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Abstract: Digital twins can reflect the dynamical behavior of the identified system, enabling self-
diagnosis and prediction in the digital world to optimize the intelligent manufacturing process. One
of the key benefits of digital twins is the ability to provide real-time data analysis during operation,
which can monitor the condition of the system and prognose the failure. This allows manufacturers
to resolve the problem before it happens. However, most digital twins are constructed using discrete-
time models, which are not able to describe the dynamics of the system across different sampling
frequencies. In addition, the high computational complexity due to significant memory storage and
large model sizes makes digital twins challenging for online diagnosis. To overcome these issues, this
paper proposes a novel structure for creating the digital twins of cooling fan systems by combining
with neural ordinary differential equations and physical dynamical differential equations. Evaluated
using the simulation data, the proposed structure not only shows accurate modeling results compared
to other digital twins methods but also requires fewer parameters and smaller model sizes. The
proposed approach has also been demonstrated using experimental data and is robust in terms of
measurement noise, and it has proven to be an effective solution for online diagnosis in the intelligent
manufacturing process.

Keywords: neural ODE; system identification; data-driven modeling; digital twin; diagnosis

1. Introduction

Cooling fan systems have been widely used in various industrial fields, such as nuclear
power plants [1], automobiles [2], and workstation computers [3]. They are often used to
maintain temperature and ensure an optimal operation environment. Due to their low
development cost, efficient heat dissipation, and air circulation, a cooling fan system is often
regarded as the primary solution for environmental temperature control use [4,5]. Despite
playing an important role in the manufacturing process, the rotary mechanism of the
cooling fan is highly susceptible to failure, making it one of the top 10 failing components
in electronic products [6]. Therefore, it is crucial to monitor the condition of the cooling fan
system to prevent drastic changes in the operation environment.

To achieve accurate condition monitoring during the manufacturing process, it is
necessary to create the digital twins of a system, which provide the virtual representation
of the identified physical entity. According to the data from sensors, digital twins can
update their state to mirror the dynamic behavior and the condition of the system in
real time. By incorporating other analysis tools, the digital twin model can be used not
only for condition monitoring, but also for prognosis, optimization, and control in the
digital world [7]. Therefore, digital twins are also regarded as the backbone of Industry
4.0 [8–11], providing the necessary and useful information to enhance productivity and
making intelligent manufacturing smarter, more efficient, and more convenient [12].
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Digital twins can be created using various kinds of methods, including using physical
models or data-driven approaches. Physical methods require domain knowledge of the
identified system. For an industrial cooling fan, aerodynamics, blade geometry, and the
control theorem need to be considered. There have been several works analyzing its
dynamics from previous studies [4,5,13]. Since the digital twin is modeled using physical
principles, it has better robustness and interpretation of the anomalies. However, the
result may still have a large deviation between the identified systems because the physical
equation is usually built based on ideal conditions. Therefore, the digital twin may not be
able to reflect the dynamic behavior in the real world.

In contrast, data-driven methods directly employ feature extraction to find the dy-
namical pattern from the historical data. Common methods include observer/Kalman
filter identification [14,15], dynamic mode decomposition (DMD) [16,17], and sparse iden-
tification of nonlinear dynamics (SINDy) [18,19]. The most well-known and commonly
used method is the neural network (NN), which provides a structure that can approximate
any system dynamics based on the universal approximation theorem [20]. As the NN
has evolved, different layers and structures have been developed. One of the NN types
is called a recurrent neural network (RNN), which is renowned for modeling sequential
data. Since system dynamics signals can also be seen as time-series data, RNN has been
proven to perform well in system modeling [21–23]. However, applying RNN or any other
data-driven method requires a large amount of fruitful inputs/outputs to avoid unstable
model predictions [24,25]. Furthermore, most of the system dynamics are better described
in the continuous-time domain. These reasons lead to excessively large model sizes and
memory storage usage when employing RNN for robust modeling, which may pose a
challenge in applying digital twins for real-time use.

To explore an alternative way to create the digital twins, this paper proposes using
neural ordinary differential equations (neural ODEs) to approximate the governing equa-
tions of the system. The concept of neural ODEs establishes a viewpoint to connect the deep
learning model with differential equations [26], offering a more flexible description and
reducing the need for numerous parameters for modeling system dynamics. In addition,
the continuous-time structure also allows the combination of pure physical models with
neural ODEs, which can make the digital twin more accurate and interpretable [27].

This paper makes significant contributions to the field of digital twin modeling and
intelligent manufacturing in terms of the following. (1) The neural ODE-based digital
twin can approximate the governing equations of the industrial cooling fan system. By
employing neural ODEs, the digital twin can achieve smoother system evolution, reducing
abnormal discontinuities, and accommodate data from sensors with varying sampling fre-
quencies for condition monitoring. (2) The proposed digital twin framework demonstrates
impressive modeling accuracy while utilizing fewer parameters. This efficiency enables
real-time condition monitoring during the manufacturing process, making it a practical and
viable solution for industrial applications. (3) By incorporating the model with physically
informed terms, the digital twins can be closer to real dynamical behavior and be more
robust to unforeseen dynamical patterns compared to pure data-driven methods.

The remainder of the paper is organized as follows: Section 2 introduces the method-
ology used in this paper. The previous study on neural ODE modeling is briefly explained
in Section 3. In Section 4, a comparison study is conducted to assess the fitting performance
of the proposed digital twins in comparison to others. Section 5 demonstrates the practical
applications of the proposed digital twin, where it effectively monitors the condition of the
cooling fan and accurately detects the anomalies. The paper finally concludes in Section 6.

2. Methodology
2.1. Cooling Fan System Dynamics

An industrial cooling fan system typically comprises three essential components: a
driving circuit, a rotary mechanism, and fan blades. Figure 1 briefly illustrates a cooling fan
system driven by a DC motor. The driving circuit of the cooling fan system can be briefly
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represented by an electric circuit with a resistor and an inductor, and its dynamics can be
described as

L
di
dt

+ iR + Keω = Vin (1)

where L is the inductance, R is the resistance, Ke is the back emf constant, Vin is the input
voltage, i is the current, and ω is the rotor speed. For the motor mechanism, the dynamics
can be written as

Jm
dω

dt
= Kti− Bmω− TL. (2)

where Jm is the motor inertia, Kt is the torque constant, Bm is the viscous constant, and TL is
the external load. Based on the law of energy conservation, where electrical power is equal
to mechanical power, it can be expressed as

(Keω) · i = (Kti) ·ω (3)
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Equation (3) shows it is true only when the constants Ke and Kt have the same value,
which can be defined as

Ke = Kt ≡ K (4)

Substituting (4) to (1) and (2), the governing equation of the cooling fan system can be
represented as {

L di
dt = −Ri− Kω + Vin

Jm
dω
dt = Ki− Bmω− TL

(5)

The dynamics of the cooling fan system can be represented as a 2nd-order differential
equation. Given that the response of the electrical dynamics of a cooling fan is much faster
than its mechanical dynamics, the transient behavior of the electrical dynamics can be
neglected. Therefore, the governing equation in (1) can be rewritten as

iR + Kω ≈ Vin

⇒ i ≈ Vin−Kω
R

(6)

Furthermore, according to aerodynamics, the external force on the fan blade mainly
comes from the drag force, which is proportional to the square of the rotor speed. Therefore,
the external load can be approximated as

TL ≈ Cdω2 (7)
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where Cd represents the lumped aerodynamic drag coefficient. The details of the derivation
can be seen in [5]. By substituting the result of (6) and (7) in the governing Equation (5), it
can be expressed as

⇒ JmR
K

dω

dt
= Vin −

(
K +

BmR
K

)
ω− CdR

K
ω2 (8)

The equivalent coefficients can be defined as

J =
JmR
K

, α = K +
BmR

K
, CD =

CdR
K

(9)

Equation (8) can be expressed as

J
.

ω(t) + αω(t) + CDω2(t) = τ(t) (10)

After rearrangement, Equation (5) can be formed as a 1st-order dynamical differential
equation. The symbol τ is denoted as the applied torque generated by the pulse-width
modulator (PWM), which is proportional to the input voltage of the driving circuit; the
equivalent coefficients J, α, CD can be regarded as the lumped moment of inertia, viscous
coefficient, and drag coefficient, respectively. After a few steps of simplification, the
coefficients of the physical model (10) can be derived by measuring the rotor speed and
applied torque, both of which are observable.

2.2. Filtering Operator Method

The simplified analytical Equation (10), defined as a “physical model”, can be utilized
to predict the dynamics of the cooling fan system. To estimate these parameters, the filtering
operator method is used. The details can be seen in [13]. Let analytical Equation (10) be
rewritten as

.
ω(t) = −aω(t)− aNω2(t) + bτ(t) (11)

where
a =

α

J
, aN =

CD
J

, b =
1
J

(12)

Taking the Laplace transform of (11), the equation is represented as

sΩ(s)−ω(0) = −aΩ(s)− aNΩN(s) + bΓ(s) (13)

where
Ω(s) = L{ω(t)}, ΩN(s) = L

{
ω2(t)

}
, Γ(s) = L{τ(t)} (14)

Next, multiply 1/(s + λ) on both sides of (13), where λ is a positive constant. The
result can be written as

Ω(s) + Y1(s) = −aΦ f
ω(s)− aNΦ f

ω2(s) + bΦ f
τ (s) (15)

where

Y1(s) = −
sΩ(s) + ω(0)

s + λ
, Φ f

ω(s) =
Ω(s)
s + λ

, Φ f
ω2(s) =

ΩN(s)
s + λ

, Φ f
τ (s) =

Γ(s)
s + λ

(16)
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The inverse Laplace of Y1(s), Φ f
ω(s), Φ f

ω2(s), Φ f
τ (s) in (15) can be calculated by inte-

grating the measurements

Y1(s) = −Ω(s)+ω(0)
s+λ ⇒

{ .
y1(t) = −λy1(t)− λω(t)
y1(0) = −ω(0)

Φ f
ω(s) =

Ω(s)
s+λ ⇒


.
fω(t) = −λfω + ω(t)
fω(0) = 0

Φ f
ω2(s) =

ΩN(s)
s+λ ⇒


.
fω(t) = −λfω2 + ω2(t)
fω2(0) = 0

Φ f
τ (s) =

Γ(s)
s+λ ⇒

{ .
fτ(t) = −λfτ + τ(t)
fτ(0) = 0

(17)

After integration, the parameters can be estimated by using the least-square method
ω(0) + y1(0)

ω(∆t) + y1(∆t)
...

ω(n∆t) + y1(n∆t)


︸ ︷︷ ︸

Y

=


−φω(0) −φω2(0) φτ(0)
−φω(∆t) −φω2(∆t) φτ(∆t)

...
...

...
−φω(n∆t) −φω2(n∆t) φτ(n∆t)


︸ ︷︷ ︸

Φ

 a
aN
b


︸ ︷︷ ︸

θ

(18)

θ̂ =

 â
âN
b̂

 =
(

ΦTΦ
)−1

ΦTY (19)

Ĵ = 1/b̂, α̂ = â Ĵ, CD = âN Ĵ (20)

2.3. Recurrent Neural Network

RNN is one type of NN with a loop structure, which can model the patterns with
time-dependent behavior and approximate the transient response of the system. One type
of RNN, the nonlinear autoregressive network with exogenous inputs (NARX), is used in
this paper for the comparison study since it shows outstanding performance in modeling
different system dynamics [28–30]. In this paper, the NARX model is constructed and
trained by the Neural Net Time Series toolbox in MATLAB. Given the input and output
of the system, x(k) ∈ Rp and y(k) ∈ Rr,the structure of NARX is illustrated in Figure 2,
which can also be expressed in the following mathematical form

y(k) = Bo + Wo · tan sig
(

Bi + WiXD(k)
+WlYD(k)

)
(21)

where
XD(k) =

[
xT(k) xT(k− 1) · · · xT(k− d)

]T (22)

YD(k) =
[
yT(k− 1) yT(k− 1) · · · yT(k− d)

]T (23)

tan sig(x) =
2

1 + e−2x − 1 (24)
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The variable d represents the order of the model. The weights and bias of the NARX
model (Wi ∈ Rn×(p+1)d, Wl ∈ Rn×rd, Wo ∈ Rd×n, Bi ∈ Rn×1, Bo ∈ Rr×1) are trained using
the measured data and updated using the Levenberg–Marquardt algorithm.

2.4. Neural Ordinary Differential Equation

The core concept of a neural ODE is to provide a residual neural network (ResNet)
architecture to describe a continuous-time dynamical behavior. Suppose the state of a
system at the kth sampling time is denoted as h(k); the dynamics can be described by
ResNet as

h(k + 1) = h(k) + f (h(k), θ) (25)

where f (h(k), θ) is a nonlinear function modeled by a neural network and parameterized
by θ. The iterative update equation in (25) can be seen as a Euclidean discretization result
for a continuous-time model [31]. The output of the neural network can be regarded as the
time derivative of the state when the time step ∆t approaches zero:

dh(t)
dt

= f (h(t), θ) (26)

where t represents the continuous time stamp. In a continuous-time structure, the update
equation can be written as

h(t) = h(0) +
∫ t

0
f
(
h
(
t′
)
, θ
)
dt′ (27)

The integral can be calculated by any kind of ODE solver. In this paper, the 4th order
Runge–Kutta (RK4) method is applied for numerical integration because of its conventional
usage. As the discrete time step becomes smaller and a more precise ODE solver is used for
discretization, the neural network model can approximate a differential equation closely.
Modeling fan dynamics using neural ODE has been applied in the previous study [25].
Instead of only depending on the initial value, such as (27), the state of the cooling fan
system is also affected by the forced input. Therefore, the neural ODE for the cooling fan
system is defined as

.
ω(t) = f (ω(t), τ(t), θ) = Wotanh

(
Wi ·

[
ω(t) τ(t)

]T
+ bi

)
+ bo

ω(t) = ω(0) +
∫ t

0 f (ω(t′), τ(t′), θ)dt′
(28)

where Wi ∈ Rn×2, Wo ∈ R1×n are weights, and bi ∈ Rn×1, bo ∈ R are biases, of the neural
network. The neural network used in this paper only contains one hidden layer, which is
displayed in Figure 3. The inputs of the neural network include the state of the system, the
rotor speed, and the applied torque. The parameters θ = {Wi, Wo, bi, bo} can be estimated
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by applying gradient-based optimization to reduce the value of the loss function. In this
paper, the loss function is set as the mean absolute error (MAE).

L =
1
N

N

∑
k=1
|ω(t)− ω̂(t)| (29)
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After calculating the loss, the gradient-based optimization updates the parameters
using the following equation

θ(i+1) = θ(i) − α∇θL (30)

The subscript (i) represents the number of iterations. α is the learning rate, which
is adjusted based on specific applications and optimization methods used. In this paper,
ADAM optimization is applied to train the parameters of the neural network.

2.5. Hybrid Neural Ordinary Differential Equation

The architecture of the neural ODE makes it possible to combine with the physically
based ODE. Therefore, this paper proposes a hybrid neural ODE model to create the digital
twin of the system that contains both physics-informed terms and a neural network in one
differential equation, which can be represented as

.
ω(t) =

1
J

[
−αω(t)− CDω2(t) + τ(t)

]
+ f (ω(t), τ(t), θ) (31)

The differential equation of the hybrid neural ODE model is the combination of
Equations (10) and (28). The training process is displayed in Figure 4. The physical
parameters J, α, CD are initially estimated using filtering operator method and kept fixed
while using gradient-based optimization to train the overall model. The hybrid architecture
can be regarded as using physics-informed terms to describe the linear dynamic behavior
and using neural network to fit the nonlinearity and uncertainties that occur in the real
world. This not only increases the fitting accuracy but also enhances the interpretability of
the model.
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Figure 4. The training process of the hybrid neural ODE model.

3. Literature Review

The previous study in [25] has already utilized neural ODE to model a motor-driven
propeller dynamical system via simulation. In this research, the fitting performance of the
neural ODE model is compared with a physical model and a NARX model, which represent
physically based and discrete-time data-driven methods, respectively. Furthermore, NARX
models of the 1st order and 10th order are both applied to highlight that the neural ODE
model can be closer to real system dynamics. The system dynamics is simulated using
MATLAB/Simulink with Equation (10), employing RK4 as the solver with a numerical time
step of 5× 10−4 s. The measurement sampling frequency is set to 0.01 s and measurement
noise follows normal distribution with a mean of 0 and a standard deviation of

√
10.

The reference parameters are J = 0.15, α = 0.012, CD = 0.0025. Figures 5 and 6 show
the simulation data for training and testing. The fitting results of different models are
displayed in Figure 7, which shows the neural ODE model has a better fitting performance
and generalization compared to others. Therefore, the previous study has proved that the
continuous structure in the neural network can not only enhance the modeling accuracy but
also reduce the model’s complexity. To further improve the feasibility and interpretability,
this paper combines neural ODE with physics-informed terms to investigate its fitting
performance on real-world data.
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Figure 6. Simulation data for testing. (a) Excitation input torque; (b) the response of fan speed.
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4. Digital Twins Derivation
4.1. Problem Formulation

The study of physically based digital twins of a cooling fan system and a filtering
operator method has been given in [4,5,13]. The results have shown that the model has
great performance and uses very few parameters. Figure 8 displays the fitting results on
experimental data, but it is also evident that there is a decline in the accuracy of fan speed
prediction as the fan speed decreases. The result indicates that the physics employed in the
model is only suitable for high-speed conditions. However, there are several uncertainties
that need to be considered when determining the low-speed dynamics. To address these
uncertain conditions, data-driven methods are utilized in this paper to improve the model’s
accuracy. In this section, different types of neural network-based models are applied
and compared with physically based models. The model that can best deal with these
uncertainties and provide the best-fitting results will be selected and chosen as the digital
twin for the cooling fan system.
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4.2. Structure of Digital Twins

This paper utilizes and compares four types of different methods to construct the
digital twins of the cooling fan system and evaluate each modeling performance to find
the best. Four types of models are the physical model, the NARX model, the neural
ODE model, and the hybrid neural ODE model. The models’ structure and number of
parameters can be seen in Table 1. All the neural network models only include a single
hidden layer. Although increasing the number of hidden layers may improve fitting results,
it also presents challenges in real-time implementation with limited memory storage. In
addition, the paper only sets applied torque and previous fan speed as the inputs of the
digital twins. Since the proposed ODE model is designed to describe the dynamics of
the cooling fan, the inputs of the model also have to follow the physical laws governing
the identified system. Although increasing more input features may enhance the fitting
performance, it runs the risk of reducing the model’s ability to generalize the fan dynamics
effectively. Furthermore, according to the practical scenario, fan speed and applied torque
are the only available measurements from the experimental device. These are the main
reasons why this research only selected these key parameters that have physical meanings
as the inputs of the model. The directly measurable information not only reduces the
model’s complexity but also ensures the interpretability of the digital twin modeling. In
this study, two sets of data are used for training and testing: training data are used to
estimate the parameters of the digital twins, and testing data are utilized to examine the
fitting result.

Table 1. The details of four types of cooling fan digital twins.

Model
Type

Parameter Estimation
Method Structure No. of

Parameters Details

Physical
model

Filtering integral
operator

.
ω(t) = 1

J
[
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]
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0

.
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3 _
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(
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ADAM optimization
.
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J
[
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]
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.
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4.3. Numerical Simulation

Before the experiment, this study first evaluates the modeling performance of digital
twins by using simulation data. The simulation environment and data patterns of fan
dynamics are the same as mentioned in Section 3. To evaluate the fitting performance,
three criteria are used: root-mean-square error (RMSE), maximum error (Error max), and
R-squared (R2), which are calculated as follows

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (32)

Error max = max
i
|yi − ŷi| (33)

R2 = 1−

N
∑

i=1
(yi − ŷ)2

N
∑

i=1
(yi − y)2

, y =
1
N

N

∑
i=1

yi (34)

where {yi}N
i=1 is a set of measurements and {ŷi}N

i=1 represents the model output. A model
with a good fitting result tends to have less RMSE, less Error max, and higher R2.

The fitting result can be seen in Figures 9 and 10, and Table 2. Since the physical
model has the same dynamic equation as the simulation, the fitting performance is good.
Furthermore, the estimated parameters for the physical model are Ĵ = 0.1444, α̂ = 0.0167,
and ĈD = 0.0025, which is close to the reference parameters values. On the other hand,
the pure data-driven models, NARX model, and neural ODE model also perform well
on training and testing data, but the fitting results do not surpass those of the physical
model. It is noted that both show similar fitting performance, while neural ODE uses much
fewer parameters. It is proved that the continuous-time model structure has advantages
in modeling the system dynamics. Finally, the hybrid neural ODE model uses the same
physical parameters Ĵ, α̂, ĈD while training. The fitting result shows a slight improvement
compared to the physical model, which means that the fitting performance on simulation
data still accounts for physics-informed terms.
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Figure 9. Training fitting result for simulation data. (a) Fan speed output. (b) Modeling error.
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Figure 10. Testing fitting results for simulation data. (a) Fan speed output. (b) Modeling error.

Table 2. The overall fitting result on simulation data.

Model Type Training Data Testing Data
RMSE Error Max R2 RMSE Error Max R2

Physical model 3.227 11.563 0.9979 3.219 12.078 0.9925
NARX model 3.633 17.663 0.9973 6.313 33.009 0.9712
Neural ODE 3.631 14.169 0.9973 6.532 19.823 0.9692

Hybrid neural
ODE 3.232 11.062 0.9979 3.194 11.521 0.9926

4.4. Experiment Validation

To validate the practical application of the proposed digital twins in a real fan system,
this paper collects data from an actual cooling fan system, which can be seen in Figure 11.
The fan tray system consists of eight cooling fans with eight knobs for speed control. A
Cortex-M4 microprocessor is used to give the input command. Figures 12 and 13 are the
training and testing data, respectively. Since the applied torque is assumed to be propor-
tional to the input voltage, the voltage signal is directly used for system identification.
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Figure 11. Developed fan tray system used for the experiment [13]. (a) Front view of the fan system;
(b) microprocessor for input excitation.
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Figure 12. Experimental data for training. (a) Excitation input voltage. (b) The response of fan speed.
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Figure 13. Experimental data for testing. (a) Excitation input voltage. (b) The response of fan speed.

The fitting results are shown in Figures 14–16, and Table 3. From the results shown in
Figure 14, it is more obvious that the prediction of the fan speed from the physical model
has a low accuracy in training data. The complexity of the low-speed fan dynamics makes
it challenging to describe accurately using just a physical model, especially in transient
behavior. The estimated parameter values are Ĵ = 0.0148, α̂ = 0.0074, ĈD = 5.4772× 10−6.
For the NARX model, although the fitting results on training data are good, the model has
an overfitting problem on testing data, which is shown in Figure 16. It can be inferred that
the discrete-time model has difficulty capturing the continuous dynamics of the system,
making it susceptible to unforeseen data. In contrast, the neural ODE model can achieve a
better fitting performance than the NARX model with fewer parameters. The outstanding
capability of system identification for continuous-time neural networks is again proven. In
addition, the fitting result of the neural ODE model in Figure 14 performs better than the
physical model at a low speed. This indicates that the data-driven method is effective in
addressing low-speed dynamics. The hybrid neural ODE model, which only sets 10 hidden
states, has the best-fitting performance among all models. This shows that the inclusion of
physics-informed terms can efficiently reduce the complexity of the NN required to fit the
data. From another perspective, it can also be said that the physical model can enhance its
fitting accuracy by incorporating a neural ODE structure, which makes it able to describe
the nonlinearity of the real dynamics. According to the fitting results on both simulation
and experimental data, it is proven that the hybrid neural ODE model has the best fitting
performance and can be the digital twins of a healthy cooling fan system.
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Table 3. The overall fitting results based on experimental data.

Model Type Training Data Testing Data
RMSE Error Max R2 RMSE Error Max R2

Physical model 35.051 143.455 0.9734 20.761 83.704 0.9834
NARX model 11.458 51.635 0.9972 882.643 1100.964 −28.9646
Neural ODE 26.236 106.411 0.9851 23.239 91.775 0.9792

Hybrid model 17.081 67.99 0.9937 14.582 100.685 0.9918
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5. Anomaly Detection Result

In this section, the proposed digital twin hybrid neural ODE model is applied to
monitor the condition and detect the anomalies of the cooling fan system. The study uses
the fan tray system seen in Figure 11 and simulates two kinds of anomalies, an inlet covered
by an object and a disturbance occurring on the rotor, which are shown in Figure 17. The
proposed digital twin first evaluates the fan speed response in a healthy condition and
assess the cooling fan when an anomaly happens.

Future Internet 2023, 15, x FOR PEER REVIEW  15  of  19 
 

 

Neural ODE  26.236  106.411  0.9851  23.239  91.775  0.9792 

Hybrid model  17.081  67.99  0.9937  14.582  100.685  0.9918 

5. Anomaly Detection Result 

In  this  section,  the proposed digital  twin hybrid neural ODE model  is applied  to 

monitor the condition and detect the anomalies of the cooling fan system. The study uses 

the fan tray system seen in Figure 11 and simulates two kinds of anomalies, an inlet cov-

ered by an object and a disturbance occurring on the rotor, which are shown in Figure 17. 

The proposed digital twin first evaluates the fan speed response  in a healthy condition 

and assess the cooling fan when an anomaly happens. 

   

(a)  (b) 

Figure 17. The anomalies  that occurred  in  the  fan system.  (a) Fan  inlet covered by an object.  (b) 

Disturbance of the rotor. 

To inspect the status of a cooling fan system through a digital twin, it is essential to 

establish a reliable mechanism to determine its health status. Since the digital twin repre-

sents the response of a healthy cooling fan system, the status can be defined by the error 

between the digital twin. Figure 18 illustrates the error distribution between the hybrid 

neural ODE model and measurement under healthy conditions, which is the error seen in 

Figures 14b and 15b. The error distribution can be regarded as a normal distribution, in 

which over 95% of values fall within two standard deviations. Based on the characteristic, 

the “safe range” that determines the system under healthy conditions can be established 

by an upper bound (UB) and a lower bound (LB): 

( )ˆ= +2UB ω t σ   (35) 

( )ˆ= -2LB ω t σ   (36) 

where  ( )ω̂ t    represents  the digital  twins’ output calculated by  the hybrid neural ODE 

model and  σ   is the standard deviation. Calculation shows that the standard deviation of 

the error distribution is  .σ=15 8483 . According to the above definition, a cooling fan sys-
tem is considered healthy when its fan speed remains within the upper and lower bound 

described in Equations (35) and (36). Conversely, if the fan speed exceeds the safe range, 

it indicates an anomaly in the fan system. 

Figure 17. The anomalies that occurred in the fan system. (a) Fan inlet covered by an object.
(b) Disturbance of the rotor.

To inspect the status of a cooling fan system through a digital twin, it is essential
to establish a reliable mechanism to determine its health status. Since the digital twin
represents the response of a healthy cooling fan system, the status can be defined by the
error between the digital twin. Figure 18 illustrates the error distribution between the
hybrid neural ODE model and measurement under healthy conditions, which is the error
seen in Figures 14b and 15b. The error distribution can be regarded as a normal distribution,
in which over 95% of values fall within two standard deviations. Based on the characteristic,
the “safe range” that determines the system under healthy conditions can be established by
an upper bound (UB) and a lower bound (LB):

UB = ω̂(t) + 2σ (35)

LB = ω̂(t)− 2σ (36)

where ω̂(t) represents the digital twins’ output calculated by the hybrid neural ODE model
and σ is the standard deviation. Calculation shows that the standard deviation of the
error distribution is σ = 15.8483. According to the above definition, a cooling fan system
is considered healthy when its fan speed remains within the upper and lower bound
described in Equations (35) and (36). Conversely, if the fan speed exceeds the safe range, it
indicates an anomaly in the fan system.
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Figure 18. Error distribution between the digital twin and measurement under healthy conditions.

After establishing the criterion for a healthy condition, the anomaly detection process
can be initiated. Figure 19 presents the results by using anomaly detection based on the
proposed digital-twin-based anomaly detection. The green area in the figures represents
the safe range defined by digital twin outputs and the standard deviation of the error in
healthy conditions, while the red area indicates the occurrence of the anomalies. Most of the
time, the fan speed remains within the green area, representing that the fan system is under
healthy conditions. However, when anomalies do occur, the fan speed experiences sudden
changes and exceeds the safe range. The anomalies are detected using the defined safe
range criteria. Once the objects are removed, which means the anomalies are addressed,
the fan speed quickly returns to the safe range, representing that the system restores the
normal condition. Figure 19a,b demonstrate the anomaly conditions when the inlet was
covered and when there was a disturbance on the rotor. Figure 19c shows the monitoring
result when the speed command was generated manually, reflecting the applicability in
unpredictable commands. The experiments demonstrate accurate detection when faults
occur and rapid response to anomalies. Moreover, the digital twin has significantly fewer
parameters than a conventional NN, facilitating real-time implementation with limited
memory storage. These results validate the practical application capabilities of the proposed
digital twin.
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6. Conclusions

This paper introduces a novel method to construct a digital twin of a cooling fan
system by combining physically based and data-driven models. Based on the continuous-
time structure, neural ODE can incorporate the physics-informed terms derived from the
governing equation of the cooling fan. A comparison study shows that the proposed
hybrid digital twin model can have outstanding fitting performances with the usage of
fewer parameters. Furthermore, the fitting results on experimental data reveal that the
neural ODE part of the hybrid neural ODE model can address the uncertainties and
nonlinear behaviors of the real fan dynamics, enhancing both the modeling accuracy and
interpretability. To validate its capability in practical applications, the proposed digital
twin is employed to establish an anomaly-detection process. Represented as the fan speed
under healthy conditions, the digital twin’s output is utilized to estimate the status of a
fan system based on the error between the digital twin’s output and measurements. A
fan system is identified as faulty when its fan speed overpasses the safe range defined
by the digital twin output and the standard deviation of the error distribution of model
output and measurement under healthy conditions. The conducted experiments simulate
anomalies, and the results demonstrate that the proposed digital twin-based anomaly
detection effectively responds to the faults, thereby validating the feasibility of the study
presented in this paper. The study shows the outstanding modeling performance of a hybrid
neural ODE. By establishing a precise relationship between the system’s inputs and outputs
through continuous evolution, neural ODE is proven to be suitable for the mathematical
framework used in control theory, such as Lyapunov stability analysis. Therefore, future
study will focus on utilizing neural ODE in control applications, thereby enabling a more
intelligent and robust manufacturing process.

Author Contributions: Conceptualization, C.-C.P.; methodology, C.-C.P. and Y.-H.C.; software,
Y.-H.C.; validation, C.-C.P. and Y.-H.C.; formal analysis, Y.-H.C.; investigation, C.-C.P. and Y.-H.C.; re-
sources, C.-C.P.; data curation, Y.-H.C.; writing—original draft preparation, Y.-H.C.; writing—review
and editing, C.-C.P.; visualization, Y.-H.C.; supervision, C.-C.P.; project administration, C.-C.P.; fund-
ing acquisition, C.-C.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Technology under Grant No.
MOST 111-2221-E-006-170.



Future Internet 2023, 15, 302 18 of 19

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guillen, D.P.; Anderson, N.; Krome, C.; Boza, R.; Griffel, L.; Zouabe, J.; Al Rashdan, A. A RELAP5-3D/LSTM model for the

analysis of drywell cooling fan failure. Prog. Nucl. Energy 2020, 130, 103540. [CrossRef]
2. Liu, C.; Wang, Z.; Fan, C.; Zhang, R.; Man, X. A Joint Control Strategy for Automobile Active Grille Shutter and Cooling Fan. Int.

J. Automot. Technol. 2021, 22, 1675–1682. [CrossRef]
3. Wiriyasart, S.; Hommalee, C.; Naphon, P. Thermal cooling enhancement of dual processors computer with thermoelectric air

cooler module. Case Stud. Therm. Eng. 2019, 14, 100445. [CrossRef]
4. Peng, C.-C.; Su, C.-Y. Modeling and parameter identification of a cooling fan for online monitoring. IEEE Trans. Instrum. Meas.

2021, 70, 1–14. [CrossRef]
5. Peng, C.-C.; Lin, Y.-I. Dynamics modeling and parameter identification of a cooling fan system. In Proceedings of the 2018 IEEE

International Conference on Advanced Manufacturing (ICAM), Yunlin, Taiwan, 16–18 November 2018; pp. 257–260.
6. Schroeder, B.; Gibson, G.A. Understanding disk failure rates: What does an MTTF of 1,000,000 hours mean to you? ACM Trans.

Storage (TOS) 2007, 3, 8-es. [CrossRef]
7. Tao, F.; Xiao, B.; Qi, Q.; Cheng, J.; Ji, P. Digital twin modeling. J. Manuf. Syst. 2022, 64, 372–389. [CrossRef]
8. Jiang, Y.; Yin, S.; Li, K.; Luo, H.; Kaynak, O. Industrial applications of digital twins. Philos. Trans. R. Soc. A 2021, 379, 20200360.

[CrossRef] [PubMed]
9. Colombo, A.W.; Karnouskos, S.; Kaynak, O.; Shi, Y.; Yin, S. Industrial cyberphysical systems: A backbone of the fourth industrial

revolution. IEEE Ind. Electron. Mag. 2017, 11, 6–16. [CrossRef]
10. Melesse, T.Y.; Di Pasquale, V.; Riemma, S. Digital twin models in industrial operations: A systematic literature review. Procedia

Manuf. 2020, 42, 267–272. [CrossRef]
11. Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf.

Sci. Technol. 2020, 29, 36–52. [CrossRef]
12. He, B.; Bai, K.-J. Digital twin-based sustainable intelligent manufacturing: A review. Adv. Manuf. 2021, 9, 1–21. [CrossRef]
13. Peng, C.-C.; Chen, T.-Y. A recursive low-pass filtering method for a commercial cooling fan tray parameter online estimation with

measurement noise. Measurement 2022, 205, 112193. [CrossRef]
14. Prakash, N.P.S.; Chen, Z.; Horowitz, R. System identification in multi-actuator hard disk drives with colored noises using

observer/Kalman filter identification (OKID) framework. arXiv 2021, arXiv:2109.12460.
15. Fan, L.; Liu, X.; Cai, G.-p. Dynamic modeling and modal parameters identification of satellite with large-scale membrane antenna.

Adv. Space Res. 2019, 63, 4046–4057. [CrossRef]
16. Mauroy, A.; Goncalves, J. Koopman-based lifting techniques for nonlinear systems identification. IEEE Trans. Autom. Control

2019, 65, 2550–2565. [CrossRef]
17. Erichson, N.B.; Brunton, S.L.; Kutz, J.N. Compressed dynamic mode decomposition for background modeling. J. Real-Time Image

Process. 2019, 16, 1479–1492. [CrossRef]
18. Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Discovering governing equations from data by sparse identification of nonlinear dynamical

systems. Proc. Natl. Acad. Sci. USA 2016, 113, 3932–3937. [CrossRef] [PubMed]
19. Fukami, K.; Murata, T.; Zhang, K.; Fukagata, K. Sparse identification of nonlinear dynamics with low-dimensionalized flow

representations. J. Fluid Mech. 2021, 926, A10. [CrossRef]
20. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2,

359–366. [CrossRef]
21. Wen, S.; Wang, Y.; Tang, Y.; Xu, Y.; Li, P.; Zhao, T. Real-time identification of power fluctuations based on LSTM recurrent neural

network: A case study on Singapore power system. IEEE Trans. Ind. Inform. 2019, 15, 5266–5275. [CrossRef]
22. Jiao, M.; Wang, D.; Qiu, J. A GRU-RNN based momentum optimized algorithm for SOC estimation. J. Power Sources 2020, 459,

228051. [CrossRef]
23. Kim, B.-H.; Pyun, J.-Y. ECG identification for personal authentication using LSTM-based deep recurrent neural networks. Sensors

2020, 20, 3069. [CrossRef] [PubMed]
24. Peng, C.-C.; Chen, Y.-H. Digital twins-based online monitoring of TFE-731 turbofan engine using Fast orthogonal search. IEEE

Syst. J. 2021, 16, 3060–3071. [CrossRef]
25. Peng, C.-C.; Chen, Y.-H. Modeling of a Motor-driven Propeller Dynamics System by Neural Ordinary Differential Equation. In

Proceedings of the 2023 Sixth International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, 3–30 July
2023; pp. 284–287.

26. Chen, R.T.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D.K. Neural ordinary differential equations. Adv. Neural Inf. Process. Syst.
2018, 31, 6572–6583. [CrossRef]

27. Lai, Z.; Mylonas, C.; Nagarajaiah, S.; Chatzi, E. Structural identification with physics-informed neural ordinary differential
equations. J. Sound Vib. 2021, 508, 116196. [CrossRef]

https://doi.org/10.1016/j.pnucene.2020.103540
https://doi.org/10.1007/s12239-021-0144-x
https://doi.org/10.1016/j.csite.2019.100445
https://doi.org/10.1109/TIM.2021.3104375
https://doi.org/10.1145/1288783.1288785
https://doi.org/10.1016/j.jmsy.2022.06.015
https://doi.org/10.1098/rsta.2020.0360
https://www.ncbi.nlm.nih.gov/pubmed/34398651
https://doi.org/10.1109/MIE.2017.2648857
https://doi.org/10.1016/j.promfg.2020.02.084
https://doi.org/10.1016/j.cirpj.2020.02.002
https://doi.org/10.1007/s40436-020-00302-5
https://doi.org/10.1016/j.measurement.2022.112193
https://doi.org/10.1016/j.asr.2019.03.009
https://doi.org/10.1109/TAC.2019.2941433
https://doi.org/10.1007/s11554-016-0655-2
https://doi.org/10.1073/pnas.1517384113
https://www.ncbi.nlm.nih.gov/pubmed/27035946
https://doi.org/10.1017/jfm.2021.697
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/TII.2019.2910416
https://doi.org/10.1016/j.jpowsour.2020.228051
https://doi.org/10.3390/s20113069
https://www.ncbi.nlm.nih.gov/pubmed/32485827
https://doi.org/10.1109/JSYST.2021.3079168
https://doi.org/10.48550/arXiv.1806.07366
https://doi.org/10.1016/j.jsv.2021.116196


Future Internet 2023, 15, 302 19 of 19

28. Di Nunno, F.; Granata, F. Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network. Environ.
Res. 2020, 190, 110062. [CrossRef] [PubMed]

29. Takyi-Aninakwa, P.; Wang, S.; Zhang, H.; Xiao, Y.; Fernandez, C. A NARX network optimized with an adaptive weighted
square-root cubature Kalman filter for the dynamic state of charge estimation of lithium-ion batteries. J. Energy Storage 2023, 68,
107728. [CrossRef]

30. Shahbaz, M.; Taqvi, S.A.A.; Inayat, M.; Inayat, A.; Sulaiman, S.A.; McKay, G.; Al-Ansari, T. Air catalytic biomass (PKS) gasification
in a fixed-bed downdraft gasifier using waste bottom ash as catalyst with NARX neural network modelling. Comput. Chem. Eng.
2020, 142, 107048. [CrossRef]

31. Lu, Y.; Zhong, A.; Li, Q.; Dong, B. Beyond finite layer neural networks: Bridging deep architectures and numerical differ-
ential equations. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018;
pp. 3276–3285.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.envres.2020.110062
https://www.ncbi.nlm.nih.gov/pubmed/32810497
https://doi.org/10.1016/j.est.2023.107728
https://doi.org/10.1016/j.compchemeng.2020.107048

	Introduction 
	Methodology 
	Cooling Fan System Dynamics 
	Filtering Operator Method 
	Recurrent Neural Network 
	Neural Ordinary Differential Equation 
	Hybrid Neural Ordinary Differential Equation 

	Literature Review 
	Digital Twins Derivation 
	Problem Formulation 
	Structure of Digital Twins 
	Numerical Simulation 
	Experiment Validation 

	Anomaly Detection Result 
	Conclusions 
	References

