
Citation: Alqahtani, F.; Almutairi, M.;

Sheldon, F.T. Cloud Security Using

Fine-Grained Efficient Information

Flow Tracking. Future Internet 2024,

16, 110. https://doi.org/10.3390/

fi16040110

Academic Editor: Antonio Esposito

Received: 31 January 2024

Revised: 9 March 2024

Accepted: 18 March 2024

Published: 25 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Cloud Security Using Fine-Grained Efficient Information
Flow Tracking
Fahad Alqahtani 1 , Mohammed Almutairi 2,* and Frederick T. Sheldon 2,*

1 Department of Computer Science, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia;
fah.alqahtani@psau.edu.sa

2 Department of Computer Science, University of Idaho, Moscow, ID 83843, USA
* Correspondence: almu9701@vandals.uidaho.edu (M.A.); sheldon@ieee.org or sheldon@uidaho.edu (F.T.S.)

Abstract: This study provides a comprehensive review and comparative analysis of existing Infor-
mation Flow Tracking (IFT) tools which underscores the imperative for mitigating data leakage in
complex cloud systems. Traditional methods impose significant overhead on Cloud Service Providers
(CSPs) and management activities, prompting the exploration of alternatives such as IFT. By augment-
ing consumer data subsets with security tags and deploying a network of monitors, IFT facilitates
the detection and prevention of data leaks among cloud tenants. The research here has focused
on preventing misuse, such as the exfiltration and/or extrusion of sensitive data in the cloud as
well as the role of anonymization. The CloudMonitor framework was envisioned and developed
to study and design mechanisms for transparent and efficient IFT (eIFT). The framework enables
the experimentation, analysis, and validation of innovative methods for providing greater control to
cloud service consumers (CSCs) over their data. Moreover, eIFT enables enhanced visibility to assess
data conveyances by third-party services toward avoiding security risks (e.g., data exfiltration). Our
implementation and validation of the framework uses both a centralized and dynamic IFT approach
to achieve these goals. We measured the balance between dynamism and granularity of the data being
tracked versus efficiency. To establish a security and performance baseline for better defense in depth,
this work focuses primarily on unique Dynamic IFT tracking capabilities using e.g., Infrastructure as
a Service (IaaS). Consumers and service providers can negotiate specific security enforcement stan-
dards using our framework. Thus, this study orchestrates and assesses, using a series of real-world
experiments, how distinct monitoring capabilities combine to provide a comparatively higher level of
security. Input/output performance was evaluated for execution time and resource utilization using
several experiments. The results show that the performance is unaffected by the magnitude of the
input/output data that is tracked. In other words, as the volume of data increases, we notice that the
execution time grows linearly. However, this increase occurs at a rate that is notably slower than what
would be anticipated in a strictly proportional relationship. The system achieves an average CPU
and memory consumption overhead profile of 8% and 37% while completing less than one second
for all of the validation test runs. The results establish a performance efficiency baseline for a better
measure and understanding of the cost of preserving confidentiality, integrity, and availability (CIA)
for cloud Consumers and Providers (C&P). Consumers can scrutinize the benefits (i.e., security) and
tradeoffs (memory usage, bandwidth, CPU usage, and throughput) and the cost of ensuring CIA can
be established, monitored, and controlled. This work provides the primary use-cases, formula for
enforcing the rules of data isolation, data tracking policy framework, and the basis for managing
confidential data flow and data leak prevention using the CloudMonitor framework.

Keywords: cloud; security; cloud security; cloud computing security; data leak prevention; data
isolation schema; managing confidential data flow; information flow tracking use-cases

Future Internet 2024, 16, 110. https://doi.org/10.3390/fi16040110 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16040110
https://doi.org/10.3390/fi16040110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0002-5725-9390
https://orcid.org/0000-0003-1241-2750
https://doi.org/10.3390/fi16040110
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16040110?type=check_update&version=1

Future Internet 2024, 16, 110 2 of 36

1. Introduction
1.1. Overview

Modern Information Technology (IT) landscapes are transitioning from traditional,
capital-intensive systems to utility-based, on-demand models. This shift encompasses vari-
ous paradigms such as grid computing, cloud computing, and edge computing, offering
managed resources to users as services, predominantly delivered over the Internet [1]. In
cloud computing, Cloud Service Providers (CSPs) manage resources delivered as Infras-
tructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS),
utilizing multi-tenancy and resource virtualization techniques [2,3]. This model facilitates
a user-friendly, on-demand, pay-per-use system, incorporating public, private, and hybrid
deployment approaches [4,5]. The integration of cloud computing extends to modern ap-
plications like Big Data, the Internet of Things (IoT), Software-Defined Networking (SDN),
and Network Function Virtualization (NFV) [6], positioning the cloud at the forefront of
today’s leading technologies.

With the proliferation of cloud services, ensuring data security and privacy has be-
come paramount. Enterprises, especially those dealing with sensitive information, face
challenges in relinquishing control over their data when it resides in the cloud [7]. Con-
cerns arise regarding data security in transit, processing, and storage. Consequently, many
enterprises prefer to store and protect sensitive data locally, leading to potential bottle-
necks in workflows involving cloud services. Moreover, restrictive security measures can
prompt employees to circumvent policies, posing further risks to data integrity, extrusion,
and exfiltration.

While some data may be less sensitive and suitable for cloud storage, enterprises often
possess highly confidential information that necessitates stringent security measures. In
such cases, implementing policies to restrict data propagation beyond internal networks be-
comes imperative. Information Flow Tracking (IFT) systems play a crucial role in enforcing
these policies and preventing data leaks in cloud environments.

1.2. Research Problem

Cloud computing technologies used to supplement IT systems pose real security
threats to consumers and providers. Securing data both at the local premises of the con-
sumer and within the cloud services is one of the difficulties that the research community
has yet to fully address [8]. Many methods, techniques, and technologies have been pro-
posed to handle these threats. These approaches include: (i) Same Origin Policy (SOP) [9],
(ii) Content Security Policy [10], (iii) Cross-Origin Resource Sharing (CORS) [11], and (iv)
Sandboxing [12]. These approaches try to mitigate the effect of untrustworthy parties using
the same cloud or web service by means of an all-or-nothing approach. The techniques
restrict user access to the same service by controlling how access is granted. However, once
permission is granted, users have all the privileges over the shared service (i.e., there are
no fine-grained controls over user actions). Indisputably, this has created an issue of trust
among Cloud Service Consumers (CSC) and has caused some to retreat from cloud usage,
while those planning to adopt a cloud service strategy are reluctant.

The conventional security measures embedded within cloud infrastructures, such as
authentication, access control, and data privacy mechanisms, are foundational components.
However, despite their presence, they often fall short of meeting the diverse and evolving
security needs of cloud consumers [13]. These needs encompass various aspects, including
stringent data protection requirements, comprehensive access management, and assur-
ance of regulatory compliance. Specifically, conventional security measures struggle to
adequately address concerns related to controlling how user information is processed to
and from the cloud environment and within. Maintaining trust and ensuring the security
of user data in the cloud is exigent. In this context, effective and efficient IFT emerges as a
promising approach to address these challenges.

Future Internet 2024, 16, 110 3 of 36

1.3. Motivation

The challenges inherent in cloud services, particularly regarding data confidentiality,
integrity, and availability (CIA), drive the need for robust security measures [14]. Organi-
zations utilizing cloud services must maintain control over their data to meet regulatory
requirements and protect sensitive information. However, the track record of many Cloud
Service Providers (CSPs) in ensuring data security and privacy is inadequate, posing risks
to sensitive data [15]. Hence, there is a compelling need for consumer-centered solutions
that empower organizations to monitor and control data flows.

1.4. Objectives

This research, based on a comprehensive review of cloud insecurities [16], aims to
develop, test, and validate a prototype framework for Information Flow Tracking (IFT) in
cloud environments. As such, this work seeks to enhance transparency and control over
data propagation, thereby bolstering client trust in the security and privacy of their data. By
implementing an efficient and effective IFT, organizations can monitor and enforce policies
to prevent sensitive data leaks and mitigate the risk of unauthorized access.

1.5. Research Questions

This study addresses the following questions:

• What appropriate tools and techniques for implementing IFT in cloud environments
are established?

• Developing and implementing an IFT-based Cloud Security Framework (CSF), includ-
ing validation testing?

• How can the effectiveness of the developed “IFT framework” be evaluated to facilitate
adoption by both CSCs and CSPs?

1.6. Scope of the Research

This research focused on reviewing various IFT tracking tools and strategies and
developing a Consumer Confidential Data (CCD) security measure for testing purposes.
We created a simulated enterprise cloud environment, designated as a CSP Testbed we
have denoted CloudMonitor, to assess the effectiveness of the developed IFT framework.
In doing so, we have:

• Highlighted data vulnerability scenarios within different cloud environments.
• Developed a prototypical secure data framework for safeguarding information.
• Compared the efficiency of existing IFT tools and proposed a framework for securing

data in CSC-based and CSP-class cloud environments.

1.7. Limitations of Validation Experiments

The CloudMonitor cannot distinguish between intentional and unintentional sensitive
information transmissions because of the transmission gap between cloud storage and user
systems. This leads to false alarms and potential widespread issues. Additionally, standard
IFT techniques struggle to work seamlessly with older application programs in business
settings, which makes it tough to discriminate between intentional and unintentional
data transfers. CloudMonitor also faces difficulty in accurately tracking sensitive data
propagation because it lacks access to more advanced data structures. The study notes
limitations in applying the CloudMonitor framework to various advanced cloud service
setups present today, such as those hosted by Big Tech (e.g., Microsoft, Apple, Google, and
Amazon), as the assessment mainly focused on traditional open cloud systems. Further
research is essential to confirm its effectiveness across different types of cloud services.
Nonetheless, this work is based on a comprehensive review of the current literature.

2. Background and Related Work

In this section, an overview of the cloud and its service provisions are given. The threat
models in connection with these service models are presented. Subsequently, typical best

Future Internet 2024, 16, 110 4 of 36

practices to secure them are discussed, and an overview of IFT mechanisms and security
concerns is provided.

2.1. Cloud Computational Imperatives

Cloud computing, as defined by NIST, is a model that enables ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources. These
resources can be rapidly provisioned and released with minimal management effort or
service-provider interaction [17].

Main characteristics of cloud computing:

1. On-demand self-service: CSCs can manage, provision, and scale computing power
and storage without direct interaction with CSPs [18].

2. Broad network access: Cloud services are accessible via networks, typically through
a cloud carrier such as an Internet Service Provider (ISP) or directly via a CSP using
specialized internet protocols which constitute the data transmission gap.

3. Resource pooling: CSPs combine storage and computing resources in multi-tenant
models, shared among different consumer groups. CSCs have little control over
physical resources and processing/resting locations.

4. Rapid elasticity: Cloud services can be rapidly deployed and scaled to match con-
sumer demands, with automatic scaling of resources up/down using the pay-as-you-
use model.

5. Measured services: Consumption of cloud resources is optimized, measured, and
charged by the CSP’s control system.

6. Five essential factors in cloud computing: (i) consumer, (ii) provider, (iii) carrier, (iv)
auditor, and (v) broker. The primary stakeholder, the cloud consumer (CSC), engages
with a CSP through service agreements, selecting services from the CSP’s catalog, and
managing payments accordingly.

7. Cloud Monitoring by Major Providers: Companies like Amazon, Microsoft, and
Google employ cloud monitoring to track the effectiveness and utilization of their
services (e.g., Amazon uses CloudWatch to monitor various components of its infras-
tructure, enabling quick issue identification and resolution).

8. Three Delivery Provisioning Models: Software as a Service (SaaS), Platform as a
Service (PaaS), and Infrastructure as a Service (IaaS). These models cater to different
consumer needs and preferences. See Tables 1 and 2.

Table 1. Delivery provisioning models control and functionality.

Delivery Models Level of Control Granted to Consumers Functionality Available to Consumers

SaaS Utilization and configuration associated
with usage. Access to the front end and user interface.

PaaS Limited administration Modest administration-level controlling IT
resources to the platform consumers’ usage.

IaaS Full administration
Full access to IT resources linked to

virtualized infrastructure, and conceivably
access to underlying physical IT resources.

Cloud Deployment Models

There are four deployment models—private cloud, community cloud, public cloud,
and hybrid cloud [3]. The cloud, with its infrastructure, is dedicated to a specific organiza-
tion called a private cloud. The infrastructure can be on- or off-premises. In public clouds,
the infrastructure is shared by many mutually untrusted CSCs. The public cloud is usually
off-premises. The community cloud is an architectural construct where the infrastructure is
accessed by a specific set of CSC organizations of the same interest. The physical imple-

Future Internet 2024, 16, 110 5 of 36

mentation can reside either on or off-premises. The hybrid cloud is a combination of two or
more cloud types and is gaining popularity.

Table 2. Consumers Against Provider Activities About Delivery Models.

Delivery Models Cloud Consumer Activities Cloud Provider Activities

SaaS Utilizes and configures cloud Implements, manages, and maintains cloud services.
CSC tracks usage.

PaaS Develops, tests, deploys, and manages
cloud services and cloud-based solutions

Pre-con platforms and allocates the necessary
underlying resources, middleware, and other IT

resources as needed. The cloud consumer tracks usage.

IaaS

Involves establishing and configuring
fundamental infrastructure, and the

installation, administration, and
monitoring of necessary software.

Offers and controls the physical processing, storage,
networking, and hosting required. Cloud consumers

track usage.

2.2. CSC Cloud Security Concerns

As consumers increasingly rely on cloud services and data uploads, monitoring
for security becomes challenging. Consumer organizations must ensure data security
with cloud providers, but providers are often reluctant to share security details, fearing
reputational damage [19]. This lack of trust is a major barrier to cloud adoption for sensitive
data handling [5]. To address this, a mechanism is needed for consumers to easily assess
their data’s security in the cloud. It is not necessary for all data to have identical protection
standards, and some organizations may opt for cloud services across only certain data
sets [14]. Yet, inherent security issues do persist, such as data loss, changing providers, and
insider threats.

Requirements for ensuring the security of cloud systems include elements such as
authentication, authorization, liability, and privacy [6] and are often expressed collectively
as confidentiality, integrity, and availability (CIA). Confidentiality covers data privacy
where consumer data is not exposed to third parties without the consumers’ expressed
consent. Integrity refers to the protection of data stored in the cloud against unauthorized
access or modification [15]. Availability refers to the services provided by the CSP being
immediately available when expected and needed by the consumer. Authentication is
a guarantee that when a person claims ownership of data, it is properly identified and
authorized to access the data and consummate services. Authorization assures that a person
has the proper access rights and is presumably to act on the designated cloud data in proper
accordance [17]. Accountability holds persons or processes accountable for performing an
activity on the data (i.e., non-repudiation) [18]. Non-repudiation is complete when the CIA
holds and represents the transitive nature of the full repertoire of cloud services.

Therefore, prior to employing the cloud, an organization must be certain about the
security properties being provided by the CSP. Cloud services may cause some adoption
risks, of which consumers must be made aware. Conversely, CSPs can bring security
benefits that may be unknown to the CSC. Metrology should support the decision to move
data to the cloud. Too often, this decision depends on how the risk of adopting CSP
security guarantees will reduce the overall cost of data storage and the requisite services.
CSCs should have greater transparency as to whether those benefits can be enjoyed while
simultaneously avoiding the inherent risk of exfiltration, extrusion, and/or destruction [20].

Data Security Measures

The Cloud Security Association Consortium (CSAC) advises using established best
practices to secure cloud-stored data, but challenges persist, especially regarding data
security assurance [21,22]. Cloud data insecurity can be attributed to the lack of (i) strong
controls, (ii) shared resources, (iii) multi-tenancy, and (iv) visibility. Tailored encryption
and access control measures are essential, yet they can inadvertently expose sensitive data.

Future Internet 2024, 16, 110 6 of 36

Data is typically categorized into basic, confidential, and highly confidential levels, each
requiring corresponding encryption methods. For instance, basic data or the lowest level
of confidentiality can contain data such as videos and photos that are not confidential
for the CSC organization and therefore only need a lite version of encryption such as
AES-128 encryption, while data at higher levels of confidentiality must be protected with
stronger encryption while AES-256 and SHA-3 can be used to prevent unauthorized access
in those cases.

Protecting the CIA of cloud data presents challenges. Various methods have been
proposed to ensure data integrity, such as a distributed cryptographic system designed
to ensure the integrity of cloud-stored data [23], and Barsoum’s multi-copy provable
data possession protocol [24]. Juels’ encrypted disguised blocks for retrievability verifica-
tion [25], and Shacham’s inclusion of pseudo-random functions and BLS signatures [26]
provide further examples. Other similar protocols are proof of retrievability mechanisms
for data stored in the cloud [27–29]. While these approaches enhance security, some lim-
itations remain, such as the inability to support block insertion operations and a lack of
update thresholds.

CSP trustworthiness is another key concern [2,3]. Transparency regarding backup
policies, storage locations, encryption, and access control mechanisms is crucial. Shynu pro-
posed a transparent data deduplication mechanism to enhance provider transparency [30]
enabling consumers to track where their data is being stored and manipulated. More-
over, Wang has explored error correction capabilities enabling better more resilient data
recovery [31].

Renuga investigated data remnants after consumers accidentally/intentionally deleted
their data [32] and Han proposed a transparent data sanitization approach for data confi-
dentiality [33]. The approach is implemented as an internet gateway within the premises of
the consumer organization using a JavaScript injecting technique that sanitizes sensitive
data. Similarly, John proposed an optimal data sanitization algorithm to address data
migration issues [34].

2.3. Information Flow Tracking (IFT)

Secure access control models encompass Mandatory Access Control (MAC) and Dis-
cretionary Access Control (DAC) systems [35]. While DAC systems, such as Access Control
Lists (ACLs) and Role-Based Access Control (RBAC), grant data owners’ discretion over
access permissions, MAC systems, particularly within the IFT model, are centrally adminis-
tered to define comprehensive security policies governing data propagation.

In the context of IFT, the administrator defines system-wide security policies, including
the labeling of data to control its propagation. Unlike DAC models, which primarily focus
on access control within applications, IFT ensures dynamic control over data flow based on
predefined security labels [36]. One more option that adds value is IFT’s ability to make
consumers’ data be limitedly labeled [37].

There are two types of information flow tracking systems: (i) Centralized Information
Flow Tracking (CIFT) and (ii) Dynamic Information Flow Tracking (DIFT) [38]. For CIFT,
the labeling of data is controlled by a centralized empowered body. In contrast, the
Dynamic IFT system introduces new labels dynamically into the system at runtime, with an
assumed mutual lack of trust and a changeable/dynamic authority [39]. Creating labels and
controlling data publishing within one application or overall applications are allowed by
DIFT among owners of the data. To prevent data leaking inside one application or through
any set of applications, IFT may be used [40] which provides significant advantages from
IFT augmentation.

At the level of a programming language-empowered protection domain, IFT can be
enforced. Guo’s tools to add DIFT-related observations into the source code and perform a
static analysis of the data is one example [26]. This form of execution provides resiliency,
mobility, and precise control at the byte level. At the protection-domain level, tools that

Future Internet 2024, 16, 110 7 of 36

support the IFT application and enable CSCs to denote rules that can be interpreted and
enforced at the process level include Asbestos [27], HiStar [28], and Flume [29].

Asbestos [27] holds significant relevance in the context of cloud environments, es-
pecially for information tracking and data confidentiality, despite its primary focus on
process and page management. Integration of Asbestos with cloud monitoring systems
offers valuable insights into process-level activities, enhancing visibility and control over
data flows. This integration empowers administrators to effectively identify and respond
to potential security threats or anomalies, contributing to improved overall security and
information tracking within cloud environments.

Flume [29], focuses on the domain protection level, where DIFT works on setting
the rules that either permit or deny cross-domain information flow and the rules that
modify security tags if such flow occurs. At the process level, the performance of using
DIFT is important for heavy inter-process communication situations if they occur in an
application. Thus, Flume typically causes a performance overhead of over 30% on real
applications [41]. The use of IFT rules can provide security against insecure behaviors
that may not be prevented by, for example, the DIFT system as well as transparency into
the class of secure programs that are implemented by the DIFT system with unmodified
semantics [42].

In another example, duPro [41] has proposed an improved user-space DIFT protection
domain, featuring an effective framing that empowers implementations to manage the flow
of information between components. The result confers a proof of concept for improved
security as well as the ability to throttle overhead. Protection domains can be instantiated
into the same process that isolates software-based faults for protection domain isolation.

2.4. Studies Using IFT for Cloud Security

Several different IFT approaches have been developed to enforce cloud security in
the literature. However, these approaches have not comprehensively addressed the CSC’s
perspective and the importance of the IFT. In fact, an important fine-grained IFT system
has been proposed by Yuan et al., that can expose malware in the cloud [43].

Figure 1 juxtaposes the components described herein that implement the fine-grained IFT
system infrastructure. The system tracks the taint using mechanisms that depend on security
prerequisites defined by a configuration file relying on (i) script, (ii) source triggering mechanism,
and (iii) a method for detecting customizable security violations [43–46]. Many IFT-based
mechanisms have been reviewed by Bacon et al., who identified the various challenges
necessary to apply IFT in a cloud environment [40]. Their analysis showed that using IFT
to provide better cloud security includes the following benefits which are also presented
in Figure 1: (i) policy specification, (ii) translation and enforcement, (iii) auditing, and (iv)
digital forensic capability. In addition, IFT has the property that can identify vulnerabilities
without having to attack (i.e., red team) target systems in the process. Dynamic taint
propagation has been used successfully for the same purpose [46].

As well, IFT for IoT applications privacy assessments has been studied by Marcel et al. [47].
Their work enables auditors to model IoT data flow and verify privacy constraints au-
tomatically. Fu has conducted research on the scalability of IFT for distributed systems.
Fu presented a Dynamic IFT system called “DisTaint” to protect privacy and detect data
leaks. Likewise, some studies have proposed Pileus, a system normally used to prevent
unauthorized resource access [47]. Notably, their approach applies a Dynamic IFT model
to prevent others from conducting vulnerability scanning as this constitutes the first step to
unauthorized access to other users’ data. Papagiannis and Pietzuch have introduced Cloud-
Filter, as illustrated in Figure 2. This figure overviews the basic steps that demonstrate the
process of file upload between a consumer enterprise network and a cloud service provider.
In step 1, the user submits the file via a web form, with the browser plugin including user
identification and file metadata in the outgoing HTTP request. In step 2, the client proxy
intercepts and inspects the request, and matches it against predefined rules in its policy
store. Step 3 involves querying the user about the file’s confidentiality which results in a

Future Internet 2024, 16, 110 8 of 36

label attached to the file before forwarding the request to the cloud service. Step 4 sees the
service proxy examining the request and its labels against local policy rules that potentially
deny sensitive files from certain sources. If accepted, the request is sent to the storage
service. Finally, step 5 retrieves the uploaded file, with the service proxy using attached
labels to guide its response [48]. This mechanism is therefore designed to enable enterprises
to retain control over their sensitive data while granting employees access to and usage of
enterprise cloud services [49].

Future Internet 2024, 16, x FOR PEER REVIEW 8 of 38

source triggering mechanism, and (iii) a method for detecting customizable security vio-
lations [43–46]. Many IFT-based mechanisms have been reviewed by Bacon et al., who
identified the various challenges necessary to apply IFT in a cloud environment [40].
Their analysis showed that using IFT to provide better cloud security includes the fol-
lowing benefits which are also presented in Figure 1: (i) policy specification, (ii) transla-
tion and enforcement, (iii) auditing, and (iv) digital forensic capability. In addition, IFT has
the property that can identify vulnerabilities without having to attack (i.e., red team) target
systems in the process. Dynamic taint propagation has been used successfully for the same
purpose [46].

Figure 1. CloudTaint—Fine-grained IFT System for cloud applications, featuring customizable
taint tracking mechanisms.

As well, IFT for IoT applications privacy assessments has been studied by Marcel et
al. [47]. Their work enables auditors to model IoT data flow and verify privacy con-
straints automatically. Fu has conducted research on the scalability of IFT for distributed
systems. Fu presented a Dynamic IFT system called “DisTaint” to protect privacy and
detect data leaks. Likewise, some studies have proposed Pileus, a system normally used
to prevent unauthorized resource access [47]. Notably, their approach applies a Dynamic
IFT model to prevent others from conducting vulnerability scanning as this constitutes
the first step to unauthorized access to other users’ data. Papagiannis and Pietzuch have
introduced CloudFilter, as illustrated in Figure 2. This figure overviews the basic steps
that demonstrate the process of file upload between a consumer enterprise network and
a cloud service provider. In step 1, the user submits the file via a web form, with the
browser plugin including user identification and file metadata in the outgoing HTTP re-
quest. In step 2, the client proxy intercepts and inspects the request, and matches it
against predefined rules in its policy store. Step 3 involves querying the user about the
file’s confidentiality which results in a label attached to the file before forwarding the re-
quest to the cloud service. Step 4 sees the service proxy examining the request and its la-
bels against local policy rules that potentially deny sensitive files from certain sources. If
accepted, the request is sent to the storage service. Finally, step 5 retrieves the uploaded
file, with the service proxy using attached labels to guide its response [48]. This mecha-
nism is therefore designed to enable enterprises to retain control over their sensitive data
while granting employees access to and usage of enterprise cloud services [49].

Figure 1. CloudTaint—Fine-grained IFT System for cloud applications, featuring customizable taint
tracking mechanisms.

Future Internet 2024, 16, x FOR PEER REVIEW 9 of 38

Figure 2. CloudFilter—Dynamic IFT model defending against vulnerability.

Wang et al. proposed a distributed system for IFT that can test many applications,
especially for those that would otherwise be resource-intensive and expensive to run
routinely [48,50,51]. A model orthogonal to our work (i.e., CloudMonitor), CloudFence
was proposed by Vasilis [52] and is shown in Figure 3 as a generic overview in contrast
to CloudMonitor. The main interactions within this model are as follows: Users register
with the cloud provider (1), and access services from various providers using the same
credentials (2). Sensitive data is tagged and tracked transparently across the cloud infra-
structure (3). Users then can audit their data through a web interface provided by the
cloud provider (4), ensuring control and accountability. Various studies have proposed
Data Flow Tracking (DFT) as a service model that supports both consumers and provid-
ers in auditing security parameters pertaining to data existing within the cloud. Howev-
er, this particular DFT model concept is different from our CloudMonitor framework
because we do not prevent the CSC from having the right to audit the data within our
framework (i.e., the audit functions are hard-coded and immutable).

Figure 3. CloudFence—an orthogonal model to our CloudMonitor framework, illustrating the dy-
namics of advanced cloud security solutions.

Also, the CSP is responsible for maintaining the CloudFence, which is accessible by
the consumer as with any other service. Our focus with the CloudMonitor framework is
on prioritizing the security needs that customers expect from service providers. In this
way, CloudMonitor can overcome the distrust that may exist, and that then requires the
consumer to be responsible and thus cognizant to protect their own data in the cloud
(i.e., from an auditing standpoint, non-preventive). Our proposed framework considers
the actions of users on-site. This allows consumers to validate the reliability of data
transmitted from the CSP to their local site. CloudMonitor then ensures that consumers
can protect their data both in the cloud and at their premises. There are other instances

Figure 2. CloudFilter—Dynamic IFT model defending against vulnerability.

Wang et al. proposed a distributed system for IFT that can test many applications,
especially for those that would otherwise be resource-intensive and expensive to run rou-
tinely [48,50,51]. A model orthogonal to our work (i.e., CloudMonitor), CloudFence was
proposed by Vasilis [52] and is shown in Figure 3 as a generic overview in contrast to
CloudMonitor. The main interactions within this model are as follows: Users register
with the cloud provider (1), and access services from various providers using the same
credentials (2). Sensitive data is tagged and tracked transparently across the cloud infras-
tructure (3). Users then can audit their data through a web interface provided by the cloud
provider (4), ensuring control and accountability. Various studies have proposed Data Flow
Tracking (DFT) as a service model that supports both consumers and providers in auditing
security parameters pertaining to data existing within the cloud. However, this particular
DFT model concept is different from our CloudMonitor framework because we do not

Future Internet 2024, 16, 110 9 of 36

prevent the CSC from having the right to audit the data within our framework (i.e., the
audit functions are hard-coded and immutable).

Future Internet 2024, 16, x FOR PEER REVIEW 9 of 38

Figure 2. CloudFilter—Dynamic IFT model defending against vulnerability.

Wang et al. proposed a distributed system for IFT that can test many applications,
especially for those that would otherwise be resource-intensive and expensive to run
routinely [48,50,51]. A model orthogonal to our work (i.e., CloudMonitor), CloudFence
was proposed by Vasilis [52] and is shown in Figure 3 as a generic overview in contrast
to CloudMonitor. The main interactions within this model are as follows: Users register
with the cloud provider (1), and access services from various providers using the same
credentials (2). Sensitive data is tagged and tracked transparently across the cloud infra-
structure (3). Users then can audit their data through a web interface provided by the
cloud provider (4), ensuring control and accountability. Various studies have proposed
Data Flow Tracking (DFT) as a service model that supports both consumers and provid-
ers in auditing security parameters pertaining to data existing within the cloud. Howev-
er, this particular DFT model concept is different from our CloudMonitor framework
because we do not prevent the CSC from having the right to audit the data within our
framework (i.e., the audit functions are hard-coded and immutable).

Figure 3. CloudFence—an orthogonal model to our CloudMonitor framework, illustrating the dy-
namics of advanced cloud security solutions.

Also, the CSP is responsible for maintaining the CloudFence, which is accessible by
the consumer as with any other service. Our focus with the CloudMonitor framework is
on prioritizing the security needs that customers expect from service providers. In this
way, CloudMonitor can overcome the distrust that may exist, and that then requires the
consumer to be responsible and thus cognizant to protect their own data in the cloud
(i.e., from an auditing standpoint, non-preventive). Our proposed framework considers
the actions of users on-site. This allows consumers to validate the reliability of data
transmitted from the CSP to their local site. CloudMonitor then ensures that consumers
can protect their data both in the cloud and at their premises. There are other instances

Figure 3. CloudFence—an orthogonal model to our CloudMonitor framework, illustrating the
dynamics of advanced cloud security solutions.

Also, the CSP is responsible for maintaining the CloudFence, which is accessible by
the consumer as with any other service. Our focus with the CloudMonitor framework is
on prioritizing the security needs that customers expect from service providers. In this
way, CloudMonitor can overcome the distrust that may exist, and that then requires the
consumer to be responsible and thus cognizant to protect their own data in the cloud
(i.e., from an auditing standpoint, non-preventive). Our proposed framework considers the
actions of users on-site. This allows consumers to validate the reliability of data transmitted
from the CSP to their local site. CloudMonitor then ensures that consumers can protect
their data both in the cloud and at their premises. There are other instances where IFT
systems are implemented similarly using cutting-edge technologies for security purposes
but in different contexts such as SDN [53], and IoT networks [38,39].

Secure and resilient access protocols are essential for the data flow that provides access
to cloud data. Numerous studies have devised techniques to achieve secure access to the
cloud, but only a limited number of studies have utilized IFT. FlowK (i.e., Information
Flow Control Kernel Module) offers a persistent security mechanism for CSPs utilizing
IFT [54]. At the application level, this technique compels detailed security policies. The
system is tested via a framework prepared to deploy IFT-aware web applications in the
cloud. John investigated an IFT system that simplifies data protection for tenants and PaaS
providers [33]. The results suggest that DIFT is suitable for protecting data integrity and
privacy in PaaS platforms.

Bowers’ study concentrated on protecting data in the cloud according to its geographi-
cal placement [20]. One primary concern for CSCs is the jurisdiction governing the data
stored in the cloud. To address this issue, Awani et al. investigated the use of IFT to oversee
and regulate the movement of data among various components or applications within the
cloud [54]. The primary goal of this study was to assign labels and/or tags to the data
belonging to various users to ensure traffic isolation [35].

Leuprecht proposed safeguarding shared data between applications in the cloud using
IFT, emphasizing its role in enforcing data flow policies without requiring unique sharing
mechanisms [55]. Sun’s research also proposes a cloud service architecture utilizing a
unique type of IFT designated distributed IFT (dIFT) that isolates user activities and pre-
vents unauthorized access; dIFT thereby protects consumers’ data confidentiality, integrity,
and especially, CSC intellectual property [56].

Shyamasundar et al. demonstrated the forensic readiness of IFT-based hybrid cloud
services. In their demonstrated case, the IFT provides the minimum necessary forensic
information from hybrid services [22]. Additionally, their Secure-ComFlow model enhances

Future Internet 2024, 16, 110 10 of 36

cloud security by leveraging IFT acting as a CSC agent for migrating data from local
infrastructures to the cloud, allowing users to define their IFT policies for data protection.

3. Materials, Methods, and Tools Used by the CloudMonitor Framework

Herein, the IFT, its components, and its architecture are broadly discussed. Succes-
sively, different tools used for the implementation of IFT are thoroughly studied and
summarized. Likewise, the requirements for employing the tools have been covered, in-
cluding the data tagging mechanisms, CPU, and memory requirements. In the end, an
experiment that allowed us to comparatively evaluate the Intel-pin and LIBDFT (i.e., the
name of a DIFT framework) has been conducted. To study the overhead created by these
tools, the IMBench’s bandwidth benchmark (i.e., a set of applications for intermittently
powered devices (such as wireless sensor networks and IoT devices often rely on intermit-
tent power sources such as ambient light, vibrations, or temperature differences), was used
to evaluate the impact caused by both tools over a network. This impact was compared to
a native system. The results show the Intel-Pin tool enabled better network bandwidth and
throughput compared to the LIBDFT tool. Nevertheless, both tools need improvements to
reduce the impact on network bandwidth and throughput.

The rest of Section 3 is structured so that Section 3.1 discusses the different architec-
tures of (DIFT), while Section 3.2 introduces Intel Pin, a dynamic binary instrumentation
framework that supports commonly used IFT applications like LIBDFT. The LIBDFT details
are provided in Section 3.3. Lastly, Section 3.4 covers the constraints of the present LIBDFT
implementation.

3.1. Dynamic Information Flow Tracking (DIFT)

DIFT is used to tag, track, and verify the authenticity of information flows (which
may represent nefarious activity such as exfiltration, destruction/disruption, or other
malicious activity), such as logging into a computer system from, assumed to be, untrusted
input channels. The basic DIFT mechanisms correlate well with tagging and tracking
interesting data as they propagate during program execution. The process of “DIFTing” is
characterized by three primary flow tracking aspects described here and detailed in the
following three subsections (Sections 3.2–3.4).

1. Data sources are usually represented by either a program or a memory location, and
they come into play after a function or system call has been made.

2. Data tracking is a process of labeled data tracking during program execution as they
are copied/moved and/or altered by program instructions.

3. Data traps are either program or memory locations where the existence of tagged data
can be verified for data flow inspection and/or policy enforcement.

DIFT can serve as a valuable tool to support malware prevention, functioning as a
detection mechanism for zero-day vulnerabilities, cross-site scripting, and buffer overflow
attacks. Moreover, DIFT can be instrumental in identifying and preventing information
leakage by implementing tags.

A tag is metadata that indicates the sensitivity of data flow. DIFT tags from untrusted
sources as potentially malicious [57]. The status tag provides information that propagates
through the system relying on predefined rules, either dataflow or data and control-flow-
based. DIFT inspects tagged flows at places known as “data sinks” (or “traps”), to determine
if a tagged information flow indicates any malicious activity. Logic related to DIFT can be
injected into the original program code in two different ways described here.

3.1.1. Static Information Flow Tracking

During development, Static Information Flow Tracking adds IFT logic to source code
and requires compiler modifications (see Figure 4).

Future Internet 2024, 16, 110 11 of 36

Future Internet 2024, 16, x FOR PEER REVIEW 11 of 38

trusted input channels. The basic DIFT mechanisms correlate well with tagging and
tracking interesting data as they propagate during program execution. The process of
“DIFTing” is characterized by three primary flow tracking aspects described here and
detailed in the following three subsections (Sections 3.2–3.4).
1. Data sources are usually represented by either a program or a memory location,

and they come into play after a function or system call has been made.
2. Data tracking is a process of labeled data tracking during program execution as

they are copied/moved and/or altered by program instructions.
3. Data traps are either program or memory locations where the existence of tagged

data can be verified for data flow inspection and/or policy enforcement.
DIFT can serve as a valuable tool to support malware prevention, functioning as a

detection mechanism for zero-day vulnerabilities, cross-site scripting, and buffer over-
flow attacks. Moreover, DIFT can be instrumental in identifying and preventing infor-
mation leakage by implementing tags.

A tag is metadata that indicates the sensitivity of data flow. DIFT tags from un-
trusted sources as potentially malicious [57]. The status tag provides information that
propagates through the system relying on predefined rules, either dataflow or data and
control-flow-based. DIFT inspects tagged flows at places known as “data sinks” (or
“traps”), to determine if a tagged information flow indicates any malicious activity. Log-
ic related to DIFT can be injected into the original program code in two different ways
described here.

3.1.1. Static Information Flow Tracking
During development, Static Information Flow Tracking adds IFT logic to source

code and requires compiler modifications (see Figure 4).

Figure 4. Conventional vs. Static Information Flow Tracking (modified) compiler.

3.1.2. Dynamic Information Flow Tracking
During the runtime of a program, IFT is achieved. Meaning, DIFT logic will be in-

jected into the original program instruction sequence (or flow) with the help of a Dy-
namic Binary Instrumentation (DBI) framework (e.g., Intel Pin, DynamoRIO) while a
program is running. Both Static and Dynamic Information Flow Tracking methods come
with their benefits and drawbacks (see Table 3). Throughout this presented analysis, the
utilization of DIFT is emphasized.

Table 3. Static Versus Dynamic Information Flow Tracking.

Dynamic Information Flow Tracking Static Information Flow Tracking

During the application run-time instrumentation code is added
Instrumentation code is added during the compilation of

the application
Can be directly applied to any software Naturally, cannot be applied to any software

Figure 4. Conventional vs. Static Information Flow Tracking (modified) compiler.

3.1.2. Dynamic Information Flow Tracking

During the runtime of a program, IFT is achieved. Meaning, DIFT logic will be injected
into the original program instruction sequence (or flow) with the help of a Dynamic Binary
Instrumentation (DBI) framework (e.g., Intel Pin, DynamoRIO) while a program is running.
Both Static and Dynamic Information Flow Tracking methods come with their benefits
and drawbacks (see Table 3). Throughout this presented analysis, the utilization of DIFT
is emphasized.

Table 3. Static Versus Dynamic Information Flow Tracking.

Dynamic Information Flow Tracking Static Information Flow Tracking

During the application run-time instrumentation code is added Instrumentation code is added during the compilation of
the application

Can be directly applied to any software Naturally, cannot be applied to any software

Can establish a comprehensive set of guidelines for tracking
data flow or a set of rules can be formulated specifically tailored

to a particular system/application

Application-specific (when a group of rules specifically
functions for a single application)

Performance: Slow, requiring a DBI tool to be attached to the
running application to inject DIFT logic

Performance: Faster than DIFT.
No DBI tool is required and DIFT logic is already bundled

within the application

3.2. Intel-Pin

Intel-Pin is a dynamic binary instrumentation framework specifically catered towards
the Instruction Set Architecture (ISA) 32 (32-bit), x86-64 (64-bit), and MIC (Many Integrated
Core) ISAs that enables software developers to build personalized tools for dynamic
program analysis [4]. These tools, known as Pin tools, can be utilized to analyze user
space applications across Linux, Windows, and Mac operating systems. By performing
run-time instrumentation of a program’s binary file, Intel Pin tools allow in-depth analysis
of the program’s behavior and performance. As a result, the tool eliminates the need for
re-compiling the initial source code and can assist in the instrumentation of programs that
involve dynamic code generation (i.e., a relocatable image).

The Intel-Pin API (Application Programming Interface) is well-organized and doc-
umented offering an abstraction of intricate instruction-set information. Thus, the API
enables contextual details, such as register contents, to be passed as parameters into the
injected code from the pin tool. Moreover, Intel Pin has built-in capabilities to save and
restore register values that become overwritten by the injected code. This ensures that the
application can proceed with its execution as intended, without any disruptions [4].

A pin tool is comprised of three main components: instrumentation, analysis, and
callback routines. Instrumentation routines are normally triggered when code that has
not undergone recompilation is on the verge of execution, facilitating the analysis routines

Future Internet 2024, 16, 110 12 of 36

insertion. Essentially, instrumentation routines involve examining the binary instructions
within a program to decide where and how analysis routines should be inserted. Analysis
routines come into play when the code they are associated with is actively running. Callback
routines, on the other hand, are triggered when specific conditions or events within the
code occur, serving the purpose of security analysis [4].

Therefore, after loading into system memory, Intel Pin performs program instrumenta-
tion by taking control of the program. Then, before execution, a JIT (Just-In-Time) compiler
recompiles small sections of binary code. Consequently, there are new instructions in-
troduced into the recompiled code, typically sourced from the Pin tool, which conducts
the analysis. In addition, Intel Pin has a vast array of optimization techniques to achieve
minimal run-time and memory overheads. At the time of this writing, about 30% without
running a pin tool is the average overhead of Intel Pin [58]. As anticipated, the quality of
the pin tool written by the software developer will greatly affect the overhead.

3.3. The LIBDFT Meta-Tool Capabilities

LIBDFT is a meta-tool that works as a shared library that applies DIFT using Intel Pin’s
DBI framework [12,59]. LIBDFT offers an API for developers to construct DIFT-enabled
pin tools that can function with unmodified binary programs running on standard OSs and
hardware. Moreover, the versatility and reusability of the tool make it ideal for research
and rapid prototyping purposes.

LIBDFT was specifically developed for use with the Intel Pin DBI framework to
facilitate the creation of custom Pin tools. It harnesses the power of Intel Pin’s VM alongside
a specialized injector component, enabling the attachment of the VM to an existing process
or a newly initiated process. For inspecting and modifying a binary executable image, the
LIBDFT library relies on the Intel Pin’s extensive API. Intel Pin’s injector component first
injects Intel Pin’s runtime and then hands over control to the LIBDFT-enabled Pin tool. This
final step is initiated when a Pin tool with LIBDFT enabled attaches to a running process or
launches a new one. The LIBDFT library comprises three main components (See Figure 5):

1. Tag map,
2. Tracker,
3. I/O Interface.

Future Internet 2024, 16, x FOR PEER REVIEW 13 of 38

enabled Pin tool. This final step is initiated when a Pin tool with LIBDFT enabled attach-
es to a running process or launches a new one. The LIBDFT library comprises three main
components (See Figure 5):
1. Tag map,
2. Tracker,
3. I/O Interface.

The use of the Tag map is for storing tags that contain a process-wide data structure al-
so called shadow memory for maintaining the data stored tags in the main memory and the
CPU registers. In the tag map, the tags’ stored structure is mainly controlled by the tags’
granularity and size. The overall organization and structure of which are shown in Figure 5
[12,59].

Regarding the tagging granularity, LIBDFT can be configured for tagging data as
needed (i.e., as small as a single bit or as large as memory chunks). A single-bit tagging
result can make fine-grained and accurate DIFT, while larger contiguous memory
chunks can cause more error-prone DIFT results. Unfortunately, storing excessive
granular tags results in significant memory usage penalties. For example, at the bit level,
8 tags are required for a single byte and 32 tags for a 32-bit CPU register. Thus, LIBDFT
can use byte-level tagging to manage memory costs for bit-level tagging. Using byte-
level tagging is more sensible for modern CPU architectures, as bytes are typically the
smallest addressable memory unit in such modern CPUs. Moreover, this approach makes
sufficiently fine-grained tagging for all cases and provides a better balance between usability
and performance.

Figure 5. LIBDFT architecture when configured with bit and byte-sized tags.

Bit-size and byte-sized tags are offered by the LIBDFT. The aim of bit-sized tagging
is to create memory-conserving LIBDFT-enabled Pin tools. This scheme is more desira-
ble since it can enable software developers to 8 varied values to each tagged byte to de-
pict different tag classes. Thus, the byte-sized tags enable more advanced LIBDFT-
enabled Pin tools. Next, in-memory data structures are described below in Sections 1–3.
The Tag map implementation can be further broken down as described here into the fol-
lowing constructs (Sections 3.3.1–3.3.4).

3.3.1. Virtual CPU (VCPU)
Within LIBDFT, the VCPU structure is employed to store tags for each of the 8 Gen-

eral Purpose Registers (GPRs) in a 32-bit CPU. Various VCPU structures are held by the
Tag map. That means, one VCPU structure for each created thread while executing a
program. LIBDFT is specially implemented to capture the creation of thread events in-

Figure 5. LIBDFT architecture when configured with bit and byte-sized tags.

The use of the Tag map is for storing tags that contain a process-wide data structure
also called shadow memory for maintaining the data stored tags in the main memory and
the CPU registers. In the tag map, the tags’ stored structure is mainly controlled by the

Future Internet 2024, 16, 110 13 of 36

tags’ granularity and size. The overall organization and structure of which are shown in
Figure 5 [12,59].

Regarding the tagging granularity, LIBDFT can be configured for tagging data as
needed (i.e., as small as a single bit or as large as memory chunks). A single-bit tagging re-
sult can make fine-grained and accurate DIFT, while larger contiguous memory chunks can
cause more error-prone DIFT results. Unfortunately, storing excessive granular tags results
in significant memory usage penalties. For example, at the bit level, 8 tags are required for
a single byte and 32 tags for a 32-bit CPU register. Thus, LIBDFT can use byte-level tagging
to manage memory costs for bit-level tagging. Using byte-level tagging is more sensible for
modern CPU architectures, as bytes are typically the smallest addressable memory unit in
such modern CPUs. Moreover, this approach makes sufficiently fine-grained tagging for
all cases and provides a better balance between usability and performance.

Bit-size and byte-sized tags are offered by the LIBDFT. The aim of bit-sized tagging
is to create memory-conserving LIBDFT-enabled Pin tools. This scheme is more desirable
since it can enable software developers to 8 varied values to each tagged byte to depict
different tag classes. Thus, the byte-sized tags enable more advanced LIBDFT-enabled Pin
tools. Next, in-memory data structures are described below in Sections 1–3. The Tag map
implementation can be further broken down as described here into the following constructs
(Sections 3.3.1–3.3.4).

3.3.1. Virtual CPU (VCPU)

Within LIBDFT, the VCPU structure is employed to store tags for each of the 8 General
Purpose Registers (GPRs) in a 32-bit CPU. Various VCPU structures are held by the Tag
map. That means, one VCPU structure for each created thread while executing a program.
LIBDFT is specially implemented to capture the creation of thread events including ter-
mination and to manage many VCPU structures during the specific execution time of a
running program. The LIBDFT gives a virtual ID to uniquely identify VCPU strictures
related to a certain thread. If LIBDFT is set up to use bit-sized tags, it allocates one byte
of memory to store four one-bit tags required for each 32-bit General Purpose Register
(GPR). Consequently, the memory needed for each thread amounts to 8 bytes. Conversely,
if LIBDFT is configured to employ byte-sized tags, 4 bytes for each 32-bit GPR are required
by LIBDFT. Thus, for each thread, 32 bytes of LIBDFT overhead are required.

3.3.2. Memory Bitmap (Mem-Bitmap)

In LIBDFT, Mem-bitmap is used to tag existing data in the main memory of the
computer. When LIBDFT is configured to use bit-sized tags, it uses specifically this data
structure. Mem-bitmap holds one bit per CPU addressable memory byte because it is a flat
fix-sized memory.

3.3.3. Segment Translation Table (STAB)

Similar to the memory-bitmap structure, in LIBDFT, the STAB structure is employed
to label data that already exists in the main memory. In contrast to the memory bitmap,
when LIBDFT is configured to utilize byte-sized tags, it utilizes STAB. The tags are stored
within dynamically allocated tag map sectors by STAB. Each time, a chunk of memory
is requested by the program via utilizing a system call such as mmap, malloc, or shmat.
LIBDFT intercepts the system call and subsequently assigns memory chunks of equivalent
size in a contiguous manner. In the initialization process, LIBDFT assigns the STAB to
correlate main memory addresses with their respective bytes, as memory is allocated to
a process in blocks referred to as pages. Thus, a page will be pointed to each STAB entry.
Crucially, implementation of the LIBDFT guarantees that matched sectors with contiguous
memory pages are also contiguous. The technique can help to ease the known problem of
memory accesses crossing boundaries (i.e., page fault). Regarding the drawbacks, memory
suffers significantly high overhead when using byte-sized tags with STAB.

Future Internet 2024, 16, 110 14 of 36

3.3.4. Implementation of LIBDFT Using Tracker and the I/O Interface

The main component of the LIBDFT library is the Tracker which is responsible for
instrumenting a program to insert DIFT logic. The Tracker consists of two components:

• The Instrumentation Engine (IE).
• The Analysis Routines (AR).

The Instrumentation Engine (IE) is responsible for examining a program’s layout and
sequencing to identify which analysis routines should be inserted into the program. LIBDFT
depends on Intel Pin’s IE to check each instruction for type, category, and length. First,
LIBDFT identifies the type of instruction (e.g., move, arithmetic, or logic instruction), then
analyzes operands of the instruction (e.g., memory address, register-based or immediate) to
decide their category, and finally the instruction’s length (e.g., word or double word). After
gathering this data, LIBDFT utilizes Intel Pin to insert a suitable analysis routine ahead of
each program instruction. This ensures that the instrumentation code is executed for each
execution of the instruction sequences.

The Analysis Routines (AR) comprise the actual code responsible for implementing the
DIFT logic for each instrumented instruction. The IE injects the analysis routines before the
program creation. Analysis routines are executed more frequently when compared to the
instrumentation code. To put it differently, the AR code is inserted to target a particular type
of instruction, meaning it will run every time that specific type of instruction is executed.
The types of instructions enhanced by the AR can be categorized into the classes outlined
in Table 4.

Table 4. Classes of Instructions Analyzed by the AR.

Instruction Class Description Examples

ALU Calculate arithmetic result ADD, SUB, DIV, IMUL

XFER Transfer data from register to register,
register to a memory loc. and vice versa. MOV

CLR Clear/zeroing registers AND, XOR

The Input and Output interface is tasked with processing the transfer of data between
the kernel and the various system and application processes via a variety of system calls.
The I/O interface contains a table of system call descriptions “syscall-desc”, that has all 344
calls’ information of the Linux system. Moreover, the Kernel stores user-defined call-backs
and argument descriptors per system call, whether reading or writing data on memory.
During program execution, when a system call is triggered, user-defined call-backs are
activated both upon entering the system call (i.e., pre-syscall call-backs) and upon exiting it
(i.e., post-syscall call-backs).

3.4. Intel-Pin and LIBDFT Tools Evaluation

Here, in this evaluation, tools are compared to understand their performance impact.
Several micro-benchmarks are performed by using the IMBench Linux 3.0 performance
analysis suite [60]. The testbed employed here consists of two VirtualBox-based virtual
machines (VMs), each hosting Ubuntu Linux. The VMs are given one virtual CPU and
one virtual RAM. The tools include Pintool and LIBDFT. CloudMonitor achieves IFT by
employing such tools. Hence, the importance of considering individual tool performance is
obliged. For that reason, the native operating system is compared against the performance
overhead created by both the Pintool and LIBDFT tools.

Thus, the IMBench’s bandwidth benchmark was used to study the impact caused
by both tools on the network data. IMBench monitors the Transmission Control Protocol
(TCP) bandwidth while data is moving between the server and the client software from
the user side. Different data block sizes were repeatedly transferred so the measurements
were repetitive for each block size to ensure consistency, precision, and accuracy. All the

Future Internet 2024, 16, 110 15 of 36

tools were employed using their default settings. Table 5 shows the cost of using both tools
versus without (native).

Table 5. Bandwidth Comparison Using Imbench’s (In Mb/S).

Data Block Size in Bytes
Native Pintool Libdft

Mean Std Dev Mean Std Dev Mean Std Dev

120 0.20 0.010 10.20 0.20 8.10 0.12
256 0.43 0.021 15.10 0.50 10.43 0.31
512 1.50 0.32 34.15 2.11 27.40 0.50

1024 2.21 1.50 100.23 15.23 75.30 10.30

The results in Table 5 are presented using the mean value and standard deviation in
MB/s for the different block sizes. Table 5 shows the differences in the bandwidth across
the three cases. The leftmost column gives the size of the data transferred between the
server and client for repeated rounds. The result is shown as the impact on throughput
over the bandwidth. Bandwidth and throughput are two network performance-related
terms. Bandwidth relates to network capacity while throughput describes the amount of
data transmitted.

4. CloudMonitor as Our Conceptual Framework

The CloudMonitor framework is a pragmatic approach that can monitor and control
data flow between the consumer and the CSP. Moreover, CloudMonitor enables consumers
to review their data housed in the cloud. This is achieved by connecting data propagation
policies through the utilization of security labels embedded within the data intended for
transfer. Thus, relying on these consumers’ labels can control how their data propagates
when initially transferred or uploaded to the cloud service separate from the CSP. Addi-
tionally, the user’s browser and the client API of the CSP service are modified in a way that
detects every upload that is being executed to monitor employee actions in relation to the
data they have placed in the cloud.

The next part of the CloudMonitor is a service provided by CSP to the consumer. For
this framework part, the CSP incorporates a simple API, whereby DFT is integrated into
their offered services. With the DFT API, a CSP can label any sensitive data that requires
additional protection. The primary objective of this second capability is to guarantee that
when a user uploads data to the cloud, all operations are meticulously recorded, actions
are linked to the authorized user, and access to this data is restricted to specific network
groups. This can give more confidence to consumer organizations in adopting a CSP for a
portion of their data transfer and storage requirements, at the very least.

Likewise, the CloudMonitor framework is prepared to support consumer organiza-
tions with many employees who would concurrently propagate significant amounts of
data that do not carry the same tags. As a result, the data tracking level is executed at
a level of fine-grain to cover any sensitive data requirements through a complete set of
information tracking constructs, and the “Time-Controllable Keyword Search Scheme” for
mobile e-health clouds has more specific focuses.

The CloudMonitor conceptual framework, depicted in Figure 6, outlines the process
of data contamination and subsequent tracking within cloud environments through three
main steps:

1. Tainting Data at the Source: Initially, sensitive information is labeled or “tainted” at
the points of entry where it is transferred to the cloud. This step involves monitoring
the flow of data both into the cloud (to prevent leakage) and within the consumer
network (to detect potential contamination, such as malware). Key points of potential
data leakage, such as Cloud-client APIs, user browsers, and local consumer premises,
are identified as “taint sinks” where data inspection occurs to assess sensitivity and
take appropriate actions.

Future Internet 2024, 16, 110 16 of 36

2. Enforcing Propagation Policy: The propagation policy governs how tainted data
moves from the sources to the sinks. It determines the granularity and precision
of taint tracking, ensuring that data is tagged at the most detailed level to achieve
appropriate policy-driven tracking accuracy and reliability.

3. Sanitizing Data at the Sink: Finally, data is sanitized or reviewed for sensitivity
at the sink points before further processing or storage. This step ensures that only
authorized data is retained and that appropriate actions are taken to mitigate any
risks identified during the tracking process.

Future Internet 2024, 16, x FOR PEER REVIEW 17 of 38

Figure 6. CloudMonitor Framework is implemented as an experimental testbed.

4.1. Design Goals of the CloudMonitor Framework
Usability, deployability, and flexibility (malleable and extensible) for IFT are the

main goals in designing the CloudMonitor. Facing a variety of security needs that are
required from both the consumer and provider sides is a must for the CloudMonitor
framework to enable tracking data within a complex cloud ecosystem. High-level securi-
ty protections are essential. While, at the same time, such protections must not create
high-performance overheads that render the CloudMonitor slow, inefficient, and unusa-
ble. Consequently, the CloudMonitor framework must be consistent with current appli-
cations and operating systems. Additionally, the framework needs a balance in the
propagating and tainting process, ensuring efficiency while maintaining high assurance
reliability.

Another framework prerequisite is that it can be able to enforce the isolation of da-
ta. In this manner, the framework prevents data exchange among (unauthorized) appli-
cations. Also, the framework needs to taint any data coming from the cloud, at the local
network level of the consumer. This facility can thus identify memory locations or ar-
guments of certain data that are tainted. For instance, the cloud URL strings that can be
visited by users might be categorized as a taint source. Additionally, the data in the
cloud received by the browser in response to up/down transfer requests is also tainted.
That means HTTP pages and the data fetched from the cloud are considered tainted ac-
cording to the requirements of the defined policies.

4.2. Tools Selection Overview and Rationale
In this section, a summary of the works that would support DIFT being adopted

within the cloud is provided. IFT systems come in both hardware and software-based
varieties [61,62]. Implementations of Hardware-based IFT are beyond our scope of work.
Operating systems enforce the IFT systems of software-based include IFT. At the process
level, in an operating system (OS) based IFT, data tracking is conducted, labeling the
processes and continuous data. Thus, each time accessing persistent data, and if inter-
process communications took place, then propagation of tainted data occurs. Asbestos
[47] and Flume [50] exemplify an operating system-based IFT enforcement process.
While Flume is a program to run on top of the Linux OS, Asbestos is an OS that can en-
force IFT. DStar [63] interprets labels of the security between instances that can able IFT
in distributed systems. Also, Aeolus offers tracking of the IFT of communication cross-
host [64]. However, to achieve this capability, Asbestos is employed as a distributed OS.

Unfortunately, Flume suffers from security issues inherited from its underlying ar-
chitecture and design choices, including vulnerabilities related to data integrity, authen-

Figure 6. CloudMonitor Framework is implemented as an experimental testbed.

By following these steps, CloudMonitor provides a comprehensive framework for
monitoring and controlling data flow within cloud environments, enhancing security and
data integrity for both CSCs and CSPs.

4.1. Design Goals of the CloudMonitor Framework

Usability, deployability, and flexibility (malleable and extensible) for IFT are the main
goals in designing the CloudMonitor. Facing a variety of security needs that are required
from both the consumer and provider sides is a must for the CloudMonitor framework to
enable tracking data within a complex cloud ecosystem. High-level security protections
are essential. While, at the same time, such protections must not create high-performance
overheads that render the CloudMonitor slow, inefficient, and unusable. Consequently,
the CloudMonitor framework must be consistent with current applications and operating
systems. Additionally, the framework needs a balance in the propagating and tainting
process, ensuring efficiency while maintaining high assurance reliability.

Another framework prerequisite is that it can be able to enforce the isolation of data.
In this manner, the framework prevents data exchange among (unauthorized) applications.
Also, the framework needs to taint any data coming from the cloud, at the local network
level of the consumer. This facility can thus identify memory locations or arguments of
certain data that are tainted. For instance, the cloud URL strings that can be visited by users
might be categorized as a taint source. Additionally, the data in the cloud received by the
browser in response to up/down transfer requests is also tainted. That means HTTP pages
and the data fetched from the cloud are considered tainted according to the requirements
of the defined policies.

4.2. Tools Selection Overview and Rationale

In this section, a summary of the works that would support DIFT being adopted
within the cloud is provided. IFT systems come in both hardware and software-based
varieties [61,62]. Implementations of Hardware-based IFT are beyond our scope of work.

Future Internet 2024, 16, 110 17 of 36

Operating systems enforce the IFT systems of software-based include IFT. At the process
level, in an operating system (OS) based IFT, data tracking is conducted, labeling the
processes and continuous data. Thus, each time accessing persistent data, and if inter-
process communications took place, then propagation of tainted data occurs. Asbestos [47]
and Flume [50] exemplify an operating system-based IFT enforcement process. While
Flume is a program to run on top of the Linux OS, Asbestos is an OS that can enforce IFT.
DStar [63] interprets labels of the security between instances that can able IFT in distributed
systems. Also, Aeolus offers tracking of the IFT of communication cross-host [64]. However,
to achieve this capability, Asbestos is employed as a distributed OS.

Unfortunately, Flume suffers from security issues inherited from its underlying archi-
tecture and design choices, including vulnerabilities related to data integrity, authentication,
and access control. These issues arise due to limitations in encryption mechanisms, inad-
equate authentication protocols, and insufficient access control measures. DStar can be
used appropriately in the cloud, and given its nature, works across a range of OSs like
Flume and Linux. Aeolus can operate as a trusted computing base layered above Asbestos.
Furthermore, to run distributed communication, Asbestos is extended by Aeolus. That
means, it makes applications run on a trusted base (i.e., Input/Output filtering, exterior
connections, and inter-thread), thus enforcing any data-related policies.

In addition to the hardware and OS-based IFT systems, there are also IFT systems that
operate at the middleware level, such as DEFcon [40] and SafeWeb [65]. The latest, SafeWeb,
acts to ease policy breaches in multilevel applications. Moreover, SafeWeb confirms data
privacy and safety across all various web app levels if tracking data flow by using IFT.

Returning to the topic of Storage as a Service, which CloudMonitor supports, let us
explore how these various IFT schemes that have been discussed support CloudMonitor
utility. Specifically, our research here mainly uses the IaaS cloud service model. Con-
sequently, we track only data flows that reside on cloud virtual machines (VMs). Chief
significance in this context is a fine-grained distributed Information Flow Tracking (IFT)
system capable of monitoring data flow across VMs. Such an IFT application can be easily
operational within an organization utilizing IaaS for its cloud infrastructure. Accord-
ingly, this is where the initial workings of the CloudMonitor framework can and was put
into practice.

Fitting with the IFT implementations reviewed, the isolation unit uses the tracking
granularity at the level of process, thread, and/or object [66]. The next part of the Cloud-
Monitor framework requires the participation of cloud service providers with the IFT
strategy. The consumer-extended VMs are exposing labels [67]. Unlikely, the provider
directly modifies the security policies required by the consumer to be adopted into the
IaaS service.

Nevertheless, the service provider indirectly impacts the data flow exchange among
various VMs, whether they belong to the same consumer or other consumers, by utilizing
IFT at the network level. CloudMonitor leverages some widely used mechanisms from
DIFT systems. As such, CloudMonitor adopts DIFT characteristics from both Flume
and Asbestos.

4.3. The CloudMonitor Use-Case

This section describes a use-case for CloudMonitor to present its effectiveness. “Own-
Cloud” is a collection of client-server software components designed for establishing and
using the services of file storage. OwnCloud has a similar functionality compared with
the widely used Dropbox or Google drive. We used OwnCloud as the cloud server where
consumers can upload and/or download files as desired. Normally, the OwnCloud server
can be accessed via a SOAP and RESTful API [68]. In the CloudMonitor implementation,
we have only demonstrated this access via SOAP API. Three users have been created on the
OwnCloud server to validate the implementation of the CloudMonitor framework. Each
user is expected to upload a file via a modified web browser. The browser is modified with
a plugin that attaches outgoing HTTP requests with a set of identification information along

Future Internet 2024, 16, 110 18 of 36

with the user and file metadata. The file metadata includes where the file is locally stored.
Subsequently, by intercepting the user’s request, the API stub inspects the request content
and retrieves the user information. It then matches the request against the consumer’s rules
residing in the policy store.

If a service request fails to match the rules, a message is sent to the user for acknowl-
edgment. In the other case, where the user request matches with the rules in the policy
store, then the API stub executes the request. Based on the segment of the network in the
local infrastructure of the consumer from which the user is sending the request, (i) the
system informs the user about the confidentiality of the file being uploaded. As a result,
(ii) the file is either labeled confidential or not confidential. The system API stub then (iii)
continues with the file upload request to the OwnCloud server. Here, (iv) the request along
with its labels are matched against the service provider policy and a decision is taken on
whether to store the data or reject the request. Once the data storage is accepted (v) the data
flow tracking (DFT) is performed within the boundaries of a well-defined DFT domain.
Whenever the data crosses a specified domain, (vi) the CloudMonitor logs the action in
its audit database. CloudMonitor has a user interface that leverages Cloudopsy (i.e., a
web-based data auditing dashboard) so (vii) the user can have a comprehensive view of all
audit information.

4.4. Enforcing the Rules of Data Isolation

The isolation of consumer data instances in the cloud is demonstrated using the IFT
constraints discussed above. Here, different consumers that use the cloud servers are
allowed to allocate and assign tags that allow them to share data more safely. For instance,
in healthcare, medical records saved in the cloud are accessed by physicians working in
several registered hospitals [68]. With this implementation, physicians may have access
to their current patients’ medical records, and medical researchers can have access to
anonymized data sets. Other information may be restricted to the owners of the medical
records datasets. IFT enables not only isolation but also flexible data sharing. Coming back
to the CSC organization’s (CO) data security, the information flow rules with respect to the
organization-initiated monitoring are given here. When the data leaves the User1 in LAN1,
the data is tagged as follows:

Secrecy (User1) = ((User1, LAN1), data) (1)

Integrity (User1) = (consumer_generated, no_consent) (2)

Here, the tags show that the data is sent by User1 in LAN1. The data is generated by the
CO, and it does not allow its use by others without consent. When the system administrator
of the CO logs into the cloud service to check the data, the following application process is
created with the tags:

Secrecy (LAN1) = (LAN1, data) (3)

Integrity (LAN1) = (consumer_generated) (4)

On monitoring the data sent from LAN1, the IFT-aware OS first matches the tags of
the data with those of the application process according to Rule 4.1.

User1→ LAN, i f f Secercy(User1) Secrecy(LAN1) integrity(LAN1)

integrity(User1) (5)

Since the condition is met, an administrator has access to the data submitted by User1.
Let us consider the case where a third party (e.g., researcher) needs to access to the data
submitted by User2 with the following tags:

Secrecy (User2) = ((User2, LAN1), data) (6)

Future Internet 2024, 16, 110 19 of 36

Integrity (User2) = (consumer_generated, consent_research) (7)

The secret tags are removed from the data via an anonymizing process. That is, once
the data that is requested for research is consented to, then the anonymizing process comes
into play and removes the data tags to achieve the anonymization.

To achieve network-level isolation, the network abstractions of the virtual environment
are logically separated in a way that each network area has its own devices, routes, and
firewall rules. Each network area can be accessed only by its users via a dedicated bridge
using the case-specific firewall rules. That is, each user is restricted to accessing their own
network objects within the same network area. Each VM is attached to a separate private
network in the environment. Both participants in a pairing are used to connect two private
bridges to a host bridge to access the physical network. When a firewall rule is specified,
the rule is applied to the private bridge instead of the host bridge, therefore eliminating its
potential effects on the other user’s VM.

The cloud storage level isolation is achieved by extending the IFT to the OwnCloud
server. With IFT, the server assigns tags to stored objects and enforces an access control
mechanism over all requests to the stored objects. For each access request, the tag of the
requesting user and the objects are evaluated against the security module rules (which
codify the appropriate policies) which perform access decisions enabling consistent enforce-
ment of access control for the server and stored data. The server is considered fully trusted
because it runs the enforcement mechanism. As previously described in the introductory
Section 4, a user requesting access to the server must use the OwnCloud desktop client on
the user node. The server will then obtain an OwnCloud desktop client tag. This process
prevents unauthorized adversary nodes from accessing the cloud server. This prevents
an adversary node from using an OwnCloud desktop client with the tags of any users
for which it holds ownership (i.e., to prevent spoofing). The tags are specific to each user;
therefore, spoofing will be declined if an unauthorized user tries to access the service by
enforcing the policy.

4.5. Results

This section focuses on the methodology, evaluation, and results of our experimental
framework. Our CloudMonitor prototype was implemented on a physical machine. Linux
operates on the virtualized node’s Intel Pentium Dual-Core 2.60 GHz processor and 16 GB
of primary memory. VirtualBox has been installed on the nodes to facilitate virtualization.
OwnCloud has been installed on the actual machine as a cloud server, and Windows
10 is running on the VM. Both the functionality and performance of the CloudMonitor
are evaluated.

CloudMonitor’s essential modules are virtual. The purpose is to host emulated
execution modules and the integrity detection module. To transition from the virtualized
mode of execution to the emulated mode, the native VM must be suspended, a full snapshot
of its virtual CPU state must be created, and the emulated processor must be initialized
using this snapshot. Using shared memory, there is a collaboration between the hypervisor
and the emulator for arranging their activities and exchanging state information. The
virtual module is essential for implementing IFT, which dynamically transfers the VM to
the emulator without disrupting any cloud application services.

During VM migration, the execution of the user domain reaches the Extended In-
struction Pointer (EIP) register, a component of x86 architectures (32-bit), which holds the
memory address of the next instruction to be executed. This register is pivotal for tracking
the migration process as it signals the point at which the CPU snapshot of the VM is written
to the emulator’s log file.

If privacy-violating conduct is found, the CloudMonitor rejects activities immediately.
For anomalous behaviors that surpass the threshold for suspension, CloudMonitor triggers
an alarm and logs the occurrence in the system log for auditing purposes.

Future Internet 2024, 16, 110 20 of 36

Using LMbench [69], we analyze CloudMonitor’s performance by selecting metrics
of the CPU, processes, file system, and virtual memory system. We first analyze Cloud-
Monitor’s performance without tracking information flow. The comparison includes two
setups: one with CloudMonitor installed but not tracking information flow (Protected VM),
and another with CloudMonitor installed and active only during VM migration (Transla-
tion VM). Results show CloudMonitor’s overhead is under 10% without information flow
tracking and less than 20% during VM migration compared to native Xen (Figure 7).

Future Internet 2024, 16, x FOR PEER REVIEW 21 of 38

Figure 7. Performance of Native Xen, Protected VMs, and Translated VMs.

The 10 percent performance cost without Information Flow Tracking (IFT) encom-
passes the cost associated with loading the configuration file based on the security re-
quirements of cloud applications. It also includes the cost introduced by triggering
mechanisms for trapping taint sources access and the cost from communication and in-
teraction between the functional modules of CloudMonitor. The 20% performance deg-
radation observed during the transfer of VMs from virtual to emulated execution is pri-
marily attributed to the processes of saving and loading the VM CPU context. Then, we
test the performance of the CloudMonitor’s IFT when the VM is running as an emulator.
TEMU represents the traditional taint tracking system implemented on QEMU [70], and
CloudMonitor represents the information flow tracking engine built for our experi-
mental comparisons. The overhead is reduced between 20% and 50% compared to
TEMU (Figure 8).

Figure 8. Performance of QEMU, TEMU, and CloudMonitor.

5. Data Leak Prevention Using CloudMonitor
Managing the confidential data flow stored in the cloud means ensuring that only

authorized parties can access properly identified and controlled data and documents,
which is one of the most important security worries in handling security for an enter-
prise. A recent significant leaking history of sensitive information has shown that a lot of
institutions, encompassing those within government, education, and business, are ex-
tremely lacking in this context [71]. As consumer reliance on cloud computing infra-
structures increases, it becomes increasingly tougher to track sensitive information
transmission and maintain privacy policies. Given the extensive range and diversity of
accessible transferring information channels to users in a normal environment of IT,
monitoring the flow of data across all cloud storage instances may appear onerous, if not
impossible.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

Memory Bandwidth CPU Throughput

O
V
ER

H
EA

D

Native XEN Protected VMS Translated VM

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

Memory Bandwidth CPU Throughput

OV
ER

HE
AD

Native Qemu Temu CloudMonitor

Figure 7. Performance of Native Xen, Protected VMs, and Translated VMs.

The 10 percent performance cost without Information Flow Tracking (IFT) encom-
passes the cost associated with loading the configuration file based on the security require-
ments of cloud applications. It also includes the cost introduced by triggering mechanisms
for trapping taint sources access and the cost from communication and interaction between
the functional modules of CloudMonitor. The 20% performance degradation observed
during the transfer of VMs from virtual to emulated execution is primarily attributed to
the processes of saving and loading the VM CPU context. Then, we test the performance
of the CloudMonitor’s IFT when the VM is running as an emulator. TEMU represents the
traditional taint tracking system implemented on QEMU [70], and CloudMonitor repre-
sents the information flow tracking engine built for our experimental comparisons. The
overhead is reduced between 20% and 50% compared to TEMU (Figure 8).

Future Internet 2024, 16, x FOR PEER REVIEW 21 of 38

Figure 7. Performance of Native Xen, Protected VMs, and Translated VMs.

The 10 percent performance cost without Information Flow Tracking (IFT) encom-
passes the cost associated with loading the configuration file based on the security re-
quirements of cloud applications. It also includes the cost introduced by triggering
mechanisms for trapping taint sources access and the cost from communication and in-
teraction between the functional modules of CloudMonitor. The 20% performance deg-
radation observed during the transfer of VMs from virtual to emulated execution is pri-
marily attributed to the processes of saving and loading the VM CPU context. Then, we
test the performance of the CloudMonitor’s IFT when the VM is running as an emulator.
TEMU represents the traditional taint tracking system implemented on QEMU [70], and
CloudMonitor represents the information flow tracking engine built for our experi-
mental comparisons. The overhead is reduced between 20% and 50% compared to
TEMU (Figure 8).

Figure 8. Performance of QEMU, TEMU, and CloudMonitor.

5. Data Leak Prevention Using CloudMonitor
Managing the confidential data flow stored in the cloud means ensuring that only

authorized parties can access properly identified and controlled data and documents,
which is one of the most important security worries in handling security for an enter-
prise. A recent significant leaking history of sensitive information has shown that a lot of
institutions, encompassing those within government, education, and business, are ex-
tremely lacking in this context [71]. As consumer reliance on cloud computing infra-
structures increases, it becomes increasingly tougher to track sensitive information
transmission and maintain privacy policies. Given the extensive range and diversity of
accessible transferring information channels to users in a normal environment of IT,
monitoring the flow of data across all cloud storage instances may appear onerous, if not
impossible.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

Memory Bandwidth CPU Throughput

O
V
ER

H
EA

D

Native XEN Protected VMS Translated VM

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

Memory Bandwidth CPU Throughput

OV
ER

HE
AD

Native Qemu Temu CloudMonitor

Figure 8. Performance of QEMU, TEMU, and CloudMonitor.

5. Data Leak Prevention Using CloudMonitor

Managing the confidential data flow stored in the cloud means ensuring that only au-
thorized parties can access properly identified and controlled data and documents, which is
one of the most important security worries in handling security for an enterprise. A recent
significant leaking history of sensitive information has shown that a lot of institutions,

Future Internet 2024, 16, 110 21 of 36

encompassing those within government, education, and business, are extremely lacking
in this context [71]. As consumer reliance on cloud computing infrastructures increases,
it becomes increasingly tougher to track sensitive information transmission and maintain
privacy policies. Given the extensive range and diversity of accessible transferring informa-
tion channels to users in a normal environment of IT, monitoring the flow of data across all
cloud storage instances may appear onerous, if not impossible.

Unauthorized disclosure of private or classified information can inflict significant
harm on both organizations and society [72]. Despite substantial investments in cutting-
edge security technologies, preventing leaks of sensitive information remains a formidable
challenge. Human error, including incidents of data extrusion and social engineering,
plays a significant role in compromising security [73]. Users must consistently adhere
to dissemination limitations, yet carelessness and impatience often lead to inadvertent
compromises in security.

Technology holds promise in identifying and mitigating these negligent behaviors.
With appropriate controls and monitoring mechanisms in place, we can enhance account-
ability and mitigate the effects of human error. However, developing effective and feasible
technological solutions requires addressing numerous challenges. These include keeping
track of the various ways information is transferred among users and accounting for the
diverse methods through which cloud data can be modified, converted, and transmitted.

Most popular operating systems (OSs) and user applications provide minimal support
in this regard. Simply put, current security systems for mediating access to data in the cloud
are ill-equipped to follow subsequent data changes and the flow of data between tenants.
Considering a user who opens a private document in their word processor and edits it
using cloud-based data. Then, the document is transferred (moved, copied, or duplicated),
within an environment without data leak prevention (DLP) [74] for which there are no
dissemination limits, in a rare moment of carelessness. This simple procedure creates
another confidential paragraph copy. However, this copy lacks any original document
relationship, its confidential status, and constraints on its publishing undoubtedly putting
the confidential material at risk of leaking.

In the absence of a thorough software stack overhaul from the ground up, we believe
that preventing occurrences of this sort demands an overall and clear platform for user data
flow tracking, information exchange tracking, channels, and security standards implemen-
tation. Our premise is (1) a comprehensive platform for tracking information flow that is
compatible with unmodified programs and OSs is feasible, and (2) specialized middleware
offers the most efficient and architectural base for a platform of this nature.

To test this concept, we provide an IFT framework with a unique architecture of
security and a group of accompanying methods for tracking fine-grained information
flows in cloud storage services. Our overarching objective is to provide a strong platform
of information management that enables enterprises to set and implement end-to-end
regulations for the propagation and utilization of sensitive information saved to the cloud.

5.1. The Data Tracking Policy Framework

The founding concept, which informs an information recipient and leverages a ba-
sic and scalable unit of data granularity for access control is the essence of our policy
framework. A policy construct (i.e., principal) might represent a single user inside a CSC
organization or a group of users with the same or equal access permissions (e.g., employees
in the research department).

The CloudMonitor’s method for policy design and reinforcement is dependent on the
Dynamic label standard, an effective paradigm of access control that allows more than a
principal to secure the sensitive information and be shared under specified conditions.

In the Dynamic label paradigm, each data value has allocated a label that represents
a particular set of distribution restrictions. A label conceptually reflects an unorganized
collection of privacy policies. Each policy has a designated owner and eligible readers.
The owner of the policy related to a data item (d) is a principal whose details have been

Future Internet 2024, 16, 110 22 of 36

identified as having established the value of the data item. This principle also aims to
restrict the data’s exposure by declaring a policy. The reader set, indicated by the policy,
represents the individuals or entities authorized by the owner (o) to monitor and perform
calculations on d. An individual principle can appear in numerous readers’ sets with their
own various policies. In addition, a principal can change (weaken or strengthen) its own
policy on a particular data item by modifying the set of readers (r).

As the default behavior, all data items recently created are given an empty label
(denoted Lφ ≡ {}), which does not contain policies and reflects data that is entirely
accessible to the public. A data item is considered contaminated if it contains a non-empty
label. When dealing with labels that have multiple policies, a principal P may observe
data if and only if each policy specifies P as an approved reader. The effective reader set is
constituted by the intersection of all reader sets included within a label form.

Consider the data item d labeled to show these definitions.

La = {{o1 : r1, r2}, {o2 : r2, r3}, and{o3 : r2, r4}}

The three policies in this label are owned by o1, o2, and o3, respectively. The policy of
principal o1 permits r1 and r2 to witness the value of d; the policy of principal o2 permits r2
and r3 to observe d; and the policy of principal o3 permits r2 and r4 to observe d. Therefore,
in this instance, the efficient reader set comprises the common element r2, and as a result,
only this principle has access to and control over d.

Consider Alice and Bob as hypothetical employees collaborating on an internal project
involving confidential information and serve as concrete examples for discussion. Let
us assume that Alice possesses a secret file, denoted as f 1, which she intends to securely
exchange with Bob. To achieve this, Alice can establish a new secrecy policy, denoted
as pA = {Alice : Alice, Bob}, thereby permitting Bob to access, store, and manipulate f 1
while explicitly prohibiting disclosure to unauthorized parties.

Suppose Bob also possesses a separate file, denoted as f 2, with the label pB = “Bob:
Bob, Charles”. At a later point, Bob may seek to integrate the information from f 1 and f 2,
such as by cross-referencing their contents. The resulting computation yields a new file,
named f 3, labeled with the union of their respective policies: pA, pB.

However, Bob inadvertently attempts to share f 3 with Charles, overlooking the fact
that it contains data derived from Alice’s secret file. As per Alice’s policy, Charles is not
authorized to access her data, highlighting the necessity for the system to prevent such
actions and thus prevent data leakage.

Now, assume that a subsequent employee, David, requests authorization to read the
relevant files after joining the classified project (f 1 and f 3, but not f 2). To provide David
access to file f 1, Alice adds him to the list of permitted readers in pA. Bob develops a
new policy pB′ = {Bob: Bob, David} and relabels f 3, replacing his old policy pB with pB′,
to make f 3 accessible. Note that Bob could also make f 3 accessible to David by adding
him to the reader set of pB, but this action would also have the unintended consequence
of revealing f 2 to David. These sorts of conundrums can be avoided using consistency
checking, say via a model checker for instance.

5.2. The Information Flow Tracking Mechanism

The CloudMonitor framework observes computational actions made on values of
sensitive data at the machine instruction level and publishes labels accordingly. The
framework supports operations involving the combination of values of multiple (usually
two) unique operands by merging the input label values. Label merging is a core function
that generates a fresh data label by combining the policies specified by the input labels.
Given a pair of labels L1 = p1 and L2 = p2, where p1 and p2 represent arbitrary policy
sets, the merge operator (denoted

⊕
) produces a new label corresponding to the union of

the input policy sets: L1⊕ L2 = p1 ∪ p2. New label A contains the policy sets of p1 and
the policy sets of p2 (A = p1∪ p2). This definition of label merging eliminates the danger
of information leakage caused by computations expressed using binary operators. The

Future Internet 2024, 16, 110 23 of 36

resultant label specifies the least restrictive secrecy policy while enforcing all limitations on
the input operands utilized in the computation.

Thus, CloudMonitor scrutinizes all clearly defined data movements originating from
variable assignments and mathematical operations in the current design. We also monitor
indirect flows resulting from pointer dereferencing, in which utilizing the value of sensitive
data as a foundation pointer or an offset to access another value in memory.

The CloudMonitor does not handle implicit channels that result from the dependency
of control flow, like when a labeled value affects a conditional branch. Such enforcement is
extremely difficult to appropriately identify these runtime dependencies without previous
static analysis at the source code level.

Next, we explain the concept of instruction-level label tracking and highlight the
distinction between explicit and implicit information channels using numerous simple
examples. Figure 9 depicts the C-language and assembly-language implementations of the
simple function compute sum. This function receives two integer inputs and returns their
total, as suggested by its name. Assume that the input variables (a and b) are contaminated
with the relevant data labels La and Lb. At the instruction level, CloudMonitor monitors
the computation and propagates the following labels when this operation is conducted
within the CloudMonitor-managed environment. The first instruction moves the previous
stack base pointer value (register ebp) into the stack. In the IFT context, ebp is a control
register that typically does not include sensitive user information. Therefore, we do not
monitor the labels’ propagation into this register and presume that its contents are always
non-sensitive. Consequently, this instruction transfers a four-byte value that is not sensitive
to the top of the stack, and CloudMonitor removes the sensitivity label linked with the
appropriate memory address: Leme[esp + (0 . . . 3)]→ Lφ . The instruction at location +0x3
moves ebp from the stack into edx, and CloudMonitor assigns the label Lb to edx to track
its effects: Ledx → Lb . Likewise, the following instruction propagates the label La to
eax : Leax → La .

Future Internet 2024, 16, x FOR PEER REVIEW 24 of 38

Thus, CloudMonitor scrutinizes all clearly defined data movements originating
from variable assignments and mathematical operations in the current design. We also
monitor indirect flows resulting from pointer dereferencing, in which utilizing the value
of sensitive data as a foundation pointer or an offset to access another value in memory.

The CloudMonitor does not handle implicit channels that result from the depend-
ency of control flow, like when a labeled value affects a conditional branch. Such en-
forcement is extremely difficult to appropriately identify these runtime dependencies
without previous static analysis at the source code level.

Next, we explain the concept of instruction-level label tracking and highlight the
distinction between explicit and implicit information channels using numerous simple
examples. Figure 9 depicts the C-language and assembly-language implementations of
the simple function compute sum. This function receives two integer inputs and returns
their total, as suggested by its name. Assume that the input variables (𝑎 and 𝑏) are con-
taminated with the relevant data labels 𝐿𝑎 and 𝐿𝑏. At the instruction level, CloudMoni-
tor monitors the computation and propagates the following labels when this operation is
conducted within the CloudMonitor-managed environment. The first instruction moves
the previous stack base pointer value (register 𝑒𝑏𝑝) into the stack. In the IFT context, 𝑒𝑏𝑝
is a control register that typically does not include sensitive user information. Therefore,
we do not monitor the labels' propagation into this register and presume that its con-
tents are always non-sensitive. Consequently, this instruction transfers a four-byte value
that is not sensitive to the top of the stack, and CloudMonitor removes the sensitivity la-
bel linked with the appropriate memory address: 𝐿𝑒𝑚𝑒 𝑒𝑠𝑝 0 … 3) → 𝐿𝜙. The in-
struction at location +0x3 moves ebp from the stack into 𝑒𝑑𝑥, and CloudMonitor assigns
the label 𝐿𝑏 to 𝑒𝑑𝑥 to track its effects: 𝐿𝑒𝑑𝑥 → 𝐿𝑏. Likewise, the following instruction
propagates the label 𝐿𝑎 to 𝑒𝑎𝑥: 𝐿𝑒𝑎𝑥 → 𝐿𝑎.

Figure 9. The Compute sum function for Instruction level IFT.

The final instruction at position +0x9 computes the total by adding the value in 𝑒𝑑𝑥 to
the contents of 𝑒𝑎𝑥, then CloudMonitor updates the register labels by merging the labels of
the two input operands: 𝐿𝑒𝑎𝑥 ← 𝐿𝑒𝑎𝑥 ⊕ 𝐿𝑒𝑑𝑥. The final two instructions restore control to
the caller by restoring the values of 𝑒𝑏𝑝 and 𝑒𝑖𝑝 from the stack. Since CloudMonitor does not
monitor the flow of data through these registers, no further action is required.

Figure 10 demonstrates the implementation of a fundamental table lookup opera-
tion and the publication of data labels by dereferencing the pointer. Assume the table
contains sensitive values marked with 𝐿𝑡 and the input parameter (table index) is con-
taminated with 𝐿𝑖. The assembly code reveals that the lookup process is carried out by
two sequential instructions: placing an index from the stack into 𝑒𝑎𝑥 (𝑜𝑓𝑓𝑠𝑒𝑡 0𝑥3) and
computing a pointer to the corresponding table item and dereferencing it into 𝑒𝑎𝑥 𝑜𝑓𝑓𝑠𝑒𝑡 0𝑥6). In this case, the instruction at +0x3 contaminates the 𝑒𝑎𝑥 register with
the argument’s label: 𝐿𝑒𝑎𝑥 ← 𝐿𝑖. The instruction at +0x6 conducts an indirect memory

Figure 9. The Compute sum function for Instruction level IFT.

The final instruction at position +0x9 computes the total by adding the value in edx to
the contents of eax, then CloudMonitor updates the register labels by merging the labels of
the two input operands: Leax ← Leax⊕ Ledx . The final two instructions restore control to
the caller by restoring the values of ebp and eip from the stack. Since CloudMonitor does
not monitor the flow of data through these registers, no further action is required.

Figure 10 demonstrates the implementation of a fundamental table lookup operation
and the publication of data labels by dereferencing the pointer. Assume the table contains
sensitive values marked with Lt and the input parameter (table index) is contaminated
with Li. The assembly code reveals that the lookup process is carried out by two sequential
instructions: placing an index from the stack into eax (o f f set 0x3) and computing a pointer
to the corresponding table item and dereferencing it into eax (o f f set 0x6). In this case, the

Future Internet 2024, 16, 110 24 of 36

instruction at +0x3 contaminates the eax register with the argument’s label: Leax ← Li .
The instruction at +0x6 conducts an indirect memory reference via a tainted pointer, and
CloudMonitor handles this by merging the label of the pointer with the memory location(s)
label to be accessed: Leax ← Leax⊕ Lt .

Future Internet 2024, 16, x FOR PEER REVIEW 25 of 38

reference via a tainted pointer, and CloudMonitor handles this by merging the label of
the pointer with the memory location(s) label to be accessed: 𝐿𝑒𝑎𝑥 ← 𝐿𝑒𝑎𝑥 ⊕ 𝐿𝑡.

Figure 10. Table lookup function for instruction level IFT.

Correctness is essential regarding the CloudMonitor framework design and imple-
mentation. This is especially true concerning pointer access. Table lookups are an incred-
ibly common process that happens in a variety of circumstances involving the manipula-
tion of private user data, such as character set conversion. The inability to monitor indi-
rect data flows that arise from table access can easily result in the undesirable loss of
sensitivity status in a wide variety of typical situations.

While further investigation into taint explosion is necessary, our analysis and expe-
rience with the CloudMonitor prototype suggest that previous studies’ pessimistic find-
ings on pointer tracking effectiveness are unwarranted. As seen in various studies, vari-
ous simple preventative measures might be implemented to eliminate the proliferation of
taint at the kernel level, allowing thorough tracking of all direct and indirect information
pathways.

Lastly, the illustration in Figure 11 depicts an implicit information channel that is
not monitored by CloudMonitor. Consider that the input argument value 𝑣 affects the
conditional branch instruction at position +0𝑥𝑎: 𝑖𝑓 𝑣 is not equal to 0, the execution
jumps to +0x15; otherwise, the execution continues with the following instruction (+0xc).
This function puts an immediate fixed value (0 or 1, relying on the branch) into a tempo-
rary memory address and then transfers it to register 𝑒𝑎𝑥 in both circumstances. An in-
stant value is case-insensitive; therefore, this function will constantly revert to a value
that has been tainted with 𝐿, regardless of how the incoming value is tainted. In other
words, it leaks a piece of information regarding the entry value 𝑣.

Following implicit channels through runtime dynamic analysis can be highly chal-
lenging, and most prior systems designed to monitor these channels rely on a type of
static analysis performed at the level of source code [75]. In the presence of malicious
code, the inability to trace implicit channels is significant, as they facilitate the “launder-
ing” of sensitive data for exfiltration. Currently, CloudMonitor focuses on ensuring the
information flows in a safe environment so that implicit flows do not pose a significant
challenge. In our early discussions, we emphasized that non-malicious programs seldom
leak information implicitly. Our current tracking systems effectively capture all modifi-
cations to explicit data in many common applications.

Figure 10. Table lookup function for instruction level IFT.

Correctness is essential regarding the CloudMonitor framework design and implemen-
tation. This is especially true concerning pointer access. Table lookups are an incredibly
common process that happens in a variety of circumstances involving the manipulation
of private user data, such as character set conversion. The inability to monitor indirect
data flows that arise from table access can easily result in the undesirable loss of sensitivity
status in a wide variety of typical situations.

While further investigation into taint explosion is necessary, our analysis and experi-
ence with the CloudMonitor prototype suggest that previous studies’ pessimistic findings
on pointer tracking effectiveness are unwarranted. As seen in various studies, various
simple preventative measures might be implemented to eliminate the proliferation of
taint at the kernel level, allowing thorough tracking of all direct and indirect information
pathways.

Lastly, the illustration in Figure 11 depicts an implicit information channel that is
not monitored by CloudMonitor. Consider that the input argument value v affects the
conditional branch instruction at position +0xa : i f v is not equal to 0, the execution jumps
to +0x15; otherwise, the execution continues with the following instruction (+0xc). This
function puts an immediate fixed value (0 or 1, relying on the branch) into a temporary
memory address and then transfers it to register eax in both circumstances. An instant
value is case-insensitive; therefore, this function will constantly revert to a value that has
been tainted with L, regardless of how the incoming value is tainted. In other words, it
leaks a piece of information regarding the entry value v.

Following implicit channels through runtime dynamic analysis can be highly chal-
lenging, and most prior systems designed to monitor these channels rely on a type of static
analysis performed at the level of source code [75]. In the presence of malicious code,
the inability to trace implicit channels is significant, as they facilitate the “laundering” of
sensitive data for exfiltration. Currently, CloudMonitor focuses on ensuring the information
flows in a safe environment so that implicit flows do not pose a significant challenge. In our
early discussions, we emphasized that non-malicious programs seldom leak information
implicitly. Our current tracking systems effectively capture all modifications to explicit
data in many common applications.

Future Internet 2024, 16, 110 25 of 36Future Internet 2024, 16, x FOR PEER REVIEW 26 of 38

Figure 11. The is-nonzero function for instruction level IFT.

5.3. Implementation
This section focuses on the CloudMonitor’s implementation details. The prototype

has been designed with a focus on minimal computational requirements to address the
limitations of existing solutions, particularly for IFT. To achieve this, CloudMonitor stra-
tegically minimizes reliance on Intel Pin and restricts its use of the Intel Pin-based log-
ging tool. This decision aims to mitigate performance costs associated with Intel Pin’s in-
jection of instructions into the original code base of the operating program [76]. The pro-
totype is built on top of Linux kernel components such as Netlink and the process event
module [77]. These components establish a connection with the kernel space, allowing
CloudMonitor to receive notifications of process events (e.g., process creation under
Linux operating systems). This design choice preserves the tool’s lightweight nature.
Furthermore, CloudMonitor’s visualization capabilities empower security analysts by
providing a clear representation of data leakage via malicious software behavior. Graphs
depicting the process trace offer insights into the operation of malicious programs on
both the victim’s computer and the cloud provider’s service.

5.3.1. Consumer Side Implementation Perspective
The implementation of CloudMonitor from the consumer’s side aims to provide ro-

bust capabilities for tracking information during potential security breaches within
cloud environments, particularly focusing on attacks utilizing Secure Shell (SSH) and se-
cure copy (SCP) communication protocols [78,79]. From the consumer’s perspective,
CloudMonitor facilitates the visualization of the victim system’s process trace during the
execution of such attacks.

A start and termination script is used to start the logging application on the con-
sumer’s end before the attack is launched [80]. This is accomplished by delivering a sig-
nal to the victim’s computer via the SSH protocol to initiate the Netlink-based logging
software. When the attack is complete, a signal via the SSH communication protocol will
be sent by the start and termination script to the consumer computers to terminate the
process logging 30 s after receiving the signal. These 30 s paddings are added to allow
consumer-side processes linked to the attack to complete their jobs if they were still run-

Figure 11. The is-nonzero function for instruction level IFT.

5.3. Implementation

This section focuses on the CloudMonitor’s implementation details. The prototype has
been designed with a focus on minimal computational requirements to address the limita-
tions of existing solutions, particularly for IFT. To achieve this, CloudMonitor strategically
minimizes reliance on Intel Pin and restricts its use of the Intel Pin-based logging tool. This
decision aims to mitigate performance costs associated with Intel Pin’s injection of instruc-
tions into the original code base of the operating program [76]. The prototype is built on
top of Linux kernel components such as Netlink and the process event module [77]. These
components establish a connection with the kernel space, allowing CloudMonitor to re-
ceive notifications of process events (e.g., process creation under Linux operating systems).
This design choice preserves the tool’s lightweight nature. Furthermore, CloudMonitor’s
visualization capabilities empower security analysts by providing a clear representation
of data leakage via malicious software behavior. Graphs depicting the process trace offer
insights into the operation of malicious programs on both the victim’s computer and the
cloud provider’s service.

5.3.1. Consumer Side Implementation Perspective

The implementation of CloudMonitor from the consumer’s side aims to provide
robust capabilities for tracking information during potential security breaches within cloud
environments, particularly focusing on attacks utilizing Secure Shell (SSH) and secure copy
(SCP) communication protocols [78,79]. From the consumer’s perspective, CloudMonitor
facilitates the visualization of the victim system’s process trace during the execution of
such attacks.

A start and termination script is used to start the logging application on the consumer’s
end before the attack is launched [80]. This is accomplished by delivering a signal to the
victim’s computer via the SSH protocol to initiate the Netlink-based logging software.
When the attack is complete, a signal via the SSH communication protocol will be sent by
the start and termination script to the consumer computers to terminate the process logging
30 s after receiving the signal. These 30 s paddings are added to allow consumer-side
processes linked to the attack to complete their jobs if they were still running at the time

Future Internet 2024, 16, 110 26 of 36

the signal was received. This synchronization method (start and stop signals) enabled the
capturing of processes created during the attack’s time frame.

Next, the Netlink-based logging tool is designed in C/C++ to promptly communicate
with the Linux kernel via the Netlink kernel module, allowing for the retrieval of process
notifications including their Process ID (PID), Parent Process ID (PPID) [81], and executable
information. At the end of the Netlink-based logger execution, a log file is generated
containing a record of every process executed on the target system during the attack. This
log file serves as the foundation for information tracking.

The visualization component is a Python script that processes the log file generated
by the logging instrument. The Python script peruses the log file and initially locates the
log entry where receiving the stop signal is achieved. After that, it constructs in-memory
dictionary objects for each distinct process using all the available process log data up to the
moment when the termination signal was received. Upon completion of its examination of
in-memory dictionary objects, the Python script will construct associations between parent
and child processes and communicate this information to the Neo4j Database management
system [82] using the Neo4j Python driver to generate a process trace graph.

Neo4j is an open-source and graphing database that provides back-end functionality
for applications [83]. Neo4j is a native graphing database because it implements the
property graph model methodically down to the storage level. Data is saved exactly as it
was white-boarded by developers to be highly scalable for this kind of target environment.
Thus, Neo4j was selected as the system of database management for the CloudMonitor due
to its adaptable data model, high scalability, simple data retrieval using the homegrown
graph query language, and real-time visualization capabilities.

5.3.2. Provider Side Implementation

CloudMonitor was designed to provide security analysts with a clear view of the
processes generated on the provider’s side of the system during an attack. This enables ana-
lysts to understand how a malicious program generates processes throughout its operation,
facilitating the visualization of the program’s process trace during execution. CloudMoni-
tor, from the provider’s vantage point, includes both the Intel Pin-based logging tool and
the visualization tool.

The Intel Pin-based logging tool is C/C++ software 1.19.9 developed with the Intel
Pin tool that enables binding to a harmful program and detecting all operations launched
during its execution. When new processes are generated, the logging tool gathers a variety
of spawning process information. It logs commands executed by the process together with
their parameters, the user to which the process belongs, and the group to which a user
belongs. During the investigation of a dangerous program, the logging tool will log this
information to a log file, which will then be processed by the visualization tool.

The visualization component, coded in Python 3.13, serves as a post-execution tool. It
processes the log file created by the logging tool and produces in-memory Python dictionary
representations for every unique process created while running a malicious program,
including their respective child processes. The Neo4j graphing database management
system ultimately visualizes in-memory dictionary objects via the Neo4j Python drive.

5.4. Using CloudMonitor to Detect Remote Computer Worm Attacks

The computer worm technique utilized in this experiment can infect all computers
in a network after infecting a single computer [84]. During the assault, the attacker first
accesses a computer in the network but with no awareness of the user and then transmits all
the required files and scripts needed to infect all nodes within the consumer network [84].
Once the initial stage has been performed, the attack will detect all the consumer’s neighbor
IP addresses within the network and deliver the attack payload to the “/tmp” directory
of all the systems through SCP with zero knowledge from the users. Then, from the node
to which the adversary initially permits access, the SSH brute force tool initiates SSH
attack sessions against each node [85]. Installing xHdra, Ncrack, and Patator tools to run

Future Internet 2024, 16, 110 27 of 36

the attack on victim nodes without the users’ awareness [85], decompressing the attack
payload, compiling the attack code, and executing the attack. The goal here is to track the
attack processes within the log files and generate trace graphs. Sections 5.3.1 and 5.3.2
cover the implementation details of SSH attacks.

5.4.1. Consumer-Side Attack Analysis

CloudMonitor was used to study a computer worm assault from the consumer’s
perspective. During the experiment, a virtual computer network comprised of many
virtual machines, including user virtual machines and OwnCloud acting as the cloud
storage server configured with VirtualBox was utilized. To mimic the attack, the start and
termination scripts have been set up on the OwnCloud server so that the Netlink-based
logger will be initiated just before the attack’s execution. Within the execution of the assault
on the user’s virtual machines, a Netlink-based logging application tracks all processes
initiated during the period of the attack, encompassing both attack-related actions and
background activities. After the attack is complete, a signal is sent to the consumer side by
the start and termination script to end the Netlink-based logger on the virtual PC of the
victim. The Netlink-based logger then completes the process of logging 30 s after receiving
the termination signal. As a result of the attack, after the logging process is finished, a
log file named “log.txt” will be stored in the /Desktop/logger directory, along with a
screenshot file placed on the user’s desktop. The log file is then sent to a visualization tool
to analyze the various processes and their associations utilizing a process trace graph.

This consumer-side visualization tool is comprised of several processes. During the
execution of a computer worm attack, for instance, the SCP process acts as the entry process
of the entire attack scenario, in which the attacker injects the necessary files and scripts
as a zip payload to the target machine in the network. The SCP process originates from a
background process operating within the Linux environment (host machine), ultimately
evolving into the parent process. When the attacker initiates a SCP communication protocol
with the user machines, a SCP process is created. This process navigates to the /tmp
directory, the location used to deposit the “screengrab.zip” payload, which then is used by
SSH processes created during the attack time frame to execute the attack.

During the execution of the attack, SSH processes are generated, with each SSH process
spawning three offspring processes. Each SSH parent process spawns a child process that
modifies its directory to /tmp, the directory from where the payload was initially injected
onto the consumer machine. The second process, which originated directly from the SSH
parent process, unzips the payload and subsequently initiates another process to perform an
update of the Linux package repository using “sudo aptget update.” which will eventually
spawn additional child processes to update all existing Linux packages installed on the
host system. After all packages have been updated successfully by the parent and child
processes, the SSH processes spawn further children processes to run “sudo apt-get install
libx11-dev” and “sudo apt-get install libpng-dev” (for capturing screenshots and saving
them in “.png” format on the Linux file system respectively, typically need packages).

Attack processes launched during attack execution can be traced back to one of SSH’s
parent processes. Some of the tasks undertaken by these processes include updating
repository packages, installing dependencies required to execute the attack, compiling the
computer worm source code to fit into the consumer network, etc. Numerous variables,
including the operating system, kernel version, and compiler version, affect the number of
attack-related processes created.

The computer worm attack process is responsible for running the attack binary on
the user’s system when the attack process created from the attacker’s SSH session com-
pletes the compilation of the computer worm source code. Since the source code of the
attack was developed from a single-process, single-threaded execution in mind, only one
attack is made during the attack’s execution, allowing the attacker to run this attack on
other machines.

Future Internet 2024, 16, 110 28 of 36

5.4.2. Provider-Side Attack Analysis

The CloudMonitor analysis tool was used to perform a provider-side analysis of a
computer worm attack from the cloud service’s point of view. Similarly, to the consumer-
side analysis scenario, networked virtual server machines within the VirtualBox environ-
ment [86] were utilized. While analyzing the provider’s side, an Intel Pin-based logging tool
was directly attached to the attack’s shell script. This allowed for the capturing and logging
of the processes generated throughout its execution. Upon successfully concluding and
logging the assault, the Intel Pin-based logging tool creates a log file titled “processtrace.txt”
in the /Desktop/screen-grab directory of the cloud storage system. Then, this log file is
put into the CloudMonitor’s visualization tool to determine the relationship between the
processes and visualize how these processes interact with each other.

The provider’s side perspective visualization tool is comprised of two separate pro-
cesses, namely entry and attack. The entry process marks the beginning of the assault. Once
the attack script has been started from the Linux terminal, the parent process starts a child
process to execute it. On the attack side, those processes are created by the entry process.
These attack processes can be traced back to the entry process itself, which is an instance of
“sshpass4”. The sshpass instance operating process then launches a child process to create
an SCP communications channel with the victim’s computer to inject the attack payload.

After injecting the payload is complete, the attack process starts another child process
to launch a second instance of sshpass. This instance of sshpass executing on the attack
process will also create a child process to create a communication channel of the SSH with
the consumer computer. After completing the tasks of the SSH session, a second SSH
session is initiated to clean the pre-compiled code. Following this, the attack source code is
recompiled to match the requirements of the target machines, and then executing attack
binary is remotely executed via the SSH session.

5.4.3. Performance Analysis Results

The performance evaluation of CloudMonitor involves several experiments (such as
input/output performance, execution time, and resource utilization) at both the component
and system level. At the component level, the focus is on the CloudMonitor components
responsible for processing streaming data. While at the system-level, experiments assess the
overall performance of CloudMonitor within the NiFi cluster. Apache NiFi is a user-friendly,
robust, dependable data processing, and distribution system [86].

Customized reporting activities within NiFi facilitate metrics collection, measured over
a rolling window of five minutes. Key metrics, including BytesRead and BytesWrite, are
employed to assess input/output (I/O) performance, while Total Task Duration Seconds
approximates execution time. Grafana, an open-source web application, aids in interactive
analytics and visualization when connected to supported data sources [87].

Two distinct experiments are conducted to evaluate each system. The first involves
assessing log volumes and data volumes using TeraGen and TeraSort benchmarks for three
files of varying sizes (1 GB, 5 GB, and 10 GB) [88]. The second experiment employs various
workloads of Syslog and DataNode log data with three files of different sizes (1.2 GB, 6.9
GB, and 15 GB) [89].

Figure 12 illustrates that performance scales proportionally with the size of the data,
indicating that the analyzed data’s size does not significantly impact performance. The
performance is more dependent on the overall data volume, showing effectiveness within
the range of 127 to 224 MB.

Figure 13 depicts the execution time for various data loads. The execution time
increases nonlinearly as the volume of data increases. The primary reason stems from
security checks that require processing time. In both instances, the system’s execution
time does not exceed one second. The experiment also measures the CPU usage and
memory utilization of the machine. NiFi reporting tasks do not provide monitoring of
resource consumption.

Future Internet 2024, 16, 110 29 of 36

Future Internet 2024, 16, x FOR PEER REVIEW 30 of 38

Figure 12 illustrates that performance scales proportionally with the size of the da-
ta, indicating that the analyzed data’s size does not significantly impact performance.
The performance is more dependent on the overall data volume, showing effectiveness
within the range of 127 to 224 MB.

(a) (b)

Figure 12. Performance scales proportionally with data size, demonstrating effectiveness across a
range of from 127 to 224 MB. Examination of TeraGen and TeraSort benchmarks (a) and work-
loads of Syslog and DataNode log data (b).

Figure 13 depicts the execution time for various data loads. The execution time increas-
es nonlinearly as the volume of data increases. The primary reason stems from security
checks that require processing time. In both instances, the system’s execution time does not
exceed one second. The experiment also measures the CPU usage and memory utilization of
the machine. NiFi reporting tasks do not provide monitoring of resource consumption.

(a) (b)

Figure 13. Non-linear execution time increases with data volume due to security checks, while sys-
tem performance remains under one second (Syslogs and data generated execution time (a) and
TeraGen and TeraSort execution time (b)).

Accordingly, a monitoring component is employed as a collection of NiFi proces-
sors. The monitoring component uses the NiFi API to retrieve the CloudMonitor system
diagnostic report. This report includes heap utilization and processor load average
measurements. The monitoring component then uploads the refined metrics to Grafana
via the AMS API [90].

Figure 14 depicts the average processor use of our system validation experiments
and shows the proportion of heap memory consumed by CloudMonitor, respectively.
As observed, usage changes throughout the duration of the experiment. The average uti-
lization of the processor does not exceed 15% and averages roughly 8%. Similarly, the
average memory usage is 37%, while the maximum is 46%. The average used heap
memory is 3.7 GB, with a peak usage of 4.6 GB and the 95th percentile at 4.2 GB. Accord-
ing to the reported data in [90], the CloudMonitor system comparatively demonstrates
an effective CPU and memory consumption profile (up to 35% in the worst-case scenari-
os).

Figure 12. Performance scales proportionally with data size, demonstrating effectiveness across a
range of from 127 to 224 MB. Examination of TeraGen and TeraSort benchmarks (a) and workloads of
Syslog and DataNode log data (b).

Future Internet 2024, 16, x FOR PEER REVIEW 30 of 38

Figure 12 illustrates that performance scales proportionally with the size of the da-
ta, indicating that the analyzed data’s size does not significantly impact performance.
The performance is more dependent on the overall data volume, showing effectiveness
within the range of 127 to 224 MB.

(a) (b)

Figure 12. Performance scales proportionally with data size, demonstrating effectiveness across a
range of from 127 to 224 MB. Examination of TeraGen and TeraSort benchmarks (a) and work-
loads of Syslog and DataNode log data (b).

Figure 13 depicts the execution time for various data loads. The execution time increas-
es nonlinearly as the volume of data increases. The primary reason stems from security
checks that require processing time. In both instances, the system’s execution time does not
exceed one second. The experiment also measures the CPU usage and memory utilization of
the machine. NiFi reporting tasks do not provide monitoring of resource consumption.

(a) (b)

Figure 13. Non-linear execution time increases with data volume due to security checks, while sys-
tem performance remains under one second (Syslogs and data generated execution time (a) and
TeraGen and TeraSort execution time (b)).

Accordingly, a monitoring component is employed as a collection of NiFi proces-
sors. The monitoring component uses the NiFi API to retrieve the CloudMonitor system
diagnostic report. This report includes heap utilization and processor load average
measurements. The monitoring component then uploads the refined metrics to Grafana
via the AMS API [90].

Figure 14 depicts the average processor use of our system validation experiments
and shows the proportion of heap memory consumed by CloudMonitor, respectively.
As observed, usage changes throughout the duration of the experiment. The average uti-
lization of the processor does not exceed 15% and averages roughly 8%. Similarly, the
average memory usage is 37%, while the maximum is 46%. The average used heap
memory is 3.7 GB, with a peak usage of 4.6 GB and the 95th percentile at 4.2 GB. Accord-
ing to the reported data in [90], the CloudMonitor system comparatively demonstrates
an effective CPU and memory consumption profile (up to 35% in the worst-case scenari-
os).

Figure 13. Non-linear execution time increases with data volume due to security checks, while system
performance remains under one second (Syslogs and data generated execution time (a) and TeraGen
and TeraSort execution time (b)).

Accordingly, a monitoring component is employed as a collection of NiFi processors.
The monitoring component uses the NiFi API to retrieve the CloudMonitor system diagnos-
tic report. This report includes heap utilization and processor load average measurements.
The monitoring component then uploads the refined metrics to Grafana via the AMS
API [90].

Figure 14 depicts the average processor use of our system validation experiments
and shows the proportion of heap memory consumed by CloudMonitor, respectively.
As observed, usage changes throughout the duration of the experiment. The average
utilization of the processor does not exceed 15% and averages roughly 8%. Similarly, the
average memory usage is 37%, while the maximum is 46%. The average used heap memory
is 3.7 GB, with a peak usage of 4.6 GB and the 95th percentile at 4.2 GB. According to the
reported data in [90], the CloudMonitor system comparatively demonstrates an effective
CPU and memory consumption profile (up to 35% in the worst-case scenarios).

5.4.4. Scalability in Perspective

Notably, the fundamental premise for cloud users (i.e., consumers’ point of view)
is usually stated in a service level agreement (SLA). In regard to scalability (more users,
more data more data transfers), the assumption is that the CSP will spin up more VMs
as needed. Naturally, there are real limits especially concerning network bandwidth, and
concerning time and space in a commercial cloud (e.g., AWS). However, for our purposes,
we have assumed that time and space are unlimited. The question then becomes, what
is the relationship between a small-scale experimental cloud environment and one that
is of industrial strength? We have ignored the network bandwidth aspect and assumed
that the CloudMonitor DFT and Monitoring costs are linear with respect to the amount of
data being moved (uploaded, moved, downloaded). Therefore, the relationship between
Users: Applications: and Dataflows is roughly 1:1:1 meaning that the cost is UxAxD. Where

Future Internet 2024, 16, 110 30 of 36

the number of users spawning data-intense applications that are consuming/producing
data is multiplicative. However, any given SLA may differ, usually one finds that greater
volumes offer greater discounts in real dollars. Whereas the costs and time may result in
just the opposite depending on the specific hardware/server architecture. Our experiments
are premised on this assumption. Most cloud environments are demand-driven, and thus
the results are fundamental to the assumption of having unlimited resources. Thus, the
relationship between the tracked data size and space/time cost increases as the fundamental
unit of memory becomes smaller down to 8bits. Any smaller tracking unit would generally
become too time/space limiting.

Future Internet 2024, 16, x FOR PEER REVIEW 31 of 38

Figure 14. Average processor and heap memory utilization during system validation experiments.

5.4.4. Scalability in Perspective
Notably, the fundamental premise for cloud users (i.e., consumers’ point of view) is

usually stated in a service level agreement (SLA). In regard to scalability (more users,
more data more data transfers), the assumption is that the CSP will spin up more VMs as
needed. Naturally, there are real limits especially concerning network bandwidth, and
concerning time and space in a commercial cloud (e.g., AWS). However, for our purpos-
es, we have assumed that time and space are unlimited. The question then becomes,
what is the relationship between a small-scale experimental cloud environment and one
that is of industrial strength? We have ignored the network bandwidth aspect and as-
sumed that the CloudMonitor DFT and Monitoring costs are linear with respect to the
amount of data being moved (uploaded, moved, downloaded). Therefore, the relation-
ship between Users: Applications: and Dataflows is roughly 1:1:1 meaning that the cost
is UxAxD. Where the number of users spawning data-intense applications that are con-
suming/producing data is multiplicative. However, any given SLA may differ, usually
one finds that greater volumes offer greater discounts in real dollars. Whereas the costs
and time may result in just the opposite depending on the specific hardware/server ar-
chitecture. Our experiments are premised on this assumption. Most cloud environments
are demand-driven, and thus the results are fundamental to the assumption of having
unlimited resources. Thus, the relationship between the tracked data size and space/time
cost increases as the fundamental unit of memory becomes smaller down to 8bits. Any
smaller tracking unit would generally become too time/space limiting.

6. Discussion
The comparative analysis of existing IFT tools emphasizes the need for mitigating

data leakage in complex cloud systems. Traditional methods impose significant over-
head on CSPs and management activities, prompting the exploration of alternatives
such as IFT. By augmenting consumer data subsets with security tags and deploying a
network of monitors, IFT facilitates the detection and prevention of data leaks among
cloud tenants. This approach not only ensures data isolation but also minimizes the need
for extensive configuration changes, thereby providing consumers with reassurance re-
garding the security of their data.

The CloudMonitor framework, as outlined in the preceding sections, presents a
comprehensive framework for preserving data confidentiality and integrity in cloud
services. Experimental evaluation of the framework’s performance, both with and with-
out IFT integration, reveals minimal overhead, particularly when coupled with IFT. Core
modules such as integrity detection and emulated execution contribute to real-time
monitoring and enforcement of privacy policies that showcase the approach’s effective-
ness in safeguarding consumer data. The CloudMonitor’s ability to reject activities that

Figure 14. Average processor and heap memory utilization during system validation experiments.

6. Discussion

The comparative analysis of existing IFT tools emphasizes the need for mitigating
data leakage in complex cloud systems. Traditional methods impose significant overhead
on CSPs and management activities, prompting the exploration of alternatives such as
IFT. By augmenting consumer data subsets with security tags and deploying a network of
monitors, IFT facilitates the detection and prevention of data leaks among cloud tenants.
This approach not only ensures data isolation but also minimizes the need for extensive con-
figuration changes, thereby providing consumers with reassurance regarding the security
of their data.

The CloudMonitor framework, as outlined in the preceding sections, presents a com-
prehensive framework for preserving data confidentiality and integrity in cloud services.
Experimental evaluation of the framework’s performance, both with and without IFT
integration, reveals minimal overhead, particularly when coupled with IFT. Core modules
such as integrity detection and emulated execution contribute to real-time monitoring and
enforcement of privacy policies that showcase the approach’s effectiveness in safeguarding
consumer data. The CloudMonitor’s ability to reject activities that violate privacy policies
in real-time and cause alarms to trigger for audit purposes further underscores its utility in
maintaining cloud security.

Detailed examination of data leak prevention mechanisms within the CloudMonitor
elucidates its robustness against potential attacks. Integrating IFT into the CloudMonitor’s
control flow enables comprehensive monitoring of both consumer-side and provider-side
activities which facilitates timely detection and response to abnormal behavior. Experimen-
tal scenarios validate the CloudMonitor’s performance under various attack and defense
conditions highlighting its scalability and adaptability in dynamic cloud environments.
However, it is essential to acknowledge that there are limitations here. Our research has
strived to establish a foundational framework, primarily that focuses on predefined attack
scenarios and performance metrics, which may overlook specific security threats. Fortu-
nately, the CloudMonitor framework can be tailored to better understand the intricacies of

Future Internet 2024, 16, 110 31 of 36

new threats as they pertain to IFT performance and protection. However, in this work, we
have supplied these critical building blocks, namely (Sections 4.3, 4.4, 5.1 and 5.2) covering
the (a) CloudMonitor use-case, (b) formulation for enforcing the rules of data isolation, (c)
data tracking policy framework, and (d) a basis for managing confidential data flow and
data leak prevention using the CloudMonitor framework.

7. Conclusions

In our comprehensive review of existing IFT tools, we examined several analogs to
CloudMonitor that address data leakage in complex cloud systems. Traditional methods
often burden CSPs with significant overhead and management activities that drive the
exploration of alternatives like IFT. Our analysis, focused primarily on the consumer
side, augmented consumer data subsets with security tags and deployed a network of
monitors which facilitated the detection and prevention of data leaks among cloud tenants.
However, CloudMonitor stands out as a comprehensive framework designed explicitly for
preserving data confidentiality and integrity in cloud services. By integrating IFT into its
core modules, such as integrity detection and emulated execution, CloudMonitor offers
real-time monitoring and enforcement of privacy policies with minimal overhead. Notably,
CloudMonitor’s ability to reject activities violating privacy policies in real-time and trigger
alarms for audit purposes underscores its utility in maintaining cloud security.

IFT introduces a novel architecture for information security in corporate settings.
It focuses on managing critical data flow to and from the cloud to prevent leaks and
monitor changes. Unlike previous efforts, IFT emphasizes achieving complete binary-level
compatibility with prevalent cloud services.

Our approach starts by considering consumer organizations’ perspectives and propos-
ing a monitoring tool by using a thin model approach positioned between consumer
organizations and the cloud. This tool serves as a foundational element for a comprehen-
sive information security platform. IFT aligns with existing cloud storage services while
enabling thorough monitoring of user data and its interactions with external entities.

Implementing dynamic taint analysis and policy fulfillment within the cloud service
enhances security by monitoring data flow and enforcing end-to-end Data Loss Prevention
(DLP) constraints. However, significant runtime overhead due to dynamic taint analysis
hampers mainstream adoption. Our study introduces algorithmic solutions to mitigate per-
formance costs, including native machine instruction-level monitoring and asynchronous
taint tracking.

Combining these optimizations, IFT achieves a notable performance improvement
compared to previous approaches, into a framework we call CloudMonitor. Despite
some overhead, particularly in CPU-bound scenarios, user feedback indicates manageable
impacts on productivity. Notably, IFT stands out as the only system with a functional
interactive interface and effective whole-system byte-level taint tracking.

Semantic gaps between cloud storage services and consumer infrastructure pose
challenges in distinguishing intentional and unintentional data transmissions. Practical
examinations reveal false tainting instances and highlight the need for further research
into taint-spreading dynamics. Standard IFT techniques may not fully align with legacy
application binaries, necessitating application-level restructuring.

To address these challenges, we propose methods for identifying and mitigating taint
label leakage channels. While our initial results show promise, additional research is
required to extend these methodologies to other cloud services.

Despite these advancements, it is essential to acknowledge the challenges encountered
along the way. The phenomenon of taint explosion poses a significant hurdle that neces-
sitates ongoing research efforts to better understand its dynamics and develop effective
mitigation strategies. Furthermore, the semantic gap between cloud storage services and
consumer infrastructure presents a practical constraint that requires innovative solutions
necessary to overcome said constraints.

Future Internet 2024, 16, 110 32 of 36

8. Future Work

We have outlined key research directions, primarily focusing on improving dynamic
taint analysis performance. Despite past concerns about speed, our findings show signifi-
cant reductions in overhead, enabling real-time analysis in the cloud. However, addressing
performance alone is not enough for widespread acceptance; other obstacles persist.

Our work lays the groundwork for future research, utilizing our CloudMonitor proto-
type for ongoing investigations. To enhance data security in cloud environments, devel-
opers can utilize blockchain for secure data transfers [91] and AI for breach detection [92].
Control-flow integrity techniques ensure authorized access to sensitive data while combin-
ing static and dynamic analysis improves information flow tracking [93].

Efficient resource utilization is crucial and will be achieved through cost-effective cloud
usage, algorithm optimization, and a pay-per-use model [94]. Modular cloud platforms
offer flexibility and adaptability that could minimize development and maintenance costs
while meeting evolving demands from both CSPs and CSCs.

Author Contributions: Conceptualization, F.A. and M.A.; methodology, F.A. and M.A.; software, F.A.;
validation, F.A., M.A. and F.T.S.; formal analysis, F.A. and M.A.; investigation, F.A.; resources, F.A.;
data curation, F.A.; writing—original draft preparation, F.A. and F.T.S.; writing—review and editing,
M.A. and F.T.S.; visualization, F.A.; supervision, F.T.S.; project administration, F.T.S.; funding acquisi-
tion, F.A. and F.T.S. All authors have read and agreed to the published version of the manuscript.

Funding: This project was funded by the Deanship of Scientific Research at Prince Sattam bin
Abdulaziz University award number (PSAU/2024/R/1445).

Data Availability Statement: The data presented in this study are available on GitHub. Specifically,
the Intel-Pin Tools used are available at the GitHub repository: https://github.com/chiro2001/
arch-lab/blob/master/lab1/examples/inscount2.cpp (accessed on 9 February 2023). Additionally,
the Syslog workload code can be found at: https://github.com/syslog-ng/syslog-ng#!/usr/bin/
envbash (accessed on 9 February 2023), and the DataNode workload code is available at the following
repository: https://github.com/chenseanxy/helm-hadoop-3/tree/master/image (accessed on 9
February 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Acronym Meaning Acronym Meaning

ACL Access Control Lists INTEL-PIN
Dynamic binary instrumentation
framework

Aeolus
A platform for building secure distributed
applications using the decentralized information
flow control model

SafeWeb Service that is designed to help
users identify malicious websites

API Application Programming Interfaces ISP Internet Service Provider

Asbestos

A system (Circa ’05) designed to enhance
security by enforcing IFT at the protection domain
level within a computing environment.

NiFi
Niagara Files provides a way to stream
rapidly flowing data across systems for
automated storage, management, and
manipulation in real-time.

BLS
Boneh Lynn Shacham, a cryptographic
signature scheme allows users to
verify a signer is authentic

LIBDFT Dynamic Data Flow Tracking

BytesRead Number of bytes read by the operation from
the disk to the cache.

LMBench
Micro-benchmark suite designed to focus
on basic building blocks of many
common system apps

BytesWrite Total bytes are written MAC Mandatory Access Control
CCD Consumer Confidential Data MB Megabyte

CFI Control-flow integrity Ncrack High-speed network authentication
cracking tool

https://github.com/chiro2001/arch-lab/blob/master/lab1/examples/inscount2.cpp
https://github.com/chiro2001/arch-lab/blob/master/lab1/examples/inscount2.cpp
https://github.com/syslog-ng/syslog-ng#!/usr/bin/envbash
https://github.com/syslog-ng/syslog-ng#!/usr/bin/envbash
https://github.com/chenseanxy/helm-hadoop-3/tree/master/image

Future Internet 2024, 16, 110 33 of 36

CIA Confidentiality, Integrity, and Availability NFV Network Function Virtualization
CIFT Centralized Information Flow Tracking IT Information Technology
CloudFence A DFT framework for cloud-based applications. PaaS Platform as a Service

CloudFilter
Enforces email security policies and helps assure
legal and regulatory compliance across your
organization for inbound email

Patator
Multi-purpose brute-forcer, with a modular
design and a flexible usage.

CPU Central Processing Unit PID Process ID
CSC Cloud Service Consumers PPID Parent Process ID

CSF Cloud Security Framework QEMU
Quick Emulator is a free and open-source
emulator

CSP Cloud Service Providers RBAC Role-Based Access Control
DAC Discretionary Access Control SaaS Software as a Service
DAC Dynamic Access Control IoT Internet of Things
DataNode Type of node in a distributed file system SCP Secure Copy
DBI Dynamic Binary Instrumentation SDN Software-Defined Networking

DisTaint
Dynamic IFT system that protects privacy and
detects data leaks

DoS Denial of Service

DFT Data Flow Tracking SLA Service-Level Agreements
DIFT Dynamic Information Flow Tracking SOP Same Origin Policy
DEFcon Defense Ready Condition SSH Secure Shell
DLP Data Leak Prevention sshpass SSH Password

Secure-
ComFlow

System that employs IFC to secure
cloud environments.

STAB

Debugging data format for storing
information about computer programs
for use by symbolic and
source-level debuggers.

DStar
Digital voice and data protocol specification for
amateur radio

Stackdrive
A cloud computing systems
management service

DynamoRIO
BSD-licensed dynamic binary instrumentation
framework to develop dynamic program
analysis tools

TEMU
Provided by the BitBlaze infrastructure for
dynamic binary analysis to perform
whole-system dynamic taint analysis

TeraGen
This MapReduce program generates large data sets
to be sorted

TeraSort
Typical Map/Reduce job; Sorts 1TB data (or
any other amount of data) as fast as
possible

IFT Information Flow Control Kernel Module EC2 Elastic Compute Cloud
Flume Information Flow Tracking VCPU Virtual Central Processing Unit
GCP The commercial product Google Cloud Platform Virtual RAM Virtual Random Access Memory

IaaS
Infrastructure as a Service as opposed to SaaS
and PaaS

VM Virtual Machine

FlowK
Distributed, reliable, and available service for
efficiently collecting, aggregating, and moving
large amounts of log data.

xHdra
Graphical version of hydra, a parallelized
login cracker that supports numerous
attack protocols

IMBench

Set of applications for intermittently
powered devices
(https://github.com/CMUAbstract/imbench,
accessed on 9 February 2023).

C&P Consumers and Providers

References
1. Wang, Z.; Wang, N.; Su, X.; Ge, S. An empirical study on business analytics affordances enhancing the management of cloud

computing data security. Int. J. Inf. Manag. 2020, 50, 387–394. [CrossRef]
2. Daylami, N. The origin and construct of cloud computing. Int. J. Acad. Bus. World 2015, 9, 39–45.
3. Moussa, A.N.; Ithnin, N.; Zainal, A. CFaaS: Bilaterally agreed evidence collection. J. Cloud Comput. Adv. Syst. Appl. 2018, 7, 1–19.

[CrossRef]
4. Garg, D.; Sidhu, J.; Rani, S. Improved TOPSIS: A multi-criteria decision making for research productivity in cloud security.

Comput. Stand. Interfaces 2019, 65, 61–78. [CrossRef]
5. Moussa, A.N.; Ithnin, N.B.; Miaikil, O.A. Conceptual forensic readiness framework for infrastructure-as-a-service consumers.

In Proceedings of the 2014 IEEE Conference on Systems, Process and Control (ICSPC 2014), Kuala Lumpur, Malaysia, 12–14
December 2014.

https://github.com/CMUAbstract/imbench
https://doi.org/10.1016/j.ijinfomgt.2019.09.002
https://doi.org/10.1186/s13677-017-0102-3
https://doi.org/10.1016/j.csi.2019.02.002

Future Internet 2024, 16, 110 34 of 36

6. Kumar, R.; Goyal, R. On cloud security requirements, threats, vulnerabilities and countermeasures: A survey. Comput. Sci. Rev.
2019, 33, 1–48. [CrossRef]

7. Moussa, A.N.; Ithnin, N.; Almolhis, N.; Zainal, A. A Consumer-Oriented Cloud Forensic Process Model. In Proceedings of the
IEEE 10th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 2–3 August 2019.

8. Jakóbik, A. Stackelberg game modeling of Cloud security defending strategy in the case of information leaks and corruption.
Simul. Model. Pract. Theory 2020, 103, 102071. [CrossRef]

9. Calzavara, S. Security II-Same Origin Policy; Universita Ca’ Foscari Venezia: Venice, Italy, 2020.
10. Roth, S.; Barron, T.; Calzavara, S.; Nikiforakis, N.; Stock, B. Complex Security Policy? A Longitudinal Analysis of Deployed

Content Security Policies. In Proceedings of the 27th Network and Distributed System Security Symposium (NDSS), San Diego,
CA, USA, 23–26 February 2020.

11. Dehoumon, N. Controlled-Environment Facility Resident Communications Employing Cross-Origin Resource Sharing (USPTO
10,581,871). U.S. Patent 10,581,871, 3 March 2020.

12. Jadidi, M.S.; Zaborski, M.; Kidney, B.; Anderson, J. CapExec: Towards Transparently-Sandboxed Services (Extended Version).
arXiv 2019, arXiv:1909.12282.

13. Wang, H.; Wang, C.; Cai, Y.; Zhou, Q. A high-level information flow tracking method for detecting information leakage. Integration
2019, 69, 393–399. [CrossRef]

14. Almolhis, N.; Alashjaee, A.M.; Duraibi, S.; Alqahtani, F.; Moussa, A.N. The Security Issues in IoT-Cloud: A Review. In
Proceedings of the 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA), Langkawi, Malaysia,
28–29 February 2020.

15. Hou, H.; Yu, J.; Hao, R. Cloud storage auditing with deduplication supporting different security levels according to data
popularity. J. Netw. Comput. Appl. 2019, 134, 26–39. [CrossRef]

16. Walia, M.K.; Halgamuge, M.N.; Hettikankanamage, N.D.; Bellamy, C. Cloud Computing Security Issues of Sensitive Data. In
Handbook of Research on the IoT, Cloud Computing, and Wireless Network Optimization; IGI Global: Hershey, PA, USA, 2019; pp. 60–84.

17. King, N.J.; Raja, V.T. Protecting the privacy and security of sensitive customer data in the cloud. Comput. Law Secur. Rep. 2012, 28,
308–319. [CrossRef]

18. Alassafi, M.O.; Alharthi, A.; Walters, R.J.; Wills, G.B. A framework for critical security factors that influence the decision of cloud
adoption by Saudi government agencies. Telemat. Inform. 2017, 34, 996–1010. [CrossRef]

19. Ramachandra, G.; Iftikhar, M.; Khan, F.A. A Comprehensive Survey on Security in Cloud Computing. Procedia Comput. Sci. 2017,
110, 465–472. [CrossRef]

20. Bowers, K.D.; Juels, A.; Oprea, A. HAIL: A high-availability and integrity layer for Cloud storage. In Proceedings of the 16th
ACM Conference on Computer and Communications Security, Chicago, IL, USA, 9–13 November 2009.

21. PS, L.R. Google Cloud Platform Cookbook: Implement, Deploy, Maintain, and Migrate Applications on Google Cloud Platform; Packet
Publishing Ltd.: Birmingham, UK, 2018.

22. Barsoum, A.F.; Hasan, M.A. Provable Possession and Replication of Data over Cloud Servers; Centre for Applied Cryptographic
Research (CACR), University of Waterloo: Waterloo, ON, Canada, 2010.

23. Juels, A.; Kaliski, B.S., Jr. PORs: Proofs of retrievability for large files. In Proceedings of the 14th ACM conference on Computer
and Communications Security, New York, NY, USA, 2 November–31 October 2007.

24. Shacham, H.; Waters, B. Compact Proofs of Retrievability. J. Cryptol. 2013, 26, 442–483. [CrossRef]
25. Guo, W.; Qin, S.; Lu, J.; Gao, F.; Jin, Z.; Wen, Q. Improved Proofs of Retrievability and Replication for Data Availability in Cloud

Storage. Comput. J. 2020, 63, 1216–1230. [CrossRef]
26. Chang, J.; Shao, B.; Ji, Y.; Xu, M.; Xue, R. Secure network coding from secure proof of retrievability. Sci. China Inf. Sci. 2021, 64,

1–2. [CrossRef]
27. Gritti, C. Publicly Verifiable Proofs of Data Replication and Retrievability for Cloud Storage. In Proceedings of the International

Computer Symposium (ICS), Tainan, Taiwan, 17–19 December 2020.
28. Kumar, R.; Goyal, R. Top Threats to Cloud: A Three-Dimensional Model of Cloud Security Assurance. In Computer Networks and

Inventive Communication Technologies; Springer: Berlin/Heidelberg, Germany, 2021; pp. 683–705.
29. Shynu, P.G.; Nadesh, R.K.; Menon, V.G.; Venu, P.; Abbasi, M.; Khosravi, M. A secure data deduplication system for integrated

cloud-edge networks. J. Cloud Comput. 2020, 9, 61.
30. Wang, R. Research on data security technology based on Cloud storage. Procedia Eng. 2017, 174, 1340–1355. [CrossRef]
31. Renuga, S.; Jagatheeshwari, S.S.K. Efficient Privacy-Preserving Data Sanitization over Cloud Using Optimal GSA Algorithm.

Comput. J. 2018, 61, 1577–1588. [CrossRef]
32. Han, P.; Liu, C.; Cao, J.; Duan, S.; Pan, H.; Cao, Z.; Fang, B. CloudDLP: Transparent and Scalable Data Sanitization for Browser-

Based Cloud Storage. IEEE Access 2020, 8, 68449–68459. [CrossRef]
33. John, N.P.; Bindu, V.R. An Optimal Sanitization Algorithm Based Secure Migration of Virtual Machines in Cloud Datacenters.

Indian J. Comput. Sci. Eng. 2021, 12, 709–718. [CrossRef]
34. Pasquier, T.F.M.; Powles, J.E. Expressing and enforcing location requirements in the cloud using information flow control. In

Proceedings of the 2015 IEEE International Conference on Cloud Engineering, Tempe, AZ, USA, 9–13 March 2015.
35. Dontov, D.; Klymenko, M. Decentralized Access Control for Cloud Services. U.S. Patent 16/183,575, 2019.
36. Han, L.C.; Susilo, W.; Huang, X. Fine-grained Information Flow Tracking using attributes. Inf. Sci. 2019, 484, 167–182. [CrossRef]

https://doi.org/10.1016/j.cosrev.2019.05.002
https://doi.org/10.1016/j.simpat.2020.102071
https://doi.org/10.1016/j.vlsi.2019.08.001
https://doi.org/10.1016/j.jnca.2019.02.015
https://doi.org/10.1016/j.clsr.2012.03.003
https://doi.org/10.1016/j.tele.2017.04.010
https://doi.org/10.1016/j.procs.2017.06.124
https://doi.org/10.1007/s00145-012-9129-2
https://doi.org/10.1093/comjnl/bxz151
https://doi.org/10.1007/s11432-020-2997-0
https://doi.org/10.1016/j.proeng.2017.01.286
https://doi.org/10.1093/comjnl/bxy067
https://doi.org/10.1109/ACCESS.2020.2985870
https://doi.org/10.21817/indjcse/2021/v12i3/211203229
https://doi.org/10.1016/j.ins.2019.01.074

Future Internet 2024, 16, 110 35 of 36

37. Gollamudi, A.; Chong, S.; Arden, O. Information Flow Tracking for distributed trusted execution environments. In Proceedings
of the IEEE 32nd Computer Security Foundations Symposium (CSF), Hoboken, NJ, USA, 25–28 June 2019.

38. Chou, S.-C. An agent-based inter-application information flow control model. J. Syst. Softw. 2005, 75, 179–187. [CrossRef]
39. Bacon, J.; Eyers, D.; Pasquier, T.F.M.; Singh, J.; Papagiannis, I.; Pietzuch, P. Information Flow Control for Secure Cloud Computing.

IEEE Etransactions Netw. Serv. Manag. 2014, 11, 76–89. [CrossRef]
40. Niu, B.; Tan, G. Efficient user-space Information Flow Tracking. In Proceedings of the 8th ACM SIGSAC Symposium on

Information, Computer and Communications Security, New York, NY, USA, 8–10 May 2013.
41. Alpernas, K.; Flanagan, C.; Fouladi, S.; Ryzhyk, L.; Sagiv, M.; Schmitz, T.; Winstein, K. Secure serverless computing using dynamic

information flow control. Proc. ACM Program. Lang. 2018, 2, 118. [CrossRef]
42. Yuan, J.; Qiang, W.; Jin, H.; Zou, D. CloudTaint: An elastic taint tracking framework for malware detection in the cloud. J.

Supercomput. 2014, 70, 1433–1450. [CrossRef]
43. Liu, F.; Tong, J.; Mao, J.; Bohn, R.; Messina, J.; Badger, L.; Leaf, D. NIST Cloud Computing Reference Architecture. NIST Spec.

Publ. 2011, 500, 292.
44. Mell, P.; Grance, T. The NIST Definition of Cloud Computing. Commun. ACM 2010, 53, 50.
45. Chess, B.; West, J. Dynamic taint propagation: Finding vulnerabilities without attacking. Inf. Secur. Tech. Rep. 2008, 13, 33–39.

[CrossRef]
46. Efstathopoulos, P.; Krohn, M.; VanDeBogart, S.; Frey, C.; Ziegler, D.; Kohler, E.; Mazieres, D.; Kashooek, F.; Morris, R. Labels and

event processes in the Asbestos operating system. ACM Trans. Comput. Syst. 2007, 25, 3.
47. Papagiannis, I.; Pietzuch, P. Cloudfilter: Practical control of sensitive data propagation to the cloud. In Proceedings of the ACM

Workshop on Cloud Computing Security Workshop, New York, NY, USA, 19 October 2012.
48. Zeldovich, N.; Boyd-Wickizer, S.; Kohler, E.; Mazieres, D. Making information flow explicit in HiStar. Commun. ACM 2011, 54,

93–101. [CrossRef]
49. Krohn, M.; Yip, A.; Brodsky, M.; Cliffer, N.; Kaashoek, M.F.; Kohler, E.; Morris, R. Information Flow Tracking for standard OS

abstractions. ACM SIGOPS Oper. Syst. Rev. 2007, 41, 321–334. [CrossRef]
50. Wang, X.; Ma, H.; Yang, K.; Liang, H. An Uneven Distributed System for Dynamic Taint Analysis Framework. In Proceedings of

the 2nd International Conference on Cyber Security and Cloud Computing, New York, NY, USA, 3–5 November 2015.
51. Pappas, V.; Kemerlis, V.P.; Zavou, A.; Polychronakis, M.; Keromytis, A.D. CloudFence: Data Flow Tracking as a Cloud Service. In

Proceedings of the International Workshop on Recent Advances in Intrusion Detection, Gros Islet, Saint Lucia, 23–25 October 2013.
52. Khurshid, A.; Khan, A.N.; Khan, F.G.; Ali, M.; Shuja, J.; Khan, A.U.R. Secure-CamFlow: A device-oriented security model to

assist information flow control systems in cloud environments for IoTs. Concurr. Comput. Pract. Exp. 2019, 31, e4729. [CrossRef]
53. Joshi, A.; Purohit, P.; Jain, R. A Simplified Rule Based Distributed Information Flow Control for Cloud Computing. Int. J. Comput.

Sci. Inf. Technol. 2015, 6, 1408–1414.
54. Leuprecht, C.; Skillicorn, D.B.; Tait, V.E. Beyond the Castle Model of cyber-risk and cyber-security. Gov. Inf. Q. 2016, 33, 250–257.

[CrossRef]
55. Sun, Y.; Petracca, G.; Ge, X.; Jaeger, T. Pileus: Protecting user resources from vulnerable cloud services. In Proceedings of the 32nd

Annual Conference on Computer Security Applications, New York, NY, USA, 5–8 December 2016.
56. Shyamasundar, R.K.; Kumar, N.N.; Rajarajan, M. Information-Flow Control for Building Security and Privacy Preserving Hybrid

Clouds. In Proceedings of the 2016 IEEE 18th International Conference on High Performance Computing and Communica-
tions; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Sydney, NSW, Australia, 12–14 December 2016.

57. Shahidinejad, A.; Nikoogoftar, E.; Ahsan, R. Software as a Service Placement in the Cloud Computing Using Genetic Algorithm.
Int. J. Ser. Eng. Sci. 2020, 6, 22–33.

58. Hazelwood, K.; Kaeli, D.; Connors, D.; Reddi, V.J. Using Pin for Compiler and Computer Architecture Research and Education.
2007. Available online: https://www.intel.com/content/dam/develop/external/us/en/documents/pldi2007-pintutorial-25
6675.pdf (accessed on 9 February 2023).

59. Armknecht, F.; Bohli, J.M.; Karame, G.O.; Youssef, F. Transparent Data Deduplication in the Cloud. In Proceedings of the
Conference on Computer and Communications Security, New York, NY, USA, 12–16 October 2015.

60. Min, S.L.; Pettit, R.; Puschner, P.; Ungerer, T. Software Technologies for Embedded and Ubiquitous Systems; Springer Science & Business
Media: Berlin/Heidelberg, Germany, 2010.

61. Vachharajani, N.; Bridges, M.J.; Chang, J.; Rangan, R.; Ottoni, G.; Blome, J.A.; Reis, G.A.; Vachharajani, M.; August, D.I. RIFLE:
An Architectural Framework for User-Centric Information-Flow Security. In Proceedings of the International Symposium on
Microarchitecture, Los Alamitos, CA, USA, 4–8 December 2004.

62. Suh, G.E.; Lee, J.W.; Zhang, D.; Devadas, S. Secure program execution via dynamic information flow tracking. In Proceedings
of the ASPLOS XI: Eleventh International Conference on Architectural Support for Programming Languages and Operating
Systems, Boston, MA, USA, 9–13 October 2004; Volume 39, pp. 85–96.

63. Zeldovich, N.; Boyd-Wickizer, S.; Mazieres, D. Securing Distributed Systems with Information Flow Tracking. In Proceedings of
the NSDI ’08: 5th USENIX Symposium on Networked Systems Design USENIX, San Francisco, CA, USA, 15 April 2008.

https://doi.org/10.1016/j.jss.2004.03.017
https://doi.org/10.1109/TNSM.2013.122313.130423
https://doi.org/10.1145/3276488
https://doi.org/10.1007/s11227-014-1235-5
https://doi.org/10.1016/j.istr.2008.02.003
https://doi.org/10.1145/2018396.2018419
https://doi.org/10.1145/1323293.1294293
https://doi.org/10.1002/cpe.4729
https://doi.org/10.1016/j.giq.2016.01.012
https://www.intel.com/content/dam/develop/external/us/en/documents/pldi2007-pintutorial-256675.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/pldi2007-pintutorial-256675.pdf

Future Internet 2024, 16, 110 36 of 36

64. Cheng, W.; Ports, D.R.; Schultz, D.; Popic, V.; Blankstein, A.; Cowling, J.; Curtis, D.; Shrira, L.; Liskov, B. Abstractions for usable
Information Flow Tracking in Aeolus. In Proceedings of the 2012 USENI Annual Technical Conference (USENI ATC 12), Boston,
MA, USA, 13–15 June 2012.

65. Hosek, P.; Migliavacca, M.; Papagiannis, I.; Eyers, D.M.; Evans, D.; Shand, B.; Bacon, J.; Pietzuck, P. SafeWeb: A Middleware for
Securing Ruby-Based Web Applications; Springer: Berlin/Heidelberg, Germany, 2011.

66. Waschke, M. How Clouds Hold IT Together: Integrating Architecture with Cloud Deployment, 1st ed.; Apress L.P.: Berkeley, CA,
USA, 2015.

67. Geetha, P.; CR, R.R. SAMR: Optimal Workflow of VMs in Cloud Computing. In Proceedings of the International Conference
on Recent Trends in Computing, Communication and Networking Technologies (ICRTCCNT’19), Tamil Nadu, India, 18–19
October 2019.

68. Dick, R.S.; Detmer, D.E.; Steen, E.B. The Computer-Based Patient Record; National Academies Press: Washington, DC, USA, 1997.
69. Ye, K. Cloud Computing—CLOUD 2021; Springer Nature: Berlin/Heidelberg, Germany, 2022.
70. Site, B.W. TEMU: The BitBlaze Dynamic Analysis Component. 2023. Available online: https://bitblaze.cs.berkeley.edu/temu.html

(accessed on 9 February 2023).
71. Stone, G.R.; Bollinger, L.C. National Security, Leaks and Freedom of the Press: The Pentagon Papers Fifty Years On; Oxford University

Press: Oxford, UK, 2021.
72. Ackerman, P. Section 2: Industrial Cybersecurity—Security Monitoring; Packt Publishing, Limited: Birmingham, UK, 2021.
73. Morovati, K.; Kadam, S.; Ghorbani, A. A network based document management model to prevent data extrusion. Comput. Secur.

2016, 59, 71–91. [CrossRef]
74. Rajole, V. Causes of Data Breaches and Preventive Measures. Data Loss Prevention; GRIN Verlag: Munchen, Germany, 2013.
75. Scribe, J.; Guan, J. Lecture 4: Dynamic Analysis and Fuzzing Presentation Logistics. 2019. Available online: https://www.cs.

columbia.edu/~suman/dynamic_analysis_notes.pdf (accessed on 9 February 2023).
76. Levchenko, A.V.; Fyodorov, S.A. Dynamic Binary Instrumentation Tool for Data Locality Analysis. St. Petersburg State

Polytechnical University Journal. Computer Science. Telecommun. Control. Syst. 2016, 236, 53–64.
77. Neira-Ayuso, P.; Gasca, R.M.; Lefevre, L. Communicating between the kernel and user-space in Linux using Netlink sockets.

Softw. Pract. Exp. 2010, 40, 797–810. [CrossRef]
78. Dwivedi, H. Implementing SSH; John Wiley & Sons: Hoboken, NJ, USA, 2003.
79. Garfinkel, S.; Spafford, G. Web Security, Privacy & Commerce, 2nd ed.; O’Reilly Media, Incorporated: Newton, MA, USA, 2001.
80. Diogenes, Y.; Ozkaya, E. Cybersecurity—Attack and Defense Strategies; Packt Publishing Ltd.: Birmingham, UK, 2022.
81. Handbook, L. How to Find Process ID (PID and PPID) in Linux. 2022. Available online: https://linuxhandbook.com/find-

process-id/ (accessed on 9 February 2023).
82. Manual, D.M.-C. Neo4j Graph Data Platform. 2023. Available online: https://neo4j.com/docs/operations-manual/current/

database-administration/ (accessed on 9 February 2023).
83. IBM. What Are NoSQL Databases? 2023. Available online: www.ibm.com/topics/nosql-databases (accessed on 9 February 2023).
84. Ochieng, N.; Mwangi, W.; Ateya, I. A Tour of the Computer Worm Detection Space. Int. J. Comput. Appl. 2014, 104, 29–33.

[CrossRef]
85. GoLinuxCloud. Automated SSH Brute Force Attack [4 Methods]. 2023. Available online: www.golinuxcloud.com/ssh-brute-

force-attack/ (accessed on 14 February 2023).
86. Apache, N. NiFi System Administrator’s Guide. 2023. Available online: https://nifi.apache.org/docs/nifi-docs/html/

administration-guide.html (accessed on 9 February 2023).
87. Grafana. Data Analytics and Interactive Visualization. 2022. Available online: www.stackscale.com/blog/grafana/ (accessed on

28 February 2023).
88. IBM. TeraSort Benchmark. 2023. Available online: www.ibm.com/docs/en/spectrum-symphony/7.2.1?topic=mapreduce-

terasort-benchmark (accessed on 9 February 2023).
89. Monitor, A. guywi-ms. Collect Syslog Data Sources with the Log Analytics Agent in Azure Monitor—Azure Monitor. 2023.

Available online: https://learn.microsoft.com/en-us/azure/azure-monitor/agents/data-sources-syslog (accessed on 9 Febru-
ary 2023).

90. Labs, G. Ambari Metrics Plugin for Grafana. 2023. Available online: https://grafana.com/grafana/plugins/praj-ams-datasource/
(accessed on 9 February 2023).

91. Burgwinkel, D. Blockchain Technology. In Blockchains-wichtige Fragen aus IT-Sicht; De Gruyter: Berlin, Germany, 2017; pp. 123–148.
92. Winston, P.H. Artificial Intelligence; Addison-Wesley: Boston, MA, USA, 2019.
93. Wang, Y.; Li, Q.; Chen, Z.; Zhang, P.; Zhang, G.; Shi, Z. BCI-CFI: A context-sensitive control-flow integrity method based on

branch correlation integrity. Inf. Softw. Technol. 2021, 136, 106572. [CrossRef]
94. Petrosian, L.G.; Ambartsumian, V.A. Static and Dynamic Analysis of Engineering Structures; John Wiley & Sons: Hoboken, NJ,

USA, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://bitblaze.cs.berkeley.edu/temu.html
https://doi.org/10.1016/j.cose.2016.02.003
https://www.cs.columbia.edu/~suman/dynamic_analysis_notes.pdf
https://www.cs.columbia.edu/~suman/dynamic_analysis_notes.pdf
https://doi.org/10.1002/spe.981
https://linuxhandbook.com/find-process-id/
https://linuxhandbook.com/find-process-id/
https://neo4j.com/docs/operations-manual/current/database-administration/
https://neo4j.com/docs/operations-manual/current/database-administration/
www.ibm.com/topics/nosql-databases
https://doi.org/10.5120/18169-9045
www.golinuxcloud.com/ssh-brute-force-attack/
www.golinuxcloud.com/ssh-brute-force-attack/
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html
www.stackscale.com/blog/grafana/
www.ibm.com/docs/en/spectrum-symphony/7.2.1?topic=mapreduce-terasort-benchmark
www.ibm.com/docs/en/spectrum-symphony/7.2.1?topic=mapreduce-terasort-benchmark
https://learn.microsoft.com/en-us/azure/azure-monitor/agents/data-sources-syslog
https://grafana.com/grafana/plugins/praj-ams-datasource/
https://doi.org/10.1016/j.infsof.2021.106572

	Introduction
	Overview
	Research Problem
	Motivation
	Objectives
	Research Questions
	Scope of the Research
	Limitations of Validation Experiments

	Background and Related Work
	Cloud Computational Imperatives
	CSC Cloud Security Concerns
	Information Flow Tracking (IFT)
	Studies Using IFT for Cloud Security

	Materials, Methods, and Tools Used by the CloudMonitor Framework
	Dynamic Information Flow Tracking (DIFT)
	Static Information Flow Tracking
	Dynamic Information Flow Tracking

	Intel-Pin
	The LIBDFT Meta-Tool Capabilities
	Virtual CPU (VCPU)
	Memory Bitmap (Mem-Bitmap)
	Segment Translation Table (STAB)
	Implementation of LIBDFT Using Tracker and the I/O Interface

	Intel-Pin and LIBDFT Tools Evaluation

	CloudMonitor as Our Conceptual Framework
	Design Goals of the CloudMonitor Framework
	Tools Selection Overview and Rationale
	The CloudMonitor Use-Case
	Enforcing the Rules of Data Isolation
	Results

	Data Leak Prevention Using CloudMonitor
	The Data Tracking Policy Framework
	The Information Flow Tracking Mechanism
	Implementation
	Consumer Side Implementation Perspective
	Provider Side Implementation

	Using CloudMonitor to Detect Remote Computer Worm Attacks
	Consumer-Side Attack Analysis
	Provider-Side Attack Analysis
	Performance Analysis Results
	Scalability in Perspective

	Discussion
	Conclusions
	Future Work
	References

