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Abstract: Driven by the rapid escalation of its utilization, as well as ramping commercialization,
Internet of Things (IoT) devices increasingly face security threats. Apart from denial of service,
privacy, and safety concerns, compromised devices can be used as enablers for committing a variety
of crime and e-crime. Despite ongoing research and study, there remains a significant gap in the
thorough analysis of security challenges, feasible solutions, and open secure problems for IoT. To
bridge this gap, we provide a comprehensive overview of the state of the art in IoT security with a
critical investigation-based approach. This includes a detailed analysis of vulnerabilities in IoT-based
systems and potential attacks. We present a holistic review of the security properties required to be
adopted by IoT devices, applications, and services to mitigate IoT vulnerabilities and, thus, successful
attacks. Moreover, we identify challenges to the design of security protocols for IoT systems in which
constituent devices vary markedly in capability (such as storage, computation speed, hardware
architecture, and communication interfaces). Next, we review existing research and feasible solutions
for IoT security. We highlight a set of open problems not yet addressed among existing security
solutions. We provide a set of new perspectives for future research on such issues including secure
service discovery, on-device credential security, and network anomaly detection. We also provide
directions for designing a forensic investigation framework for IoT infrastructures to inspect relevant
criminal cases, execute a cyber forensic process, and determine the facts about a given incident. This
framework offers a means to better capture information on successful attacks as part of a feedback
mechanism to thwart future vulnerabilities and threats. This systematic holistic review will both
inform on current challenges in IoT security and ideally motivate their future resolution.

Keywords: Internet of Things; analysis; security; communication security; device security; service
security; forensic; threats; vulnerabilities; requirements; challenges; solutions; new perspectives

1. Introduction

With its manifold technical and functional benefits, the Internet of Things (IoT) has
emerged as a significant paradigm to advance the Fourth Industrial Revolution [1–4].
The size and nature of the IoT continues to grow, and it will eventually be massive and
pervasive. It enables an extensive set of applications and services such as home automation,
environmental monitoring, healthcare, transportation, agricultural automaton, connected
vehicles, energy efficiency and smart grid, remote monitoring, security, and safety. To
do so, IoT devices make their services and data accessible to stakeholders, including end
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users and cloud services, through Internet connectivity. These services and data must be
organized so that any form of access to the data is secure and limited to the parties involved.
The security aspect of IoT emerges as the biggest concern; as the IoT spreads widely, digital
mischief is likely to become a progressively physical threat [5–8].

To comprehend the significance of IoT security, one can investigate the existing state of
IoT devices that are currently in operation. It is reported that 80% of devices exposed users’
private information, such as name and date of birth, according to an assessment survey on
commercialized IoT devices conducted by Hewlett-Packard (HP) [9]. The survey also found
that 70% of the devices surveyed did not apply any encryption during communication, and
80% of them used fragile passwords in terms of adequate complexity and length. Moreover,
of the devices, 60% had come with various security vulnerabilities, including cross-site
scripting (XSS) [10] in their interfaces. A summary of the survey findings is provided
in Figure 1. A number of studies have demonstrated that it is possible to efficiently
establish control over the operation of commercialized IoT devices and perform various
illicit operations. Some of those findings are noted in Table 1.

Table 1. Real attacks on smart systems.

Target Device Security Issue Highlight

Multimedia centers and appli-
ances Insecure Web interface

Compromised devices were used for sending
phishing emails, and texts were sent from com-
promised Blu-ray devices and refrigerators [11].

Surveillance camera Weak credentials
Internet-connected cameras were compromised
to create a botnet and perform DDoS attacks on
websites [12].

Programmable Logic
Controller (PLC)

Insecure firmware Reprogrammed with rootkit [13]

Insecure operating system Processed malicious commands [14]

Webcams and smart bulbs Account enumeration A botnet was formed using a large number of
compromised devices [15]

Thermostat Lack of access control meth-
ods

A thermostat was compromised to shut down
the heating of a building [16]

Vehicle Insecure Controlled Area Net-
work (CAN) interface

Adversaries took control over radio, dashboard,
brake, and acceleration [17]

Drug pump Insufficient authentication
and authorization

Adversaries changed the dose of the drug
pump [18]

Baby monitor Insufficient authentication
and authorization

An Internet-connected baby monitor allowed
unauthorized access to its camera [19]

Traffic sensors Insecure firmware Adversaries sent fake data to traffic control sys-
tems [20]

Smart TV Insecure communications Adversaries eavesdropped on broadcast mes-
sages [21]

A Deeper Look at Why IoT security is different: The inherent heterogeneity in
services [22], applications, and devices in IoT systems introduces multi-modal complexity
to the IoT security solution architects and providers. The development of novel IoT
security schemes faces further challenges because of the presence of diverse communication
media and respective proprietary protocols. Moreover, the contemporary security schemes
applied in laptops, personal computers, and smartphones cannot be directly adopted for
IoT systems due to the resource-constrained nature of IoT sensors, devices, and networks.
As reported in Table 2, IoT devices come with memory space of a few megabytes (typically,
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8–32 KB of RAM and 48–512 KB of ROM) and a CPU with low power consumption
(corresponding to a clock frequency of 8–96 MHz), and they have to work with a low-
bandwidth connection (corresponding to a low data rate of 16–250 kbps) [23–27].
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Figure 1. Security issues with commercialized IoT devices [9].

Table 2. Specifications of some representative devices used for IoT applications.

Device Specification
CPU Storage Networking

Arch (Bits) Clock (MHz) RAM (KB) ROM (KB) Standard Radio Interface BW (kbps)

Sky-Mote [24] 16 8 10 48 6LoWPAN IEEE 802.15.4 250

Z1-Mote [23] 32 32 32 512 6LoWPAN IEEE 802.15.4 250

Openmote [26] 32 32 32 512 6LoWPAN IEEE 802.15.4 250

Waspmote [27] 8 16 8 128 Zigbee IEEE 802.15.4 250

Arduino Uno [28] 8 16 2 32 6LoWPAN IEEE 802.15.4 250

Mbed [29] 32 96 32 512 CAN CAN Bus 320

Weptech [30] 32 32 32 512 6LoWPAN IEEE 802.15.4 250

KNX Stacks [31] 32 32 32 512 KNX KNX Radio 16.4

Some of the pivotal constraints on employing conventional security solutions in IoT
systems are highlighted below:

1. IoT devices have low-powered CPUs, and most are battery powered. The crypto-
graphic algorithms used in conventional security methods may not be executable on
IoT devices, as these devices operate at a slower clock speed.

2. IoT devices have less memory and storage compared to conventional digital devices,
such as smartphones and laptops. The security protocols used by conventional devices
may not consider memory limitations in their design, so IoT devices may not have
enough space in the RAM to load and execute the conventional security methods after
loading embedded software, such as operating systems, services, and applications.

3. IoT devices communicate over low-data-rate radio interfaces. Conventional security
methods may not be optimized for these lossy and low-powered communication links.



Future Internet 2024, 16, 40 4 of 57

An IoT device may not respond to a real-time request if it spends most of its assigned
time slots for serving a request on exchanging security messages.

4. IoT devices use lightweight operating systems, such as Contiki [32] and RIoT [33],
due to their resource-constrained natures. As such, the protocol stack of IoT operating
systems requires a resource-efficient version of contemporary security modules, such
as IPsec [34] and DTLS [35], to run on IoT devices.

5. IoT software has to be updated regularly to mitigate potential security vulnerabilities.
However, the real-time and lightweight operating systems that run on IoT devices
may not have the capability to receive and integrate new codes or libraries to keep the
system software updated.

6. IoT networks are expected to experience abrupt changes in network topologies be-
cause mobile IoT devices may join a network without prior configuration or leave
the network abruptly. The sudden changes in the network topologies may affect
various performances of the existing security methods, such as re-distribution of
shared credentials in the pre-shared key-based authentication methods. As a result,
conventional security schemes may not be suitable for mobile IoT-based systems.

7. A wide range of wireless protocols are used for communications in the IoT sys-
tems, which include WiFi [36], ZigBee [37], Z-Wave [38], and NFC [39]. A smart
device can use proprietary networking protocols for device-to-device communica-
tions and standard protocols for Internet communications. The conventional security
methods may not be comprehensive enough for the entire set of properties of each
communication protocol.

The above constraints suggest that the utilization of IoT-based systems without appro-
priate security measures puts the success of the evolving IoT paradigm at risk, which would
downgrade or even destroy the whole IoT business. We must be careful to investigate
and determine priorities for IoT security solutions. Accordingly, security solutions and
guidlines used in designing IoT elements, systems, and protocols should be customized for
the context of use. In this paper, we survey contemporary IoT security issues and perform
an in-depth critical analysis of them with the aim of educating learners and practitioners in
IoT security implications.

1.1. Existing Surveys and Our Contributions

From a general viewpoint, some of the security and privacy issues in IoT have been
discussed in [40–45]. However, these papers primarily survey IoT progress in general
covering applications, enabling technologies, architectures, and some security fundamen-
tals. Some of the IoT-related security concerns have been surveyed in Refs.[46,47] provides
a survey on M2M research security, and [47] discusses the challenges and solutions for
securing fog computing for IoT applications. In regard to IoT-enabled cyberattacks, the
authors in [48] deliver an assessment survey on attack paths to relevant infrastructures
and services. Ref. [49] presents a reasonable review of intrusion detection systems for IoT
technologies, but the paper mainly focuses on architecture types.

Recently, a few reasonable surveys on IoT security [50–59] have been made available in
the literature; however, the spectrum of IoT security is so large that many critical issues and
aspects are yet to be investigated. In Table 3, we show a comparative analysis on the scope
of our paper with that of the existing surveys. Mrabet et al. [59] divided the IoT attacks
into five different layered architectures and presents security issues of each layer with
the security measures and mechanisms to defeat these attacks. However, a more useful
classification of the prominent IoT attacks based on other parameters, such as devices’
properties and severity level, may help us to better understand and analyze the exiting
security problems and mitigation techniques. Similarly, Mohanta et al. [50] presented
different attacks taxonomy based on the different layer of IoT architecture and discusses the
use of emerging technologies, such as artificial intelligence and blockchain in mitigating
these attacks. Nevertheless, a more comprehensive discussion on IoT attack surface and
vulnerabilities of IoT ecosystem is desired. Ahmed et al. [60] primarily explored the integra-
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tion of Blockchain and IoT, specifically focusing on energy, security, and hardware aspects.
This provided insights into the challenges and opportunities associated with this integra-
tion, offering a specialized examination within the mentioned domains. Hewa et al. [61]
primarily concentrated on bolstering security in cloud manufacturing equipment clusters
for Industry 4.0. By leveraging edge-based blockchain and fog computing, they targeted
challenges related to privacy, authentication, and overall system performance. In contrast,
our work takes a broader approach, systematically analyzing security vulnerabilities across
IoT layers and proposing a comprehensive Blockchain-based forensic framework. While
both works contribute significantly to IoT security, our research spans a wider spectrum,
addressing diverse aspects beyond the specific focus of cloud manufacturing.

Table 3. Comparative analysis with the prior survey works.

Aspects [59]
et al.

[50]
et al.

[51]
et al.

[52]
et al.

[53]
et al.

[54]
et al.

[55]
et al.

[56]
et al.

[57]
et al.

[58]
et al.

Our
Work

Device ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Cryptography ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Communication ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Attack Surface
&

Vulnerability
Identification Service ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓

Adversary
Location

✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓

Device
Property

✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓

Data Privacy ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Attack
Taxonomy

Severity ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Access
Control ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Security Confidentiality ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

Requirements Availability ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Efficient
Cryptography ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓

Device ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Transport
Layer ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓

Network
Layer ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓

Application
Layer ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓

Protocol
Stack-wise

Security
Solutions

Access Level ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Another recent work [51] demonstrated the feasibility of using deep-learning-based
techniques and provides a taxonomy of the machine-learning-based methods for IoT
security. The research also illustrates the common IoT security threats and the attacks
surfaces of an IoT ecosystem focusing on the use of machine learning and artificial intelli-
gence. However, the paper does not cover the detailed security requirements needed to
ensure secure operational and access model, a very much desirable aspect in IoT security.
Then, Stoyanova et al. [52] focused on fundamental challenges, theoretical frameworks,
and research trends in the IoT forensics. The authors discuss existing IoT forensics and
their usefulness and provide some guidelines to the digital forensics professionals. The
research provides a good taxonomy of the attacks on IoT systems, but does not focus
on the prospective solutions to mitigate the attacks. S-FoS [62] proposes an SDN-based
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security-aware workflow scheduler for IoT-Fog networks, defending against DDoS and
port scanning attacks by integrating fuzzy-based anomaly detection and NSGA-III multi-
objective scheduling optimization. Through simulations, it outperforms existing algorithms,
improving response time and network utilization in varying IoT scenarios. Unlike S-FoS,
our paper focuses on the broader spectrum of IoT security, addressing vulnerabilities across
various layers, communication protocols, and network topologies. We provide a com-
prehensive analysis, categorizing threats and proposing security solutions tailored to the
unique constraints of IoT devices, emphasizing the need for customized security measures
in the evolving IoT paradigm. In prior research, the authors proposed FUPE [63], a security-
aware task scheduler for IoT-Fog networks, leveraging Software-Defined Networking
(SDN) to address TCP SYN flood attacks. FUPE employs a fuzzy-based multi-objective par-
ticle swarm optimization approach to optimize computing resources and enhance security
simultaneously. Extensive simulations demonstrate FUPE’s superiority over state-of-the-art
algorithms, showcasing significant improvements in average response time and network
utilization under varying attack rates, fog devices, and job numbers. While FUPE focuses
on addressing TCP SYN flood attacks in IoT-Fog networks through a security-aware task
scheduler with SDN and optimization techniques, our work takes a broader perspective
on IoT security. Our paper provides a comprehensive analysis of various security threats
and vulnerabilities in IoT, presenting a detailed attack taxonomy. We categorize threats
across different layers, communication protocols, and network topologies. Additionally,
our proposed security solutions cover diverse aspects, offering a holistic approach to IoT
security challenges.

Javanmardi et al. [64] explored the security challenges in IoT-Fog networks, empha-
sizing the vulnerabilities and attacks in the fog layer. They proposed a Blockchain and
Fog-computing-enabled security service architecture, utilizing Hyperledger Fabric for fog
nodes at the edge. The focus is on authentication, equipment-cloud channel privacy, and
defense against malicious attacks. This work primarily addressed energy efficiency and
hardware aspects of IoT and Blockchain integration, while our work takes a broader ap-
proach. We comprehensively analyze various security threats and vulnerabilities in IoT,
offering a detailed attack taxonomy. Our proposed security solutions cover diverse layers,
communication protocols, and network topologies, providing a holistic view of IoT security.
The work of Lounis et al. [53] presented the attacks and the mitigation techniques related
to the wireless infrastructures of IoT systems covering the most frequently used wireless
communication technologies from the resource-constrained perspectives. The authors also
provided a classification of the attacks based on a security-service-based attack. They also
presented mitigation techniques of certain attacks, provided some guidelines to the user,
and highlighted the limitation of these security measures. However, the complete security
requirements of the IoT systems in different levels, such as operational level, information
level, and access level, is not a part of the research. Similarly, the work of Sharma [54]
focused on the security, privacy, and trust of mobile IoT (M-IoT) devices. The authors also
discussed several available secure frameworks for M-IoT devices, such as an access control
and authorization-based framework, risk-assessment-based framework, authentication-
based framework, and secure services-based framework as a secure solution to tackle IoT
vulnerabilities and attacks. In contrast, more rigorous classification of the attack surface
and complete security of different level of the IoT network is not considered therein. Sha
et al. [55] aimed to present the prior works of edge-based security designs for IoT solutions.
The authors also proposed an edge-centric IoT architecture. However, the other important
aspects of the IoT systems attack surfaces, such as service vulnerabilities and cryptographic
weaknesses, were not discussed. Meneghello et al. [65] addressed the IoT security issues
and probable counter measures from a more practical perspective. This article focused on
four communication protocols mostly used in IoT devices, namely ZigBee, Bluetooth low
energy (BLE), 6LoWPAN, and LoRaWAN. However, a general layer-wise security solution
was not discussed in that research.
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In this article, we present a holistic analysis of IoT security problems that includes a
detailed discussion on the vulnerabilities and attack surface of the IoT network. We also
provide a comprehensive attack taxonomy of the IoT attacks based on adversary and device
properties, data privacy, and severity level. Moreover, the available effective techniques to
secure the IoT solutions are also presented in this research. Furthermore, we also propose
a Blockchain-based forensic framework to investigate and identify security issues of the
IoT-based systems. Our specific contributions are highlighted as follows:

1. We provide a comprehensive analysis of various security threats and vulnerabilities in
IoT. Different from the existing surveys, this article identifies various attack surfaces
and categorically discusses the associated vulnerabilities. We formulate an attack tree
to classify the attacks in terms of their severity level and present a detailed attack
taxonomy that encompasses a wide spectrum of how devices, hosts, access levels,
locations, and strategies, among others, play a role in initiating respective attacks.

2. From a systems design perspective, we introduce the concept of a security land-
scape that can reflect multi-modal complexity based on applications, services, devices,
and connectivity associated with an IoT system of interest. Then, we examine prop-
erties required for various security schemes, including access level and functional
security requirements.

3. With the aim of mitigating various threats, we classify the existing security solutions
into three categories (end device security, communication security, and service secu-
rity) and thoroughly discuss each of them. Subsequently, this article presents several
comparative analyses of the proposed security schemes.

4. We find that the existing research primarily addresses the information- and access-
level security properties. However, the time has come to pay attention to the resource
efficiency and functional robustness of the security schemes. Accordingly, we identify
open research problems and provide guidelines for future research directions.

5. It is common that smart devices, applications, and communications become a sub-
ject, object, or tool related to IoT crimes, and appropriate investigations should,
therefore, be conducted to execute a cyber-forensic process and determine the facts
behind attacks. With this perspective and in the context of an IoT-based system that
might consists of billions of smart devices, we propose a Blockchain-based forensic
framework. The framework can potentially assist a forensics investigator in defining
evidence, developing scalable storage mechanisms to log a large amount of evidence,
and generating secure provenance of the evidence.

1.2. Organization

A list of acronyms used throughout the paper is presented in Table 4. Figure 2
illustrates the organization of this manuscript. Section 2 describes the operational model of
an IoT-based system. We identify security vulnerabilities in IoT-based systems in Section 3.
The analysis of threat model with various security risks and attacks is presented in Section 4.
Security requirements of an IoT-based system are presented in Section 5. Current solutions
to mitigate IoT attacks are discussed in Section 6. Section 7 enumerates open research
problems in the IoT environment. Finally, we conclude in Section 8.
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Table 4. List of acronyms and corresponding definitions.

Acronyms Definitions

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks

API Application Programming Interface

BLE Bluetooth Low Energy

CAN Controlled Area Network

CapBAC Capability-based Access Control

CoAP Constrained Application Protocol

DDOS Denial of Service

DH Diffie Hellman

DODAG Destination Oriented Directed Acyclic Graph

DOS Denial of Service

DTLS Datagram Transport Layer Security

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie Hellman

HIP Host Identity Protocol

IDS Intrusion Detection System

IoV Internet of Vehicle

IPS Intrusion Prevension System

IPsec Internet Protocol Security

LLN Low Power and Lossy Netwroks

M2M Machine-to-Machine

MTU Maximum Transmission Unit

NFC Near Field Communication

RPL IPv6 Routing Protocol for LLNs

RSU Road Side Unit

SAML Security Assertion Markup Language

TLS Transport Layer Security

V2V Vehicle-to-Vehicle

XACML eXtensible Access Control Markup Language

XSS Cross Site Scripting

Access Level 

Security 

Requirements

Functional 

Security 

Requirements

Information 

Security 

Requirements

End Device 

Security

Communication 

Security

Service Security

Basics of IoT

Security

Network 

Classification

IoT Components

Background Security 

Requirements

Security 

Solutions

Research 

Directions

Section II

Adversary 

Location-Based

Device 

Specification-

Based

Info Damage 

Level-Based

Host-Based

Attack Taxonomy

Section IV

Attack Surfaces

Surface-linked 

Vulnerabilities

Security 

Vulnerabilities

Section III

Section V

Section VI

Section VII

Section I

Figure 2. The organization and structure of this paper.
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2. Background

We present components and operational model of an IoT system [66,67] in Figure 3.
The details of the components are as follows.

Cloud

IoT ServicesAnalytics (Big Data)

Security 

Server
Local DB

Master Server

BLE PAN

6LoWPAN

Zigbee PAN

Constrained 

Network Coordinator Gateway Internet Access

Public NetworkInteroperability

Border Router

Zigbee

Access Point

Bluetooth Hub

Direct Access

Remote Access

Security Services

Cloud Services Controller

Figure 3. The operational model of an IoT system.

2.1. IoT Networks

An IoT system comprises two types of networks: constrained network and public
network. The smart devices operate in the constrained network. As shown in Figure 3,
in a constrained network, the devices can use multiple protocols, such as 6LoWPAN [68],
Zigbee [69], ZWave [38], and BLE [70], for communications. The communication links
of a constrained network are low power and lossy. Therefore, smart devices exchange
information between them at a rate which is significantly lower than conventional digital
networks, such as Ethernet and WiFi. In the constrained network, smart devices use IPv6
for addressing and CoAP [71] as the application protocol. In constrained networks, the
RPL routing protocol [72] is used to route network packets over the lossy links.

The Internet (Wide Area Network) is considered to be the public network in an IoT
system. A public network provides connections between multiple IoT systems, such as
smart home, building, medical, and industry, located in the edge of the networks. The 3G,
4G, or 5G technologies can be used for communication in the public networks. The data
rates of the pubic networks are significantly higher than those of the constrained networks.
The public networks use IPv4 and HTTP for message delivery and conventional routing
protocols [73], such as RIP and OSPF, for routing packets.

2.2. IoT Device

An IoT device is embedded with various software, hardware, and network com-
ponents. The software component consists of operating systems, micro-services, and
applications. The hardware component includes sensors, actuators, and batteries. A radio
transceiver is embedded with a device as a network component.

An IoT device collects contextual information using its sensors. The device uses its
actuators to perform various actions based on the collected information. The device may
also perform an action based on the commands received from its owners and users.

To better understand the operating method of a smart device, we consider two scenar-
ios of a smart home and healthcare system. In a smart home, a wearable device may adjust
the temperate of an air conditioner according to the humidity of the room and perspiration
level of the device owner. Similarly, in a smart healthcare system, medical sensors attached
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to a patient body may record the health conditions of the patient and send the information
to hospitals and physicians for analysis.

2.3. IoT Service

IoT services can be classified into two categories: edge IoT service and cloud IoT
service. The edge IoT services are located in the constrained networks and provided by the
smart devices. Users interact with the smart devices using the edge services. Smart devices
also exchange information with them using these services. The edge services may also be
used for device maintenance purposes, such as updating or upgrading embedded software.

Cloud IoT services are located on the Internet and publicly accessible. These services
enable users to interact with smart devices remotely. The cloud IoT services communicate
to the edge services to receive sensor information and then process the information for
making decisions. The cloud IoT services also handle the tasks of device registration, device
management, sensor data management, and process automation.

2.4. Coordinator

A coordinator device can be considered as a device hub that manages a group of smart
devices. Smart devices perform actions that trigger multiple events. A coordinator collects
these actions and events for reporting purposes. The coordinator also monitors health,
including battery percentage and resource utilization, of the smart devices that operate
under it. The coordinator sends aggregated reports on the actions, events, and device
health to the IoT service providers, device manufacturers, and system administrators.
These reports can be used for audit or accounting purposeds. The information can also be
used for big data analysis.

2.5. Gateway

An IoT Gateway enables communication between constrained and public networks.
A smart device sends sensor information to a cloud IoT service through the Gateway.
Similarly, cloud IoT services can communicate with a smart device through the Gateway to
receive real-time updates. The Gateway acts as a protocol translator in an IoT network. As
such, devices with various networking protocols can communicate with them. For instance,
the Gateway allows communications between a Zigbee device and a 6LoWPAN device.
A Zigbee device does not use IPv6 for addressing, while a 6LoWPAN device does. The
Gateway receives a Zigbee packet, translates the packet to an IPv6 packet, and forwards it
to the 6LoWPAN network. Hence, the Gateway enables cross-protocol communications
in IoT networks. Moreover, the Gateway translates IPv6 and CoAP protocols to IPv4 and
HTTP, respectively, to allow interactions between edge and cloud IoT services.

2.6. Controller

A controller device consumes edge and cloud IoT services. Device owners and service
users use a controller entity, such as smartphone and web applications, to interact with
smart devices. For instance, physicians can monitor patients’ health conditions using their
smartphones. A controller device can be co-located with a smart device in the constrained
network to interact with the smart device. The controller device can also communicate
with an IoT device remotely being located on the Internet.

3. Security Vulnerabilites

In this section, we first identity attack surfaces of an IoT system. Next, we provide
details on the vulnerabilities associated with these attack surfaces.

3.1. Attack Surfaces

In an IoT system, the number of communication interfaces increases significantly
compared to traditional digital systems because of the distribution of heterogeneous devices,
communication media, networking protocols, services, and applications [74]. As a result,
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the number of attack vectors increases many folds in the IoT environment. As public
IoT services are located in cloud servers, the attack surfaces from the cloud computing
paradigm also contribute to the increment of the attack vectors [75]. Figure 4 shows
various types of communication interfaces in an IoT system. As presented in Table 5, in
the constrained network, adversaries can perform attacks by exploiting vulnerabilities
in things-to-things, things-to-controllers, controllers-to-gateways, and gateways-to-users
communication interfaces. Moreover, the vulnerabilities in gateways-to-clouds and clouds-
to-users interfaces can be exploited to compromise IoT services.

Remote Client
Cloud Service

Source (T2U)

Destination (T2U)

Source (T2T)

1.1 Request

3.1 Update

Local Client

Source (T2U)

1.3 Req.

3.2 Update

Source (T2C)

Destination (T2T)

1.2 Request

2.3 Request

Destination (T2C)

2.1 Request

Destination (T2U)

2.2 Request

4.2 Request

IoT

IoT IoT

IoT

IoT

IoT

IoT

Figure 4. Communication interfaces in an IoT system.

Table 5. IoT attack surfaces.

Network Attack Interface

Constrained
Network

Things ⇔ Things
Request 4 in Figure 4: a wearable medical sensor interacts with a thermostat to adjust room temperature.

Things ⇔ Coordinator
Zigbee network: the communication interface between Zigbee nodes and Zigbee Access Point as shown in
Figure 3

Things ⇔ Controller
Request 2 in Figure 4: a user controls home appliances using a smartphone

Public Network

Things ⇔ Cloud Service
Request 3 in Figure 4: the interfaces between IoT nodes and Gateway as well as between Gateway and
Cloud

Cloud Service ⇔ Controller
Request 1 in Figure 4: a physician monitors a patient’s medical devices remotely

Cloud Service ⇔ Cloud Service
Interfaces between a medical service managed by hospitals and medical data analysis service maintained
third-party providers
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3.2. Surface-Associated Vulnerabilities

In the following sections, we present various vulnerabilities that can be associated
with the attack surfaces of smart systems [76,77].

3.2.1. End Device Vulnerability

Vulnerable Device Role: An IoT device can have multiple roles in a smart system. A
device embedded with a sensor performs as a collector. Similarly, a device with a sensor
and actuator collects information as well as performs actions. It is also possible that a
device has a combined role of collector, performer, and coordinator. The multiple roles of
IoT nodes can make them vulnerable to identity thefts and make it easy for a malicious
device to impersonate a legitimate device [78].

System Software Vulnerability: IoT devices are embedded with system software,
such as operating system, kernel, and firmware. The system software should be upgraded
and patched regularly to avoid exploitations. However, due to the lossy nature of the
constrained networks, it becomes a challenging task to apply security updates over the
air to an IoT system with a large number of smart devices. As such, smart devices are at
risk of being compromised if their software is not patched regularly. Moreover, the task of
updating and upgrading should be performed by following proper guidelines. Otherwise,
an insecure update may enable adversaries to discover security-critical information related
to software and firmware versions and configurations [79,80].

Storage Vulnerability: A smart device stores security-sensitive information, such
as cryptographic materials and sensor information, in its non-volatile storage. Device
manufacturers may not consider storage security in the hardware design to reduce the
size of a smart device or minimize the price of the device. Therefore, poor storage security
can be a threat to the privacy and confidentiality of the in-device sensor information and
credentials [81].

3.2.2. Communication Vulnerability

Vulnerable Multi-Protocol Connectivity: An IoT system comprises various types of
networking protocols and communication links, including wireless, wired, intranets, and
Internet [66,67]. A vulnerability in one networking protocol can be propagated to another
protocol during cross-protocol communications. Moreover, the privacy and confidentiality
of sensor information can be breached during the protocol translation performed by the
Gateway. A Gateway device translates IPv6 packets to IPv4 packets when an IoT device
exchange messages with a cloud server. A malicious Gateway device can learn about the
payloads while performing the protocol translation. As a result, communication between
the heterogeneous networks is vulnerable to various attacks that can be a threat to the
violation of information privacy and confidentiality.

Network Service Vulnerability: Security features, such as Firewall, to configure
network services with proper security settings may not be present in the IoT operating
systems. The settings may include MAC address, IP address, and port filtering. For
example, Contiki [32] and RIoT [33] operating systems do not have options to configure
firewall settings. As such, ports that are used for device maintenance can be exposed to
adversaries [82].

Vulnerable Cryptography: IoT devices may not adopt strong cryptographic schemes,
such as larger keys, to encrypt communications because they have limited storage ca-
pacity, network bandwidth, and CPU power. Adversaries may find it easy to learn the
communications as they are encrypted using weak encryption methods.

3.2.3. Service Vulnerability

Vulnerable Edge Service: IoT devices provide various types of services in the edge
networks. These devices expose Web and Application Programming Interfaces (APIs) that
enable users to interact with them. For instance, a smart thermostat allows a user to adjust
the room temperature using their smartphone. A Coordinator device enables a network
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administrator to manage the IoT nodes through a device management service. These
interfaces can be vulnerable to various web attacks, such as SQL injection [83], password
enumeration [84], and cross-site scripting [85], if they are not designed with proper security
guidelines. The services may not implement a security policy that locks a user’s account
after a limited number of password guesses or may support vulnerable words as account
credentials, such a a dictionary word, as a password [76,77].

Vulnerable Cloud Service: Cloud IoT services enable users to interact with smart
devices remotely. These services also store sensor information in the cloud servers for
further analysis. Although the cloud services ensure a user’s seamless access to IoT nodes,
they introduce various security risks at the same time. For instance, there may have security
threats to data privacy and confidentiality, service availability, and continuous access to IoT
nodes if cloud servers and services are not patched with the latest security updates [86].

Vulnerable Partner Cloud: IoT applications and cloud services may interact with
third party clouds to provide analytics to users. A smart healthcare system can share
sensor information from a patient’s medical devices with third-party cloud services to
help physicians to understand the patient’s health condition(s). Sharing the data with
third-party clouds can lead to critical security risks, such as privacy and confidentiality
threats, if the third-party clouds do not adopt proper security schemes to receive and
share the shared information. A third-party cloud provider may not use a reliable security
method for user authentication, message encryption, and message integrity verification.
The third-party cloud service can use SHA-1, which is vulnerable to collision attacks [87],
as the hash algorithm to verify message integrity.

4. Attack Taxonomy

In this section, we present a classification of IoT attacks. We classify the attacks based
on the location of an adversary, the types of devices that can be used in attacks, level of
information damage in attacks, and techniques used for compromising credentials.

4.1. Attacks Based on Adversary Location

External Attack: An attacking device is located anywhere on the Internet. Figure 5
shows the locations of the adversaries in the external networks. The threat model for exter-
nal attacks can be as follows. A malicious application can be published in the application
store, and later this application can be installed on a smartphone that is used to control
IoT devices. Similarly, a malicious application can be installed on the cloud servers where
sensitive sensor information is stored. The malicious applications can leak sensor data
and users’ personal information, such as a patient’s health conditions received from their
medical devices, to the Internet. Moreover, the malware can exploit vulnerabilities in the
Gateway device [88,89] of an IoT network to gain unauthorized access to smart devices and
networks remotely. The malware can perform various web service attacks, such as SQL
injection and cross-cite scripting, using the compromised Gateway device.

Internal Attack: An attacking device and target devices are located in the same IoT
network. The attacking device can be a member of the Destination-Oriented Directed
Acyclic Graph (DODAG) [90] formed by smart devices, or it can be deployed to a location
in the IoT network such that target devices and the attacking device share the same radio
signal used in communications. Figure 6 shows the positions of an attacking device in an
IoT network. In the internal attack, an attacking device is used for gathering information
on communications protocols and network vulnerabilities. For instance, the attacking
device can be used to overhear communications between IoT devices to determine whether
messages are exchanged in plain text or are encrypted. If message are encrypted, then it
can also be determined whether or not a vulnerable security method is used for encryption,
such as heartbleed vulnerability in TLS 1.1 and 1.2 [91]. The attacking device can also be
used to identity vulnerabilities in the software used by IoT devices, such as open ports.
An adversary can use this information to gain unauthorized access to IoT devices or to
perform various network attacks, such as wormhole [92], sinkhole [93], and botnet [94].
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Figure 5. External attack.
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Figure 6. Internal attack.

4.2. Attacks Based on Device Property

High-End Device Class Attack: Malicious devices used to perform attacks have
more resources—such as CPU speed, storage capacity, network bandwidth, and battery
power—than a target device has. An attacker can use desktop, laptop, and cloud PCs to
perform attacks on IoT networks and smart devices. The attacking device can be either co-
located with the target device or positioned outside of the network of the target device. An
adversary uses the high-end devices to perform attacks that increase the resource utilization
of a victim device [95,96]. An attack scenario for a high-end device attack is as follows. An
adversary sends a large number of malicious requests to the target device in a very short
period. The target device keeps allocating resources to process the malicious requests and
eventually suffers from resource exhaustion, such as memory overflow and reduced battery
life. As a result, the target device cannot handle legitimate requests or send time-sensitive
sensor information to its users due to resource unavailability. Although an attacker’s goal
is to stop a target device from providing services by exhausting its resources, the adversary
uses a high-end device as an attacking device to avoid such resource exhaustion while
performing attacks.

Low-End Device Class Attack: An IoT device is used as a tool for attacking another
IoT device. As such, the attacking and target devices have similar capabilities and resource
specifications regarding CPU, storage, and network bandwidth. In the low-end device
class attacks, attacking devices positioned inside an IoT network are configured to perform
Distributed Denial of Service (DDOS) type attacks. For example, an attacker can maliciously
configure a smart thermostat to provide false information on room temperature to its owner.
Similarly, a smart watch containing malware can introduce itself as a smart light. Next, the
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smart watch can exploit the trust relationship between the smart light and a smart TV to
get unauthorized access to the TV. Later, the smart watch can use the TV as a platform for
sending spam emails.

4.3. Attacks Based on Information Damage Level

Interruption: An adversary limits the capabilities of device-to-device and device-to-
gateway communications by interfering with radio signals. The adversary can use certain
jamming devices to interfere with radio signals [97]. Interruption attacks are threats to
quality and availability of services provided by an IoT device.

Man-in-the-Middle: In the Man-in-the-Middle (MITM) attack, a malicious IoT node
sits between two victim nodes and tricks them into thinking that they are communicating
with each other. Figure 7 shows an example of the MITM attack in the RPL network. A
malicious node M spoofs the identities of node A and B. Node M establishes a session with
node A impersonating Node B and initiates another session with node B impersonating
node A. Hence, Node M tricks Node A and Node B into providing sensor information.

Internet

Gateway

M

Node A Node B

2.1 Create New Session 

Spoofing B’s Identities

Attacker

2.2 Create New Session 

Spoofing A’s Identities

3.1 Provide Sensor 

Information 

3.2 Provide Sensor 

Information 

Figure 7. Man-in-the-Middle attack.

Modification: In this type of attack, a malicious node modifies messages that are
routed through it. An adversary attempts to trick a victim node into performing unautho-
rized actions or revealing sensitive information. A scenario of the message modification
attack is shown in Figure 8. A malicious Node M is located in the communication path
between Node S and Node D. Node M modifies the content of a message sent by Node
S before forwarding it to Node D. Node D may accept the altered message if it does not
implement a security scheme that validates the integrity of a received message. As a result,
the victim node may perform an action based on the modified information.

Fabrication: In this attack, a malicious node does not modify a message; instead, it
inserts counterfeit information into the original message. The goal of the adversary is
to create confusion between communicating peers and trick a victim node into issuing
malicious commands. As shown in Figure 9, a malicious node inserts a forged header
(kn+1, vn+1) into a request. The fabrication attacks threaten message integrity.
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Figure 8. Message modification.
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Figure 9. Message fabrication.

Message Replay: An adversary stores messages that are routed through, although the
adversary is not authorized to do so. The adversary can also store a message if the victim
node and adversary share the same radio signal. As shown in Figure 10, the adversary
and source node share a radio signal although they are not located in the same subtree
of an RPL network. The adversary eavesdrops on the communication link and stores the
message exchanged between the source and destination nodes. Later, the adversary replays
the message to impersonate the source node and get authenticated to the destination node.
If an IoT node does not have a method to identify whether a message was delivered in the
past, the node will consider a replayed message as a legitimate one and perform according
to the instruction included in the message regardless of whether it is sent by an adversary.
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Figure 10. Replay attack.

4.4. Host-Based Attacks

User Compromise: Adversaries can adopt various social engineering techniques [98]
that trick users into revealing their personal information and security credentials, such as
name, date of birth, username, and password. Adversaries can send phishing emails and
text messages to users to obtain usernames and passwords used for communicating with
smart devices by impersonating a legitimate IoT service provider. As shown in Figure 11,
an adversary attempts to obtain the credentials of the owner of a smart refrigerator by
sending phishing text messages to the owner’s smartphone.

Legitimate IoT Service 

Gateway

IoT Node

Forged IoT Service 

1. Attacker sends Email/SMS 

with forged sensor information

2. User logs into a 

phishing IoT service 4. Uses victim’s 

credentials to issue 

malicious commands

5. Malicious Command

Figure 11. User credential compromise.

Software Compromise: The vulnerabilities in web services, operating systems, and
firmware can be exploited by adversaries to get access to IoT devices and networks. An
attack scenario of the software compromise attack can be as follows. An adversary identifies
that an IoT device runs a web server on port 80 by using port scanning tools [99] and
techniques [100]. Next, the adversary uses password enumeration tools [101] to find
the username and password used to log into the device. The web service may not have
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implemented a policy that locks the device after a certain number of login attempts or
requires a complex password. As such, the adversary gets access to the device through
password enumeration. After getting access to the device, the adversary can create a
backdoor, such as a reverse shell, on the device to obtain sensor information. The adversary
can also reconfigure the device to provide false sensor information, such as fake room
temperature or health conditions, to its owner. As shown in Figure 12, in a connected
vehicular scenario, an adversary reprogrammed a Roadside Unit (RSU) with malicious
codes such that the RSU provided false information to smart cars.

RSU

[S-1, P-1] [S-2, P-2]

[S-1, P-1] 

[S-2, P-2]

Cloud

[S-1, P-1] [S-2, P-2]

[S1, P 1] 

[S2, P 2]

RSU

[S-1, P-1] [S-2, P-2]

[S1, P 1] 

[S2, P 2]

Reprogramming Node Cloning/Replacement 

Hardware CompromiseSoftware Compromise

S = Speed

P = Location

S/P = False 

Information

Figure 12. Software/hardware compromise threat model for Internet of Vehicles. RSU = Road-
side Unit.

Hardware Compromise: The in-device storage of an IoT device contains sensor data,
keying materials, and program code. An adversary can tamper with an IoT device to
extract the embedded credentials and then use the credentials to impersonate a legitimate
device. The adversary can obtain certificates and shared, public, and private keys stored on
a device’s memory by performing micro-probing and reverse engineering on the particular
device. For example, RSUs are vulnerable to hardware compromise attacks, as they are
left unattended after being installed on the side of the road (see Figure 12). RSUs and
smart vehicles exchange traffic information, such as the distance between vehicles and road
conditions. Adversaries can tamper with the RSUs to obtain their embedded credentials.
Later, malicious RSUs can use the credentials to provide false traffic information to smart
vehicles. False traffic information may lead to accidents.

4.5. Severity of IoT Attacks

We suggest three different types of severity levels to group the above mentioned IoT
attacks. The severity levels are high, moderate, and low. Figure 13 shows the assignment of
severity levels to IoT attacks.
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Figure 13. A taxonomy of IoT attacks.

The severity levels are assigned as follows:

1. High-Severity Attack: High-severity attacks can completely compromise an IoT
system. Attacks of this category result in the loss of data confidentiality and integrity
and unauthorized access to IoT networks and devices. The attacks that fall under
this category are host compromise, man-in-the-middle, and replay attacks, because a
successful attack allows an adversary to obtain credentials used for authentication
and encryption as well as to perform actions without authentication.

2. Moderate-Severity Attack: An IoT system may be partially compromised by moderate-
severity attacks. Attacks of this category have high impacts on the availability of
services provided by smart devices. However, attackers may not have access to sensor
information, devices, or networks. Attacks that may result in resource exhaustion
can be considered moderate-severity attacks. Therefore, high-end, external, message
modification, and fabrication attacks are included in this class.

3. Low-Severity Attack: In-device and in-transit information is not compromised by
a low-severity attack. Moreover, a successful low-severity attack does not result
in unauthorized access to networks and devices. Additionally, the availability of
IoT services is not affected by low-severity attacks. As such, low-end, internal, and
interruption attacks are included in this class.

4.6. Summary and Insight

In this section, we have examined various attack scenarios for IoT systems. We found
that a successful high-severity attack can allow adversaries to take control of an entire IoT
network. Therefore, penetration testing [102–104] should be performed periodically to
assess the vulnerabilities in IoT systems and ensure the IoT devices, services, and networks
are not compromised. Moreover, IoT service providers should take necessary steps to
educate users and device owners about social engineering attacks so adversaries cannot
compromise user credentials by sending phishing emails or text messages.

5. Security Requirements

The level of complexity of designing a security scheme varies from one smart system
to another. The complexity level depends on the types of devices, connectivities, services,
and applications present in an IoT system. Figure 14 presents a framework with the security
complexity parameters. In the complexity framework, the changes of a parameter (such
as application, device specification, and connectivity) in any dimension may increase or
decrease the design complexity. For instance, design complexity increases with the increase
in the number of communication interfaces in an IoT system. Let us consider connectivity
complexity as an example. A smart device can use a non-IP network protocol for local
network communications, such as things-to-things message exchange, and TCP/IP protocol
for public network communications, such as things-to-cloud information exchange. The
security scheme should be designed such that it can provide the same level of protection
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both for the IP and non-IP communications. Several other requirements and properties
need to be included in the design of IoT security schemes. The details of these security
properties are presented below.

Power Source

Memory

CPU Speed

Connectivity

Application & Service

Device Specification

WAN
•LTE

•3G

•5G •RFID 

•NFC

•BLE

• Wi-Fi

WPAN

WLAN

Security

Figure 14. Complexity parameters for security solutions.

5.1. Access-Level Security Requirements

Authentication: This property enables a smart device to verify the identity of its
communicating peer. Hence, a smart device ensures that devices or users with valid
credentials get access to its services and resources. For instance, a Coordinator device
authenticates a network administrator before allowing her to perform administrative tasks,
such as remote reprogramming of a smart device, in an IoT network. Similarly, a user has
to be authenticated to a smart device before the device performs actions according to a
command issued by the users.

Access Control: The access control methods ensure that users and devices with valid
credentials only get access to authorized services. This security property protects smart
devices and services from unauthorized access. For instance, a patient’s wearable medical
sensors can be configured such that a physician can issue read and write commands to them.
However, a nurse may only be authorized to issue read commands to the medical sensors.

Accounting: Accounting ensures that the activities of the entities of an IoT system can
be used for auditing purposes. Security analysts use activity logs to investigate forensic
incidents. An analyst can track the communications that took place between things and
users, things and things, or things and clouds in the past as evidence to resolve disputes
between users and IoT service providers or to find facts in cyber-criminal cases. As such,
accounting services should have the ability to store logs and allow auditors to obtain logs
for investigating cyber incidents.

5.2. Information Security Requirements

Integrity: This property allows an IoT device to verify the integrity of received
messages. The integrity of in-transit and stored data can be compromised by modification
and fabrication. Smart devices should be able to identify such altered requests and should
not process them.

Information Protection: This property protects the privacy and confidentiality of the
stored and exchanged information. Smart devices should avoid sending messages in plain
text. These devices should adopt encryption techniques to preserve the confidentiality
of the sensor information. Smart devices should implement policies that limit access
to information and disclose to trusted parties to protect information privacy. As such,
malicious entities will be prevented from learning security-critical information. For instance,
there may be policies defined for an IoT network that do not allow a smart node to share
sensor information with the neighboring nodes (devices that share the same radio signal).



Future Internet 2024, 16, 40 21 of 57

Anonymity: This security property protects the privacy and confidentiality of the
identity and locations of a smart device. Anonymity enables IoT devices to hide their
identifiers and locations when they provide sensor information to users, clouds, and other
devices. In a smart city, roadside sensors send traffic updates to cars, pedestrians, traffic
lights, and clouds periodically. Anonymity ensures that the identity of the sensors and
their deployment locations are not revealed when the sensors provide traffic information
to smart cars and drivers.

Non-Repudiation: This property prevents parties that are involved in a communi-
cation, such as devices, gateways, clouds, and users, from denying their participation in
exchanging messages. A medical sensor cannot deny sending a patient’s health conditions
that it has previously sent.

Message Freshness: This security property ensures that IoT service consumers receive
the most recent sensor data. Smart devices are expected to provide real-time information
on IoT environments. This property enables a service consumer to validate that received
messages are most recent and not re-played. For instance, medical IoT services located in
the cloud should be able to verify whether a medical sensor sends real-time updates on the
patient’s health conditions.

5.3. Functional Security Requirements

Interoperability: Heterogeneous hardware and software, such as radio transceivers
and operating systems, are embedded with IoT devices. Security solutions should be
designed and developed such that their deployment to an IoT system does not interrupt
functional operations between heterogeneous things or prevent a device from commu-
nicating with its peer securely. For instance, a device with a newer version of a security
method should be able to communicate with a device with the older version of the security
scheme. Moreover, the same security scheme can be integrated with devices with different
operating systems or software platforms. In this case, the security method should allow
the devices to communicate to each other seamlessly without compromising message
authenticity, integrity, and confidentiality. This property can be evaluated based on the
amount of information (such as multiple versions of cryptographic algorithms, certificates,
and keys) that a device needs to store in its memory to establish security associations (such
as identify validation and session key establishment) with devices that have heterogeneous
operating systems.

Scalability: According to recent research by Forbes [105], over the next five years, one
million IoT devices will be commercialized per year. Therefore, security systems should
scale well for IoT systems with a large number of smart nodes. A criterion for evaluating
the scalability of a security method can be the architecture, centralized or distributed, on
which the method is designed. For instance, distributed key management may be better
than centralized key management for a smart city, which accommodates a large number of
smart devices ranging from roadside sensors to smart cars.

Memory Efficiency: Smart devices have limited storage in RAM and ROM. Security
methods should be designed such that cryptographic materials, such as keys and certificates,
and program codes take minimal space in the flash memory (ROM). Security schemes
should also be optimized to reduce memory (RAM) consumption during the execution of
the cryptographic algorithms, such as identity verification, making authorization decisions,
encryption, signature validation, and session key computations.

Minimal Communication Overhead: IoT networks are lossy and low powered and
have limited network bandwidths. Therefore, security methods should minimize the total
number of messages and bytes that devices are required to exchange between them to
establish session keys. Moreover, radio-transceivers consume a significant amount of
energy to receive and deliver network packets. The exchange of a minimal number of
protocol messages will reduce energy consumption and increase battery life.

Minimal Computation Cost: IoT devices are embedded with low-power CPUs
that operate at slower CPU clocks. Security schemes should avoid computation-intensive
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cryptographic operations in authentication and session key derivation to allow IoT devices
to execute security algorithms faster. Moreover, the execution of such security schemes
will enable devices to avoid burning too many CPU cycles, reduce energy consumption by
CPUs, and ensure longer battery life.

Exception Handling Capability: This property allows IoT devices to provide a mini-
mal level of service during unfavorable incidents, such as software glitches, malfunctioning
hardware, dislocation environmental hazards, and denial-of-service attacks. This property
also ensures that IoT devices can continue services, even in an anomalous situation, without
compromising information security.

Resiliency: The security of an IoT system should not be compromised even if adver-
saries get unauthorized access to one or more nodes of the system. As such, this property
allows security methods to avoid single points of failure on the IoT network. For instance,
an adversary can compromise one or more nodes of an IoT system. However, security
protocols should be designed such that the reaming nodes of the system can identify the
compromised nodes and continue protecting the system from attacks by providing a set
level of security.

5.4. Summary and Insight

In this section, we have identified the requirements for IoT security schemes. The
access-level and information security properties must be included in the design of the
security systems, as they ensure privacy, confidentiality, authenticity, and integrity of
communications. In addition, an adequate amount of time should be spent on the design
to meet the functional security requirements, because, unlike conventional digital devices,
most of the IoT devices have limited resources, deal with real-time and security-sensitive
information, and are required to be online 24/7.

6. Security Solutions

In this section, we review the existing security methods used for mitigating IoT attacks.
We classify the contemporary security schemes into three domains: end-device security,
communication security, and service security. Figure 15 presents the classification of the
security solutions from these three domains. We summarize prior solutions protecting the
IoT devices from different attack surfaces and mitigating vulnerabilities in Table 6.

Security Scheme

End Device 
Security

Secure 
Execution

Secure Bootstrap

Secure Storage

Secure 
Debugging

Communication 
Security

Cryptosystems

Network 
Security

Transport 
Security

Service Security

Role-based 
Access Control

Capability-based 
Access Control

Figure 15. Classification of the existing security schemes.



Future Internet 2024, 16, 40 23 of 57

Table 6. Summary of the available solutions to mitigate IoT threats.

Aspects Threats Mitigation Schemes

Device
Security

Software
Compromise

Secure Execution [106–109]

Secure Bootstrap [110]

Hardware
Compromise

Secure Debug [111–113]

Secure Storage [114–116]

Network Layer Security

Identity Impersonation Authentication
and
Encryption
Using Host
Identity
Protocol (HIP)

Base Exchange [117]

Distributed [118]
Tiny Exchange [119]

Information
Disclosure

Diet Exchange [120,121]

Slimfit [120]

Pre-Shared Key [122–125]

Lightweight [126,127]

Transport
layer
Security

Identity
Impersonation Authentication

and
Encryption
Using DTLS

Certificate-based [128]

DTLS-PSK[122,125,129]

Information
Disclosure

Modified [130]

Delegated [131–133]

Application
Layer
Security

Unauthorized
Access

Role-based Access Control (RBAC)
Centralized [134]

Context-aware [135]

Capability-
based Access
Control
(CapBAC)

Centralized [136–138]

Distributed [139–141]

Context-Aware [142]

OAuth Compliant [143,144]

End-device security protects IoT devices from host compromise attacks, such as soft-
ware and hardware tampering. End-device security methods ensure the integrity of the em-
bedded software and system booting process, protect on-chip storage from micro-probing,
and provide a secure execution environment that isolates the computation of the trusted
and untrusted software. Communication security provides authentication for device-to-
device communications and ensures confidentiality, integrity, and non-repudiation of the
information exchanged between devices. Finally, service security protects IoT devices and
their resources from unauthorized access.

Since a comparative survey is one of the key objectives of this article, the performance
of the aforementioned security solutions is evaluated in terms of the functional security
properties described in Section 5.3. The analysis eventually determines the usability of the
existing security methods for IoT systems. Table 7 summarizes the performance metrics of
interest in this regard.

Table 7. A list of metrics used to analyze the performance of contemporary security schemes.

Property Highlights

Memory Require-
ment (MR)

The total number of bytes required to store public keys (mpk), pri-
vate keys (msk), and certificates (mcrt) in volatile and non-volatile
memory. MR = ∑(mpk, msk, mcrt)ROM + ∑(mpk, msk, mcrt)RAM



Future Internet 2024, 16, 40 24 of 57

Table 7. Cont.

Property Highlights

Communication
Overhead (CO)

The total number of messages (mt) and bytes (bt) exchanged until
a session key is negotiated. In addition, the amount of energy
(eco) consumed by a radio transceiver for exchanging messages.
CO = ∑(mt, bt, eco)

Computation
Complexity (CC)

The number of arithmetic operations (ot), such as addition, sub-
traction, multiplication, division, and modular exponentiation,
required to compute a session key. In addition, the amount of
energy (ecc) consumed by the CPU for performing cryptographic
computations. CC = ∑(ot, ecc)

Resilience The ability to provide services under Denial-of-Service attacks

Scalability The ability to accommodate a large number of IoT devices

Interoperability
The ability to negotiate a cipher suite to establish a secure associa-
tion with heterogeneous devices

6.1. End Device Security
6.1.1. Secure Execution Environment

Software attacks compromise the software executed on the IoT devices. A Secure
Execution Environment (SEE) can provide essential security for IoT software in the face
of untrusted applications and operating systems. A SEE can be achieved by using trusted
computing techniques, such as Trusted Platform Module (TPM) [106].

A TPM chip ensures protected execution of security-sensitive applications and oper-
ating systems. A processing unit embedded with the TPM chip isolates the execution of
the trusted software and untrusted software. The isolation is performed based on either
physical or logical separation of processes. In physical separation, trusted software is
executed on a dedicated secure processor, such as the secure co-processor developed by
IBM [107]. In contrast, in logic separation, a single processor is capable of supporting a
secure mode, which isolates sensitive and untrusted code by using an additional software
layer [145] or hardware support, such as Intel TXT and SGE platforms [108] and ARM
TrustZone [109].

6.1.2. Secure Bootstrap

A secure boot routine [110] can prevent malicious applications from loading during
the system start-up process. A secure boot routine is a piece of code that can detect any
modification in the operating system and system software during the start-up phase. Thus,
a secure boot routine can ensure system integrity and bring the system to a known and
trusted state. The bootstrap code is stored in the flash memory, such as NOR or NAND
flash, and is executed directly from there. This ROM-based execution approach prevents
an adversary from perceiving the bootstrap process. The complete bootstrap solution
consists of additional security features, including a software update routine which receives
and integrates new code and libraries to upgrade the system to a new version of the
software image.

6.1.3. Secure Storage

IoT devices store cryptographic keys, sensor readings, and system images in their
memories. The secure storage ensures protected access to this security-sensitive data.
The on-chip memory can be designed using one-time programmable technology, such as
read-only memory and poly-silicon fuses [114–116], to store codes and credentials securely.
As a result, reprogramming attacks cannot modify or replace information stored in the
secure storage.
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6.1.4. Secure Debug Interface

The debugging interface is primarily used during development and manufacturing
of a device. This interface allows debugging of on-chip applications and loading system
images into flash memory. It also enables system administrators or device manufacturers
to find and fix errors that occur during the lifetime of a system. The JTAG [146] is one of the
most widely used debugging interfaces for chips. This interface can be a potential attack
surface for adversaries. Adversaries can exploit the JTAG interface to read on-chip registers
and memories and reprogram the system image (overwrite the trusted system image with
the malicious one). Secure JTAG implementation has been proposed in [111–113] to defend
against such malicious activities.

6.2. Communication Security

IoT devices use CoAP (Constrained Application Protocol) [71] as an application layer
protocol. The CoAP implements IP-based communication protocols to achieve pervasive
interactions between connected devices. The communication protocols implement various
security schemes to ensure authenticity, confidentiality, and integrity of the information.
Research on IoT security proposes new standards and methods for IoT systems. These
security solutions introduce additional layers or modify existing layers in the IoT protocol
stacks, as shown in Figure 16. In this section, we first review the cryptographic algorithms
that are suitable for IoT devices. Next, we survey security methods that provide network
and transport layer security for IoT systems.

Internet Protocol Stack

TLS

SOAP JSON XML

HTTP FTP SMTP

DTLS

TCP UDP

IPv4 IPv6

HIP IPsec

Application Layer

Transport Layer

Network Layer

IoT Protocol Stack

JSON

IPv6

6LoWPAN

Application Layer

Transport Layer

Network Layer

CoAP

DTLS

UDP

HIP

Figure 16. Internet stack vs. IoT stack [147].

6.2.1. Cryptosystems

Cryptography: Security solutions that ensure message integrity, confidentiality, and
non-repudiation as well as provide authentication and authorization are developed based
on symmetric and public key cryptography. Each of these schemes has some advantages
and limitations [148]. The symmetric key cryptography (SKC)-based schemes are not
memory efficient because they consume a considerable amount of memory to store keying
materials. These schemes do not scale well because of the complicated key distribution
mechanisms. On the other hand, the pubic key cryptography (PKC)-based schemes are not
energy efficient because they have noticeable communication and computation overheads.
Moreover, the PKC-based schemes take considerable time to verify security credentials,
such as certificates, and establish session keys.

Wang et al. [149] presented an experimental study that shows PKC-based schemes
are easy to implement compared to SKC-based schemes. The study also finds that, unlike
SKC-based schemes, PKC-based schemes do not require a sophisticated key management
mechanism, such as pair-wise key sharing and key pre-distribution.
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Although PKC-based protocols are found advantageous, these security schemes cannot
be utilized by the resource-constrained IoT systems as-is. Areas that require further study
are: (i) resource-efficient implementations of PKC-based algorithms; (ii) certificate and
key distribution mechanisms with minimal communication overheads; (iii) an in-depth
security analysis of the resource-efficient designs of PKC-based protocols to confirm that
the PKC-based schemes can at least provide the same level of security as the SKC-based
schemes do.

Analysis of Cryptographic Algorithms: The most popular cryptographic protocol
used for encryption, decryption, and signature in the PKC is RSA, which is designed based
on Integer Factorization (IF). RSA-based security protocols use the Diffie–Hellman (DH)
key exchange algorithm to establish shared keys. The DH algorithms are designed based
on Discrete Logarithms (DL). Both of the IF and DL algorithms require communicating
parties to perform modular exponentiation operations that are resource intensive in terms
of CPU cycles and power consumption. According to the National Institute of Standards
and Technology (NIST), communication protocols should use RSA keys of length 2048 bits
to achieve a good degree of security [150]. However, RSA with key lengths of 2048 bits
consumes a significant amount of energy because of the modular exponentiation operations
of IF and DL algorithms [151], such as public key = {ab(mod n)| a, b prime number}. Therefore,
the RSA is not suitable for resource-limited IoT devices. SecFleck [152] achieves faster RSA
operations through hardware support. However, the hardware-based RSA implementation
increases the size of the chip, as it requires a large silicon area [153]; therefore, such
implementation of RSA protocols may not be suitable for mobile and wearable IoT devices.

An alternative to RSA cryptography can be cipher protocols based on Elliptic Curve
Cryptography (ECC) and Advance Encryption System (AES). The ECC is an asymmetric
algorithm that can provide equal safety by the use of shorter key length. An ECC key of
size 248 bits can provide the same degree of security as an RSA 2048-bit key [150]. As
such, ECC-based security protocols, such as Elliptic Curve Diffie–Hellman (ECDH) used
for session key computation and Elliptic Integrate Encryption used for protecting message
confidentiality, are much more memory efficient than the RSA algorithm. Moreover, unlike
the DL-based security methods, the arithmetic operations of ECC-based security schemes
do not require computations of modular exponentiations. The ECC-based schemes only
include addition and multiplication operations. Therefore, ECC-based algorithms have
lower energy consumption than IF- and DL-based algorithms and are suitable for resource-
constrained smart devices.

Previous studies [154–156] analyzed the feasibility of using ECC-based solutions
by resource constrained devices without compromising the security requirements that
we identified in Section 5. These studies demonstrated the applicability of ECC-based
cryptosystems to IoT devices through experimental evaluations. On the other hand, security
protocols described in [157] advocate the use of symmetric encryption algorithms, such as
AES for IoT systems. However, the adoption of ECC and AES has been slowed because
there still exist significant differences between the requirements of security processing and
the capabilities of IoT devices [158].

A performance comparison of the above-mentioned cryptographic algorithms is pre-
sented in [159]. The authors evaluate the performance in terms of memory requirements,
energy cost for cryptographic computations, and communication overheads for establish-
ing a session key. The analysis shows that the energy cost of public-key cryptography
is minimal, if not negligible, for applications that require infrequent authentication and
key exchanges. However, which cryptographic algorithm to be used depends upon the
security requirements of the respective IoT applications since applicability of the crypto-
graphic algorithms varies according to the capabilities, configurations, and operations of
IoT devices.

We present a list of cryptographic algorithms that can be suitable for various IoT
components in Table 8. As shown in Figure 17, smart devices and sensors are the most
resource-constrained entities in an IoT system. As such, these devices should avoid using
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the cryptographic schemes that include modular exponentiation operations and require to
have longer keys, such as IF and DL, and adopt ECC-based cryptologic schemes.

Table 8. Recommendations on cryptographic primitives to be used at different IoT components [160].

Property

Constrained/Intranet Public/Internet

Things-to-Things Things-to-Coord. Coord.-to-Gateway Gateway-to-Cloud Cloud-to-
Controller/User

Data Size <1 KB <1 MB <512 MB <1GB <1 GB

Cryptography ECC-160/224 ECC-224/256
ECC-256/384
RSA-2048/3072

ECC-384/512
RSA-2048/3072/7680

ECC-384/512
RSA-2048/3072/7680

Key Exchange ECDH ECDH ECDH/DH ECDH/DH ECDH/DH

Enc/Dec AES-112/128 AES-128/192 AES-128/192 AES-192/256 AES-192/256

Hash MD5/SHA-1 SHA-1 SHA-2/SHA-3 SHA-2/SHA-3 SHA-2/SHA-3

Signature ECDSA ECDSA ECDSA/DSA/RSA ECDSA/DSA/RSA ECDSA/DSA/RSA
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Figure 17. Device hierarchy.

6.2.2. End-to-End Network Security

Considering the functional security requirements, such as global identification, mo-
bility, and multiplicity of smart objects, the Host Identity Protocol (HIP) [117] can be a
suitable solution for mutual authentication and key establishment between two commu-
nicating peers. The HIP introduces an additional layer (Host Identity layer) between the
transport layer and the IP layer to resolve the problems caused by the dual role of an
IP address: identifier and locator. However, the HIP cannot be applied directly to the
resource-constrained IoT devices and networks because the authentication process of HIP
requires communicating devices to perform computation-intensive cryptographic oper-
ations. Various lightweight versions of the conventional HIP are proposed to make HIP
suitable for IoT systems. In the following sections, we provide a survey on these HIP-based
security schemes.

HIP-Based Exchange (HIP-BEX): HIP-BEX [117] enables communicating devices to
perform mutual authentication and establish session keys. We present the authentication
and key establishment process in Figure 18. In HIP-BEX, communicating devices identify
and authenticate themselves by using cryptographically protected host identifiers (HIs)
and the RSA cryptography. Four types of messages are exchanged between an Initiator (a
sender) and a Responder (a receiver). The Initiator starts the communication by sending
an I1 message. The Responder replies with an R1 message, which contains a puzzle, the
Responder’s DH public value (DHR) and host identifier (HIR), and an RSA signature. The
Initiator verifies the signature and authenticates the Responder. The Initiator also solves
the puzzle and computes a DH session key (KDH) using the DH public value DHR. The
Initiator sends an I2 message that consists of the solution, the Initiator’s DH public value
(DHI) and host identifier (HII), and a signature. The Responder validates the signature
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and authenticates the Initiator. Next, the Responder computes the KDH using the Initiator’s
DH public value DHI . Finally, the Responder replies with an R2 message that includes a
signed MAC calculated with the KDH confirmation. Hence, a shared secret is established
between HIP peers.

Initiator Responder

I1

Verify Signature

Solve Puzzle

Verify Signature

Verify Solution

Compute Session Key KDH

Compute Session Key KDH

Verify MAC_KDH

R2: Puzzle, DHR, HIR, Signature

I2: Solution, DHI, HIR, Signature

R2: MAC_KDH

(a) Interaction flow of HIP-BEX.

Initiator Responder

Exchange Domain Parameters g and p

Compute Secret a

Computer DH Pubic Key A

A = ga (mod p)

Compute Secret b

Computer DH Pubic Key B

B = gb (mod p)

Exchange A and B

Compute Shared Key KDH

KDH = Ba (mod p) 

= gab (mod p)

Compute Shared Key KDH

KDH = Ab (mod p) 

= gab (mod p)

(b) Diffie–Hellman key exchange

Figure 18. HIP-Based Exchange (HIP-BEX).
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In HIP-BEX, both the Initiator and the Responder have to perform resource-intensive
cryptographic operations involved in the computation of DH public and session keys. As
shown in Figure 18b, modular exponentiation operations, such as ga (mod p), gb (mod p),
and gab (mod p), have the highest computation overhead on the IoT device. Additionally,
there are computation costs for signature generation and verification that cannot be ignored
for highly resource-limited devices.

Distributed HIP (D-HIP): D-HIP [118] proposes a collaborative scheme to reduce
the computation cost for modular exponentiations. D-HIP delegates the DH operations
to resource-rich proxy nodes co-located with the Initiator and Responder nodes in an IoT
network. The Initiator selects a set of proxies and delegates the computation load for key
exchange to them. After the exchange of the I1 and R1 messages, the Initiator splits its

secret exponent a into multiple blocks a1, a2, ..., an such that
n
∑
1

ai = a. The Initiator sends

the blocks to the proxies. Each proxy receives a unique block ai, computes its part of the
Initiator’s public DH key Ai = gai (mod p), and sends it to the Responder. The Responder
receives all the parts from the proxies and computes the Initiator’s public DH key (A) as:

A =
n
∏
1

Ai = g

n
∑
1

ai
(mod p) = ga (mod p)

Afterward, the Responder sends its secret exponent b to the proxies. Each proxy
computes its part of the DH key gaib (mod p) and sends to the Initiator. The Initiator
computes the session key KDH as:

n
∏
1

gaib (mod p) = g

n
∑
1

aib
(mod p) = g

b
n
∑
1

ai
(mod p) = gab (mod p)

Although the collaborative scheme for key establishment reduces computation over-
head, it has the following disadvantages:

• The time to set up a session key increases significantly because the Initiator and
Responder have to exchange a considerable number of messages with the proxy nodes.

• The proposed scheme assumes that the Initiator is resource constrained. Therefore,
the proxy nodes compute the Initiator’s DH public key and session key. However, the
Responder can also be resource constrained and can delegate DH public and session
key computation tasks to the proxy nodes. As a result, the collaborative scheme will
contribute more to the communication overheads for exchanging protocol messages
and will increase the key establishment time.

• If a single proxy fails to compute its part of the DH key correctly the D-HIP returns
to the states where it selects proxy nodes and distributes blocks of its secret key. A
malicious proxy can exploit this property to perform DoS attacks. The malicious proxy
can avoid DH key computation and provide a false DH key to the Initiator. Hence,
the malicious proxy can force the Initiator to perform proxy node selection and key
distribution repeatedly.

HIP Tiny Exchange (HIP-TEX): HIP-TEX [119] proposes a distributed key exchange
scheme to reduce the cryptographic overheads for HIP-BEX. HIP-TEX replaces the DH key
agreement with a method that encrypts a session key using the public key cryptography.
Additionally, HIP-TEX enables IoT devices to offload cryptographic computations to a
set of proxy nodes in a collaborative scheme. The proxy nodes are resource-rich devices
compared to IoT devices. HIP-TEX has less computation cost compared to HIP-BEX and
D-HIP due to the new design decisions. However, HIP-TEX has similar disadvantages as
D-HIP because both of the methods are based on a distributed collaboration scheme. As
such, the HIP-TEX increases communication overhead and secret key setup time and is
vulnerable to DoS attacks.

HIP-Diet Exchange (HIP-DEX): HIP-DEX [121] utilizes ECC to reduce the computa-
tion costs involved in HIP-BEX. HIP-DEX uses a long-term Elliptic Curve Diffie Hellman
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(ECDH) public value as a Host Identifier. Thus, HIP-DEX avoids the cost of computing an
ephemeral DH public key, unlike HIP-BEX. HIP-DEX also eliminates the computation cost
of the modular exponentiation operations involved in the DH key agreement by adopting
the ECDH key establishment method; therefore, HIP-DEX can be suitable for resource-
limited devices. Moreover, HIP-DEX can be applicable to lossy networks, as it provides an
aggressive retransmission scheme to cope with a higher packet loss. However, the ECDH-
based key exchange can still be too heavy to be supported by a highly resource-constrained
IoT device, such as an IoT device with 8 MHz CPU [24].

Compressed DEX (HIP-Slimfit): In [120], a packet compression layer (Slimfit) is
proposed between the network and HIP-DEX layer to reduce communication overheads
for exchanging HIP-DEX messages. The Slimfit layer compresses the outgoing HIP-DEX
packets and sends them to the network layer. On the other hand, the Slimfit layer receives
the incoming packets from the network layers, decompresses the packets, and forwards
them to the HIP-DEX layer. Hence, the Slimfit layer reduces communication overheads for
packet fragmentation, reassembly, and retransmission in the lossy networks. The packet
processing time at the layers, such as the IPSec layer, located below the Slimfit layer, is also
minimized as the Slimfit layer reduces the size of the packets.

HIP Pre-Shared Key (HIP-PSK): The HIP-PSK [122] is a variant of HIP-DEX. The
HIP-PSK does not use the ECDH key agreement; instead, it relies on a pre-shared key-based
key exchange scheme. In the HIP-PSK, a trusted entity named Domain Manager (DM)
allows legitimate devices to join an IoT network. Every IoT device of a smart system shares
a secret key (PSK) with the DM. The DM authenticates a joining device based on its shared
key and then provides the device with network-access credentials (NACs), such as such
as Layer-2 keys and polynomial shares [123]. After successful authentication, the DM and
device compute a session key using the CMAC [124] as Ks = CMAC(PSK|puzzle|solution).
The DM uses the session key Ks to send the NACs to the device securely. After joining
the network, devices use Host Identity Tags and NACs for authentication and session key
establishment. Two communication devices use the AMIKEY key agreement [125] scheme
to compute a session to encrypt messages.

The HIP-PSK is lightweight compared to HIP-BEX and HIP-DEX because the computation-
intensive cryptographic primitives, such as DH and ECDH key exchange, are removed.
However, an adversary can allow malicious devices to join a network by compromising
the DM. As such, the HIP-PSK is vulnerable to single-point-of-failure. Furthermore, an
adversary can tamper with an IoT device to extract the pre-shared key to join a network
and perform identity impersonation attacks.

Lightweight HIP (LHIP): LHIP [126] does not implement any of the security mech-
anisms used by HIP-BEX and HIP-DEX. LHIP does not perform host authentication and
message encryption to obtain simplicity and avoid cryptographic overheads. Although
messages are exchanged in plain text between peers, the LHIP provides a minimal de-
gree of security that uses hash chains to authenticate succeeding messages and can detect
session hijacking.

Analysis and Comparison: We analyze and compare the outcomes of HIP-based
methods listed in Table 9 using the metrics defined in Table 7. It can be noted that we have
excluded the HIP-BEX protocol in the comparative analysis because of its inherent inaptness
at constrained devices: HIP-BEX is the most computationally expensive method among the
available HIP-based schemes. We notice that the collaborative HIP schemes [118,119] are
potentially advantageous for IoT systems because of their low requirements of computation
and memory. The collaborative schemes, however, raise congestion in the network due to
additional communications among the collaborators themselves and between collaborators
and IoT devices. Thus, these schemes eventually experience high communication overhead.
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Table 9. A comparison between HIP-based schemes. Notations used for the security properties are:
I = Interoperability, S = Scalability, R = Resiliency, CO = Communication Overhead, MR = Memory
Requirement, and CC = Computation Complexity. A security property can have three difference
values: high (⋆⋆⋆), medium (⋆⋆), and low (⋆). A value is assigned to a security property based
on a HIP scheme’s performance to support that property.

Scheme Approach Key Exchange I R S CO MR CC

HIP-DEX [121] Standalone
Elliptic Curve Diffie Hell-
man

⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆ Maxium

Slimfit [120] Standalone
Elliptic Curve Diffie Hell-
man

⋆ ⋆⋆⋆ ⋆ ⋆⋆⋆ ⋆⋆

HIP-PSK [122] Standalone Pre-Shared key ⋆ ⋆ ⋆ ⋆ ⋆

D-HIP [118] Collaborative Diffie Hellman ⋆⋆ ⋆⋆ ⋆⋆ ⋆ ⋆⋆

HIP-TEX [119] Collaborative Public Key ⋆⋆ ⋆⋆ ⋆⋆ ⋆ ⋆⋆

LHIP [126] Standalone Not Available ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ Minimum

The analysis reveals that HIP-DEX [121] can be adopted by IoT systems that are not
computation limited, e.g., an IoT system which consists of relatively resource-rich smart
nodes. Both the HIP-PSK [122] and Slimfit [120] are appropriate for IoT applications be-
cause they are efficient in terms of memory, computation, and communication requirements.
Neither of them, however, offer any reasonable benefits regarding scalability and interoper-
ability. In the HIP-PSK scheme, each IoT device needs to share a secret key with the Domain
Manager. With a network of a large number of IoT devices, the distribution of the secret
keys, thus, becomes a challenging task. Similarly, in Slimfit, it cannot be ensured that all the
devices of an IoT network have the Slimfit layer. Therefore, the interoperability between
devices with and without the Slimfit layer cannot be guaranteed. Furthermore, it is a com-
plicated task to embed the Slimfit layer with a large number of IoT nodes. Finally, although
the LHIP [126] protocol is found resource efficient, this scheme does not incorporate some
of the essential security requirements, such as authentication and confidentiality.

6.2.3. End-to-End Transport Security

The application layer protocol CoAP [71] is primarily designed for resource-constrained
devices. As such, most IoT devices adopt CoAP instead of HTTP for device-to-device com-
munications [161]. CoAP runs on the connectionless UDP to achieve multicast supports,
such as group communications, as well as to avoid packet fragmentation, loss, and re-
transmission, and message delivery delays in lossy networks. CoAP relies on DTLS [35]
to achieve authentication, key management, and connection protection. As shown in
Table 10, various authentication protocols, such as pre-shared key, raw public key, and
digital certificates, are supported by the DTLS. The conventional DTLS schemes require
numerous message exchanges to set up a secure connection. As such, IoT devices that
operate in a lossy network cannot adopt the DTLS schemes as-is. Various lightweight
versions of the DTLS are proposed for the constrained devices and networks, which reduce
communication and computation overheads from IoT nodes. In this section, first, we survey
the DTLS-based security methods designed for IoT systems. Next, we provide an analytical
comparison between these security systems.

Certificate-based DTLS: Previous research [128] proposed a certificate-based DTLS
scheme for mutual authentication. The proposed scheme uses X.509 certificate and relies
on the RSA cipher suite for communication security. To achieve mutual authentication,
communicating peers first exchange their certificates and then validate the authenticity
of the certificates by using the RSA signature verification method. The proposed scheme
ensures tamper-proof generation and storage of keying materials, such as RSA keys and
X.509 certificates, with the help of a TPM chip [106] embedded with an IoT device. The TPM
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chip also provides hardware support for faster RSA operation. The authors implemented
the proposed solution on Opal sensor nodes with 48 MHz processors and 48 KB RAM [25]
and provided a performance evaluation regarding computation, communication, and
memory overheads for the DTLS handshaking and data transmission phases. Although the
proposed solution showed performance improvement for Opal sensor nodes, the scheme
may not perform well for a heavy resource-constrained device, such as T-Mote Sky [24] and
Z1-Mote [23], because the storage capacity and computation speeds of these devices are less
than the Opal sensor nodes. Additionally, the proposed system cannot process certificate
chains and revocation lists. Finally, the proposed approach is not cost effective for an IoT
system that comprises a significant number of nodes because there is a considerable cost of
buying the TPM chips and embedding them with every device of the smart system.

Table 10. CoAP(s) security modes and their properties.

DTLS Security Mode Property

Disabled No security – No protocol security
– Relies on underlying layers security

Enabled

Pre-shared key
– List of keys are generated
– Each key includes a list of nodes to be communicated
with

Raw public key
– Asymmetric key pair
– A public key is trusted but not associated with a
certificate

Certificate-based
public key

– Asymmetric key pair
– X.509 certificate binds to a public key
– Signed certificate

DTLS Pre-Shared Key (DTLS-PSK): The authors in [122] proposed a pre-shared
key-based authentication method [129] for DTLS that allows IoT devices to join a network
securely. In the proposed system, every device of an IoT network shares a secret with
a trusted entity of the network named as Domain Manager (DM). An IoT device and
the DM perform the DTLS-PSK procedure for authentication. The DM provides network
access credentials to the IoT device after successful authentication. However, once a device
joins the network, the proposed system does not follow the DTLS protocol to protect
communication between two peers. Instead, devices use the AMIKEY key agreement [125]
to ensure the confidentiality of messages. The DTLS-PSK scheme has less communication
overhead compared to the public key-based DTLS scheme because it reduces the number
of exchanged messages. However, the scheme is vulnerable to a single point of failure
because an adversary can take control of an entire IoT system by compromising the DM.

Modified DTLS: The MTU of an IoT network is 127 bytes [68]. The DTLS headers
are too large to fit in a single MTU and sent in multiple fragments. To reduce the size of
the DTLS headers, a header compression technique is proposed in [130]. In the proposed
solution, an IoT Gateway performs the header compression upon observing DTLS hand-
shakes. The compression reduces the size of the DTLS record and handshake headers and
the number of packet fragments. The improvement in the packet size reduces the number
of fragments, packet processing time, and message delivery time. The energy consumption
is also reduced because a sender and receiver have to process fewer packets. Although the
header compression scheme increases resource efficiency, its design does not consider the
function for providing backward compatibility with standard DTLS protocols. A device
without the header compression module in the DTLS layer cannot communicate with a
device that has header compression capabilities.

Delegation-based DTLS: The authors in [131] separate the DTLS protocol into two
phases (handshake and encryption), to reduce message delivery overheads, such as packet
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fragmentation, reassembly, loss, and retransmission. In the proposed scheme, an IoT device
delegates the handshake phase to an IoT Gateway. The Gateway performs the handshake
for the IoT device and sends the session key to the device. For rest of the communication,
the device only performs encryption or decryption with the session keys. In theory, the
proposed method should reduce communication overhead for the constrained IoT de-
vices. However, the research work does not provide any proof-of-concept implementation
and performance analysis. Moreover, an adversary can learn the communications if it
compromises the Gateway to get access to the session key.

The research in [132] provides a solution that enables IoT devices to process certificate
chains and revocation lists. In the proposed scheme, an IoT device delegates the certificate
validation task to a Delegation Server (DS), a rich-resource device co-located with IoT
nodes in the same IoT network. The DS checks the validity of the certificates, ensures that
certificates are not listed in the revocation list, and verifies the certificate chain if necessary.
The proposed solution also supports the session resumption [133] feature of the DTLS
protocol. Security contexts of a connection are preserved in the DS, which allows resuming
the connection after it is terminated. In the session resumption, the DS sends the stored
security contexts to the constrained device after certificate validation.

Although both of the schemes mentioned above increase resource efficiency of the
DTLS protocol, they are vulnerable to a single point of failure because they have to trust the
Gateway and DS. An adversary can perform resource exhaustion–type attacks on trusted
devices to prevent them from participating in the handshake phase. As a result, IoT devices
cannot establish a secure connection with their peers and provide services.

Analysis and Comparison: We analyze and compare the outcomes of DTLS-based
methods in terms of the metrics listed in Table 7 to determine the extent to which we
can apply these existing security schemes on the IoT systems. The findings are briefly
summarized in Table 11. Because of their low memory, computing, and communication
overheads, the delegation-based DTLS methods [131,132] are advantageous for an IoT
environment. However, these schemes severely suffer from a single point of failure and DoS
attacks. These solutions are also not appropriate from a scalability perspective, since the
delegation server is required to manage a significant number of requests resulting from the
exponential increase in the deployment of smart devices. Conversely, the certificate-based
DTLS solutions [128] are beneficial in terms of interoperability, scalability, and resilience.
Nevertheless, because of their resource-hungry characteristics, these methods are inefficient:
they consume substantial memory, computation, and communication overheads for storing,
exchanging, and validating certificates.

Table 11. A comparison between DTLS-based schemes. A security property can have three different
values: high (⋆⋆⋆), medium (⋆⋆), and low (⋆). A value is assigned to a security property based
on a DTLS scheme’s performance to support that property.

Scheme Interoperability Resilience Scalability Communication Computation Memory

Certificate based [128] ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆ ⋆ ⋆

DTLS-PSK [122] ⋆⋆ ⋆ ⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆

Modified DTLS [130] ⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆

Delegation based [131,132] ⋆⋆⋆ ⋆ ⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆

6.3. Service Security

IoT systems are designed based on the producer–consumer model. In an IoT network,
smart devices operate as service providers, and end users, such as the smartphone of
a device owner, are considered service consumers. For instance, in a smart healthcare
service, medical sensors provide services that allow physicians to monitor patients’ health
conditions remotely using smartphones or through a web portal. Access to these services
should be protected to ensure privacy and confidentiality of the sensitive information.
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6.3.1. Access-Control Models

Access-control mechanisms aim to achieve two goals: (i) authorized users are given
access to sensitive information stored on IoT devices; (ii) authorized users are allowed to
perform only authorized operations, such as issuing commands to smart devices. Access-
control models are designed based on three attributes: subjects (users), objects (resources
and services), and operations (actions). The subjects are the users or consumers of an IoT
system. Resources and services provided by an IoT device are considered as objects. An
object’s actions toward other objects are defined as operations. An access-control method
defines policies that determine an object’s rights (or permissions) to perform operations
toward objects.

The existing access-control methods can be classified into two major categories: Role-
based Access Control (RBAC) [162] and Capability-based Access Control (CapBAC) [163].
In RBAC, every entity of an IoT system, such as a user or device, is assigned a role. Next,
permissions to perform certain operations on IoT services and resources are mapped to the
role. Figure 19a presents an overview of the RBAC model. Let us consider that two types of
roles are defined for a smart home: administrative role and guest role. The administrative
role is privileged to perform all sorts of operations, such as read and write, on the smart
home appliances. In contrast, the guest role is allowed to perform a particular operation,
such as a read request, on certain appliances. Alice, the owner of a smart home, is assigned
an administrative role; therefore, she can control all the smart devices of the home. On the
other hand, Bob, Alice’s partner, may not have access to the home security system as he is
assigned with the guest role.
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(a) RBAC model. UA = User Assignment. PA = Permission Assignment.
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Figure 19. RBAC vs. CapBAC model.

In the CapBAC, every entity of an IoT system is given a capability token that cannot
be forged and specifies access rights of the entity. An entity’s rights to perform operations
on IoT services are defined in its capability token, as shown in Figure 19b. An entity sends
a request to an IoT device and attaches its capability token with the request. An object
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(an IoT device) first verifies the authenticity of the token. Next, it evaluates the entity’s
capabilities to perform the requested operation. Finally, the object accepts or denies the
request according to the verification result.

6.3.2. Access-Control Architectures

Two types of architecture are used to implement RBAC and CapBAC authorization
models: centralized architecture and distributed architecture. In the centralized approach, a
central entity, such as a cloud server or service, implements access-control logic. The central
entity filters out access requests based on authorization policies. The central entity provides
various authorization services, such as token verification services, which are instantiated
by the Gateway of an IoT network. As shown in Figure 20, a Gateway contacts the central
entity to determine whether a user has the rights to perform an action.

In the distributed approach, IoT devices implement the authorization logic. An IoT
device evaluates access-control policies before it serves a request. The device accepts or
rejects a request based on the authorization policies defined for the requester. Figure 20
presents the policy evaluation process. In the following sections, we survey existing
authorization methods designed for IoT systems.

Centralized approach
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IoT Device 

(PDP)

Issuer Signature

Access Secret

0. Issue Access Secret
IoT Device 

(No PDP)

3. Get Authorization 

Decision

2. Get Authorization 
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3. Evaluate Policies

4. Access 

Denied/granted

Distributed approach

Central Entity 

(PDP)

Figure 20. Access-control approach. Policy Decision Point (PDP) is a service that makes authorization
decisions. PDP is either offered by an external entity or embedded into an IoT device.

6.3.3. Role-based Access Control

Centralized RBAC: Jing et al. presented an RBAC model to define access-control
policies for IoT devices in [134]. The research work also provides methods to manage
access and validate authorization policies based on OpenID [164] technology. The proposed
model uses trusted central entities for authorization purposes. The applicability of the
proposed model cannot be ensured because the authors did not provide any proof of
concept implementation of the proposed system.

Context-aware RBAC: An RBAC model with context information is presented in [135].
The proposed model grants permission to a user based on the access polices defined for a
requester. During policy evaluation, the proposed system also considers a set of contextual
information, such as device status, device or user locations, and time of access, collected
from the environment of the service device and requester. The authorization model assigns
appropriate permissions to a role according to the characteristics and contextual information
of the smart devices, as well as the functions of the role.

6.3.4. Capability-Based Access Control

Centralized CapBAC: Sergio et al. [136] proposed a CapBAC framework for IoT
systems. The proposed framework introduces a cloud entity named Policy Decision Point
(PDP) that manages the assignment of capability tokens to the service consumers, such
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as users and client IoT devices. The PDP also validates a capability token to determine
whether a consumer is privileged to access certain IoT services. In the proposed system, an
IoT device acts as a Policy Enforcement Point. A consumer makes a service request to a
service provider and attaches its capability token with the request. The service provider (an
IoT device) forwards the capability token to the PDP. The PDP evaluates the capability token
against the access policies defined for the consumes and decides whether the consumer
will be given access to the requested service.

An assertion-based authorization framework was proposed in [137]. The proposed
system utilizes XACML [165] and SAML [165] for authorization process and assertions,
respectively. The SAML providers a large number of authorization features. The adoption
of all the features can introduce communication overheads for delivering the assertions.
To simplify the process for IoT devices, the framework defines a subset of the SAML
standards and proposes message formats to encode assertions in JSON [166]. The eval-
uation of the XACML policies can be a resource-intensive task for IoT devices. There-
fore, the proposed system outsources most of the tasks involved in making authorization
decisions to a backend authorization servers and have end devices perform only the
authorization enforcement.

Pablo Punal et al. [138] proposed an authorization framework based on Kerberos [167]
and RADIUS [168]. In the proposed framework, a cloud service provides authentication, au-
thorization, and account management for users and devices of an IoT system. However, the
applicability of the proposed framework to IoT environments cannot be confirmed because
the authors do not provide an evaluation of the framework in terms of resource efficiency.

Distributed CapBAC: Ramos et al. [139] proposed a CapBAC framework based on
the distributed PDP principle. The proposed framework considers a distributed approach
without intervention of external entities, such as central authorization servers and services.
The distributed architecture enables smart devices to be embedded with all the access-
control logics. The authorization process is performed by an IoT device that evaluates
the access-control logics defined for a requester and accepts or rejects a request based on
the evaluation result. The proposed framework also provides support for authorization
delegation and traceability of the access.

The authorization scheme [140] is also based on the distributed CapBAC model. A
user or client device requests a service and attaches an access ticket with the request. The
user’s ability to access the requested service is included in the access ticket. The ticket
also includes a cryptographic message digest that is used determine the authenticity of the
capabilities. In the proposed model, capabilities are stored in a smart device and the device
performs the authorization process, such as policy evaluation and capability verification.

To restrict communications to authorized users, a delegation-based authorization
framework based on the CapBAC model is proposed in [141]. In the proposed framework,
a Delegation Server, preferably an IoT Gateway, performs the authorization process for
an IoT device. The Delegation Server detects a connection request from a remote user
to an IoT device and authenticates the user. The access control policies for the user are
defined in a database. After authentication, the Delegation Server checks the database and
ensures that the user is authorized to make a request to the device. The Delegation Server
rejects a connection request from an authenticated but unauthorized user. The Delegation
Server does not even notify the IoT device about the unauthorized request. Thus, the
proposed framework eliminates request processing and resource allocation overheads from
an IoT device. However, the proposed framework only deals with the connection setup
authorization and does not address the application layer authorization issues, such as a
user’s right to access to certain services.

Context-Aware CapBAC: A context-aware CapBAC for a federated IoT network
is presented in [142]. The authorization framework provides a unified authorization
framework for the IoT system, which forms a network federation by integrating multiple
IoT domains, such as a smart home, car, and medical service. In the proposed system, a
Federation Manager (IoT-FM) enables authorization delegation in a federated IoT network
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as well as ensures authentication and authorization for each domain included in the
federation. The IoT-FM authorizes a delegation request from a delegator, such as a service
consumer in domain A, and grants it to a delegatee, such as a consumer in domain B,
who acts on behalf of the consumer in A domain. Although the proposed model can be
useful for federated IoT systems, its usability cannot be validated as the details on the
implementation and evaluation of the authorization model are not provided.

OAuth Compliant CapBAC: Cirani et al. [143] utilized the OAuth technology [169]
to propose an authorization service (IoT-OAS) for the IoT. In IoT-OAS, IoT devices do not
implement authorization logics; instead, the authorization functionalities are delegated to
an OAuth-based cloud service. Service devices receive an access request from the users or
client devices and invoke the authorization service to make decision on the request.

Gerdes et al. [144] proposed a delegation-based authorization framework (DCAF) for
the IoT. The architecture and operation model of the DCAF is very similar to the IoT-OAS.
The DCAF architecture introduces external authorization servers to reduce the overhead
for storing authorization logics and credentials on the device storage. Smart devices do not
have to store a large amount of information because information is stored in the servers.
The DCAF also reduces the overhead for making authorization decisions by delegating
the authorization tasks to an external entity. The DCAF is lightweight compared to the
IoT-OAS as it adopts a delegation-based architecture to make authorization decisions.

6.3.5. Analysis and Comparison

With the yardsticks provided in Table 7, we compare the performances of authoriza-
tion schemes and present the results in Table 12. We noticed that centralized authorization
approaches experience reduced computation overhead, offer better interoperability, and
simplify the associated access-control managements. These approaches reduce computa-
tion overhead by empowering resource-constrained devices to offload costly operations
including policy assessment and verification of token status (e.g., verification of signature
and ticket validity) to outside entities or proxies. Furthermore, as the contained devices
are prevented from storing access policies, issuing secret credentials (e.g., keys or certifi-
cates), and even access-control lists, centralized schemes are efficient in terms of memory
consumption. However, centralized approaches come with more communication overhead
resulting from the information exchanges with an external entity of interest; an IoT device
forwards the access token to the assigned external entity and gets an authorization deci-
sion in return. Moreover, such communications are also responsible for further delaying
the overall response time associated with the respective request, which is not a desirable
feature in time-sensitive IoT applications. For example, in an IoT-based healthcare system,
a physician sends a request to a wearable medical device to access the latest physiological
data of patients, and the request must be served immediately.

The distributed approaches can be suitable for real-time IoT applications because
the devices themselves make the authorization decision. While distributed approaches
offer a benefit of desirable scalability, it becomes complicated to manage policies in the
distributed devices. The interoperability between devices can be affected if the policies
cannot be updated on time. The distributed approaches are also labeled underperformers
from the perspective of memory efficiency, since the devices themselves need to store the
associated policies, secret context, and decision rules. It is important to highlight that
integrating CapBAC with a straightforward attribute-based access control approach proves
to be effective in Universal Plug-and-Play (UPnP)-enabled IoT systems. This combination
facilitates a more nuanced and decentralized solution, enhancing the overall system’s
efficiency and security [170].

Our analysis finds that very few of the authorization schemes consider the context
information for decision making. However, context information can make the decision
process easier and faster, because the decision algorithm can jump to a quick resolution by
only looking at the context information, such as time of access, device status, user or device
location, and so forth.
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Table 12. A comparison between authorization methods. Notations used for the security prop-
erties are: I = Interoperability, S = Scalability, R = Resiliency, CO = Communication Overhead,
MR = Memory Requirement, and CC = Computation Complexity. A security property can have three
difference values: high (⋆⋆⋆), medium (⋆⋆), and low (⋆). A value is assigned to a security
property based on an authorization scheme’s performance to support that property.

Model Scheme Approach I R S CO CC MR

RBAC
OpenID based [134] Centralized ⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆⋆

Context aware [135] Centralized ⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆⋆

CapBAC

Cloud PDP [136] Centralized ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆

Embedded PDP [139,140] Distributed ⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆

XACML, SAML based [137] Centralized ⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆

Kerberos, RADIUS based [138] Centralized ⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆

Proxy Assisted [141] Distributed ⋆⋆ ⋆ ⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆

Context-aware [142] Centralized ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆⋆

OAuth based [143,144] Centralized ⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆ ⋆⋆⋆ ⋆⋆⋆

6.4. Summary and Insight

In this section, we have discussed various solutions that can protect IoT devices
from physical attacks, ensure the authenticity and confidentiality of communications,
and protect security-critical services from unauthorized access. We have found that the
TPM technologies, secure boot routines, one-time programmable memories, and secure
debugging interfaces can be integrated with IoT hardware and software to prevent host-
based attacks. We have also found that the lightweight HIP-based schemes, such as
HIP-PSK and Slimfit, can be suitable for managing the identities of billions of IoT devices,
including mobile and stationary nodes, and preventing identity impersonation-type attacks.
Moreover, we have identified that the delegation-based DTLS schemes can be adopted by
IoT systems to ensure confidentiality, authenticity, and integrity of the sensor information as
they unburden IoT nodes from computation- and communication-intensive cryptographic
operations. Finally, have found from our analysis that the distributed CapBAC models can
be utilized, ensuring protected access to security-critical services and enabling IoT devices
to provide real-time information at the same time.

Although most of the research we have reviewed modifies the conventional security
schemes to make them applicable to IoT systems, only a few of them are tested on the real
IoT devices and considered the real-world smart application scenarios. As such, further
research is required to validate and confirm the usability of HIP, DTLS, and CapBAC by
IoT systems consisting of a large number of smart nodes.

7. Research Directions

The existing security solutions for IoT systems primarily address the access-level
security (see Section 5.1) and information security requirements (see Section 5.2). Little
attention has been paid to the resource efficiency aspect and functional robustness feature
(see Section 5.3) of the security schemes, which are very fundamental requirements for
IoT applications. These schemes also hardly consider privacy issues encountered in an
IoT-based system. Apart from that, there are many other security aspects that are either
not properly addressed or remain unnoticed. This is because many recent and proven
technologies, including M2M [46], RFID [171], and Ubicomp [172], are yet to be in complete
convergence with the IoT paradigm. In this section, we identify those security problems
and try provide some guidelines to design the appropriate solutions for them. Table 13
summarizes the research problems along with the associated research directions. The
details of these open issues and future directions are successively presented below.
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Table 13. Research problems and guidelines.

Research Domain Research Questions Directions

Service Discovery
How can service impersonation be identified?

Capability-based service advertisement and discovery
(Section 7.1)How can malicious service discovery requests

be identified?

Identity Privacy
How can movement profiling for mobile IoT

devices be prevented?
Use of unique device identifiers from
locations-to-locations and sessions-to-sessions
(Section 7.2)How can communication relations be prevented?

Data Privacy

How can users control access to their sensor data
used by third-party services? A transparency layer can be implemented that will

allow users to know who has access to their data and
will enable users to determine who can have access to
their data (Section 7.3)

How can privacy be preserved for sensor data
shared with third-party services for providing

personalized services?

How long will the data remain shared?

Application
Data Security

How can security at the application layer
be applied? Application messages can be encrypted to ensure the

confidentiality of exchange messages, while the
headers of the application layer protocol should be left
unencrypted for protocol translation (Section 7.4)

How can the confidentiality of application data
be ensured during protocol translation?

Can existing application layer security schemes
be modified for resource-limited IoT devices?

Software Update

How can software updates be applied to
multiple devices simultaneously that are located

in the edge or distributed networks?
Resource-efficient software update method that has low
computation overheads on IoT device for verifying
software authenticity as well as fewer communication
overheads for delivering patches over lossy networks
(Section 7.5)

How can smart devices be enabled to verify
integrity and authenticity of software updates?

How can IoT operating systems be enabled to
receive new software updates?

Credential Security

How can credentials stored on device memory
be protected from memory probing? Security schemes can be designed based on Physically

Uncloneable Functions to ensure the security of the
credentials embedded with smart devices (Section 7.6)How can confidentiality of credentials stored on

device memory be ensured?

Network Security

How can anomalies on IoT networks
be detected?

Machine-learning-based models to identify new threats
and attacks (Section 7.8)

How can the knowledge base remain updated
for identifying new or unseen network attacks?

How can the optimum level of control and
monitoring on packets be achieved?

Digital Forensics

How can evidence collection be enabled in the
IoT environment?

A Blockchain-based distributed and decentralized
network to maintain a chain of custody of the evidence
and avoid single points of failures on storage media
(Section 7.9)

How can secure provenance of the evidence
be maintained?

How can verification of authenticity and
integrity of evidence during an investigation

be enabled?

7.1. Secure Service Discovery

Smart devices can be used to perform service impersonation attacks. A malicious
device can provide certain services although it does not have the required software or
hardware. An adversary can configure a smart refrigerator to present itself as a medical
sensor or thermostat. The goal of the adversary is to provide fake information to client
devices. Similarly, in the client impersonation attack, a client device can search for particular
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services, although it does not have capabilities to interact with the services, and understand
information returned by a service device. One of the goals of an attacker is to force
target devices to process discovery messages. A mobile application that is designed to
interact with smart home appliances can be malicious to discover and communicate with
medical sensors located in the home network. The mobile application can send malformed
requests to the medical sensors. The processing of the malicious discovery messages and
malformed requests can result in resource exhaustion, such as shorter battery life, and
service unavailability.

A service authentication scheme can be designed to prevent service devices from
offering fabricated services and client devices from discovering unauthorized services.
Figure 21 shows an overview of such a secure service discovery model. A trusted entity,
such as a certificate authority, issues service capability certificates (SCC) and client capability
certificates (CCC) to service and client devices, respectively. The SCC and CCC contain
the signature of the trusted party; therefore, they cannot be forged. The SCC contains
device and service specifications of a service device. The device specification provides
information on sensors and actuators embedded with the service device. The service
specification includes a list of services the device is authorized to provide as well as a list of
web interfaces, such as APIs, the device is authorized to expose for exchanging information.
Similarly, a CCC issued to a client device contains information on the types of services the
client is allowed to interact with.

A service device must attach its SCC to its service announcement message. A client de-
vice does not respond to a service announcement message that contains service information
not included in the service device’s SCC. Thus, the client device avoids allocating resources,
such as memory, storage, and CPU cycles, for storing and processing service information.
Likewise, a client device has to attach its CCC with a service discovery message. A service
device does not process a discovery request made by a client device if it finds that the client
device is not capable of consuming the requested service as mentioned in its CCC. Hence,
the verification of service and client devices’ capabilities can enable IoT devices to prevent
service and client impersonation attacks.
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Figure 21. Cont.
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Figure 21. A model for secure service discovery.

7.2. Identity Privacy

IoT networks are dynamic due to the mobility of some smart devices, such as wearable
devices and smart vehicles. Every device of an IoT system must be identified uniquely.
The identifiers of these devices should be cryptographically proctored to defend against
impersonation-type attacks. Moreover, the identifiers, such as host identities [117] and
certificates [128], of a device used for authentication should be unique from locations to
locations, sessions to sessions, and networks to networks. The use of static identifiers
makes IoT devices and device owners vulnerable to cyber espionage and user-targeted
attacks, such as movement profiling (Figure 22) and communication relation (Figure 23).
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VANET2
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Tanning

Prediction

1. Track a device by its ID

2. Collect Location, Date, Time

3. Inputs [Id, location, date, time]

4. ID of a car to predict 

locations for a give day 5. Future Locations

Figure 22. An adversary profiles the movement of a target by tracking the static identifier of the
target. RSU = Roadside Unit. VANET = Vehicular Ad Hoc Network.
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Figure 23. An adversary tracks the identifiers of target devices for disrupting communications.
T2T = Things to Things, T2C = Things to Clouds.

As shown in Figure 22, an adversary can learn the locations of a smart car and its
owner by tracking the identifier of the car used for network authentication (when the
car joins a network) and service authentication (when the car communicates with other
cars and roadside services). Similarly, adversaries being co-located with victim devices
can record device identifiers during device-to-device communications for device targeted
attacks. For instance, an adversary can disrupt communication channels when it identifies
that a target device starts communication with other devices and services. Figure 23 shows
such an attack.

To protect location and communication privacy, IoT devices should be enabled to
compute or use a one-time device identifier, which is similar to the one-time password [173],
for network authentication and device-to-device mutual authentication. Authentication
schemes based on Zero Knowledge Proof algorithms [174,175] can be adopted to preserve
identity privacy.

7.3. Data Privacy

An IoT service provider can utilize third-party services, such as Big Data analysis ser-
vices, to analyze sensor information. Based on the analysis results, the service provider can
provide various analytics to the users. For instance, the manufacturers of wearable medical
sensors and fitness trackers can share users’ health data with hospitals and pharmaceutical
companies to learn users’ daily activities and suggest prescriptions to the users accordingly.
Similarly, the service provider of a smart home can share data collected from smart appli-
ances, such as thermostats, refrigerators, washing machines, cameras, and so forth, with a
third-party service to better understand the context of the smart home. However, sharing
information with third-party services can be a threat to the privacy and confidentiality of
user and sensor information. Therefore, the owners and users of the smart devices should
be allowed to verify that the confidentiality of their data is not compromised during data
collection, sharing, and collaboration phases.

A data transparency service (DTS) can be implemented in IoT systems to protect data
privacy. As shown in Figure 24, a DTS will allow the owners to know who has access to their
data. DTS will also enable the owners to decide the consumers of the data. Moreover, DTS
will let owners validate data genuineness, such as the origin of the data and data freshness.
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Figure 24. An overview of the Data Transparency Service.

7.4. Application Data Security

IoT devices operate on lossy networks and use IPv6 addresses and CoAP to commu-
nicate among themselves. However, these devices communicate to IoT service providers
located in the Cloud using IPv4 addresses and HTTP. As shown in Figure 25, a Gateway
device located between IoT devices and IoT Cloud services enables communications be-
tween IoT devices and the Cloud service by translating one protocol to another, such as
IPv4 to IPv6, or HTTP to CoAP, and vice versa. However, the Gateway device can learn the
contents of application payloads during the protocol translation.

MAC IPv6 UDP CoAP Payload

Encrypted 

Message
Signature

MAC IPv4
UDP/

TCP
HTTP Payload

Protocol Translation at 

Gateway

Encrypted 

Message
Signature

Device to Gateway 

(IPv6 Network)

Gateway to Cloud 
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Figure 25. Application data security during protocol translation.

Security at the application layer can prevent the protocol translators, such as Gate-
ways, from learning application payloads. The application data security also simplifies the
security requirements for the underlying layers. It eliminates the overheads for providing
security for every packet at the underlying layers, such as Transport and Network layers,
because only applications data needs to be secured. Figure 25 presents a process to ensure
the security and privacy of application data. Unlike the Transport Layer Security that
encrypts both headers and payloads at the session presentation layer, only payloads are en-
crypted at the application layer. Therefore, application data are not exposed to the Gateway
when it handles and processes messages exchanged between IoT devices and clients.

S/MIME [176] and SRTP [177] standards can be utilized for application data security.
However, further research is required to apply S/MIME and SRTP to the CoAP-enabled
IoT devices and networks because these security standards are not primarily designed for
resource-limited environments. The standards may need to be modified to make them
suitable for IoT systems.
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7.5. Software Update

An IoT network includes heterogeneous smart devices from various manufacturers.
Devices are installed with software with various security configurations. Installed software
must be updated periodically with new security patches; however, it may not be possi-
ble to apply software updates to IoT devices because of the following properties of the
IoT components:

1. Smart devices can be configured such that they are only accessible from the local
network. A user has to be co-located with a device in the same network to get access
to it through the Gateway. In such scenarios, security updates cannot be applied
directly as the devices are not connected to the Internet.

2. IoT operating systems may not have security modules to receive and integrate soft-
ware updates and security patches. For instance, security updates cannot be applied
to Contiki [32], RIoT [33], and TinyOS [178] operating systems, as they do not have
software update methods.

3. There may have a significant communication overhead for delivering software up-
dates over the lossy and limited-bandwidth networks, such as 6LoWPAN [68] and
Zigbee [69]. Software updates need to be sent in multiple fragments. Some of the
fragments may need to be retransmitted because of the lossy networks. However,
the networking protocols 6LoWPAN and Zigbee do not provide a mechanism for
retransmitting the missing fragments. An entire message has to be retransmitted
when one or more fragments are lost.

4. Devices may not have enough memory to store software updates for verifying the
authenticity and integrity of the updates.

5. Simultaneous software updates may need to be applied to the devices of an IoT system
to maintain interoperability between these devices.

A resource-efficient Software-Update-as-a-Service (SUaaS) can be designed to apply
security updates to IoT devices that are located in the lossy networks and may not be
connected to the Internet. We present an overview of the SUaaS in Figure 26. The SUaaS
has two components: cloud and edge. The cloud component comprises three modules:
artifactory, security, and distribution. The artifcatory module stores the new version of the
software or security patches. Device manufacturers and service providers publish software
updates on the artifactory. The security module verifies the authenticity and integrity of
the software to ensure that trusted publishers published the updates. The security module
also performs static and dynamic code analysis to ensure that the published software does
not contain signatures of the malicious codes, such as malware. The distribution module
sends the software updates to the edge component.

An Edge router located in the edge network acts as an edge component. The Edge
router fragments software into multiple fragments that can fit in the MTU of the commu-
nication link. Next, the Edge router computes an aggregated signature for the fragments,
avoiding appending a signature to every fragment and reducing the total number of bytes
required to deliver over the lossy network. To this end, the Edge router multi-casts the
fragments to the lossy network for simultaneous software update.

A lightweight aggregated-signature verification scheme based on a Bloom filter [179]
can be used such that resource-constrained devices can verify the authenticity and integrity
of the individual piece of the software with minimal computation costs. In the conventional
security method, the Edge router appends signatures with the fragments (Fi||Sigi) and
devices verify the signatures Sigi after fragments. In the Bloom filter-based aggregated-
signature, the Edge router computes hashes of the fragments (HASH(Fi)) and sets the
corresponding bits in the Bloom filter (BFx), which is an array of X bits, according to the
hash results. The Edge router only signs the BFx as BFx||SigBF and sends it to the devices.
The devices only validate the SigBF and ensures that the corresponding bits of a hash of
a fragment HASH(Fi) is set in the BFx. Hence, a device can avoid computation cost for
signature validation for each software fragment.
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Figure 26. Secure software update scheme.

7.6. On-Device Credential Security

Smart devices store certificates and public, private, and shared keys on their memories.
Devices can be a subject to node-probing attacks if they are deployed in remote locations
and left unattended. Adversaries can tamper with device memories to extract credentials.
Later, these credentials can be used to impersonate real devices.

A security scheme can be designed based on the Physically Uncloneable Function
(PUF) [180–183] to store keying materials securely. A PUF is a circuitry that can be em-
bedded with IoT devices. The PUF is considered to be the digital fingerprint for a device,
is unique for a device, and cannot be cloned. A PUF circuit takes challenge bits (e.g., a
bit stream of 128 bytes) as inputs and computes response bits for the challenge. Multiple
devices embedded with a same PUF compute unique responses for the same challenge.
Therefore, a device can encrypt its cryptographic materials using the PUF response to a
challenge and then store the encrypted credential in its memory.

Figure 27 presents an overview of the scheme that stores credentials securely on the
device’s storage. A challenge is stored in the device memory in plain text. This challenge is
given as the input to a PUF circuit. The PUF computes a response for the challenge, and the
response is used as the key of a symmetric-key encryption algorithm to encrypt credentials.
Similarly, the response is used to decrypt the encrypted credentials.
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7.7. Memory-Aware Security Solutions

As mentioned in the early part of this paper, memory efficiency is crucial in resource-
limited IoT devices because these devices often have constraints in terms of processing
power, storage, and energy. Optimizing security schemes to reduce memory consumption
is essential to ensure that security measures do not compromise the functionality and
performance of the IoT devices. Here are some controls and strategies to address memory
efficiency in resource-limited IoT devices:

Cryptographic Algorithm Selection: We can choose lightweight cryptographic algo-
rithms that require less memory and processing power. For example, consider using elliptic
curve cryptography (ECC) instead of RSA for public key cryptography, as ECC generally
requires smaller key sizes and less computational resources [184].

Optimized Libraries and Code Size: It would be advantageous to utilize memory
optimization techniques such as code and data compression to reduce the overall memory
footprint [185,186]. This may involve using tools and compilers that can optimize code
for size. We can use lightweight cryptographic libraries that are specifically designed for
resource-constrained environments [127]. These libraries are often tailored to minimize
memory usage while still providing essential security functions. It would be useful to
employ code size optimization techniques during the development and compilation process.
This includes removing unnecessary code, using compiler optimizations, and employing
techniques such as function inlining.

Dynamic Memory Allocation: We need to minimize or avoid dynamic memory
allocation (e.g., using malloc in C) [187], as it can lead to fragmentation and increased
memory overhead. Instead, prefer static memory allocation when feasible.

Secure Key Storage: It is important to implement secure key storage mechanisms
that use minimal space while ensuring the confidentiality and integrity of cryptographic
keys. We also need to consider hardware-based security solutions or trusted execution
environments when available. It is recommended to optimize the storage of cryptographic
materials and program codes in flash memory. This can involve efficient data structures
and storage formats to minimize the space required for storing keys, certificates, and other
cryptographic parameters [188].

Hardware Acceleration: We can exploit hardware-based cryptographic accelerators if
available on the IoT device. Offloading cryptographic operations to dedicated hardware
can significantly reduce the burden on the main processor and conserve memory [189,190].

Firmware Over-the-Air (OTA) Updates: We can also suggest implementing efficient
firmware update mechanisms [191,192] that only transmit and store the necessary changes,
which reduces the overall data transfer and storage requirements.

7.8. Network Anomaly Detection

Authentication and encryption techniques protect end-to-end communications. How-
ever, adversaries can perform various types of networks attacks, such as SQL injection,
Cross-Site Scripting, Malware injection in payloads, Denial of Service, and Distributed
Denial of Service attacks, from inside the network and the Internet. These types of wireless
attacks can be prevented by deploying Intrusion Prevention Systems (IPS) [193,194] to the
IoT systems. It is also possible to detect the wireless attacks by using Intrusion Detection
Systems (IDS) [193,194]. The IPS and IDS capture network traffic and perform deep packet
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analysis to identify network anomalies. An IoT network can achieve a higher degree of
security against network attacks by increasing control and monitoring on the network
packets. However, the increase in the inspection of network packets can be a threat to
the privacy of the user and sensor information. As a result, there are opportunities to
research anomaly detection systems that apply an optimal level of security control on
the network traffic and can identify network intrusions effectively without compromising
information privacy.

Moreover, the IoT application domains are still emerging. New smart applications and
services can introduce unseen and unpredictable vulnerabilities, threats, and attacks in IoT
systems. Therefore, research can be done to enable anomaly-detection services to identify
and mitigate emerging network attacks based on the knowledge base of existing threats.

Machine learning techniques can be adopted to identify new and emerging network
anomalies. Figure 28 shows an overview of an adaptive security model to detect current
and emerging network attacks. The IPS and IDS receive incoming and outgoing packets
and inspect the payloads to find a match with anomaly signatures or rules. The IPS and
IDS generate alter when they find matches. However, the database for signatures and
rules needs to be updated periodically to detect most recent attacks. An attack has to
be seen first to identify its signatures. Machine learning models can be developed that
inspect network packets, predict new attacks, and create signatures for alerts. As shown
in Figure 28, a Network Monitoring System (NMS) [195] captures all the network traffic,
parses it to generate session information (such as protocols, headers, and payloads), and
stores the session information in a database. A machine learning model uses the session
information or metadata to identify unusual or suspicious communications and messages
and then creates signatures using the metadata. Hence, new rules can be added to the
signature database.
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Figure 28. An adaptive anomaly-detection system. NMS = Network Monitoring System.
ML = Machine Learning.

7.9. IoT Forensics

In the IoT environment, smart devices, applications, and communications can be used
as tools for committing cyber-crimes. For example, it can be life threatening if an adversary



Future Internet 2024, 16, 40 48 of 57

compromises an IoT-enabled pacemaker. To investigate such criminal cases, investigators
have to execute a cyber forensic process and determine the facts about an incident [196]. The
forensic process, at first, identifies incidents and evidence in an IoT-based system and then
stores the evidence securely. An investigator collects the evidence and generates proofs.
However, traditional forensic tools and techniques, such as media [197], cloud [198], and
network forensics [199], cannot be utilized to investigate IoT-based cyber-crimes because
they are not designed for digital systems that are mobile and consist of a large number of
devices. Some of the limitations of the existing forensic tools are as follows.

1. Media forensics must have physical access to the storage of a digital device. It may
not be possible to retrieve logs stored in the memory of a medical sensor, which is
required to remain online and implanted in a patient’s body.

2. Cloud forensics analyze logs of the cloud services that run on the cloud servers. The
cloud logs may not be used as evidence for investigating incidents that occur in the
edge networks where IoT services run on smart devices and are accessed locally.

3. Network forensics may not be suitable for analyzing incidents in the smart systems
where devices are mobile and network topologies change over the time, such as ad
hoc networks.

Although the current research [200,201] on IoT forensics highlight the sources of
evidence in IoT and provide directions on incident examination procedures, there are
many aspects of IoT forensics to research further. Researchers can take opportunities to
define evidence in the IoT-based systems, develop scalable storage mechanisms to log large
amounts of evidence, provide methods to generate secure provenance of the evidence, and
propose techniques to analyze evidence.

As shown in Figure 29, a distributed and decentralized Blockchain network, which
is similar to the Bitcoin network, can be used to store evidence securely. The interactions
between the IoT entities, as shown in Figure 4, can be considered as the evidence. These
interactions can be collected and stored in a public digital ledger that is similar to the
payment transactions in the Bitcoin network. The interactions can be grouped to form
transaction blocks. The parties involved in communication have to sign the transaction so
that they cannot deny their participation in an incident related to cyber-crime.
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Figure 29. A Blockchain-based forensic framework.

The miners of the blockchain network and copies of the blockchains containing inter-
action blocks as evidence can be maintained by the stakeholders of an IoT system, such
as device manufacturers, service providers, device owners, audit farms, law enforcement
agencies, cloud providers, and insurance providers. The evidence ledger will be made
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publicly available. In the public blockchain, the forensic transactions can be encrypted
by the public key of a trusted entity, such as an Escrow service or certificate authority,
to ensure the confidentiality of the evidence. During an investigation, an investigator
will collect transactions from the public ledger and contact the trusted party to obtain the
unencrypted evidence. The investigator will analyze the interactions to establish facts. The
transaction of the forensic ledger can be used both for investigation cyber-criminal cases
and for resolving disputes in IoT systems, such as violation of service-level agreements by
hospitals in smart healthcare systems or traffic laws by smart cars, drivers, and pedestrians
in smart transportation systems.

The distributed and decentralized copies of the forensic ledger will help avoid single
points of failure on the evidence storage media. Moreover, a single entity cannot tamper
with the evidence, such as insertion, modification, and deletion, to change the outcome of
an investigation because the evidence ledger is publicly available and distributed among
the stakeholders. The distributed and decentralized properties of the forensic ledger will
also ensure the high availability of the evidence.

8. Concluding Remarks

In this paper, the recent literature of IoT security has been surveyed and critically
analyzed with an emphasis on the following aspects from holistic viewpoint: the basic
configurations of IoT networks and components, security vulnerability, attack taxonomy,
security requirements, security solutions, and research directions. To obtain some insights
into the question of to what extent an attack would allow adversaries to take control
of an entire IoT network, we have examined various security vulnerabilities and attack
scenarios for IoT systems. For a deeper understanding of the requirements for IoT secu-
rity schemes, we have categorized the available and possible challenges into three broad
groups—access-level security requirements, information security properties, and functional
security requirements—and have analyzed each of them. We have provided a comprehen-
sive survey on various security solutions to safeguard IoT devices from physical attacks,
ensure the authenticity and confidentiality of communications, and protect security-critical
services from unauthorized access. In addition, we have performed an exhaustive analysis
on the current solutions and identified issues in them that require further research. Fur-
thermore, we have highlighted numerous emerging perspectives, such as secure service
discovery, on-device credential security, network anomaly detection, and IoT forensics, that
are poorly addressed or unnoticed and have provided direction for each of them. More
application domains can take advantage of the IoT paradigm if these problems are solved.
Finally, to overcome the inherent limitations of the conventional forensic approaches such
as media, cloud, and network forensics, we have provided guidelines for designing a
Blockchain-based investigation forensic framework suitable for a complete IoT infrastruc-
ture involving a massive number of devices. In sum, the results of this systematic survey are
expected to be useful to researchers working in the area of security and IoT-based systems.
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