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Abstract: The adoption of edge infrastructure in 5G environments stands out as a transformative
technology aimed at meeting the increasing demands of latency-sensitive and data-intensive applica-
tions. This research paper presents a comprehensive study on the intelligent orchestration of 5G edge
computing infrastructures. The proposed Smart 5G Edge-Cloud Management Architecture, built
upon an OpenNebula foundation, incorporates a ONEedge5G experimental component, which offers
intelligent workload forecasting and infrastructure orchestration and automation capabilities, for
optimal allocation of virtual resources across diverse edge locations. The research evaluated different
forecasting models, based both on traditional statistical techniques and machine learning techniques,
comparing their accuracy in CPU usage prediction for a dataset of virtual machines (VMs). Addition-
ally, an integer linear programming formulation was proposed to solve the optimization problem of
mapping VMs to physical servers in distributed edge infrastructure. Different optimization criteria
such as minimizing server usage, load balancing, and reducing latency violations were considered,
along with mapping constraints. Comprehensive tests and experiments were conducted to evaluate
the efficacy of the proposed architecture.

Keywords: 5G edge infrastructures; intelligent edge orchestration; workload forecasting; resource
allocation and optimization; machine learning; integer linear programming

1. Introduction

The evolution of 5G technology has ushered in a new era of connectivity, offering
enhanced capabilities that extend beyond traditional communication paradigms. Advanced
5G networks facilitate a diverse range of applications, characterized by their complexity,
computational demand, and low-latency requirements. These applications, designed to
leverage the capabilities of advanced 5G, exhibit a hybrid profile, relying on resources
spanning the spectrum from data centers to the cloud to the edge.

In particular, the deployment of edge infrastructure in 5G environments is crucial to ad-
dressing the unique challenges posed by latency-sensitive and data-intensive applications [1,2].
The next generation of applications, encompassing smart IoT applications, real-time analyt-
ics, machine learning applications, and more, require intelligent orchestration of resources
in the edge domain, where computational tasks are strategically placed closer to data
sources to minimize latency and enhance overall system performance.

Orchestrating edge infrastructure in 5G environments is not without its complexi-
ties. The heterogeneous nature of edge devices, coupled with the dynamic and resource-
constrained characteristics of these environments, presents challenges for effective resource
management. Unlike traditional cloud-centric models, the edge requires a nuanced ap-
proach that considers factors such as reliability, security, data protection, and energy
efficiency. In light of these challenges, the need for intelligent orchestration becomes
paramount. An orchestration system driven by artificial intelligence (AI) and machine
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learning (ML) techniques can dynamically allocate and coordinate resources across a dis-
tributed edge infrastructure.

In the current cloud market, various vendors and tools claim to employ intelligent
techniques for resource management and monitoring. For instance, VMware implements a
predictive distributed resource scheduler (DRS) [3] for cloud platforms, which forecasts
future demand and preemptively addresses potential hot spots, by reallocating workloads
well in advance of any contention. OPNI [4], an open source project from SUSE, is an-
other noteworthy example aimed at enhancing observability, monitoring, and logging in
Kubernetes-based clusters. It offers a range of AIOps tools for detecting log anomalies, iden-
tifying root causes, and spotting metric irregularities. Google Active Assist [5] is another
tool that aims to provide intelligent solutions for improving cloud operations, by offering
recommendations for cost reduction, performance enhancement, security improvement,
and sustainability. Generally, these prediction and optimization techniques deployed by
cloud stakeholders are tailored for centralized cloud platforms and often comprise simple,
proprietary solutions that may not be adaptable to highly distributed 5G edge environ-
ments. On the other hand, recent initiatives like OpenNebula OneEdge [6] enable the
deployment and management of geo-distributed edge/cloud infrastructures, leveraging
resources from various public cloud and edge infrastructure providers. However, these
tools are still nascent and primarily offer basic management functionalities rather than
advanced, intelligent orchestration capabilities for optimizing the deployment of large scale
edge infrastructures.

In this work, we propose a pioneering Smart 5G Edge-Cloud Management Archi-
tecture, which seeks to expand the existing edge management platforms by integrating
intelligent orchestration capabilities. This integration aims to automate and optimize the
provisioning and deployment of geographically distributed 5G edge infrastructures. This
architecture, built upon the foundation of OpenNebula [7,8], will integrate cutting-edge
experimental components under development in the ONEedge5G project, as shown in
Figure 1. ONEedge5G aims to enable efficient capacity planning, provisioning, and risk
prevention in geographically distributed edge infrastructures and applications within the
context of advanced 5G networks. This is achieved through the characterization and moni-
toring of edge infrastructures and virtual applications, prediction of the state of the data
center–cloud–edge continuum, and programmatic intervention based on these predictions.
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Figure 1. OpenNebula + ONEedge5G for intelligent orchestration of multiple 5G edge locations.
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In its current developmental phase, ONEedge5G integrates diverse predictive in-
telligence mechanisms for workload forecasting. It also embeds various optimization
algorithms to ensure optimal resource allocation across multiple edge locations. This paper
introduces and assesses these intelligent techniques, demonstrating their effectiveness for
improving the management and performance of distributed edge infrastructures.

To evaluate the efficacy of our Smart 5G Edge-Cloud Management Architecture,
we conducted comprehensive tests and experiments. Through rigorous analysis, we
assessed the capabilities of a ONEedge5G prototype in accurate workload forecasting
and optimization. By presenting the results of these experiments, we demonstrate the
benefits and efficiency gains achieved by leveraging intelligent prediction and optimization
techniques in 5G edge management.

The remainder of this paper is structured as follows: Section 2 analyzes the advantages
and challenges of edge computing on 5G networks. Section 3 discusses related works.
Section 4 presents the design and main components of the Smart 5G Edge-Cloud Manage-
ment Architecture. Section 5 summarizes the time-series forecasting models employed
for workload prediction. Section 6 introduces the mathematical models utilized in the
integer linear programming (ILP) formulation for edge resource optimization. Section 7
demonstrates the virtual resource CPU usage forecasting results for the different datasets
and the resource optimization outcomes for the various objective functions and constraints.
Finally, Section 8 summarizes the conclusions of this study and suggests potential directions
for future research.

2. Edge Computing and Advanced 5G Networks

Advanced 5G networks bring a multitude of advantages [9], including significantly
faster data speeds, through enhanced mobile broadband (eMBB), ultra-reliable and low-
latency communication (URLLC), and support for a large number of connected devices
with massive machine-type communication (mMTC). The implementation of network
slicing allows customizable network services, tailoring offerings to specific requirements,
while technologies like beamforming and MIMO contribute to improved network coverage
and efficiency. Deploying edge computing infrastructures on advanced 5G networks offers
several key benefits. First, it significantly reduces latency by processing data closer to
the source, ensuring quicker response times for applications. This is particularly crucial
for real-time applications like augmented reality and autonomous vehicles. Second, edge
computing enhances energy efficiency by minimizing data transmission between central
clouds and end devices, contributing to a more sustainable network. Third, the proximity
of computational resources at the edge ensures improved application performance, partic-
ularly for latency-sensitive tasks. The combination of these technologies, along with the
growth of the Internet of Things (IoT), has given rise to the emergence of new computing
paradigms, such as multi-access edge computing (MEC) [10], which is aimed at extending
cloud computing capabilities to the edge of the radio access network, hence providing
real-time, high-bandwidth, and low-latency access to radio network resources.

According to [11], the main objectives of edge computing in 5G environments are
the following: (1) improving data management, in order to handle the large amounts of
real-time delay-sensitive data generated by user equipments (UEs); (2) improving quality
of service (QoS) to meet diverse QoS requirements, thereby improving the quality of expe-
rience (QoE) for applications that demand low latency and high bandwidth; (3) predicting
network demand, which involves estimating the network resources required to cater to
local proximity network (or user) demand, and subsequently providing optimal resource
allocation; (4) managing location awareness, to enable geographically distributed edge
servers to infer their own locations and track the location of UEs to support location-based
services; and (5) improving resource management, in order to optimize network resource
utilization for network performance enhancement in the edge cloud, acknowledging the
challenges of catering to diverse applications, user requirements, and varying demands
with limited resources compared to the central cloud.
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Focusing on the last objective, efficient resource management and orchestration in
5G edge computing [12,13] are crucial as they not only contribute to latency reduction
by strategically deploying computing resources, minimizing the time for data processing
and enhancing application responsiveness, but also play a pivotal role in optimizing en-
ergy consumption through dynamic allocation based on demand, thereby reducing the
environmental footprint. Furthermore, proper resource management is essential for per-
formance optimization, preventing bottlenecks, ensuring balanced workload distribution,
and maintaining consistent application performance, all of which collectively enhance
the overall user experience in these advanced network environments. In this context, AI
and ML techniques prove instrumental in addressing these challenges [14–18]. For ex-
ample, through predictive analytics and forecasting, ML algorithms can anticipate future
demands, enabling proactive resource allocation and strategic deployment for minimized
data processing times and reduced latency. AI-driven dynamic allocation can optimize
resource utilization and, consequently, energy consumption by adapting to real-time de-
mand patterns. Additionally, ML models, employing clustering and anomaly detection,
can ensure consistent application performance by preventing bottlenecks and optimizing
workload distribution.

In this article, we specifically address the issue of intelligent resource orchestration
in distributed edge computing infrastructures by integrating forecasting techniques for
predicting resource utilization [19,20] and optimization techniques for optimal resource
allocation [21,22]. Resource utilization forecasting leverages historical and real-time data
to predict future resource demands accurately. By employing both traditional statistical
techniques and AI-based ML techniques [23,24], these forecasts enable proactive resource
allocation, mitigating the risk of resource shortages or over-provisioning. Furthermore,
forecasting techniques facilitate capacity planning, allowing organizations to scale their
resources dynamically based on anticipated demands. Optimization techniques also play a
vital role in orchestrating resources across multiple edge locations. These techniques employ
mathematical models such as ILP and heuristic algorithms [25,26] to determine the optimal
mapping of virtual resources (VMs or containers) onto physical servers. By considering var-
ious factors including proximity, resource availability, and application requirements, these
techniques ensure efficient utilization of resources and minimize resource fragmentation.

3. Related Work

The literature has extensively explored the application of artificial intelligence (AI)
techniques, including evolutionary algorithms and machine learning (ML) algorithms,
to address diverse prediction and optimization challenges in both cloud and edge envi-
ronments. A recent study [27] offered a comprehensive review of machine-learning-based
solutions for resource management in cloud computing. This review encompassed areas
such as workload estimation, task scheduling, virtual machine (VM) consolidation, re-
source optimization, and energy efficiency techniques. Additionally, a recent book [28]
compiled various research works that considered optimal resource allocation, energy effi-
ciency, and predictive models in cloud computing. These works leveraged a range of ML
techniques, including deep learning and neural networks. For edge computing platforms,
surveys such as [29] have analyzed different machine and deep learning techniques for
resource allocation in multi-access edge computing. Similarly, ref. [30] provided a review
of task allocation and optimization techniques in edge computing, covering centralized,
decentralized, hybrid, and machine learning algorithms.

If we focus on workload prediction, we see this is an essential technique in cloud
computing environments, as it enables providers to effectively manage and allocate cloud
resources, save on infrastructure costs, implement auto-scaling policies, and ensure com-
pliance with service-level agreements (SLAs) with users. Workload prediction can be
performed at application or infrastructure level. Application-level techniques [31,32] in-
volve predicting a metric related to the application demand (e.g., requests per second
or task arrival rate) to anticipate the optimal amount of resources needed to meet that
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demand. On the other hand, infrastructure-level techniques [33,34] are based on predicting
one or more resource usage metrics (such as CPU, memory, disk, or network) and making
advanced decisions about the optimal amount and size of virtual or physical resources to
provision to avoid overload or over-sizing situations. Another interesting piece of research
in this area is [35], which presented a taxonomy of the various real-world metrics used to
evaluate the performance of cloud, fog, and edge computing environments.

The most common workload prediction techniques used in cloud computing are based
on time-series prediction methods [19,24], which involve collecting historical data of the
target metric (e.g., the historical CPU usage of a VM or group of VMs) and forecasting
future values of that metric for a certain time horizon. There are many different methods
for modeling and predicting the time-series used in cloud computing, many of them based
on classical techniques such as linear regression [36], Bayesian models [37], or ARIMA sta-
tistical methods [38]. The main advantage of these models is their flexibility and simplicity
in representing different types of time-series, making them quick and easy to use. However,
they have a significant limitation in their linear behavior, making them inadequate in some
practical situations.

More recently, different methods have been proposed for time-series prediction based
on machine learning and deep learning models [34,39,40] using artificial neural networks
that have inherent non-linear modeling capabilities. One of the most common ML models
applied to time-series is the long short-term memory (LSTM) neural network [23,41,42],
which overcomes the problem of vanishing gradients associated with other neural networks.
However, these methods also have several drawbacks. The first is that the training and
prediction times of the neural network can be quite high (several minutes, or even hours),
making them unfeasible in certain situations. The second problem is that the quality of
predictions of neural-network-based methods depends heavily on correct selection of the
model’s hyperparameters, which can vary depending on the input data, meaning that
adjusting these hyperparameters poses a serious challenge, even for expert analysts.

In absolute terms, it is not possible to claim that one prediction method is better than
another, as their behavior will depend on the specific use case, the profile of the input
data, the correct tuning of each model’s hyperparameters, and the use or non-use of co-
variables that may correlate with the variable being predicted. In this context, research in
this field involves exploring and comparing different prediction methods for each case,
improving existing methods, and combining different techniques by proposing new hybrid
or adaptive methods that allow for the most accurate forecasts possible. Likewise, applying
these prediction techniques to other emerging environments such as highly geo-distributed
edge/cloud environments, IoT environments, and server-less environments also represents
a significant challenge.

On the other hand, the optimal allocation of resources in cloud computing is an
important problem that must be addressed to ensure efficient use of resources and to meet
SLAs agreed with users. The goal is to allocate resources (e.g., VMs to physical hosts) in a
way that maximizes infrastructure utilization, subject to certain performance or application
response time requirements.

There are different optimization techniques used to solve this problem. One of the
most commonly used techniques is linear programming, which finds the optimal solution
to a linear function subject to a set of linear constraints. This technique is very useful for
problems involving a large number of variables and constraints. For example, ref. [43]
was a pioneering work in cloud brokering that used ILP to optimize the cost of a virtual
infrastructure deployed on a set of cloud providers. Subsequently, this research was ex-
panded upon in [44], which addressed dynamic cloud scenarios and incorporated diverse
optimization criteria such as cost or performance. The authors in [45,46] presented MAL-
LOOVIA, a multi-application load-level-based optimization for virtual machine allocation.
MALLOOVIA formulates an optimization problem based on ILP and takes the levels of
performance to must be reached by a set of applications as input, and generates a VM allo-
cation to support the performance requirements of all applications as output.The authors
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in [47,48] provided an approach for supporting the deployment of microservices in multi-
cloud environments, focusing on the quality of monitoring and adopting a multi-objective
mixed integer linear optimization problem, in order to find the optimal deployment satisfy-
ing all the constraints and maximizing the quality of monitored data, while minimizing
costs. Some recent works have also used ILP optimization for resource allocation in edge
computing infrastructures. For example, ref. [49] formulated an ILP model to minimize the
access delay of mobile users’ requests, in order to improve the efficiency of edge server and
service entity placement. The authors in [50] focused on the joint optimization problem of
edge sever placement and virtual machine placement. The optimization models proposed,
which take into account the network load and the edge server load, are based on ILP and
mixed integer programming.

Other optimization approaches that we can find in the literature are heuristic tech-
niques based on bio-inspired algorithms [26,51–54], such as genetic algorithms, particle
swarm optimization), and ant colony optimization, among others. These algorithms allow
users to find suboptimal solutions for optimization problems that are too complex to solve
exactly. Genetic algorithms, for example, are inspired by natural selection and biological
evolution to find optimal solutions. Reinforcement learning is another technique that has
been successfully used in resource management and allocation in cloud computing [55–57].
This technique is based on a learning model in which an agent interacts with an envi-
ronment and receives a reward or punishment based on its actions. Through experience,
the agent learns to make the optimal decisions that maximize the expected reward.

Each technique has its advantages and disadvantages, and the choice of the most
appropriate technique will depend on the specific characteristics of the problem to be
solved. In general, linear programming is more suitable for well-structured problems with a
limited number of variables and constraints. Metaheuristic algorithms are more suitable for
more complex problems with a large number of variables and constraints. Reinforcement
learning, on the other hand, is more suitable for problems involving uncertain dynamic
environments. Sometimes it will also be necessary to address multi-objective problems
where it is necessary to optimize more than one objective function subject to certain
constraints. Research in this field involves exploring, analyzing, and comparing different
optimization techniques adapted to each problem and use case, including the treatment
of both single and multi-objective problems, and the possibility of combining different
techniques through the proposal of new hybrid optimization techniques. Furthermore,
the application of these optimization techniques to other emerging environments such
as highly geo-distributed edge/cloud environments, IoT environments, and serverless
environments also represents an important challenge.

In the above research review, we found many studies focusing on predicting loads and
optimizing resources in centralized clouds or simple edge infrastructures, using various ma-
chine learning techniques. However, there has been limited exploration or implementation
of these techniques in highly distributed 5G edge environments within actual cloud/edge
infrastructure managers. The Smart 5G Edge-Cloud Management Architecture proposed in
this study aims to address this gap. It intends to analyze, enhance, and expand AI-based
prediction and optimization methods for large-scale 5G edge infrastructures. Addition-
ally, it plans to integrate these methods with existing edge management platforms like
OpenNebula. This integration will enable automated and optimized provisioning and
deployment of geo-distributed 5G edge infrastructures.

4. Proposed Architecture

Below, we present a Smart 5G Edge-Cloud Management Architecture built upon the
foundation of OpenNebula for the orchestration and management of cloud-edge infrastructures.

4.1. Smart 5G Edge-Cloud Management Architecture

The design of the new Smart 5G Edge-Cloud Management Architecture is shown
in Figure 2. In this context, it is important to note the difference between management
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(implemented by OpenNebula) and orchestration (implemented by the new components
of the ONEedge5G project). While management just involves the capacity for managing
the lifecycle of resources (physical or virtual) and performing basic actions regarding
these resources, orchestration involves intelligent and automated provision, configuration,
and coordination of resources, keeping track of the state of resources and reacting to events,
and making optimal decisions about, for example, scheduling, placement, migration,
or consolidation, based on different optimization criteria. The main components of this
architecture are the following:

VM/container
VM/containerVMs/

Containers

VM/container
VM/containerVMs/

Containers

VM/container
VM/containerVMs/
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Figure 2. Smart 5G Edge-Cloud Management Architecture.

• The monitoring system is responsible for collecting different infrastructure-level met-
rics (e.g., CPU, memory, network I/O, or energy consumption) and logs from virtual
and physical infrastructure and/or service-level metrics (e.g., response time or re-
quests/s) and logs from deployed applications.

• The historical trace/logs database stores the historical values of these metrics and logs.
• The prediction and anomaly-detection system implements different AI-based algo-

rithms in order to predict future infrastructure load (e.g., CPU or memory usage
for a virtual or physical resource), to forecast application workloads (e.g., request/s
for an application), or to detect or predict anomalies (e.g., system failures, service
interruptions, or performance slow down).

• The reporting and alerting system is used to configure different metric-based alert-
ing policies and reporting filters, in order to obtain valuable information, warnings,
and recommendations from the historical traces/logs and from the information pro-
vided by the prediction and anomaly-detection system.

• The elasticity manager implements different horizontal or vertical auto-scaling mecha-
nisms to provide service elasticity, including AI-based proactive autoscaling based on
application workload predictions.

• The virtual infrastructure orchestrator is responsible for making automated decisions
about the best possible allocation of virtual resources (VMs/containers) to physical
servers, which can be located in different cloud regions and edge zones. It can
implement different AI-based virtual resource allocation and migration strategies,
based on predictions, and using different optimization criteria such as cost, energy
consumption, and application performance.

• The physical infrastructure orchestrator is responsible for making automated decisions
about deploying or shutting down physical (bare-metal) servers or clusters in different
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cloud and edge locations. It can implement different AI-based server placement and
consolidation strategies based on predictions, to decide when and where a new cluster
must be deployed and its optimal size, including dynamic re-dimensioning to adapt
the cluster size to actual or expected demand.

• The physical and virtual infrastructure managers provide the interfaces, drivers, and mech-
anisms necessary to manage the entire lifecycle of virtual and physical resources, as well
as performing different actions (e.g., deploy, migrate, suspend, resume, or shutdown) for
these resources, according to user commands or orchestrator decisions.

It is important to note that ONEedge5G is an ongoing experimental project, and there-
fore many of its components are still under development. This research work centers around
two main elements within its architecture: a virtual resource CPU usage prediction system
integrated within the prediction and anomaly detection module, and a virtual-to-physical
resource mapping system that utilizes optimization techniques, forming an integral part
of the virtual infrastructure orchestrator. Additionally, a historical trace database system
has been implemented leveraging Prometheus [58], which plays a critical role in providing
historical traces of virtual resource CPU usage to support the prediction system.

4.2. Intelligent Orchestration of Virtual Resources on 5G Edge Infrastructures

The problem addressed in this work focuses on the intelligent orchestration of vir-
tual resources (VMs or containers) in 5G edge infrastructures. As depicted in Figure 3,
the scenario under consideration involves multiple bare-metal clusters or servers located in
different 5G edge locations. These edge clusters are managed by a centralized instance of
the OpenNebula cloud manager. From the perspective of OpenNebula, these clusters form
a uniform physical resource pool, where virtual resources can be dynamically deployed on
an on-demand basis.

Users

+
Orchestration Management

Edge location 1

Physical 
resources

Virtual resources
VM/

Container
VM/

Container

Edge location 2

Physical 
resources

Virtual resources
VM/

Container
VM/

Container

Edge location 3

Physical 
resources

Virtual resources
VM/

Container
VM/

Container

Figure 3. Distributed edge infrastructure.

Intelligent orchestration of this infrastructure entails finding an optimal allocation of
virtual resources to the available physical servers within the edge infrastructure, while
satisfying specific criteria. Various optimization criteria can be considered, such as min-
imizing the number of servers in use by consolidating virtual resources onto the fewest
possible servers to reduce energy consumption, balancing the load of different servers to
prevent overloading and CPU contention, or optimizing latency by selecting the closest
edge server based on specific proximity criteria. In addition, the orchestration system can
also deal with different constraints, including a limit on the maximum number of hosts
used, or a limit on the number of violations of the proximity criteria.

To address these challenges, the ONEedge5G module incorporates various prediction
and optimization mechanisms. Prediction mechanisms leverage historical data to forecast
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the load of different virtual resources for the upcoming allocation period. This load can
be quantified in terms of virtual resource consumption, such as CPU, memory, and/or
bandwidth usage. Meanwhile, optimization techniques utilize the aforementioned predic-
tions to determine the optimal allocation of virtual resources to physical servers based on
specific optimization criteria (e.g., minimizing the number of servers, achieving server load
balancing, or optimizing latency) and constraints.

5. Virtual Resource Load Forecasting

As mentioned in Section 3, workload prediction in cloud computing can be conducted
at the application level or the infrastructure level. In this study, we focus on utilizing
infrastructure-level techniques, which rely on predicting one or more resource usage
metrics, such as CPU, memory, disk, or network utilization. Specifically, we employ and
compare different time-series forecasting methods to predict virtual resource CPU usage.

To accomplish this, it was imperative to gather historical data on CPU usage from
various virtual resources over a specified time period. For each virtual resource trace,
the historical data were divided into two datasets: one for training and another for testing.
The training data were then employed to train various time-series forecasting models,
while the test data were used to evaluate the accuracy of the predictions using appropriate
error metrics.

5.1. Time Series Forecasting Models

In this study, we implemented a range of forecasting models using the Darts Python
library [59]. This library offers a wide array of models, including both classical approaches
like ARIMA and sophisticated deep neural networks. Leveraging the capabilities of the
Darts library, we implemented the following forecasting models:

• Naive seasonal. This is a simple baseline model for univariate time-series forecast-
ing [60] that always predicts the value of K time steps ago. When K = 1, this model
predicts the last value of the training set. When K > 1, it repeats the last K values of
the training set.

• ARIMA (auto-regressive integrated moving average). The ARIMA model [61] is a
form of regression analysis that assesses the relationship between a dependent variable
and other changing variables. Its objective is to predict future values of a time-series
by examining differences between values in the series, rather than the actual values
themselves. In this study, we utilized the Auto-ARIMA model [62] offered by the Darts
library, which automatically determines the optimal parameters for an ARIMA model.

• Bayesian regression. Bayesian regression [63] is a type of conditional modeling in
which the mean of one variable is described as a linear combination of other variables.
One of the most useful types of Bayesian regression is Bayesian ridge regression,
which estimates a probabilistic model of the regression problem. The Darts model
used in our experiments is based on the Scikit-Learn implementation of Bayesian ridge
regression [64].

• Facebook (FB) Prophet. FB Prophet [65] is a forecasting package developed by Face-
book’s data science research team. Its objective is to provide users with a powerful
and user-friendly tool for forecasting business results, without requiring expertise in
time-series analysis. The underlying algorithm is a generalized additive regression
model consisting of four main components: a piecewise linear or logistic growth curve
trend, a yearly seasonal component modeled using Fourier series, a weekly seasonal
component using dummy variables, and user-provided important holidays.

• Recurrent neural networks (RNN) based on LSTM (long short-term memory). LSTM [66]
are a specialized type of RNN used in deep learning. They address the vanishing
gradient problem of traditional RNNs by incorporating memory cells and gating
mechanisms. These mechanisms enable LSTM networks to selectively remember
or forget information over time, making them well-suited for tasks requiring the
understanding of long-range dependencies in sequential data.
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• Neural basis expansion analysis time-series forecasting (N-BEATS). N-BEATS is a
neural network that was architecture initially described in [67]. The primary objec-
tive of N-BEATS is to address the univariate time-series point forecasting problem
using deep learning techniques. In the N-BEATS implementation provided by Darts,
the original architecture is adapted to handle multivariate time-series by flattening the
source data into a one-dimensional series.

By exploring and comparing these forecasting models, we aimed to identify the most
accurate and reliable approach for predicting virtual resource CPU usage in our infrastructure.

5.2. Forecast Accuracy Measures

Different error metrics can be used to evaluate the accuracy of forecasting models.
Some of the most common error measures are the following:

• Mean absolute error (MAE):

MAE =
1
n

n

∑
i=1

|yi − ŷi| (1)

• Mean squared error (MSE):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

• Root mean squared error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (3)

where yi are the actual observations (e.g., CPU usage), ŷi are the predictions made by the
forecasting model, and n is the number of observations.

In this work, we used the RMSE metric to compare the different forecasting techniques.
RMSE represents the standard deviation of the residuals (prediction errors), and it is a
measure of how spread out these residuals are. In other words, it tells you how concentrated
the data are around the line of best fit.

6. Edge Resource Optimization
6.1. Problem Statement

The scenario considered in this work consists of a distributed 5G edge infrastructure
composed of a set of physical servers, one per edge location, each server with a specific
computing capacity (measured in the number of available cores) and a certain memory
capacity (measured in MB of available RAM). Our objective is to deploy a set of virtual
resources (VMs or containers) in this infrastructure, where each virtual resource has its
own computing requirements (number of assigned cores), memory requirements (amount
of assigned RAM in MB), and an estimated (forecasted) percentage of CPU usage for
each time slot. Furthermore, to model latency in our system, we assume that each virtual
resource is designated with a preferred edge location based on proximity criteria that
consider the distance between the edge location and the end users it serves. If the virtual
resource is not assigned to the preferred edge location, this is considered a latency viola-
tion. In our proposed model, we do not measure the exact time penalty caused by these
violations but instead focus on counting the total number of virtual resources affected by
latency violations.

The problem at hand involves finding the optimal mapping of virtual resources (VMs
or containers) to edge servers for a given time period (in our case, the mapping is performed
once a day). As outlined in Section 2, deploying edge computing infrastructures on 5G
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networks presents new challenges related to reducing latency, minimizing energy consump-
tion, and distributing workloads across geo-distributed edge nodes in various 5G locations
(such as 5G base stations). This study tackles these challenges by considering different
objective functions, such as minimizing the total number of cores utilized in the physical
infrastructure in order to reduce energy consumption, optimizing load balancing among
the different servers to improve workload distribution, and minimizing the number of
virtual resources affected by latency violations to reduce the observed latency for end users
and devices. Furthermore, we must account for some mapping constraints. For instance, it
is essential to ensure that the aggregate CPU usage of all virtual resources assigned to a
physical server should never exceed the server’s capacity (number of available cores) in
any given time slot. Additionally, there may exist optional constraints, such as imposing
an upper limit on the utilization of resources (e.g., cores) within the edge infrastructure or
establishing a limit on the number of latency violations.

6.2. Problem Formulation

The proposed solution for the previously stated problem is based on an ILP formula-
tion. As an overview, the inputs for the model are the number of physical servers available
at the 5G edge infrastructure, the capacity of these servers in terms of CPUs (number of
cores available), the set of virtual resources (VMs or containers) to be deployed, the capacity
allocated to these virtual resources in terms of CPUs (number of cores assigned to the
virtual resource), and the estimated percentage of CPU usage per time interval of these
virtual resources. These estimations are obtained using the forecasting methods detailed in
Section 5.

The output is the mapping of virtual resources to physical servers; that is, which
virtual resources should be deployed to each physical server, and which physical servers
are used for this deployment. Three different integer linear programming problems are
proposed, with three different objective functions.

The following subsections provide a detailed formulation of the problems.

6.2.1. Inputs

Let {v1, v2, . . . , vn} be the set of virtual resources to be mapped to the edge infrastruc-
ture, and let {s1, s2, . . . , sm} be the set of physical servers available at this infrastructure,
assuming one server per edge location. Virtual resources and servers are characterized by
the following parameters (inputs of the model):

• Vc
i is the number of cores assigned to virtual resource vi, ∀i = 1, . . . , n.

• Vu
i,t is the estimated (predicted) CPU usage (%) of vi at time interval t, ∀i = 1, . . . , n,

∀t = 0, . . . , 23.
• Sc

j is the number of cores available on server sj, ∀j = 1, . . . , m.

• Pre fij is the preferred edge location (or preferred server) designated for each virtual
resource, as defined by the following binary input parameter:

Pre fij =

{
1 if sj is the preferred server designated for virtual resource vi

0 Otherwise

6.2.2. Outputs

The output of the model is a mapping of virtual resources to edge servers for the next
full day, which can be defined using the two following decision variables:

• Xij =

{
1 if, for the next full day, the virtual resource vi is allocated to edge server sj

0 Otherwise

• Yj =

{
1 if edge server sj is used for the next day’s allocation
0 Otherwise
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6.2.3. Objective Functions

The goal is to find the optimal mapping of virtual resources to edge servers for the
next day (Xij, Yj ∀i = 1, . . . , n, ∀j = 1, . . . , m) that meets particular objective functions.
We explore three different objective functions, as follows:

1. To minimize the total number of cores used in the edge infrastructure, which can be
formulated as follows:

Minimize Total_cores (4)

where

Total_cores =
m

∑
j=1

Sc
j · Yj (5)

In the particular scenario where all servers are homogeneous and have an equal
number of cores, i.e., Sc

j = Sc, ∀j = 1, . . . , m, this objective function is equivalent to
minimizing the number of servers in use, which can be formulated as follows:

Minimize Total_servers (6)

where

Total_servers =
Total_cores

Sc =
m

∑
j=1

Yj if Sc
j = Sc, ∀j = 1, . . . , m (7)

2. To balance the average load of all the cores used in the edge infrastructure. To formu-
late this objective function, we first define the average (daily) load per core of an edge
server, Sload

j , as follows:

Sload
j =

∑n
i=1 ∑23

t=0 Xij · Vc
i · Vu

i,t

24 · Sc
j

, ∀j = 1, . . . , m (8)

Then, the load balancing objective function can be expressed as follows:

Minimize Max_load (9)

where
Max_load = max{Sload

j , ∀j = 1, . . . , m} (10)

It is worth noting that the maximum function (max) is not linear. Therefore, in order to
incorporate it into the ILP formulation, it is necessary to transform it into one or more
linear expressions. This can be achieved by re-formulating the Max_load function
as follows:

Max_load >= Sload
j ∀j = 1, . . . , m (11)

3. To minimize the number of virtual resources affected by latency violations, regarding
the preferred location of each virtual resource, Pre fij, and the actual location selected
for this virtual resource, Xij, which can be formulated as follows:

Minimize Total_latency_violations (12)

where

Total_latency_violations =
∑n

i=1 ∑m
j=1 |Pre fij − Xij|

2
(13)
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As in the previous case, the absolute value function is also non-linear. Therefore,
it is necessary to transform it into a linear expression using the following auxiliary
variable, Dij:

Dij >= Pre fij − Xij ∀i = 1, . . . , n ∀j = 1, . . . , m

Dij >= −(Pre fij − Xij) ∀i = 1, . . . , n ∀j = 1, . . . , m

Dij >= 0 ∀i = 1, . . . , n ∀j = 1, . . . , m

(14)

Then, the Total_latency_violations function can be re-formulated as follows:

Total_latency_violations =
∑n

i=1 ∑m
j=1 Dij

2
(15)

6.2.4. Constraints

Each of these objective functions is subject to a set of strict constraints and some
optional constraints.

(a) Strict constraints

• Each virtual resource must be allocated to exactly one edge server:

m

∑
j=1

Xij = 1 ∀i = 1, . . . , n (16)

• The estimated CPU usage of all the virtual resources allocated to a server
cannot exceed, within a certain threshold α (with α ∈ [0, 1]), the maximum
capacity (number of cores) available on that server:

n

∑
i=1

Xij · Vc
i · Vu

i,t ≤ α · Sc
j · Yj ∀j = 1, . . . , m ∀t = 0, . . . , 23 (17)

The analyst has the flexibility to select the value of the α threshold, which
serves to mitigate the discrepancy between the estimated CPU usage and the
actual CPU usage of the virtual resources and prevent overloading of the
physical servers.

(b) Optional constraints

• We can set a limit on the maximum number of cores used in the edge infras-
tructure:

Total_cores =
m

∑
j=1

Sc
j · Yj ≤ core_limit (18)

• We can set a limit on the maximum number of latency violations allowed:

Total_latency_violations =
∑n

i=1 ∑m
j=1 |Pre fij − Xij|

2
≤ latency_violation_limit

(19)

It is necessary to note that, once again, the Total_latency_violations function
must be reformulated, as shown in Equations (14) and (15), to transform the
absolute value function into a linear expression.

It is important to note that this study primarily focuses on CPU usage for virtual
resources. However, it is worth mentioning that similar constraints and consid-
erations can be applied to other system resources, such as memory, bandwidth,
and disk consumption.
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7. Results

This section showcases the prediction and allocation results achieved with the vari-
ous forecasting models, employing different optimization functions and constraints. All
experiments were performed on an on-premises server equipped with a 2.3 GHz 8-core
Intel Core i9 processor and 32 GB of RAM. This configuration represents a standard setup
for executing a front-end instance of a cloud orchestrator.

7.1. Traces

The workload traces needed to feed the different forecasting and optimization algo-
rithms can be obtained from the different sources, including public dataset repositories
(e.g., Google Workload Cluster Traces [68], the Azure Public Datasets [69], the Grid Work-
load Archive [70], or the Alibaba Cluster Trace Program [71], among others), production
traces obtained from some real companies, or synthetic traces generated by certain work-
load generator applications (e.g., Predator [72], Locust [73], etc.). Using public datasets
has several advantages compared to the alternatives. Public datasets are typically curated,
cleaned, and anonymized to ensure privacy and security; furthermore, they facilitate fair
comparisons and reproducibility of experiments. On the other hand, accessing production
traces from real companies can be challenging due to confidentiality concerns, legal restric-
tions, and the need for collaboration or data-sharing agreements. Synthetic traces generated
by workload generators may not accurately represent real-world workload characteristics
and patterns. Since there are no publicly available workloads with sufficient representation
of distributed edge infrastructures, as noted in previous studies [74,75], in this work, we
opted to use two well-known cloud VM traces from public datasets. Specifically, we utilized
data from the Azure Public Datasets [76] and the GWA-T-12 Bitbrains traces sourced from
the Grid Workload Archive [77].

The VM traces available in the Azure Public Datasets encompass a representative
subset of the first-party Azure VM workload within a specific geographical region. These
first-party workloads consist of both internal VMs utilized for research/development
and infrastructure management, as well as first-party services provided to third-party
customers, such as for communication, gaming, and data management. The time-series
data derived from the Azure VM trace V1 span a duration of 30 days, commencing from
16 November 2016, and concluding on 16 February 2017. For each VM, this trace records
the capacity provisioned for this VM in terms of its cores, memory, and disk allocations.
Additionally, it collects CPU usage data reported every five minutes.

The GWA-T-12 Bitbrains dataset includes performance metrics obtained from approxi-
mately one thousand VMs within a distributed data center operated by Bitbrains. Bitbrains
specializes in managed hosting and business computation services for enterprises, catering
to prominent customers such as major banks (ING), credit card operators (ICS), insurers
(Aegon), and more. The time-series data recorded in the Bitbrains traces were collected at
5 min intervals, spanning a duration of 30 days from 12 August 2013, to 11 September 2013.
For each VM, this trace records the capacity provisioned for this VM in terms of number of
CPU cores, CPU MHz, and memory allocations. Additionally, it collects data about CPU
usage, memory usage, disk read/write throughput, and network input/output throughput,
reported every five minutes.

7.2. Forecasting Results

We utilized the aforementioned traces from Bitbrains and Azure to forecast CPU usage
using the various time-series forecasting models described in Section 5. These models were
implemented in Python using the Darts library. In both datasets, VM traces were collected
every five minutes over a 30-day period. We grouped these traces into hourly time-series,
by computing the maximum CPU usage within each hour. Our objective was to predict
CPU usage for the next 24 h period based on historical data. Before using them, both sets
were normalized to the interval [0, 1]. The predicted CPU usage for the last 24 h period
was then used as input for the optimization models, allowing us to achieve an optimal
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allocation of VMs to physical servers. The results of these allocations are presented in
Section 7.3.

7.2.1. Bitbrains Trace Forecasting

The Bitbrains dataset contains traces for 1250 VMs. We classified these VMs into
four groups:

• Incomplete traces (252): Only VM traces that include data for all the time intervals of
the complete 30-day period were selected. Incomplete traces were excluded.

• Low CPU usage traces (875): VM traces with low CPU usage (averaging under 10%)
were discarded when applying the forecasting models. For these traces, we assumed
the expected CPU usage for the next 24 h period could be computed simply as the
average CPU usage from the historical dataset.

• Unpredictable traces (81): Many VM traces exhibit unpredictable CPU usage patterns,
including variable length periods of 0% CPU usage and variable length periods of
nearly 100% CPU usage. For these unpredictable traces, we assumed that the expected
CPU usage for the next 24 h period was always 100%. This prevented potential
under-provisioning situations that could lead to degradation of CPU performance.

• Predictable traces (42): These are the VM traces that did not fall into any of the groups
above. There are a total of 42 predictable traces in the Bitbrains dataset. The different
forecasting models were exclusively applied to this trace group.

We ran and compared six different forecasting models:

• Naïve seasonal model, with K = 24 h
• Bayesian regression model, using a Ridge-type regressor to predict the target time-

series from lagged values, using a lag period of 24 h
• Facebook Prophet model, without specific parameters (default values were used)
• Auto-ARIMA model, without specific parameters (default values were used)
• RNN model based on LSTM, with the following parameters:

– input_chunk_length = 24
– output_chunk_length = 24
– hidden_dim = 10
– n_rnn_layers = 1
– batch_size = 32
– epochs = 50 For the remaining RNN-LSTM parameters, the default values were

used.

• N-BEATS model, with the following parameters:

– input_chunk_length = 24
– output_chunk_length = 24
– epochs = 50 For the remaining N-BEATS parameters, the default values were

used.

Due to space limitations, it is impossible to display the charts comparing the actual
and predicted CPU usage values for the 24 h testing period across all combinations of VMs
and prediction models. Therefore, we only present a sample of four selected VMs, which
are displayed in Figure 4.
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a) Naïve seasonal model

b) Bayesian regression model

c) FB Profet  model

d) Auto-ARIMA model

e) RNN-LSTM model

f) NBEATS model

Figure 4. Forecasting results for a subset of Bitbrains VM traces (% CPU usage).

The graphs presented in Figure 5 illustrate the prediction accuracy (RMSE) achieved by
the different models when forecasting CPU usage for the 42 VMs considered in this dataset.
It is evident that certain forecasting methods outperformed others depending on the trace.
On average, the Bayesian regression and neural network-based models (RNN-LSTM and
N-BEATS) exhibited lower RMSE values compared to the other models.
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Figure 5. Prediction accuracy (RMSE) of various time-series forecasting models applied to Bitbrains
VM traces.

This observation is further supported by Table 1, which summarizes the average
RMSE and execution time (including fit and predict functions for all selected VMs) for each
prediction model. Notably, Bayesian regression demonstrated the highest level of accuracy.
In terms of execution times, neural network models (RNN-LSTM and N-BEATS) required
more computational time for model fitting, but they did not yield an improved accuracy
compared to Bayesian regression.

Table 1. Summary of prediction accuracy (average RMSE) for Bitbrains traces.

Model RMSE (Avg.) Exec. Time (Fit + Predict)

Naive seasonal 0.0613 33 s
Bayesian Regression 0.0536 36 s
FB Prophet 0.0627 75 s
Auto-ARIMA 0.0731 7 min
RNN-LSTM 0.0619 23 min
N-BEATS 0.0580 1 h

Adaptive (oracle) 0.0455 –
Adaptive (realistic) 0.0584 –

In addition to the six tested forecasting models, we proposed the utilization of an
adaptive model that combines all of the analyzed models, as shown in Table 1. The un-
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derlying concept of this adaptive approach is to execute all six forecasting models once a
day, and to select for each specific VM trace the model that performs best. The challenge
lies in the fact that it is impossible to know in advance which model will yield the best
results for the upcoming day. The oracle adaptive model assumes that we have advance
knowledge of the best-performing model for each individual VM trace on the following day.
We would then select that particular model to predict the hourly CPU usage for that VM.
However, in practice, this oracle selection is unfeasible. Therefore, we proposed a second
realistic adaptive model, which compares the forecasts obtained from the different models
on the day before and selects the model that performed best for making predictions for the
next day. It is evident that the oracle adaptive model outperformed each of the individual
models in terms of prediction accuracy. However, on average, the realistic adaptive model
did not improve on the predictions obtained by the Bayesian regression model.

7.2.2. Azure Trace Forecasting

The Azure dataset considered in this work contained traces for 28,858 VMs. We
categorized these VMs into three groups:

• Incomplete traces (5): Only traces that included data for all the time intervals of the
complete 30-day period were selected. Incomplete traces were excluded.

• Low CPU usage traces (25,218): Traces with low CPU usage (averaging below 10%)
were excluded from the application of forecasting models. For these traces, we as-
sumed the expected CPU usage for the next 24 h period could be computed as the
average CPU usage from the historical dataset.

• Predictable traces (3635): These traces did not fall into either of the two previous
groups. In the Azure dataset, there were a total of 3635 predictable traces. The different
forecasting models were exclusively applied to this group of traces.

We ran and compared five forecasting models (Naïve seasonal, Bayesian regression, FB
prophet, Auto-ARIMA, and RNN-LSTM) with the same parameters as in the Bitbrains case.
The N-BEATS model was not considered for forecasting Azure traces due to its extended
execution time for all 3635 VM traces, exceeding three days.

Prediction results for this dataset are summarized in Figure 6, which shows the
prediction accuracy (RMSE) achieved by the different models when forecasting CPU usage
for the VM traces considered in this dataset. Table 2 displays the average RMSE and
execution time (including fit and predict functions for all selected VMs) for each prediction
model. As observed, the Bayesian regression model once again demonstrated the highest
average accuracy. Regarding execution times, models based on neural networks (RNN-
LSTM) required significantly more computational time for model fitting but they did not
enhance the accuracy compared to the Bayesian regression. In addition to the five tested
forecasting models, we also implemented the two previously explained adaptive methods
(oracle and realistic). In this scenario, it can be observed that the realistic adaptive model
marginally improved on the average RMSE of the predictions obtained by the Bayesian
regression model.

Based on these results, we can conclude that the Bayesian regression model was
sufficiently effective in generating accurate CPU usage forecasts, while also requiring a
reasonably low execution time. Therefore, the outcomes generated by this model were
selected as inputs for the optimization algorithms.
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Figure 6. Prediction accuracy (RMSE) of various time-series forecasting models applied to Azure
VM traces.

Table 2. Summary of prediction accuracy (average RMSE) for Azure traces.

Model RMSE (Avg.) Exec. Time (Fit + Predict)

Naive seasonal (K = 24) 0.0498 17 min.
Bayesian Regression 0.0419 21 min.
FB Prophet 0.0504 40 min.
Auto-ARIMA 0.0508 5.9 h
RNN-LSTM 0.0491 12.7 h

Adaptive (oracle) 0.0314 –
Adaptive (realistic) 0.0414 –

7.3. Resource Optimization Results

As stated previously, the optimization problem addressed in this work consists of
finding the optimal mapping of virtual resources (VMs or containers) to edge servers using
different optimization criteria and constraints. The solution proposed for this problem
ise based on the ILP formulation, as shown in Section 6. These kinds of problems can be
effectively solved using standard solvers for linear programming, such as COIN CBC [78],
CPLEX [79], and SCIP [80]. In particular, our implementation was built upon the OR
Tools library for Python [81], leveraging the SCIP solver integrated within the Pywraplp
module [82].
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Our experimental test bed consisted of 500 VMs randomly chosen from the Azure
dataset, which had to be distributed across 12 different 5G edge locations. Each edge
location housed a physical server equipped with 64 cores and 192 GB of RAM. The parame-
ters defining each VM included the assigned number of cores, the predicted CPU usage
percentage for the next 24 h period (based on hourly predictions derived from the Bayesian
regression model), and the preferred edge location. These preferred edge locations were
also chosen randomly, following the distribution illustrated in Figure 7.
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Figure 7. Distribution of VMs according to the preferred edge location.

7.3.1. Comparison of Different Objective Functions without Optional Constraints

The initial experiments involved a comparison of the optimal allocation obtained with the
three different objective functions: minimization of the number of servers in use, Equation (6);
minimization of the total number of latency violations, Equation (12); and optimization
of load balance among servers, Equation (9). In these experiments, these objective func-
tions were used without any optional constraints (only strict constraints were considered,
as explained in Section 6.2.4). It is important to note that since all edge servers have similar
hardware configurations, the objective function that minimizes the total number of servers
in use is equivalent to minimizing the total number of cores, Equation (7). We also com-
pared these objective functions with the solution obtained without any optimization (i.e.,
allocating each VM to its preferred edge location). The results of these experiments are
shown in Table 3 and Figure 8.

Table 3 provides a summary of the allocation achieved for each objective function
(cases 1, 2, and 3) and the solution obtained without optimization (case 4). In case 4,
each VM was simply allocated to its preferred edge location. The table presents the total
number of servers in use, the total number of latency violations, and the execution time
of the ILP solver for each solution. On the other hand, Figure 8 depicts the estimated
average daily load per core of each server based on the VM CPU usage predictions used
in the optimization model, Equation (8), as well as the actual average daily load of each
server (similar to Equation (8), but using real VM CPU usage values instead of predicted
values). Additionally, the figure illustrates the maximum hourly actual load, representing
the worst-case scenario (maximum peak load) across all servers and time intervals.
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Table 3. Allocation results for different objective functions (without optional constraints).

Case Objective Function Total Servers Total Lat. Violations Solver Exec. Time

1 Number of servers 9 389 0.9 s
2 Latency violations 12 29 1.0 s
3 Load balance 12 432 1.4 s
4 None 12 0 -

Case 1 Case 2

Case 3 Case 4

Figure 8. Estimated vs. actual load.

As observed in Table 3, allocating VMs to their preferred edge locations without
any optimization (case 4) resulted in no latency violations. However, this approach led
to significant server overloading, as depicted in Figure 8 (case 4). Servers 1, 2, and 3
exhibited actual average loads exceeding 100%, with a maximum peak load surpassing
140%. Upon implementing optimization (cases 1, 2, and 3), regardless of the chosen objective
function, the strict constraint specified in Equation (17) (with α = 1) effectively prevented
overloading. Consequently, the actual average load remained below 100% for all three
cases and the maximum peak load approached 100%.

When comparing the results of the different objective functions, optimizing the number
of latency violations (case 2) allocated only 29 out of 500 VMs to an edge location different
from their preferred one, utilizing the 12 available servers. On the other hand, when
minimizing the number of servers in use (case 1), the solution obtained utilized only nine
servers instead of 12. However, this resulted in a significant number of latency violations,
with 389 out of 500 VMs affected. These minimum values (29 latency violations and nine
servers) represent the global minima for these two optimization problems. Hence, solutions
with fewer than nine servers or fewer than 29 latency violations are not considered feasible.
Regarding the load profiles in Figure 8, for these two cases, although the average daily
load per core did not exceed 100% for any server, there was a noticeable imbalance in
the load across the different servers, and the peak load slightly exceeded 100%. The load
balancing objective function (case 3) addressed this issue by utilizing all 12 available servers
and incurring a larger number of latency violations (432). However, it achieved a better
distribution of the load among the different servers and successfully avoided overloading in
all time slots. Finally, regarding the execution times of the ILP solver, it can be observed that,
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for the given problem size (500 VMs and 12 servers with 64 cores per server), the optimal
solution could be reached in less than two seconds in all cases.

Another noteworthy observation from Figure 8 is the comparison between the esti-
mated and actual average loads. The disparities between them stemmed from the prediction
errors of the Bayesian regression model employed to forecast the CPU usage of the various
VMs for the upcoming 24 h period. These prediction errors led to an estimation discrep-
ancy in the server load, typically ranging from 1% to 30%. However, all the optimization
algorithms (cases 1, 2, and 3) demonstrated the capability to achieve an optimal solution
with an average daily load per server below 100%.

Next, we analyze how the different objective functions performed under various
optional constraints.

7.3.2. Minimization of Number of Servers with Latency Violation Constraints

In this subsection, we analyze the objective function that minimized the number of
servers, with different limits on the number of latency violations allowed. Table 4 and
Figure 9 summarize the results of these experiments.

As observed in Table 4, when the limit on latency violations approached the global
minimum (29 latency violations), it became necessary to utilize all 12 available servers.
However, by relaxing the latency violation constraint, the number of servers in use could
be reduced. For a limit of 60 latency violations, it was possible to achieve a solution with
the minimum number of servers (9 servers). Increasing the latency violations limit beyond
60 did not lead to any significant improvement in solution quality. Thus, we can conclude
that a solution with nine servers and around 60 latency violations represents a favorable
trade-off between both variables. Regarding the solver’s execution times, we observed that
the introduction of constraints increased the time required to achieve an optimal solution.
However, these times remained below 20 s in all cases.

Figure 9 displays the load profiles of these solutions, showcasing only the maximum
and minimum values of the actual average daily load, as well as the maximum peak load
for simplicity. As observed, a significant disparity existed between the maximum and
minimum values of the average daily load. The maximum value was close to 100%, while
the minimum value fell below 40%. This imbalance in the load distribution among the
different servers is significant and can result in the overloading of certain servers during
specific time slots. This is evident in the graph displaying the maximum peak load, which
exceeded 100% in all cases.

Table 4. Allocation results for the ‘number of servers’ objective function under different latency
violation constraints.

Limit on Latency
Violations Total Servers Used Total Latency

Violations Solver Exec. Time

30 12 30 3.2 s
40 11 40 10.7 s
50 10 50 18.6 s
60 9 60 10.6 s
None 9 389 0.9 s
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Figure 9. Actual load per core for the ‘number of servers’ objective function under different latency
violation constraints.

7.3.3. Minimization of Total Latency Violations with Number of Server Constraints

Now, we analyze the objective function that minimized the number of latency viola-
tions, with different limits on the number of servers. Table 5 and Figure 10 summarize the
results of these experiments. As observed, when the limit on the number of servers was
increased from 9 to 12, the optimization algorithm yielded solutions with highly satisfactory
numbers of latency violations, ranging from 59 to 29 (the global minimum). Therefore, we
can further refine the conclusion from the prior case and state that one of the solutions with
the best trade-off between the number of servers and latency violations was the one with
9 servers and 59 latency violations (which represented less than 12% of the total number
of VMs). We can observe that the solver’s execution time remained below 10 seconds in
all cases.

Regarding the load profiles of these solutions (Figure 10), they exhibited similarities to
the previous case, displaying a significant imbalance in load distribution, with a maximum
peak load exceeding 100% in all the cases.
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Figure 10. Actual load per core for the ‘latency violations’ objective function under different
server constraints.
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Table 5. Allocation results for the ‘latency violations’ objective function under different server
constraints.

Limit on Number of
Servers Total Servers Used Total Latency

Violations Solver Exec. Time

9 9 59 8.9 s
10 10 50 7.1 s
11 11 40 3.0 s
12 12 29 1.0 s

7.3.4. Optimization of Load Balance with Latency Violation and Number of
Server Constraints

In this subsection, we analyze the objective function that optimizes the load balance
using both constraints in the number of servers and the number of latency violations.
We carried out two sets of experiments, the first with the maximum number of servers
(12 servers) and different latency violation constraints (Figure 11), and the second with
the minimum number of servers (nine servers) and different latency violation constraints
(Figure 12). In this case, we only show the load profile graphs, since the number of servers
and number of latency violations values were implicit in each experiment.
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Figure 11. Actual load per core for the ‘load balancing’ objective function under different latency
violation constrains and a server limit of 12.

When utilizing 12 servers, we could observe a convergence between the maximum
and minimum values of the average daily load as we relaxed the constraint on latency
violations. This indicates an improved load distribution among the servers. Furthermore,
with a latency violation limit above 40, the maximum peak load remained below 100%,
indicating the absence of server overloading in these scenarios. The solver’s execution time
stayed below two seconds in all experiments.

On the other hand, if we limit the number of servers to the minimum value of nine,
each server has to support a higher load, leaving less room for load balance improvement.
However, by establishing a latency violation limit of around 80–90, we can slightly reduce
the gap between the maximum and minimum average daily load. This helps to avoid over-
loading, keeping the maximum peak load at around 100%. In some of these experiments,
the solver took longer to converge to an optimal solution, with execution times ranging
from 3 to 120 s.
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Figure 12. Actual load per core for the ‘load balancing’ objective function under different latency
violation constrains and a server limit of 9.

7.3.5. Sensitivity Analysis

The final experiment in this study involved conducting a sensitivity analysis to ex-
amine the impact of the CPU usage prediction errors in the allocations results. The CPU
usage percentage values used in the previous experiments were based on the predictions
made by the Bayesian regression model shown in Section 7.2, without considering the
prediction intervals. These prediction intervals represent the range of values within which
the actual observation is expected to fall with a certain level of confidence and are typically
symmetrically centered around the forecasted value, incorporating a designated error
margin. In this analysis, we established a conservative prediction interval using an error
margin of ±10%, which was calculated as twice the rounded-up value of the RMSE for
these predictions.

We compared the allocation results for the objective function of minimizing server
count, with no additional constraints, using four sets of CPU usage values: the actual CPU
usage values (ideal case, as these values cannot be known in advance in a real scenario); the
mean value of the prediction interval; the upper bound of the prediction interval (i.e., mean
predicted values plus a 10% error); and the lower bound of the prediction interval (i.e., mean
predicted values minus a 10% error). Table 6 displays the total number of servers allocated
in each scenario. As observed, using the actual CPU usage values allowed for an allocation
solution with only eight servers, comparable to the solution obtained when using the lower
bound values of the prediction intervals. On the other hand, allocation based on the mean
predicted values resulted in a total of nine servers, while allocating based on the upper
bound values of the prediction intervals requires ten servers.

Table 6. Sensitivity analysis for the ‘number of servers’ objective function with no optional constraints.

CPU Usage Values Used for the Optimization Total Servers Used

Actual values 8
Predicted values (lower bound) 8
Predicted values (mean) 9
Predicted values (upper bound) 10
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Figure 13 displays the load profiles for the four scenarios. It is evident that when
using the actual CPU usage values (ideal case), the optimization algorithm returned an
optimal solution with the minimum number of servers and a load per core that never
exceeded 100%. Solutions based on mean values of the prediction intervals, and upper
bound values, also exhibited minimal overloading, but using a higher number of servers.
Conversely, the allocation based on lower bound values of the prediction intervals resulted
in a minimum number of servers, but increased overloading, with a maximum peak load of
115%. In conclusion, the sensitivity analysis indicated that while the best solution in terms
of server count and load profile was obtained using the actual CPU usage values, this is un-
feasible in a real scenario. The solution utilizing the mean values of the prediction intervals
offered the best trade-off between the total number of servers used and limited overloading.
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Figure 13. Sensitivity analysis results (actual load per core).

8. Conclusions and Future Work

This work introduced a novel Smart 5G Edge-Cloud Management Architecture based
on OpenNebula. The proposed architecture incorporates experimental components from
the ONEedge5G project which, in its current developmental phase, will incorporate predic-
tive intelligence mechanisms for CPU utilization forecasting and optimization algorithms
for the optimal allocation of virtual resources (VMs or containers) on geographically dis-
tributed 5G edge infrastructures.

This study emphasized infrastructure-level techniques for CPU usage forecasting,
employing different statistical and ML time-series forecasting methods. Bayesian regression
demonstrated the highest accuracy among the methods evaluated. The optimization
problem addressed involved finding the optimal mapping of virtual resources to edge
servers using different criteria and constraints. An ILP formulation was proposed for
solving this problem. The scenario included a distributed edge infrastructure with physical
servers, each with specific computing and memory capacities. Virtual resources with
their computing requirements, as well as preferred edge locations based on proximity
criteria, were deployed in the infrastructure. The results showed that optimizing different
objective functions, such as minimizing the number of servers, reducing latency violations,
or balancing server loads, led to improved management of the infrastructure. Allocating
virtual resources based on their preferred edge locations without optimization resulted in
no latency violations but severe server overloading. However, optimization algorithms
successfully prevented overloading, while maintaining an average daily load per server
below 100%.

By merging various optimization criteria and constraints, such as the number of
servers in use and the number of latency violations, different optimized solutions can be
obtained. For instance, one approach is to minimize latency violations to a minimum of 29
by utilizing all available servers, while another option is to reduce the number of servers
to nine with only 59 latency violations. However, these solutions introduce significant
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imbalances in load distribution among servers and may result in overloading on certain
servers and time slots. To address this issue, incorporating the load balancing objective
function proves effective, as it can achieve solutions with a limited number of latency
violations, while improving load distribution and preventing overloading.

In our future work, we have various plans to enhance the prediction and optimization
models. First, we aim to incorporate additional hardware metrics, including memory,
bandwidth, and disk usage, to explore their potential correlation and integrate them into
the mathematical models for optimization. Additionally, we plan to propose new opti-
mization criteria based on the previous metrics, as well as integrating different objective
functions using various multi-objective approaches. We also intend to investigate alterna-
tive optimization techniques, such as bio-inspired algorithms or reinforcement learning
algorithms, to further improve the efficiency of the system. Another aspect not addressed
in this study but worthy of consideration in future research is the potential utilization
of nested virtualization, where containers are not run directly on bare-metal servers but
within VMs. In such scenarios, two levels of allocation should be addressed: containers to
VMs, and VMs to physical servers. Finally, expanding the capabilities of the ONEedge5G
modules is on our agenda, encompassing functionality for capacity planning, prediction,
and anomaly detection, as well as proactive auto-scaling mechanisms to facilitate elasticity
management. These advancements will contribute to the comprehensive development of
our Smart 5G Edge-Cloud Management Architecture and enable more robust and adaptive
management of distributed 5G edge infrastructures.
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