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Abstract: Federated learning trains a neural network model using the client’s data to maintain the
benefits of centralized model training while maintaining their privacy. However, if the client data
are not independently and identically distributed (non-IID) because of different environments, the
accuracy of the model may suffer from client drift during training owing to discrepancies in each
client’s data. This study proposes a personalized federated learning algorithm based on the concept of
multitask learning to divide each client model into two layers: a feature extraction layer and a category
prediction layer. The feature extraction layer maps the input data to a low-dimensional feature vector
space. Furthermore, the parameters of the neural network are aggregated with those of other clients
using an adaptive method. The category prediction layer maps low-dimensional feature vectors to
the label sample space, with its parameters remaining unaffected by other clients to maintain client
uniqueness. The proposed personalized federated learning method produces faster learning model
convergence rates and higher accuracy rates for the non-IID datasets in our experiments.

Keywords: personalized federated learning; client drift; non-IID datasets; neural network

1. Introduction

Artificial intelligence (AI) has rapidly developed with the continuous advancement of
technology. Deep learning is one of the most popular AI technologies. The main feature
of deep-learning technology is that it can automatically extract features from input data
and train efficient neural network models using large amounts of data [1–3]. However,
deep-learning technology requires a large amount of data for training, and these data
usually come from different clients. The challenge of effectively training deep-learning
models while preserving client data privacy has emerged as a critical issue. Therefore,
customer data privacy has become a major concern in deep-learning technology [4,5].

Federated learning technology has emerged as a solution for avoiding the problem of
exposing client data during model training. It is a distributed machine-learning method
that can aggregate data for model training while maintaining client privacy [6,7]. The
main concept of federated learning technology is to divide the model training process
into multiple stages, each of which involves different clients and transmits only the model
parameters. This approach safeguards the confidentiality of client data when using large
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datasets for model training, resulting in enhanced model accuracy and generalization. Fed-
erated learning technology has found extensive applications in various domains, including
healthcare, finance, and intelligent transportation [8–10].

Despite significant progress in federated learning, some technical challenges remain
unaddressed. One of the main issues is non-independent and identically distributed
(non-IID) data heterogeneity. In real-world applications, data distribution among clients
often varies. In federated learning, every device or server has its own data distribution,
which can be significantly different from that of other devices. This can lead to poor
performance if the model is trained using non-IID data [11,12]. This study presents a novel
approach to federated learning that allows each client to have their own personalized
model and preserves local training results during the federated learning process. This
approach effectively mitigates the impact of non-IID data on federated learning. To achieve
this, the neural network model is divided into two parts: a feature extraction layer and
a category prediction layer. During the federated learning process, each client has their
own personalized model, which follows the above two-part structure. When the server
returns the new global model to the clients, the category prediction layer of each client is
unaffected and retains its local training results. The feature extraction layer does not change
completely according to the global model. Instead, it is compared with the global model
and local training results and then mixed based on the comparison results. Using this
approach, this study aims to effectively mitigate the impact of non-IID data on federated
learning and improve its performance. The contributions of this study can be summarized
as follows:

1. This study aims to develop a personalized federated learning process to mitigate the
impact of data heterogeneity on federated learning. Unlike the conventional federated
learning method, which trains a global model for all clients, this study proposes a
personalized approach that adjusts the global model based on the data distribution of
each client.

2. A neural network model is used to establish personalized models for each client. This
study proposes a theoretical basis for client model partitioning based on the properties
of neural network models and presents a practical partitioning method that divides
client models into feature extraction and category prediction layers. During federated
learning training, the feature extraction layers are adjusted in a personalized manner,
whereas the category prediction layers serve as elements that give the client models
personalized characteristics.

3. This method includes personalized feature extraction for client data. Federated
learning requires datasets with similar properties to achieve results similar to those
of multitask learning by finding an excellent feature extraction function. However,
the effect of client drift makes it difficult for the feature extraction layer to achieve
excellent feature extraction capabilities, which affects the final performance. Therefore,
this study proposes an adaptive approach to reduce the adverse effects of client drift
on the feature extraction layer.

2. Related Work

The concept of federated learning was first presented by Google in 2017. This model
facilitates the training of machine-learning models without centralized data. Instead, user
data are stored on the client’s side, and all clients participate in the training process. The
primary objective of federated learning is to safeguard user privacy and achieve a more
generalized model. During training, client-side processing exclusively handles user data,
and the model gradient undergoes encryption upon returning to the server to prevent
access by other clients. Furthermore, in federated learning, the server-side aggregation
algorithm considers all client neural network model parameters to yield a more generalized
model. McMahan et al. proposed a Federated Averaging (FedAvg) algorithm to aggregate
client model parameters on the server side in federated learning [13]. The FedAvg algorithm
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computes the average of the client model parameters and employs them as a global model
for a specific round.

The main distinction between federated and traditional deep-learning methods is the
dataset environment. In traditional deep learning, the dataset is centralized to provide the
model with access to all data. However, in federated learning, clients independently own
their datasets, resulting in various data distributions and impacting the model performance.
Based on the state of the client dataset, federated learning can be categorized into indepen-
dent and identically distributed (IID) or non-IID. Non-IID datasets reduce the effectiveness
of federated learning owing to client drift, as explained by Karimireddy et al. [14]. When
the client datasets are non-IIDs, the local models of each client are updated in different di-
rections, resulting in conflicting effects during aggregation on the server and decreasing the
effectiveness of federated learning. Karimireddy et al. (2020) also suggested that client data
heterogeneity could cause client drift, reducing the efficiency and accuracy of federated
learning [15]. Wang et al. utilized reinforcement learning to minimize the effects of non-IID
datasets on a global model and increase the convergence rate of federated learning [16].
Zhao et al. investigated and analyzed the performance of the FedAvg algorithm in an
environment where the client was distributed with non-IID datasets [17]. The study found
that the severity of non-IID datasets significantly affected the performance of the models
trained using FedAvg. Li et al. proposed the FedProx algorithm to enhance the vulnerability
of the FedAvg algorithm to heterogeneous client data by modifying the training objective
function of the client model [18].

Personalized federated learning is a novel machine-learning technique that addresses
the issue of data heterogeneity in federated learning. In traditional federated learning,
a global model is shared among all clients; however, when the data are non-uniformly
distributed among clients, the efficacy of the approach is compromised. Personalized
federated learning creates an individualized model for each client that adapts to the hetero-
geneity of their datasets, thereby enhancing the effectiveness of the federated learning. Wu
et al. examined the limitations of traditional federated learning when dealing with various
forms of heterogeneity and suggested that personalized federated learning can effectively
resolve the heterogeneity issue [19]. FedTP developed a learn-to-personalize mechanism to
encourage cooperation among clients and to increase scalability and generalization. The
results show that FedTP performed better than FedAvg-T in all cases. FedTP can combine
the FedPer, FedRod, and KNN-Per methods to enhance model performance [20]. FedOFA,
is design with utilizing personalized orthogonal filter attention for parameter recalibration.
And FedOFA also only operates on the server side, incurring no additional computational
cost on the client, making it advantageous in communication-constrained scenarios [21].
The server-side computing may lead the computing power, but also require more client-side
information modeling and network transmission resources. Li et al. (2021) presented the
Ditto algorithm, which is comparable to FedProx, by incorporating a proximal term into the
client’s objective function to indicate the divergence between the client’s local model and
the global model [22]. Moreover, the authors regulate the extent of the individualization of
the client’s local model. Arivazhagan et al. proposed FedPer as a personalized federated
learning method to address problems associated with client data heterogeneity [23]. FedPer
divides the model into base and personalized layers. The base layer was jointly trained on
all client data, whereas the personalized layer was trained solely on the client’s local data.
The experimental findings indicate that FedPer outperforms the general federated learning
method, FedAvg, when dealing with heterogeneous client data. However, FedPer lacks
a clear definition of how to partition personalized models, and the base layer is obtained
through FedAvg, which results in the base layer being affected by client data heterogeneity.
To address this, our study suggests partitioning the model into feature extraction and
category prediction layers, while obtaining the feature extraction layer through an adaptive
method rather than FedAvg. Additionally, this study introduces the concept of layer parti-
tioning and separates the model into a feature extraction layer and a category prediction
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layer based on the distinct characteristics of the neural network layers. A review of the
related work is shown in Table 1 below.

Table 1. Review of related work.

Method Characteristic Research Target and Advantages

FedAvg [13] The first federated learning algorithm
proposed by Google.

FedAvg is a collaborative training neural
network with data privacy.

Mime [15] It combines control variates and server-level
optimizer state.

Mime overcomes the natural client
heterogeneity and is faster than any

centralized method.

FAVOR [16] It proposes a new method based on
Q-learning to select a subset of devices.

FAVOR focuses on validation accuracy
and penalizes the use of more

communication rounds.

FedProx [18]
FedProx allows for the emergence of

inadequately trained local models and adds a
proximal term to the clients’ loss function.

FedProx reduces the impact of non-IID
on federated learning and improves the

accuracy relative to FedAvg.

FedPer [21] It separates the client model into two parts
and trains each individually.

FedPer demonstrates the ineffectiveness
of FedAvg and the effectiveness of

modeling personalization tasks.

FedTP [24]
It learns personalized self-attention for each
client while aggregating the other parameters

among the clients.

It combines FedTP with other methods,
including FedPer, FedRod, and KNN-Per,

to further enhance the model
performance. It achieves better accuracy

and learning performance.

Proposed method
It proposes a personalized federated learning
with adaptive feature extraction and category

prediction.

The study shows faster convergence
speed and lower data loss than the
FedProx and the FedPer federated

learning algorithms in Fashion-MNIST,
CIFAR10, and CIFAR100 datasets.

3. Research Methodology
3.1. Personalized Client Models

This study aims to achieve personalized federated learning and practical division
methods based on the characteristics of client neural network models. In this study, all
client neural network models are tasked with image recognition, and the data dimensions
of the input space Rx and prediction output space Ry are equal. Therefore, each client’s
image recognition task can be divided into feature extraction and category prediction tasks.
The objective of feature extraction is to map the input data residing in a high-dimensional
feature space to a lower-dimensional feature space. In this process, it is necessary to
maintain the separability of the input data while achieving dimensionality reduction. In
this study, neural networks are used for feature extraction, and the corresponding function
is defined as F: Rx → Rl, where Rx is the data input space, and Rl is the low-dimensional
feature space. Similarly, neural networks will be used for category prediction in this
study, and the corresponding function is defined as G: Rl → Ry, where Ry is the category
prediction output space. The image recognition task of each client neural network model
can be represented as Equation (1), where the input data xi ∈ Rx, and the model output yi
∈ Ry.

yi = so f tmax (G (F (xi))) (1)

In the IID dataset, the data distribution of each client is the same as the global data
distribution; therefore, feature extraction F and category prediction G are not affected by
client drift. However, individual client data distributions are not representative of the global
data distribution, and the direct aggregation of client models can severely affect the learning
performance of the neural network owing to client drift. With multitask learning technology,



Future Internet 2024, 16, 95 5 of 13

a neural network model can achieve good results and improve the generalization of the
model input by simultaneously learning multiple related tasks [25]. This study integrates
the principles of federated learning with multitask learning in a non-IID dataset. As the
data distribution of each client cannot represent the global data distribution, each client
is regarded as a different task with relatedness in multitask learning. The effectiveness
of multitask learning led to the discovery of a global feature extraction neural network.
Consequently, each client possesses a feature extraction function for obtaining effective
features from the input data. The client neural network model comprises a Convolutional
Neural Network (CNN) and a Fully Connected Neural Network (FCNN), as shown in
Figure 1.
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The CNN kernel function considers the relationships between a single pixel and a
hidden layer neuron and between the neighboring pixels. This renders CNNs efficient and
resilient in extracting image features. In this study, the CNN of each client model serves as
a feature extraction method to obtain a global feature function. However, in a FCNN, all the
dimensions of the input data are connected to the hidden layer neurons, and the distance
between the input features is not considered. This property effectively considers all the
features and maps them to the prediction output space to achieve the function of a classifier.
The FCNN part of the client model serves as the category prediction layer and is trained
separately based on the data distribution of each client to achieve personalized properties.

3.2. Adaptive Feature Extraction

The learning in neural network models is significantly affected by both the initial
setting values of the hyperparameters and the lack of corresponding changes in these values
with increased training times. The adaptive learning method involves analyzing the dataset
output results using a neural network model throughout the training process [26]. This
leads to automatic adjustment of the hyperparameters, learning rates, and sometimes even
the parameters of the neural network model, based on the analysis. The adaptive learning
approach in this study adapts the APFL method [27]. Each client’s feature extraction layer
is obtained through a blend of global and client model parameters from the previous round,
with the blending ratio established via adaptation. Fw

i denotes the parameter of the feature
extraction layer, and Gw

i denotes the parameter of the category prediction layer, where
i ∈ {1, 2...n} represents the i-th client, * represents the best solution of the model, and Di
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is used as the distribution of each client dataset. It can also represent the neural network
model trained based on the data distribution D as (Fw ◦ Gw) ∼ D. In the IID dataset, the
federated learning relationship between each client model and the global model can be
represented using Equation (2):

(
(

Fw
1 ◦ Gw

1
)
∼ D1 ≈ ((Fw

2 ◦ Gw
2 ) ∼ D2 ≈ . . . ≈ ((Fw

n ◦ Gw
n ) ∼ Dn

due to D1 = D2 = . . . = Dn

(Fw
∗ ◦ Gw

∗ ) ≈
1
n ∑n

i=1((Fw
i ◦ Gw

i ) (2)

In Equation (2), because the data distribution is IID, each client’s data distribution can
also represent the global data distribution. Therefore, in addition to the similarity between
the model parameters for each client, they are closer to the best solution of the global model
in that round. Therefore, the model is less affected by the client drift problem and can
provide satisfactory training results. However, when the data distribution is non-IID, the
model parameters of each client are determined by different data distribution of each client,
resulting in different model update directions. Therefore, for non-IID data distribution in
federated learning, the relationship between each client model and the global model can be
represented using Equation (3):

(
(

Fw
1 ◦ Gw

1
)
∼ D1 ̸≈ ((Fw

2 ◦ Gw
2 ) ∼ D2 ̸≈ . . . ̸≈ ((Fw

n ◦ Gw
n ) ∼ Dn

due to D1 ̸= D2 ̸= . . . ̸= Dn

(Fw
∗ ◦ Gw

∗ ) ̸≈
1
n ∑n

i=1((Fw
i ◦ Gw

i ) (3)

When a server aggregates the client models, they compete with each other. Even if
a few client models are closer to the global best model update direction, they will still be
affected by the incorrect update direction of other client models. This results in a severe
client drift and poor performance of the aggregated global model. When each client dataset
is non-IID, a good global output model can only be obtained by aggregating a few client
models that are closer to the global best model update direction. In a personalized federated
learning method, each client obtains a personalized model Mw

k as shown in Equation (4):

Mw
k = (

1
n ∑n

i=1( Fw
i ∼ Di)) ◦ (Gw

n ∼ Dn) k ∈ {1, 2 . . . n} (4)

The feature extraction layer of Mw
k is obtained using the general federated learning

aggregation method. Therefore, this study uses a mixture of global and previous round
client model parameters to obtain feature extraction and reduce the impact of client drift,
as shown in Equation (5):

Mw′
k =

((
(1− β) ∗ 1

n ∑n
i=1( Fw

i ∼ Di) + ( β ∗ Fw
n ∼ Dn)

))
◦ (Gw

n ∼ Dn) (5)

The mixing ratio between the global model parameters and the client model parame-
ters of the previous round is determined by the β value (0≤ β ≤ 1, β ∈ R). When β→ 0, this
represents that the mixed-feature extraction terms will be dominated by the global model
parameters. Conversely, when β → 1, this represents that the mixed-feature extraction
terms will be dominated by the client model parameters of the previous round. Therefore,
the β needs to be adjusted based on the gradient before each round of client learning to
achieve an appropriate mixing ratio. Using this adaptive method, the impact of client drift
on the feature extraction layer can be reduced.

In this study, the total time complexity includes a convolutional layer for feature
extraction, a fully connected layer for category prediction, and personalized federated
learning. The time complexity of the convolutional layer is expressed as O(n × m), the time
complexity of the fully connected layer is O(n× m), and the time complexity of the personal
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federated learning model training is O(w × e × n × m), where w is the client number, e
is the number of model iterations, n is the number of datasets, and m is the number of
parameters [28].

The following algorithm is based on the division and separate training of each client model,
and it then incorporates the adaptive mixing method of feature extraction layer parameters.

Algorithm 1. l

let Wf be the parameters of feature extraction layers.
let Wg be the parameters of the category predictions layer.
let i be the ith global round.
let c be the cth selected client.
let γ be the learning rate.
let β be the mixing ration, and the initial value is 0.5.
for i = 1,2, . . .,N do
set β to initial value

if i == N then all clients do
new β = betaupdate (β)

client own model← ((1− β) ∗ Wi−1
f + β ∗Wi−1,c

f ) ◦Wi−1,c
g )

break
else each selected clients C ∈ {C1,C2...Cm} parallel do

receive Wi−1
f from server.

new β = betaupdate (β)
(Wi,c

f ◦Wi,c
g )← modelupdate (((1− β) ∗ Wi−1

f + β ∗Wi−1,c
f ) ◦Wi−1,c

g , γ)

keep the Wi,c
g

send Wi,c
f back to server

finish the federated learning

3.3. Adaptive Mixing Ratio–β

In the local model-training process of each client in the federated learning process, it is
necessary to update the β value through gradient descent to obtain a suitable mixing ratio.
In general image recognition learning, the loss value L can be expressed using Equation (6),
where M is the neural network model, I is the input data, Dlabel is the labeled data, and floss
is the cross-entropy loss function.

L = floss (M(I), Dlabel) (6)

After calculating the loss between the prediction results and the true label data using
Equation (6), the neural network model must update its parameters based on the loss
through gradient descent to reduce the gap. The loss value of each client can be extended
based on the loss function of the general image recognition learning task, as shown in
Equation (7), where Fg is the global feature extraction term, Fi

l is the local feature extraction
term of the i-th client, and Gi

l is the gradient descent of the i-th client.

Li = floss

((
(1− βi) ∗ Fg + βi ∗ Fi

l

)
◦ Gi

l(I), Dlabel

)
(7)

In Equation (7), each client has its own loss value due to different model parameters,
so each client can update the βi value according to the corresponding loss through gradient
descent. And the model feature extraction term will be calculated with the (1-βi) global
model parameters and the βi client model parameters of the previous round. In addition
to updating the βi value through gradient descent to adjust the mixing ratio, the initial
β value will also impact the client’s accuracy in that round. The results of personalized
federated learning using various initial β values of 0.3, 0.5, and 0.7 are presented in Figure 2.
According to the training results, when the initial value of β is closer to 1, such as 0.7, the
training results are better than the other two values, which is consistent with Equation (6).
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4. Experiment Results and Analysis
4.1. Experimental Framework and Dataset

In this study, the FLOWER federated learning framework was used as the implemen-
tation framework for the proposed federated learning algorithm, as shown in Figure 3.
The FLOWER framework, developed by the German company Adap, has high scalability
and supports several machine-learning frameworks, including Pytorch, TensorFlow/Keras,
and scikit-learn [29]. The framework is designed based on practical scenarios, enabling
it to manage a large number of client loads and operate with heterogeneous client oper-
ating systems. Consequently, numerous researchers have used the FLOWER framework
extensively as a federated learning implementation framework [30,31].
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In this study, the image recognition task is chosen as the training target for the
federated learning neural network model, and three image datasets including Fashion-
MNIST [32], CIFAR-10 [28], and CIFAR-100 [28] are used to train the neural network model.
These three datasets are commonly used for training neural network models for deep
learning. The Fashion-MNIST dataset mainly contains popular fashion items, including
T-shirts/tops, pants, pullovers, dresses, coats, sandals, shirts, sneakers, bags, and boots,
where images are grayscale and have a size of 28 pixels. The CIFAR-10 dataset contains
10 image categories including airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships,
and trucks, and each image has a size of 32 pixels. However, the primary difference between
the CIFAR-10 and Fashion-MNIST datasets is that each image in the CIFAR-10 dataset
has three color channels, which makes the training of the neural network model more
difficult. The CIFAR-10 and CIFAR-100 datasets were collected and proposed by the same
researchers, and both datasets have the same image size and number of channels. How-
ever, the CIFAR-100 dataset has up to 100 image categories, including 20 classifications
(superclasses) such as household appliances, furniture, and insects. Each classification
can be further divided into five subcategories, for example, the household appliance clas-
sification consisting of clocks, keyboards, lamps, phones, and TVs. Although the image
shapes are the same as those of the CIFAR-10 dataset, the significantly increased number of
image categories makes the training of the neural network model on the CIFAR-100 dataset
much more complex than that on the CIFAR-10 dataset. Thus, an increase in the number
of neural network layers is required to achieve sufficient prediction performance on the
CIFAR-100 dataset. In this study, the Dirichlet function is used to partition the dataset to
meet various heterogeneous data situations of clients, and the variable α is used to control
the non-IID degree in the Dirichlet function. When α→ 0, this indicates that the generated
dataset has a severe non-IID degree, and when α→ 1, this indicates that the generated
dataset tends to have an ideal distribution of IID. The federated learning-related parameters
are listed in Table 2.

Table 2. The federated learning parameters.

Parameters\Dataset Fashion-MNIST CIFAR10 CIFAR100

Input shape (28, 28, 1) (32, 32, 3) (32, 32, 3)

CNN layer 2 2 3

FCNN layer 1 1 2

Federated round 100 100 100

Participating clients 10 10 10

Participating fraction 0.8 0.8 0.8

Client training epoch 1 1 3

Data batch size 32 32 32

4.2. Experimental Results

This study analyzed and compared the proposed federated learning algorithm with
the FedProx [18] and FedPer algorithms [23] under different data distributions for three
different datasets. The FedTP algorithm is not selected for comparison because it is mainly
designed as a transformer with a self-attention mechanism layer of each client locally to
encourage the cooperation among clients [20]. The overall accuracy can be improved by
client communication, but it also may increase the communication cost and slows down
the training speed. The FedOFA operates on the server side, incurring no additional
computational cost on the client, making it advantageous in communication-constrained
scenarios [21]. However, this architecture is more suited to an overall server computing
approach, where the server computes each client parameter model. This may be not in line
with the privacy computing structure of the client model preferred in this study.
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The corresponding federated learning loss values are shown in Figure 4. Based on
the experimental results, the federated learning algorithm proposed in this study has a
lower training loss when facing a non-IID data distribution among the client datasets. In
the Fashion-MNIST dataset, although the initial β value had a higher loss, it was able
to converge within 20 rounds and achieve less data loss. In the CIFAR10 and CIFAR100
datasets, the FedPer federated learning algorithm did not limit the local neural network
model training based on the heterogeneity of the client data distribution during the model
aggregation stage. This resulted in poor model performance, which became more apparent
as the non-IID degree of the dataset increased. When the non-IID degree of the dataset
increased, the differences in the neural network model trends among the client datasets
widened. Even if a constraint term was added during the federated learning training
process to restrict the client model trends, it could not solve the impact of client drift
caused by this data distribution. In contrast, the algorithm proposed in this study reduced
the impact of client drift through personalized federated learning and aggregated the
models with limitations based on the premise that clients have their own good models after
federated learning ends. This resulted in a better model convergence speed and data loss
rate. Therefore, the federated learning algorithm proposed in this study can better reduce
the impact of client drift caused by a non-IID data distribution.
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The prediction accuracy results for the three datasets are shown in Figure 5. For the
Fashion-MNIST dataset, the accuracy of the proposed method was higher than those of
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the other two federated learning algorithms. It can be found that as the distribution of
each dataset becomes more decentralized, the accuracy of both the FedProx and FedPer
algorithms decreases from 74% to about 62%. However, the accuracy rate of the proposed
algorithm converges to 94% over 20 rounds. The same 10 image categories as those in
Fashion-MNIST are considered from the CIFAR-10 dataset. However, the CIFAR-10 dataset
contains colored images. The accuracy of this study was higher than that of the other
two algorithms, and as the characteristics of the respective datasets tended to be more
personalized, the accuracy gradually increased to 92%. The FedProx algorithm mainly
emphasizes improving the local loss function and adjusting the epochs of each client
without extracting the feature layer of each client. Consequently, the accuracy rate was less
than 10% for the multicategory non-IID dataset. In the CIFAR-100 dataset, the accuracy
of this study surpassed that of the FedProx and FedPer algorithms. This is because of
the simulation environment of 10 clients, although the maximum convergence accuracy
is limited to approximately 57%. Based on accuracy results, it was determined that this
algorithm could prevent the decline in the overall model accuracy caused by client drift in
a non-IID dataset by truncating the client characteristics and category classification.

Future Internet 2024, 16, x FOR PEER REVIEW 12 of 14 
 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 5. The accuracy rates for various datasets: (a) Fashion-MNIST with α = 1; (b) Fashion-MNIST 
with α = 0.1; (c) Fashion-MNIST with α = 0.05; (d) CIFAR10 with α = 1; (e) CIFAR10 with α = 0.1; (f) 
CIFAR10 with α = 0.05; (g) CIFAR100 with α = 1; (h) CIFAR100 with α = 0.1; (i) CIFAR100 with α = 
0.05. 

5. Conclusions 
In order to solve the data draft problem in federated learning in non-IID datasets, this 

study proposed a personalized federated learning algorithm based on the concept of mul-
titask learning, which divides client models into feature extraction layers and category 
prediction layers. The model category prediction layer is trained using only the client data 
to maintain the characteristics of each client’s data, whereas the feature extraction layer is 
trained using all clients. In addition, model aggregation is limited based on the difference 
between the client model of the previous round and the global model. In this study, three 
image datasets, Fashion-MNIST, CIFAR-10, and CIFAR-100, were used, and the data were 
divided into non-IID datasets of different degrees. The experimental results showed that 
under a non-IID data distribution, the proposed federated learning algorithm converges 
within five rounds and achieves a 0.5 data loss on the CIFAR-10 dataset. It converges 
within 20 rounds and achieves a 0.1 data loss on the CIFAR-100 datasets. Unlike previous 
federated learning, this study plans and classifies each customer’s data characteristics to 
find the personalized weight. The proposed method has a faster convergence speed and 
lower data loss than the FedProx and FedPer federated learning algorithms for all three 
datasets, demonstrating its effectiveness in non-IID data distributions.  

Overall, this study provides a new federated learning algorithm that can effectively 
train deep-learning models while protecting personal privacy. However, category 

Figure 5. The accuracy rates for various datasets: (a) Fashion-MNIST with α = 1; (b) Fashion-MNIST
with α = 0.1; (c) Fashion-MNIST with α = 0.05; (d) CIFAR10 with α = 1; (e) CIFAR10 with α = 0.1;
(f) CIFAR10 with α = 0.05; (g) CIFAR100 with α = 1; (h) CIFAR100 with α = 0.1; (i) CIFAR100 with
α = 0.05.

5. Conclusions

In order to solve the data draft problem in federated learning in non-IID datasets,
this study proposed a personalized federated learning algorithm based on the concept of
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multitask learning, which divides client models into feature extraction layers and category
prediction layers. The model category prediction layer is trained using only the client data
to maintain the characteristics of each client’s data, whereas the feature extraction layer is
trained using all clients. In addition, model aggregation is limited based on the difference
between the client model of the previous round and the global model. In this study, three
image datasets, Fashion-MNIST, CIFAR-10, and CIFAR-100, were used, and the data were
divided into non-IID datasets of different degrees. The experimental results showed that
under a non-IID data distribution, the proposed federated learning algorithm converges
within five rounds and achieves a 0.5 data loss on the CIFAR-10 dataset. It converges
within 20 rounds and achieves a 0.1 data loss on the CIFAR-100 datasets. Unlike previous
federated learning, this study plans and classifies each customer’s data characteristics to
find the personalized weight. The proposed method has a faster convergence speed and
lower data loss than the FedProx and FedPer federated learning algorithms for all three
datasets, demonstrating its effectiveness in non-IID data distributions.

Overall, this study provides a new federated learning algorithm that can effectively
train deep-learning models while protecting personal privacy. However, category pre-
diction is modeled by the distribution of the number of data categories for each client
without considering the relevant data features and number differences. The results of
this study are mainly limited to the distribution of classes with similar data features and
cannot be inferred when the data features are very different. In the future, the performance
evaluations of diverse client data with heterogeneity could be an extension of this study.
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