a deep learning model for processing graph-
structured data. They are capable of capturing complex relationships and dependencies
between nodes in a graph. The representation of each node is updated based on information
from neighboring nodes and propagated through the neural network layers. This enables
GNNs to handle a wide variety of graphical architecture tasks. The important strength
of GNNs is they can operate directly on the graph structure, effectively utilizing the
topological information of the graph. They have been widely used for tasks such as social
network analysis, recommender systems and knowledge graphs.

Common GNN variants include GCNs (graph convolutional networks) [23], GATs
(graph attention networks) [24], and GAEs (graph autoencoders) [25], which use different
mechanisms to aggregate and update node information. GCNs process graph data based
on the concept of convolution, and its core principle is to update the representation of each
node by aggregating information from neighboring nodes, thus capture the topology of
the graph. In GCNs, the new feature representation of each node is realized by weighted
average aggregation of its own features and the features of neighboring nodes. This
process can be considered as a special convolution operation. GATs are neural network
models for graph-structured data; they incorporate an attention mechanism to aggregate
information from neighboring nodes. The core feature of GATs are that different neighbors
contribute differently to the central node, which is reflected by attention coefficients. Each
node updates its feature representation by first calculating the attention coefficients of
all its neighbors (including itself) and then aggregating the neighbors’ features weighted
by these coefficients, considering the relative positional relationships of the nodes and
individual characteristics. GAEs are a type of autoencoder model specifically for graph
data, combining the characteristics of autoencoders with the capabilities of graph neural
networks to capture reduced-dimensional embeddings of graph nodes. The core idea of
GAEs are to encode graph nodes into a compressed space using a graph neural network, and
then use a decoder to restore the structural details of the graph, such as the interconnections
between nodes.

Blockchain transaction data can form complex graph structures, encompassing a vari-
ety of transaction entities and their interactions. This presents an ideal application scenario
for GNNs. For instance, IBM’s AI Lab has proposed using GNNs to identify money laun-
dering rings in Bitcoin transactions [26]. Researchers created a temporal graph dataset
comprising over 200,000 Bitcoin transactions (known as the Elliptic dataset) for identi-
fying and classifying legal and illegal transactions. The graph in the dataset consists of
203,769 nodes and 234,355 edges, where nodes denote transaction entities and edges
denote Bitcoin transaction flows between two entities. Each node is associated with
166 transaction-related features, including the first 94 local features representing the node’s
time step, in-degree and out-degree, payment expenditure fees, and derived features like
the average amount of Bitcoin transactions; the remaining 72 are aggregated features ob-
tained by aggregating maximum, minimum, standard deviation, and correlation coefficient
information of neighbor transactions from the central node. About 2% of the nodes in the
data are fraudulent, 21% are non-fraudulent, and the rest are unlabeled. Using GNN-based
semi-supervised learning, each unlabeled Bitcoin transaction can be classified as illegal
or legal.

The purpose of anomaly identity authentication detection is to infer account identi-
ties by capturing characteristics of transaction patterns. For instance, analyzing identity
addresses can help determine the causes of cryptocurrency price fluctuations and their as-
sociation with specific types of accounts, which is essential in safeguarding the blockchain’s
ecological integrity and establishing standardized transaction protocols. Traditional meth-
ods of identity recognition mainly include manual annotation and source code analysis.
The former requires considerable manpower and is virtually impossible to accomplish for
hundreds of millions of identity information. Although source code analysis for address
identification (which involves analyzing the source code of a smart contract to identify
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potential backdoors or vulnerabilities) is more accurate, this approach is difficult to im-
plement and many smart contracts do not disclose their source code. In contrast, graph
neural network technology offers a novel solution. Liu et al. [27] designed a blockchain
address identification method based on graph deep learning, and its framework is shown
in Figure 2.

Figure 2. GNN Identity Recognition Framework (Numbers represent trading entities).

This model primarily comprises three major modules. The graph construction is based
on node representation matrices, adjacency matrices and temporal density matrices to
construct a directed weighted graph, generating distinctive feature representations for
each node. In this framework, the node representation matrix includes information about
the nodes’ out-degree and in-degree, as well as the node type. The adjacency matrix is
constructed with four types of edges based on transactions, contract calls, rewards, and
other methods. The time density matrix is built according to the frequency and timing of
interactions between account addresses. The model employs graph convolutional neural
networks for learning and ultimately uses the softmax function to predict the node types
for anomaly identity detection.

Shen et al. developed a model named I2BGNN [28], an end-to-end network specif-
ically designed for processing the graph structure of blockchain transaction data. The
I2BGNN model learns and captures patterns within transaction subgraphs and associates
these patterns with user identities to enable de-anonymization. This approach infers user
identities from transaction behaviors by analyzing transaction subgraphs, transforming the
task of identity inference into a problem of graph classification. The model architecture of
I2BGNN is shown in Figure 3:

Figure 3. I2BGNN Model Framework.
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The model initially constructs a graph network through blockchain transaction infor-
mation, then samples labeled accounts, extracting subgraphs centered around the target
accounts as input for the model. Finally, it trains a GNN model and evaluates the results.
Experiments conducted on the EOSG and ETHG datasets demonstrate that this method
achieves superior results in the domain of identity inference.

3. Deep Learning-Based Blockchain Transaction Privacy Protection Model

This paper integrates technologies such as the UTXO transaction model, the BG
probabilistic public-key encryption algorithm, the IBC cryptographic system, Pedersen
commitments, and graph neural networks to propose a supervised blockchain transaction
privacy protection scheme. The design process is introduced in detail below.

3.1. Model

As shown in Figure 4, participants in the program primarily include the following:
(1) The transaction’s primary entities, the sender and the receiver, who aim to safeguard
their anonymity and the confidentiality of the transaction sum through a secure transaction.
In basic transaction activities, the sender transfers a certain amount of money to the receiver.
(2) The miner, who verifies the legitimacy of the transaction and ensures that there is no
double payment or fraud; after the transaction is verified, the miner packages it into a
new block and stores it on the blockchain through a consensus mechanism to ensure the
immutability of the transaction record. (3) Regulators, who are responsible for supervising
and regulating the blockchain network. When necessary, they track the relevant participants
and financial transactions to combat illegal financial activities. (4) Third parties, who may
act as malicious actors using technical means to steal transaction-related information for
undue gain.

Figure 4. Blockchain Trading Entities.

The scheme comprises the following seven algorithms:
BG.KeyGen(p, q): This is the key generation process of the BG algorithm. It generates

the BG algorithm’s public key pk and private key sk using large primes p and q. This
algorithm provides probabilistic encryption, which generates different ciphertexts even if
the same message is encrypted multiple times.

BG.Enc(pk, m): This is the encryption process of the BG algorithm. It encrypts message
m utilizing the public key pk of the probabilistic public-key BG algorithm to produce
the ciphertext.

BG.Dec(sk, ct): This is the decryption process of the BG algorithm. It decrypts cipher-
text ct utilizing the private key sk of the probabilistic public-key BG algorithm to retrieve
the plaintext. A user with the correct private key can successfully decrypt the ciphertext.

IBC.KeyGen(sk, id): This is the key generation function of the SM9 algorithm based
on IBC. Generate the user’s private key by employing the SM9 algorithm’s master key (sk)
and the user’s identifier (id).



Future Internet 2024, 16, 113 8 of 20

IBC.Enc(pk, m): This is the encryption process of the SM9 algorithm. It encrypts
message m using the public key pk of the SM9 algorithm to produce ciphertext. SM9 is an
identity-based encryption algorithm, which means that the encryption can be performed
directly using the user’s public identity information.

IBC.Dec(sk, ct): This is the decryption process of the SM9 algorithm. It decrypts
ciphertext ct using the private key sk of the SM9 algorithm to retrieve the plaintext. A user
with the correct private key can decrypt successfully.

IBC.Sign(sk, m): This is the signature process of the SM9 algorithm. It signs message
m using the private key sk of the SM9 algorithm to obtain the signature value. This ensures
the message remains unaltered throughout transmission, ensuring data integrity and
non-repudiation.

This scheme provides public-key encryption and decryption using the BG probabilistic
public-key cryptography algorithm (with a key size of 2048 b), which provides strong
security guarantees for transactions, especially in terms of its ability to counter selective
plaintext attacks. We also use the SM9 algorithm based on the IBC cryptosystem (with a
key size of 256 b), whose encryption strength is equivalent to the RSA encryption algorithm
of 3072 b. The SM9 algorithm allows the direct use of a user’s identification data as
the public key, which simplifies the process of distributing and managing the key. In
addition, it provides digital signature and authentication functions; this approach can
secure transactions and verify user identities in certain situations. The use of these two
algorithms enhances the system compatibility and flexibility, enabling the scheme to meet
different transaction scenarios. By combining different encryption algorithms, a more
complex security framework is constructed for the scheme, which enhances the security of
the whole system.

3.2. Anonymous Identity Realization

During the initialization phase of the scheme, the regulatory authority needs to gen-
erate three public-private key pairs: firstly, using the BG algorithm to produce private
key SkBG and public key PkBG; secondly, as the KGC within the IBC framework, the
regulatory authority creates a master public key MPK and corresponding a master pri-
vate key MSK; thirdly, defining the identity marker in IBC as IDa, considering IDa as
the public key, the signature private key MSK is created using the master private key
Ska = IBC.KeyGen(MSK, IDa) based on the IBC algorithm. Then, users apply for key dis-
tribution from the regulatory authority using unique identifiable information IDu (which
needs to be self-proving, such as an email address, ID card number, or phone number).

After verifying user identity information, the regulatory authority encrypts it us-
ing the public key PKBG of the BG probabilistic cryptography algorithm to generate
AID1 = BG.Enc(PkBG, IDu). To ensure that IDu is certified by the regulatory author-
ity, it needs AID1 to be signed by the authority, generating AID2 = IBC.Sign(Ska, AID1).
Define AIDu = AID1‖AID2. Since AID1 is obtained using the BG probabilistic public-key
encryption algorithm and has good randomness, and AID2 is obtained through the IBC
signature, AIDu also possesses good randomness, effectively hiding the user’s real identity
information IDu.

Next, AIDu is used as the public-key identity. Utilizing the IBC algorithm, the regula-
tory authority generates the corresponding private key Sku = IBC.KeyGen(MSK, AIDu)
for the user. The user’s verifiable true identity is denoted as IDu, while AIDu represents
their calculated anonymous identity, Sku being the corresponding private key. Employing
the BG algorithm enables the generation of various AIDu from the same IDu, establishing a
one-to-many connection between IDu and AIDu. This relationship permits the theoretical
creation of limitless AIDu from the same IDu, allowing users to continuously renew their
anonymous identities.

For ease of subsequent description, define the transaction sender and receiver’s iden-
tity markers as IDs and IDr, respectively. Through the above process, their corresponding
anonymous identities AIDs and AIDr, and private keys Sks and Skr can be calculated.
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When the sender transacts with the receiver, they can utilize Sks to decrypt the UTXO input
script and set AIDr as the receiver’s address, thereby maintaining identity anonymity.

3.3. Transaction Data Privacy Protection

When AIDs transacts with AIDr, without loss of generality, suppose the structure of
the transaction is as shown in Figure 5.

Figure 5. UTXO Transaction Structure.

In this transaction, there are two inputs with amounts vin1 and vin2 and two outputs:
one for the transaction with AIDr, amounting to vout1, and the other returning change to
oneself, amounting to vout2. Additionally, the v f ee portion is the transaction fee, serving as
the miner’s fee for packaging the transaction.

Our approach primarily employs Pedersen commitments to ensure the privacy pro-
tection of transaction amounts ( vin1, vin2, vout1, vout2) while the transaction fees v f ee are
publicly disclosed. For the transaction inputs, it is necessary to introduce previous outputs,
represented as

Pin1 = a1G + vin1H (2)

Pin2 = a2G + vin2H (3)

where (a1, vin1) and (a2, vin2) can be decrypted by AIDs using the private key Sks.
The sender AIDs sets b1 and b2, then calculates

Pout1 = b1G + vout1H (4)

Pout2 = b2G + vout2H (5)

Pf ee = v f eeG (6)

Pout1 and Pout2 are primarily used to facilitate the miner’s verification of the transac-
tion’s legitimacy. To enable the receiver to obtain (b1, vout1) and (b2, vout2), it needs to be
encrypted using the public keys of both receiver and sender, resulting in

Cout1 = IBC.Enc(AIDr, (b1, vout1)) (7)

Cout2 = IBC.Enc(AIDs, (b1, vout2)) (8)

To ensure the transaction’s legality, it must be verified that

vin1 + vin2 = vout1 + vout2 + v f ee (9)

Consequently, the following can be calculated:

(Pin1 + Pin2)−
(

Pout1 + Pout2 + Pf ee

)
= (a1 + a2 − b1 − b2)H (10)
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Define the transaction’s public key as

PkTx = (a1 + a2 − b1 − b2)H (11)

The transaction’s private key is

SkTx = (a1 + a2 − b1 − b2) (12)

The entire transaction is defined as

MTx = {Pin1, Pin2, (Pout1, Cout1), (Pout2, Cout2), vfee} (13)

The transaction is signed using the SM9 signature algorithm, resulting in

SigTx = IBC.Sign(SKTx, MTx) (14)

Additionally, it is necessary to verify the transaction amount range to prevent negative
values; Bulletproofs can achieve this. Due to the complexity involved, this paper will
not elaborate further, but Reference [15] can be consulted for more information. The final
transaction is

Tx =
{

MTx, SigTx, Prange
}

(15)

where Prange encompasses details verifying the range of the transaction value. Tx is broad-
cast across the network and after miners verify its legitimacy, it is incorporated into blocks
and documented in the blockchain ledger via consensus protocols. The receiver can ac-
knowledge the transaction using AIDr and then decrypt Cout1 using their private key Skr
to obtain transaction information, thereby completing the entire process of the transaction
while concealing the amount of the transaction.

3.4. Transaction Legitimacy Verification

In a blockchain, transactions are recorded via a consensus mechanism. During the
consensus process, miners verify transactions’ legitimacy, which primarily includes the
verification of participant identity and transaction amount legitimacy.

Identity legitimacy verification involves verifying the legitimacy of both the sender
and receiver’s identities. Within the UTXO model, the sender uses Sks to unlock UTXO
inputs. Therefore, miners only need to use the sender’s anonymous identity public key
(called AIDs) to verify the legitimacy of the unlocking script signature.

Verifying the receiver’s address is crucial to prevent fraudulent transactions and
potential asset loss. Our scheme uses the receiver’s anonymous identity public key (denoted
as AIDr) as the receiver’s address.

AIDr = AID1‖AID2 (16)

AID1 = BG.Enc(PkBG, IDu) (17)

AID2 = IBC.Sign(Ska, AID1) (18)

AID2 represents the signature performed by the regulatory authority using its private
key Ska on AID1. Thus, to validate the unlocking script’s signature, miners just have to
utilize the sender’s anonymized public identity key (designated as AID2).

Transaction amount legitimacy also requires two aspects of verification: the equality
of input and output amounts and the validity of the range of output amounts.

For the transaction MTx and Tx, miners need to calculate the transaction public key:

PkTx = (Pin1 + Pin2)−
(

Pout1 + Pout2 + v f eeG
)

(19)
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Using PkTx to verify the legitimacy of the transaction signature SigTx, fulfilling the
requirement of input and output amount equality. To ensure the output amount is within a
valid range, the existing Bulletproofs zero-knowledge proof technology is used to verify
Prange, as referenced in [15].

3.5. Micro-Level Supervision Algorithm for Transaction Data

Blockchain transaction privacy protection is relative, primarily aimed at protecting
user data from unauthorized access by malicious third parties. Nevertheless, regulatory
authorities need transaction monitoring to combat illegal activities. Thus, it is crucial to
ensure participant identities and transaction amounts can be regulated.

The anonymous identities of the participants in a transaction are AIDu, but their real
identities IDu are hidden.

AIDu = AID1‖AID2 (20)

The regulatory authority first verifies the legitimacy of the identity authentication
using AID2. Then, using its BG probabilistic public-key encryption algorithm’s private key
SkBG, it decrypts AID1, obtaining the true identity of the transaction participant.

IDu = BG.Dec(SkBG, AID1) (21)

To access the transaction amount information, the IBC algorithm is first utilized. As the
KGC in the IBC cryptographic system, the regulatory authority can compute the receiver
AIDr’s private key Skr, denoted as

Skr = IBC.KeyGen(MSK, AIDr) (22)

For transactions MTx and Tx, the regulatory authority then uses Skr to decrypt
Cout1, obtaining

(b1, vout1) = IBC.Dec(Skr, Cout1) (23)

The regulatory authority thus obtains the transfer amount vout1 to AIDr. Similarly,
processing Cout2 allows for the querying and monitoring of blockchain transactions.

3.6. Anomaly Transaction Data Detection Based on Graph Neural Networks

Anomaly detection is a method used to identify behaviors that deviate from the
expected norm. The task of graph-based anomaly detection aims to uncover nodes, edges,
or subgraphs within a network that exhibit significantly outlier characteristics. Anomaly
detection of transaction data using GNNs is particularly useful in identifying fraudulent
activities, money laundering and other anomalous patterns in financial transactions. This
method is especially adept at handling complex financial networks, where transaction
relationships can be modeled as graph structures, with nodes representing participants
(such as individuals and companies) and edges representing transactions.

In this application, the GNNs’ role is to leverage the structural information of the
graph to learn underlying patterns within transaction data. Traditional fraud detection
methods typically rely on rules or simple machine learning models that may not be able to
capture complex non-linear fraud patterns. In contrast, GNNs can more effectively iden-
tify anomalous patterns by considering the relationships between nodes and transaction
patterns in the transaction network.

The general design process for GNNs is divided into four parts, as illustrated in the
following Figure 6:
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Figure 6. General GNN Design Process.

First, identify the graph structure relevant to the specific context and represent the
data in graphical format. Next, determine the type of graph, such as directed/undirected
or homogenous/heterogeneous. Subsequently, develop a loss function. Depending on
the graph learning task, prediction types can be categorized at various levels: node, edge,
community, or graph-wide. Finally, establish computational modules and train the model.
The propagation module facilitates information exchange between nodes, enabling the
aggregation of information to capture the graph’s characteristics and topological details.
The sampling module is responsible for graph sampling. For higher-dimensional subgraph
representations, the pooling module can extract node information.

In a graph structure, each node is defined by its own features as well as the features of
its connected neighbors. GNNs learn a state-embedding vector hv ∈ Rs for each node. This
vector incorporates information from neighboring nodes. The node’s state vector (denoted
as hv) can be utilized to generate an output Ov. Suppose f (·) is a function with parameters
shared by all nodes, called the local transition function. This function updates node states
based on neighboring node information. The local output function g(·) defines how the
output is generated.

hv = f
(

xv, xco[v], hne[v], xne[v]

)
(24)

ov = g(hv, xv) (25)

xv denotes the feature vector of v, xco[v] denotes the feature vector of the edges linked
to v, hne[v] symbolizes the state vector for v’s adjacent nodes, and xne[v] indicates the feature
vector for v’s adjacent nodes. Suppose we assemble vectors of various types into their
respective composite vectors. These composite vectors can be denoted as H for the state
vectors, O for the output vectors, X for the feature vectors, and XN for the node features.
This aggregation makes the representation more compact:

H = F(H, X) (26)

O = G(H, XN) (27)

F and G represent the global transition and output functions, respectively. They are
obtained by stacking the node-wise functions f and g for all nodes in the graph. GNN
iteratively computes state parameters using a traditional method based on the Banach
fixed-point theorem.

Ht+1 = F
(

Ht, X
)

(28)

where Ht represents the tensor of H at the t-th iteration cycle.
Supervised learning is conducted using target information; the loss function is defined

as follows:

loss =
p

∑
i=1

(ti − oi) (29)
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With p supervised nodes, the loss function for GNN training incorporates true values
ti and predicted values oi, and leverages a gradient descent strategy with the following
steps: The state ht

v is iteratively updated according to Equation (24) for T cycles until it
approaches the fixed-point solution near Equation (26), at which point the obtained H will
be close to the fixed-point solution HT ≈ H. During backpropagation, the gradient of the
weight W is calculated from the loss, and then W is continuously updated based on the
gradient computed in the previous step. After T cycles, the gradient with respect to h0

v is
obtained, which is then used to update the model parameters.

The framework for anomaly detection in transaction data based on GNNs is a tech-
nique for identifying and locating abnormal information in transaction data, which plays
a significant role in fields like finance, e-commerce, and insurance. The process flow of
the GNN-based transaction data anomaly detection model can be broadly divided into
the following:

1. Data Preprocessing: Initially, transaction data are converted into graph data where
nodes represent transaction entities (e.g., users, merchants, banks, etc.) and edges
represent transaction relationships (e.g., payments, transfers, refunds, etc.). Attributes
of nodes and edges represent transaction characteristics (e.g., amount, time, frequency,
type, etc.).

2. Graph Neural Networks: Subsequently, GNNs are employed for feature extraction
and representation learning of the graph data. Utilizing the attribute information and
structural information of nodes and edges, low-dimensional vector representations
for each node and edge are obtained.

3. Anomaly Scoring: The vector representations of each node and edge are then assessed
using an anomaly scoring function to compute their level of anomaly. Candidates for
abnormal transactions are selected based on certain thresholds or ranking methods.

4. Anomaly Interpretation: Finally, the anomaly interpretation module explains the
candidate nodes and edges involved in abnormal transactions. This analysis includes
the causes and effects of anomalies, providing visual and interpretable results to help
users understand and address abnormal transactions. The detailed design of the
detection model includes the following:

• Input: Transaction data forms an attribute graph G = (V, E, X). Nodes V denote
transaction entities, while edges E depict the relationships between them. X is
the node attribute matrix representing transaction features like amount, time,
frequency, type, etc.

• Output: An anomaly score S ∈ R|V| for each node, indicating the degree of
anomaly. A higher score suggests a higher likelihood of anomaly.

• Model Structure: The model has three parts: the graph neural network, the
anomaly scoring function, and the loss function.

� Graph Neural Network: The graph neural network extracts feature rep-
resentations from the graph data. Various types of GNNs can be used.
Assuming GCN as an example, the GNN formula is as follows:

H(l+1) = σ(
∼
D
− 1

2 ∼
A
∼
D
− 1

2
H(l)W(l)) (30)

Here, H(l) ∈ R|V|×dl is the node feature matrix at layer l, H(0) = X is
the feature dimension of layer l, W(l) ∈ Rdl×dl+1 is the trainable weight

matrix at layer l,
∼
A = A + l is the adjacency matrix with self-loops,

∼
D is

the degree matrix of
∼
A, and σ is an activation function like ReLU. After L

layers of the GNN, the final node feature representation H(L) ∈ R|V|×dL

is obtained.
� Anomaly Scoring Function: The anomaly scoring function computes the

anomaly score based on the node’s feature representation. Various types
of scoring functions can be used, such as those based on reconstruction
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error, distance, or density. Assuming a scoring function based on the
reconstruction error as an example, the equation is

S =
∥∥X− X̂

∥∥
F (31)

Here, X̂ ∈ R|V|×d0 is the reconstructed node attribute matrix, which can be
decoded from HL. ‖·‖F is the Frobenius norm, representing the root of the
total sum of each matrix element squared. The larger the reconstruction
error, the more inconsistent the node’s attributes are with the normal
pattern, hence the higher the anomaly score.

� Loss Function: The loss function optimizes the model’s parameters to
better distinguish between normal and abnormal nodes. Various types
of loss functions can be used, such as contrastive, self-supervised, or
adversarial. Assuming a contrastive-based loss function as an example,
the formula can be expressed as

L = − 1
‖V‖ ∑

v∈V
log

exp(Sv/τ)

∑u∈V exp(Su/τ)
(32)

Here, Sv is the anomaly score of node v, and τ is a temperature parameter
for controlling the scaling of scores. The purpose of this loss function
is to maximize the scores of anomalous nodes while minimizing the
scores of normal nodes, thereby increasing the score differences between
nodes. This loss function requires some prior anomaly labels, which can
be obtained by simple rules or statistical methods, or by semi-supervised
or unsupervised methods.

4. Scheme Analysis
4.1. Privacy Protection Capabilities

For user identity information, privacy is maintained by concealing the users’ real
information using AIDu. However, if AIDu is frequently used, such as in a transaction
where AIDu is both an input and an output address, it becomes relatively easy to deduce
that this represents change information for the transaction participant. To enhance privacy,
we adopt the BG probabilistic random encryption, which can randomly choose different
seeds so for each encryption. One IDu can generate many anonymous addresses AIDu,
which cannot be distinguished from each other. Therefore, users can have the regulatory
authority generate a batch of AIDu for them without changing IDu. AIDu can be changed
in each transaction, and third parties cannot even distinguish between the changed outputs
in the transaction, let alone trace the entire process of the transaction. Third parties are
unable to infer any effective information, thereby enabling this approach to achieve a robust
privacy protection capability.

4.2. Performance Analysis

As previously described in Section 3.1, our scheme integrates various cryptographic
techniques. To assess the overhead of our approach, we use processing time as a perfor-
mance metric. tbg_kgen represents the key generation time for the BG algorithm, tbg_enc
represents the encryption time for the BG algorithm, and tbg_dec represents the decryption
time for the BG algorithm. Similarly, tsm9_kgen represents the key generation time for the
SM9 algorithm, tsm9_enc denotes the encryption time for the SM9 algorithm, tsm9_dec denotes
the decryption time for the SM9 algorithm, and tsm9_sign represents the signing time for the
SM9 algorithm. Additionally, tped represents the time for Pedersen commitments.

Our scheme includes the implementation of anonymous identities, transaction amount
privacy protection, transaction legitimacy verification, and regulatory function implemen-
tation. For its corresponding computational overhead, refer to Table 1.
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Table 1. Computational overhead of this scheme.

Scheme Design Computation Computational Cost

Anonymous Identity Implementation

One BG algorithm key generation,
three SM9 algorithm key generations,

one BG algorithm encryption, one
SM9 algorithm signature

tbg_kgen + 3tsm9_kgen + tbg_enc + tsm9_sign

Transaction Amount Privacy Protection
Five Pedersen commitments, two

SM9 algorithm encryptions, one SM9
algorithm signature

5tped + 2tsm9_enc + tsm9_sign

Transaction Legality Verification
One BG algorithm encryption, one

SM9 algorithm signature, five
Pedersen commitments

tbg_enc + tsm9_sign + 5tped

Regulatory Function Implementation

One BG algorithm encryption, one BG
algorithm decryption, one SM9 key

generation, one SM9 algorithm
decryption

tbg_enc + tbg_dec + tsm9_kgen + tsm9_dec

Our experiments were performed on a multi-cluster configuration with CPU 3.8 GHz,
GPU RTX 4090, and 32 GB of RAM per machine, completing the joint experiments on graph
neural network detection and blockchain-based storage. Detailed information is provided
in Table 2.

Table 2. Hardware configuration.

Hardware Environment Configuration

CPU 3.80 GHz i9-13900 k
GPU RTX 4090
RAM 32 GB

The BG and SM9 algorithms used in our scheme are mature and have been widely
applied. As can be seen in Table 1, the transaction amount privacy protection and transac-
tion legitimacy verification involve numerous Pedersen commitments, which incur some
overheads. However, Pedersen commitments are currently key technologies and common
methods in blockchain privacy protection. Therefore, the performance overhead of our
scheme falls within a normal and acceptable range. We have analyzed the performance of
this scheme; refer to Table 3 for details.

Table 3. Performance indicators.

Blockchain Performance Anomaly Detection

Average latency 6.13 s Precision 0.802

Average throughput 14.53 TPS Recall 0.756

Memory consumption 703 MB

CPU usage 14%

4.3. Comparative Analysis

Through experimental comparative analysis, a comprehensive multi-dimensional
comparison is conducted with existing blockchain privacy protection algorithms in terms
of privacy protection capability, technical implementation principles and features. The
results are as shown in Table 4.
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Table 4. Mainstream blockchain privacy protection technologies.

Name Technical
Implementation Characteristics Privacy

Protection
Regulatory
Function

Bitcoin ECDSA, SHA256

Uses public keys for
anonymous identities;

transaction amounts are
public

No No

Ethereum ECDSA, Keccak

Uses public keys for
anonymous identities;

transaction amounts are
public

No No

Dash CoinJoin
Technique

Simple approach; primarily
relies on master nodes Yes No

Monero

Stealth
Addresses, Ring

Signatures,
Pedersen

Commitments

Ring signatures depend on
other public keys, complex

verification
Yes No

Zcash
zkSNARKs,

Pedersen
Commitments

Strong anonymity, but
complex parameter
initialization and

time-consuming proof
generation

Yes No

Beam/Grin

Pedersen
Commitments,

Aggregate
Signatures

Utilizes MimbleWimble
protocol, simple

implementation but requires
interactive process

Yes No

BlockMaze [29] zkSNARKs,
Account Model

Adopting a dual-balance
model combined with a
two-step fund transfer

process using zk-SNARK

Yes No

Literature [13] Multi-Chain
Model

Uses a multi-chain
architecture, complex node

communication, loses
decentralized features

No Yes

Literature [14]
Consortium and

Public Chain
Technology

Implements dual-chain
structure to exemplify

regulatory model, ensuring
transaction privacy, complex

chain structure

Yes Yes

Traceable
Monero [12]

Elgamal
encryption

Add user accountability to
Monroe, track transaction
information, and enable

regulatory functions

Yes Yes

Literature [30]

zkSNARKs,
Attribute-Based

Encryption,
Account Model

Employs attribute-based
encryption, establishing
multi-level regulatory

frameworks while ensuring
privacy protection; this

impacts transaction efficiency

Yes Yes

This Paper

BG Probabilistic
Public-Key

Encryption, IBC
Cryptosystem,

Pedersen
Commitments

Simple implementation but
requires initial user

authentication
Yes Yes
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In existing cryptocurrencies, Bitcoin and Ethereum have weak identity anonymity
and fully disclose transaction amounts, lacking privacy protection features. Dash uses coin
mixing technology to mix inputs and outputs of multiple transactions through master nodes,
but this poses a risk of centralization; if the master nodes are controlled, it could lead to user
privacy leakage. Monero utilizes stealth addresses and ring signature technology that do not
rely on centralized nodes, but it requires mixing with other users’ public keys, which leads
to complex verification. Zcash uses the zkSNARKs scheme, achieving extreme anonymity
and privacy security. However, the implementation of zkSNARKs is complex, requiring the
setting of initial trusted parameters, and proof generation is time-consuming, which affects
the practical efficiency. Beam and Grin both use the MimbleWimble protocol, employing
Pedersen commitments and aggregated signature technology. Their implementation is
simple, but they require an interactive process between transaction parties, making them
inconvenient to use. BlockMaze [29] proposes a blockchain privacy-protective account
model. It features a dual-balance model and designs a two-step fund transfer process
incorporating zk-SNARKs. This method conceals account balances, transaction values and
the connection between the sender and the receiver for privacy.

None of the above schemes provide regulatory function. Some researchers have started
to explore the regulation of blockchain transactions. Sun et al. proposed a regulatable multi-
chain model, but the communication between nodes is more complicated and its superchain
structure is not conducive to privacy protection. Zhang et al. proposed a digital currency
regulatory model using a dual-chain structure that combines consortium blockchain and
public blockchain, which ensures transaction privacy through secret sharing and provides
regulatory feature, but the dual-chain structure is complex to implement. Traceable Monero
adds user accountability to the original system, tracking the movement of funds and
also inferring a user’s long-term address. Jia et al. [30] proposed a multilevel regulatory
model by employing zkSNARKs and Attribute Based Encryption (ABE). It allows selective
disclosure of transaction details while enforcing privacy protection measures. However,
this approach affects the efficiency of transactions.

Through comparison with existing solutions, our scheme does not rely on centralized
master nodes, does not require the introduction of ring signatures or other public keys, does
not need to implement complex zkSNARKs proof processes, and avoids cumbersome inter-
action processes and complex multi-chain structures. By leveraging probabilistic public-key
encryption, IBC (identity-based cryptography) systems, and Pedersen commitments, the
blockchain transaction achieves both privacy protection and regulatory functionality. Addi-
tionally, regulatory authorities are not required to store users’ real identities and key data,
significantly reducing storage and computational burdens.

4.4. Analysis Discussion

We compared several privacy protection methods and conducted a comprehensive
analysis based on experimental results. Our method can balance the needs of both privacy
protection and regulatory functions, and the transaction efficiency has not been signifi-
cantly affected; the impact on the system performance requirements and the transaction
efficiency is in an acceptable range, and the scheme does not depend on a specific consensus
mechanism and can be integrated into existing blockchain technology. In addition, the
GNN-based anomalous transaction data detection method can help to identify anomalous
data in transaction activities, ensuring the security of transactions.

5. Conclusions and Discussions

To address the challenge of balancing privacy protection and regulatory requirements
in blockchain transactions, we integrate multiple cryptographic technologies, utilizing
probabilistic public-key cryptography, identity-based cryptography (IBC), Pedersen com-
mitments, and Bulletproofs techniques, combined with deep learning graph neural net-
works, to propose a blockchain transaction and regulatory scheme that offers both privacy
protection and regulatory functions. Our scheme can be applied as an independent module
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in existing blockchain technologies. Our analysis of its security performance reveals that
the blockchain transaction scheme is simple and practical. It holds extensive applicative
value in areas such as digital asset risk analysis and financial transaction regulation.

Although our scheme balances privacy protection and regulatory functions, it still
has some limitations. For example, there is still room for optimizing the improvement in
transaction efficiency. It is an important research direction to improve the transaction speed,
reduce the verification time, and minimize the computational overhead as much as possible
in regulatable blockchain transactions. In addition, it is also important to choose appropriate
privacy protection schemes for different transaction scenarios. Therefore, future research
will focus on realizing the balance of privacy protection, regulatory function, transaction
efficiency and other elements in blockchain transactions.

Legal regulations are also an important issue to be considered for blockchain tech-
nology. Blockchain’s decentralization, tamper-resistance, transparency, and security make
it widely applicable in the financial sector, which has resulted in some illegal activities
choosing to use blockchain technology for transactions. Therefore, countries are developing
specific laws and regulations related to cryptocurrencies, such as registration requirements
for trading platforms and anti-money laundering regulations. At the same time, they
are actively supervising the digital currency market to prevent possible financial risks.
In addition, several other countries have established specific regulatory frameworks for
blockchain, aiming to maintain financial security, protect consumer interests, and enhance
the ability to combat money laundering. Our scheme provides regulatory capabilities
for blockchain trading activities under the premise of privacy protection, which can help
relevant organizations avoid illegal transactions. However, the current legal system of each
country for blockchain technology is still not perfect, and the relevant rules are still being
optimized. Therefore, future research should enhance the compatibility and flexibility of
the scheme to adapt to the legal requirements of different countries.
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