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Abstract: With the rapid development of the Internet of Things, the number of wireless devices is
increasing rapidly. Because of the limited battery capacity, these devices may suffer from the issue of
power depletion. Radio frequency (RF) energy harvesting technology can wirelessly charge devices
to prolong their lifespan. With the technology of beamforming, the beams generated by an antenna
array can select the direction for wireless charging. Although a good charging-time schedule should
be short, energy efficiency should also be considered. In this work, we propose two algorithms to
optimize the time consumption for charging devices. We first present a greedy algorithm to minimize
the total charging time. Then, a differential evolution (DE) algorithm is proposed to minimize the
energy overflow and improve energy efficiency. The DE algorithm can also gradually increase fully
charged devices. The experimental results show that both the proposed greedy and DE algorithms
can find a schedule of a short charging time with the lowest energy overflow. The DE algorithm can
further improve the performance of data transmission to promote the feasibility of potential wireless
sensing and charging applications by reducing the number of fully charged devices at the same time.

Keywords: Internet of Things; energy harvesting; beamforming; directional antenna

1. Introduction

Nowadays, many devices have increased dramatically with the rapid development
of the Internet-of-Things (IoT). Numerous sensing devices have been developed for the
applications of smart homes/cities/offices [1]. Nevertheless, owing to the limited capacity
of batteries, efficient energy saving to prolong the lifetime of devices is crucial. Traditional
implementation focuses on reducing energy consumption using various energy-saving
strategies. Recently, researchers have proposed various energy-harvesting technologies
with different renewable energy resources, like conversions from piezoelectric energy,
winds [2], solar energy [3], mechanical vibration [4], and electromagnetic energy. One
of the most important technologies is wireless energy transfer (WET), in which devices
can convert radio frequency (RF) into electrical energy to charge themselves [5]. The RF
technology can be widely used in various networks, like sensor networks or cognitive radio
networks. With the technology of RF energy harvesting, wireless sensor devices do not
need to replace batteries.

RF energy harvesting can be performed based on two types of antennas: omnidirec-
tional antenna or directional antenna. In general, the access point (AP) is equipped with
antennas fixed at specific locations. Omnidirectional antenna can transmit energy in all
directions; thus, all devices in the transmission range can receive RF energy at the same
time. However, due to the lower antenna gain of the omnidirectional antenna, the transmis-
sion range is relatively short [6]. On the other hand, the directional antenna can transmit
energy in only one direction each time. The area of radio transmission is called the direction
sector. Devices in the sector receive RF energy from the power source. Because directional
antennas usually have higher antenna gain, their transmission ranges are relatively long
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compared to omnidirectional antennas [7]. However, multiple directional antennas are
required to cover all directions. Beamforming technology has been proposed to improve
the implementation of RF energy harvesting. The technology of beamforming employs
an antenna array composed of multiple antennas and exploits the spatial domain to gain
extra degrees of freedom. Furthermore, it can generate pencil beams to focus the signal
in a narrow direction [8]. In practice, an AP needs accurate knowledge of channel state
information (CSI) from/to devices to increase energy beamforming gain. Although the
design and implementation of the base station is complicated due to the requirements of
CSI and the antenna array [9], the charging time of the devices can be significantly reduced.

With the technology of beamforming and WET, it is important to choose a series of
appropriate directions for energy transmission. To charge devices to the target battery level,
we should have a set of time periods for different directions. Furthermore, when the battery
of a device is full, it may perform some specific tasks, e.g., transmitting data to the AP or
performing some calculation or upgrading tasks. If a lot of devices are fully charged at the
same time, the simultaneous data transmission may cause interference among different
devices and the simultaneous computation/upgrade overhead may result in sensing service
interruption. To avoid the above issues, it is desirous to gradually increase the number
of fully charged devices. In terms of energy overflow of the battery, reducing overflow is
equivalent to reducing the number of devices that are fully charged at the same time. To the
best of our knowledge, none of the previous work addresses the problem of shortening the
charging time and improving the performance of data transmission for charged devices.

In this work, we are motivated to propose two algorithms to shorten the recharging
time and minimize battery overflow for devices. The proposed greedy algorithm selects
a sector to be charged in a greedy manner, in which each sector may overlap with each
other. By adaptively adjusting the overlapping area between two sectors, the charging
efficiency can be improved to shorten the charging time. Our second algorithm based on
DE further minimizes battery overflow while keeping the charging time short. The results
of the experiment show that, compared with the baseline algorithms, the proposed greedy
algorithm can shorten the charging time by up to 55% and the DE algorithm can reduce
wasted energy by up to 70%. Furthermore, the DE algorithm can improve the data rate of
the devices by more than 160%.

The main contributions of this work are summarized as follows.

1. We proposed two algorithms, greedy and DE, for different purposes. The greedy algo-
rithm is designed to minimize the charging time and the DE algorithm can achieve a
better performance for energy overflow minimization. The greedy algorithm attempts
to charge devices as early as possible by rotating the direction of the directional an-
tenna’s beam. The DE algorithm jointly considers the issue of battery overflow to
reduce the number of fully charged devices at the same time.

2. To gradually increase the number of fully charged devices, the problem of minimizing
both energy overflow and charging time is formulated as a joint optimization problem.
Therefore, the algorithm proposed for the optimization problem can pursue a charging
schedule that may reduce the number of fully charged devices at the same time.

3. We conduct a comprehensive performance evaluation to demonstrate the performance
of our scheme. The experimental results show that both greedy and DE algorithms
can achieve a short charging time and the proposed DE algorithm can further reduce
the amount of energy wasted by charged devices. We also show that, by reduc-
ing the number of fully charged devices at the same time, the performance of data
transmission can be improved.

The remainder of this paper is organized as follows. In Section 2, we discuss some
previous literature. In Section 3, we introduce our system model and formulate the research
problem. In Section 4, we describe the proposed greedy and DE algorithms. Section 5
discusses the simulation results and Section 6 concludes this work.
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2. Related Work
2.1. Energy Harvesting Applications

Energy harvesting technology is widely used in IoT and mobile edge computing
(MEC) [1–3,5–16]. Owing to the capacity-limited battery, the lifetime of wireless devices or
sensor devices is an important issue discussed in numerous studies. There are several sources
of energy harvesting, namely renewable energy [3,11,12], radio frequency [1,5–9,12–17], reso-
nant coupling [10], etc.

Park et al. proposed an AmbiMax system to perform maximum power point tracking
to manage multiple power sources simultaneously and automatically [2]. Fan et al. pro-
posed a method of fair and high throughput with solar energy [3]. Zhang et al. concluded
that a node must collect RF energy for at least 150 s to support node activity within 100 ms
by analyzing the lifetime of IoT nodes based on RF energy harvesting [13].

Galinina et al. discussed the difference between the omnidirectional antenna and the
directional antenna and explored the feasibility of wireless-powered wearable devices [6].
To detect the underlying devices of the charge and activity sensor, Sandhu proposed kinetic
energy harvesters as context sensors and energy sources simultaneously [11].

Wang et al. aimed to find the optimal path for a mobile charger [9]. They proposed
a greedy bundle generation algorithm and a TSP-based solution by considering adjacent
charging locations. Prawiro et al. proposed a SmartCharge system to meet the requirement
of a community for wireless charging solutions without interfering with device usage
and movement [10]. The system also allows multiple devices to be used simultaneously.
Nguyen et al. proposed an energy-harvesting-aware routing algorithm to improve both
the lifetime of sensor devices and QoS under dynamic traffic load and variable energy
availability [12].

Bi et al. considered a multi-user MEC network powered by wireless power trans-
mission [17]. Because of the combinatorial complexity of multi-user computation offload-
ing, a coordinated descent method is proposed to optimize the decisions of computation
offloading. Shi et al. considered a NOMA-based WET-MEC network and proposed a
Dinkelbach-based iterative algorithm to maximize computation energy efficiency [8].

Tran et al. proposed a new idea of harvesting RF energy from Wi-Fi transmission
combined with beamforming [1]. They applied the idea to a prototype wearable device
that can capture and transmit accelerometer data. Wen et al. attempted to minimize the
system energy consumption based on beamforming and computation offloading [14]. They
also used relay technology to solve the degradation of transmission performance caused by
long distances.

2.2. Improvement of Energy Harvesting

The efficiency of energy harvesting has been discussed in numerous studies [5,7,15,18–25].
Existing research includes hardware implementations [18,19] and software [5,7,15,20–25]
implementations.

For hardware implementation, Lee et al. proposed a new approach to receive more
energy in wide-angle convergence by using a hybrid power combining rectenna array [18].
Shen et al. showed that the shortcoming of average output DC power in ambient RF
energy harvesting is nonlinearly dependent on antenna directivity and linearly dependent
on the antenna port number [19]. Accordingly, they designed a directional 4-port pixel
patch rectenna system to maximize average output DC power. For the directional energy
transmission, Wang et al. aimed to decrease the energy consumption of IoT nodes [5].

In addition to proposing a node scheduling method to increase sleep nodes, an adap-
tive RF energy management method is proposed to automatically switch between data
and energy modes, where the transmitter can monitor and control the voltage to adjust the
charging intensity. Ko et al. proposed an observation-based directional energy transmission
algorithm for dynamically distributed IoT nodes [7]. The method can measure the high
energy-efficiency sector and transmit RF energy to the selected sector. It is divided into two
stages, namely sensing and transmission. In order to improve efficiency of energy harvest-
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ing, the probability of a high-energy-efficiency sector is increased by the detection stage.
Ko et al. proposed a phase-aware algorithm for the directional energy transmission based
on multiple transmitters [15]. The RF energy waves can be combined either constructively
or destructively by phase difference. The proposed method maximizes harvested energy
with low energy consumption and a packet discard rate. There are several metaheuristic
algorithms used for energy harvesting. Sun et al. utilized the DE algorithm to optimize
the energy efficiency [20]. They established an object function related to the total number
of transmitted bits and the total energy consumption of the system. Li et al. proposed the
artificial fish swarm algorithm to identify the optimal scheduling under the constraint of
transmission energy [22].

Recently, there have been several algorithms based on reinforcement learning. Min et al.
proposed a reinforcement learning algorithm to learn the transmission rate, the current
battery level of IoT devices, and predict the renewable energy harvesting model in order
to determine the next decision [23]. Luo et al. ensured that the AP can use the collected
energy efficiently [24]. Their method uses deep Q learning to control transmit power, meet
the data-rate requirement of users, and ensure devices harvest enough energy. Ren et al.
designed a two-layer Q-learning method to maximize the energy efficiency of AP and
devices [25].

2.3. Beamforming

Recently, beamforming technology has been widely discussed and applied [26–29].
Alsaba et al. mentioned that beamforming is composed of multiple beams from the antenna
array with four or eight antennas [26]. The antenna array can adjust the transmission
direction by combining beams between antennas. Hiep et al. adopted the beamforming for
transmitting information and energy to improve the performance of the NOMA multiuser
systems [27]. Li et al. proposed an online energy consumption minimization algorithm with
latency constraints in order to minimize the energy consumption of multiple devices [28].
Wang et al. considered a full-duplex wireless-powered communication network, in which
the AP is equipped with an antenna array to transmit energy to devices and receive
information from devices [29]. They proposed a wireless energy allocation scheme based on
space division to optimize energy allocation between users under the max–min user fairness
constraint. In summary, we attempt to combine the energy harvest with beamforming to
improve the energy efficiency of wireless sensor devices.

2.4. Research Gap

We summarize the related works in Table 1. Most previous works have focused on
improving the performance of energy harvesting based on the demands of task computation
or data transmission. However, these works do not attempt to improve the performance of
data transmission by arranging the charging completion time of charged devices. We are
thus motivated to reduce charging time and improve the performance of data transmission
by minimizing the energy overflow.

Table 1. Summary of previous works.

Reference Beamforming Battery Research Goal

[5] None No Minimizing energy consumption with single
WET source

[7] None Yes Optimizing sectors for single WET source

[15] None Yes Optimizing directions and phases of multiple
WET sources

[20,22] None Yes Optimizing WET time period for computation Tasks

[23] None Yes Predicting WET for computation tasks
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Table 1. Cont.

Reference Beamforming Battery Research Goal

[24] None Yes Optimizing WET time period for data Transmission

[25] None Yes Optimizing WET time period and avoiding
energy overflow

[28] Yes Yes Minimizing energy consumption with single
WET source

[29] Yes No Optimizing WET time period for data transmission

3. System Model
3.1. Architecture of RF Energy Harvesting

Figure 1 shows the architecture of RF energy harvesting. There are two components
in the RF energy-harvesting architecture: rechargeable devices, and the access point (AP).
The rechargeable devices are equipped with an omnidirectional antenna and RF-DC con-
verter around the AP. The omnidirectional antenna receives RF energy from the AP, and the
RF-DC converter converts received RF energy to electricity. We assume that there are N
devices located under the radio coverage of the AP. Due to the limitations of our model,
the charge level of devices too close to the AP will be distorted, so there will be no devices
within a range of 1 m. The AP is a base station that receives data from devices, and it is
also a charging station equipped with an antenna array which can transmit RF energy to
devices. The devices whose battery level is higher than a threshold value can transmit data
to the AP. The AP and devices share the same frequency band by means of a time division
duplex (TDD); namely, wireless energy transfer and data transmission do not take place at
the same time.

Figure 1. The architecture of RF energy harvesting.

In practice, beamforming requires accurate channel state information (CSI). Therefore,
the AP needs to know the accurate CSI to achieve large energy beamforming gain. We
assume that the AP may consume energy to estimate the CSI from a dedicated device.

3.2. Channel Model

RF energy is assumed to undergo path loss attenuation during transmission. Path
loss attenuation is affected by α, where α is a path loss exponent varying between 2 and 6.
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The value of α is influenced by the environment. We assume that di is the Euclidean distance
between the charged device i and the AP, and d−α is the path loss attenuation. The channel
gain of device i is indicated by hi. µ is the energy conversion efficiency of converting RF
energy to DC via a recharged device. The value of µ can be used to estimate the energy
acquired by the device. In this work, we assume that the energy conversion efficiency
is a constant to simplify the calculation. Pt is the transmission power in Watts, and Pi

r ,
the power received by device i, can be expressed by Equation (1) [22,27,28]. The battery
level of device i in Joules is updated by Equation (2), where Bi(t) is the current battery
level, and Bi(t + 1) is the battery level in the next time interval.

Pi
r = Ptd−α

i hiGtGrµ (1)

Bi(t + 1) = Bi(t) + Pi
r × one time unit (2)

3.3. Antenna Model

The omnidirectional antenna can receive the RF signal from all directions, so its
antenna gain Gr is one. Directional antennas can only receive RF signal in a fixed direction,
so the antenna gain Gt is expressed by Equation (3), where θt is the transmission angle.
The value of θt is determined by the difference of two azimuth angles used to indicate the
area covered by the RF signal.

Gt =
2π

θt
(3)

Because the realistic directional antenna model is complex and difficult to implement, we
adopt a typical simplistic antenna model, a sector model, instead of a realistic directional
antenna model, as shown in Figure 2. Given a transmission angle, θt, the dotted line
represents a realistic directional antenna’s beam. We can see that there are few beams
behind the directional antenna. The solid line represents the beam of the sector model.

Figure 2. Simplified antenna model.

3.4. Sector Model

We express the harvesting environment topology in the Cartesian coordinate system.
The directional antenna has a fixed transmission angle. We divide the coordinate into S
transmission regions, as shown in Equation (4). The charging station transmits RF energy
to each region iteratively. The devices in each sector are identified by response messages
from devices receiving RF signals [7]. When a device is fully charged, it will also transmit a
message to inform the AP.

We assume that the charging station can change the transmission direction without
switching time. The charging sequence is performed in a counterclockwise direction. φ is
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the angular coordinate representing the start end of the transmission direction based on
polar coordinates. ∆ is an offset angle. φ will be changed by ∆ counterclockwise until it
completes one cycle. We show an example in Figure 3. Figure 3a indicates that the initial
transmission direction is represented by φ = 0 and φt = 90. Figure 3b shows the next
transmission direction, φ = 30, where the angle offset ∆ is 30.

S =
360− θt

∆
+ 1 (4)

Figure 3. Sector model. (a) The First Sector (b) The Second Sector

3.5. Problem Formulation

In this section, we formulate our research problem. We aim to jointly consider the
total charging time consumed by the AP and the wasted energy in the charged devices.
Our purpose is to find an appropriate schedule of per-sector charging time with minimized
energy overflow. Because the charging time and energy overflow have different measures,
we normalize the values of time and wasted energy between 0 and 1. The Nt is the
normalized time calculated using Equation (5). xj is the charging time of sector j, and the
tmax is the longest charging time of all sectors, i.e., tmax = max xj, 1 ≤ j ≤ S.

Nt =
∑S

j=0 xj

S× tmax
(5)

The Ne is the normalized energy overflow for D devices calculated using Equation (6).
ew

i denotes the wasted energy of device i and emax is the most wasted energy among all
devices, i.e., emax = max ew

i , 1 ≤ i ≤ D. The value of ew
i is calculated in Equation (7), where

device i is in sector j and β is the battery capacity of a device.

Ne =
∑N

i=0 ew
i

S× emax
(6)

ew
i = Bi + (Pi

r × xj)− β (7)

Our object function is formulated as Equation (8):

min Nt × Ne, subject to (8)

xj ≥ 0, ew
i ≥ 0, ∀i ∈ D, ∀j ∈ S (9)

Bi + Pi
r × xj ≥ β, ∀i ∈ D, ∀j ∈ S (10)
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This paper aims to yield a battery-charging schedule with minimized energy over-
flow. Basically, a better solution has smaller values of the Nt and Np. The constraint in
Equation (9) ensures that both values of harvesting time and wasted energy are positive.
The constraint in Equation (10) requires that each device must be fully charged.

4. Energy Harvesting Using Directional Antenna

In this section, we propose two algorithms for charging time scheduling. First, we
present a greedy algorithm to find a solution of minimized charging time. Then, we propose
an algorithm of differential evolution (DE), a metaheuristic used to yield a better solution
based on the solution generated by the proposed greedy algorithm.

4.1. Greedy Algorithm

When the AP starts up a cycle of wireless energy transfer, we assume that the energy
transfer of the AP starts from the direction of 0 degrees on the x-axis and rotates the offset
degree counterclockwise. In each sector, the devices receiving RF signals notify the AP
by transmitting response messages. When a device is fully charged, it will also transmit
a message to inform the AP. If there are devices on the current direction to be charged,
the rotation is stopped in order to charge the devices on the current sector. Otherwise,
the AP continues to rotate the direction of energy transfer.

The pseudo code of the proposed greedy algorithm is shown in Algorithm 1. Lines
2 to 24 show the process of the AP scanning a circle. First, we determine if the current
sector is the last one. If the answer is negative, we record devices of the current and next
sectors in line 4 and line 5. Moreover, if there are devices which will not be charged after
the charging direction is rotated by the offset, these devices must be fully charged in lines
6 to 12. In addition, we record the charging time and update the battery levels of different
devices. If the current sector is the final sector, we check if the sector is empty in line
14 to line 15. If the answer is negative, the remaining devices will be fully charged in
lines 16 to 22. Similarly, we also record the charging time and update the battery levels of
different devices. Then, we compute the overflow energy for all devices in line 25. Finally,
the algorithm returns the schedule of charging time in each sector, the total charging time
and total overflow energy in line 26.

We use an example with 10 devices in Figure 4 to illustrate the proposed greedy
algorithm. The transmission direction of the AP starts from the direction of 0 degrees on
the x-axis. If there are devices covered by the current sector that are not covered by the
next sector, these devices will be fully charged. The other devices in the same sector are
also charged at the same time. Then, the fully charged devices are skipped by the next
sector. In Figure 4a,b, we can observe that nodes 1 and 2 should be fully charged in the first
sector. Another three devices are also charged in the sector at the same time. After rotating
the transmission direction with the offset degree as shown in Figure 4c,d, we can observe
that node 3 is the one to be fully charged, but it has been fully charged with nodes 1 and
2. As a result, the transmission direction is rotated again to skip this iteration. In the
next iteration, nodes 4 and 5 will be fully charged, and so on. We note that the process
of charging different sectors is controlled by the AP. Since the AP can communicate with
devices, a sector with only fully charged devices can be skipped because no device will ask
for charging.
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Algorithm 1 Greedy

Require: The set of the sector S, The set of the battery energy level Bn
Ensure: X, T, WE

1: T = 0 , WE = 0 , X = []
2: for each sj ∈ S do
3: if sj is not the last sector then
4: set = sj
5: set′ = sj+1
6: if set− set′ 6= ∅ then
7: w f h = set− set′

8: compute t by Equ(1)
9: T+ = t

10: Harvest(set,t)
11: X.append(t)
12: end if
13: else
14: if sj == ∅ then
15: t = 0
16: else
17: w f h = set
18: compute t by Equ(1)
19: T+ = t
20: Harvest(set,t)
21: X.append(t)
22: end if
23: end if
24: end for
25: WE = WasteEnergy(X)
26: return X, T, WE

Figure 4. An example of the proposed greedy algorithm.
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4.2. Differential Evolution

Differential evolution is a classic metaheuristic algorithm for complex optimization
problems [21]. There are three main functions in the DE algorithm, namely mutation,
crossover, and selection, as shown in Figure 5. They are performed sequentially and
iteratively to efficiently search the solution space. The differential evolution algorithm is
performed upon a set of solutions, in which each solution is an individual and the solution
set is the population. Each solution yielded by the differential evolution algorithm is
evaluated by the fitness function. Next, we describe each component of the differential
evolution algorithm in detail.

Figure 5. The step of the DE algorithm.

As shown in Figure 6, an individual of the DE algorithm is composed of genes, and the
population is composed of individuals, where NP is the population size. The increase in
the NP can improve the diversity of the population and enhance the quality of the best
solution. Nevertheless, a higher value of NP also increases the computation overhead
to degrade the convergence performance. In contrast, reducing the value of NP can
improve the convergence speed, but also lead to a higher probability of only yielding
locally optimal solutions.

Figure 6. The representation of NP individuals.

Fitness value represents the quality of an individual. Our fitness value is calculated
by Equation (8), in which an individual with smaller fitness has a better performance.
The variation among fitness values of the population could determine the diversity of
the differential evolution algorithm. Next, we introduce the operation of each step of the
DE algorithm.

4.2.1. Initialization

Each individual in the population is initialized by Equation (11), where xi
j(g) is ith indi-

vidual, jth dimension and gth generation. LBi
j and UPi

j are the lower and upper bounds of
the ith individual and jth dimension. Rand(0, 1) is a random number uniformly distributed
in [0, 1]. We also include an individual generated by the proposed greedy algorithm.

xj
i(0) = LBj

i + Rand(0, 1) ∗
(

UPj
i − LBj

i

)
(11)

4.2.2. Mutation

The mutation strategy we used is a random approach, DE/rand/1, where three
individuals, r1, r2, and r3, are randomly chosen from [1, 2, 3 . . . NP]. Moreover, these
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individuals must have distinct values. A mutual vector, vj
i , is calculated using Equation (12):

vj
i(g + 1) = xj

r1(g) + F
(

xj
r2(g)− xj

r3(g)
)

, (12)

where xj
r2(g)− xj

r3(g) is a difference vector. F is a scaling factor used to control the value
of the difference vector. The value of the scaling factor is usually between [0, 2]. A small
value of F can reduce the convergence speed of the differential algorithm, and a large value
of F may keep the population from convergence. If the generated individual, vj

i , is out of
the boundary vector, it is adjusted according to the boundary vector in Equation (13).

vj
i =


LB, if vj

i < LB

UP, if vj
i > UP

vj
i , elsewhere

(13)

4.2.3. Crossover

After performing the operation of mutation, we use the crossover function to recom-
bine two individuals, v and x, in order to generate the final trial vector, u, by Equation (14).
The operation of the crossover can create new individuals. The new individuals inherit the
excellent genes from their parent, so they can adapt to the environmental requirements
better than the individuals of previous generations. CR is the hybridization probability,
which is a weight used to adjust the current and historical information. The value of CR
may affect the population diversity. A lower CR value uses less information from the varia-
tion vector and increases the difficulty of finding the global optimal solution. In contrast,
a higher CR value may increase the population diversity to avoid the local optimal solution
and yield a global optimal solution, but a high CR value may keep the population from
convergence. jrand is randomly chosen from [1, 2, 3 . . . NP].

uj
i(g + 1) =

 vj
i(g + 1), if Rand (0, 1) ≤ CR or j = jrand

xj
i(g), elsewhere

(14)

4.2.4. Selection

After performing the crossover function, we calculate the fitness values of u and
x in Equation (15). According to the fitness value, the section function selects the best
individuals by keeping them in the population. If the trial vector is better than the target
vector, it replaces the target vector. Otherwise, the trial vector is abandoned.

xj
i(g + 1) =

 uj
i(g + 1), if f

(
uj

i(g + 1)
)
< f

(
xj

i(g)
)

xj
i(g), elsewhere

(15)

4.2.5. DE Algorithm

The pseudo code of the proposed DE algorithm is listed in Algorithm 2. Initially,
the greedy algorithm in Algorithm 1 is executed to obtain a greedy solution in line 1.
Then, line 2 generates feasible solutions to fill the population. Lines 3 to 8 are the core
operations of DE, where the functions of mutation, crossover and selection are performed
iteratively. The mutation function improves the diversity of solutions and the crossover
function preserves better genes. Then, the selection function chooses the best individuals.
The best solution with the minimum fitness value is recorded throughout all generations.
Finally, lines 9 and 10 calculate the amount of overflow energy and total charging time.
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Algorithm 2 DE

1: xg,Tg,WEg = call Algorithm 1
2: Initialization(X,xg)
3: for i = 1 to iteration do
4: mutation(X)
5: crossover(X)
6: selection(X)
7: bestX = the best individual with the minimum fitness
8: min f = the fitness of bestX
9: end for

10: T = sum(bestX)
11: WE = WasteEnergy(bestX)
12: return T, WE

5. Simulation Results
5.1. Experiment Settings

In our experiments, we measure the performance of charging time and overflow
energy. The number of devices varies from 30 to 40 to 50. The minimum distance between
user and AP is 1 m, and the maximum distance is 5

√
2 m. Meanwhile, we set three different

transmission-direction offsets, of 10, 5, and 3 degrees, and three transmission angles, of
90, 60, 30 degrees. The transmission power of the AP is 5 Watts, the battery capacity is
5 Joules, and the conversion efficiency is 60%. The parameters of our experiments are listed
in Table 2.

We show the performance of the proposed greedy and DE algorithms. We use
the Python-based scikit-opt for the implementation of DE [30]. Our algorithm is com-
pared with three methods, namely Random, Round Robin, and Fix. These methods are
described below.

1. Random (RAN): The AP randomly chooses any direction to transfer energy for one
second until all devices are fully charged.

2. Round Robin (RR): The AP transmits energy in counterclockwise order for one second
until all devices are fully charged.

3. Fix: The AP has one antenna for one fixed direction. The number of the sectors is
equal to the number of antennas.

Table 2. Simulation Parameters.

Parameters Value

Topology Uniform
Number of Devices [30, 40, 50]
The minimum device distance 1 m
The maximum device distance 5

√
2 m

Offset value [3, 5, 10] degree
Transmission angle [30, 60, 90] degree
Pt 5 W
Bmax 5 J
Conversion rate µ 0.6
Population size NP 50
Scaling factor F 0.3
Hybridization probability CR 0.8
Upper bound tmax
Lower bound 0
Generation 1000
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5.2. Parameters of DE

We first show the convergence performance of the proposed DE algorithm. Figure 7
shows the best fitness value of each generation. The curve in the figure gradually decreases
as the number of generations increases. The result shows that the operations of our DE
algorithm can yield better solutions. The proposed DE algorithm also has good convergence
performance, in which the improvement of each generation is reduced after 150 generations
and the best solution is yielded in about the 700th generation. The proposed DE algorithm
can thus generate feasible results with reasonable computation cost.
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Figure 7. The convergence of our DE algorithm.

We further show the performance of the DE algorithm with respect to different values
of scaling factor. As shown in Figure 8, when the value of F is within the range from 0.1 to
0.3, we can observe that the fitness value decreases as the F value increases. The value of F
is related to the step size of the next generated solution. If the step value is too small, the DE
algorithm could be trapped in the locally optimal solution. When the value of F is within
the range from 0.4 to 0.9, the fitness value is increased for a larger F value. However, a large
step value could degrade the convergence performance. In the following experiments, we
set the F value to 0.3.

Fi
tn
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4

4.2
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5

F
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 8. The scaling factor of our DE algorithm.

Next, we show the performance of the DE algorithm for different values of hybridiza-
tion probability, which can balance the tendency between global and local searches for
the DE algorithm. As shown in Figure 9, when the value of CR is within the range from
0.1 to 0.7, the value does not fluctuate severely because a small CR value may cause the
DE algorithm to become trapped in locally optimal solutions. When the value of CR is
increased to the range from 0.8 to 0.9, the better solution could be yielded. However,
a higher CR value may also lead to slow convergence. In the following experiment, we set
the CR value to 0.8.
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Figure 9. The hybridization probability of our DE algorithm.

5.3. Comparative Performance Evaluation

In the section, we evaluate the performance of our algorithms as well as three methods:
Fix, RAN and RR.

5.3.1. Different Number of Devices

We show the charging time of different schemes for different numbers of devices in
Figure 10 by setting the transmission angle to 90 degrees and the offset value to 10. The
results show that the proposed greedy algorithm has the shortest charging time compared
to other methods. We also observe that the charging time of the DE method is slightly
worse than that of the greedy algorithm for different numbers of devices. The charging time
of the Fix method increases as the number of devices increases, where the charging time is
about 60 s for different number of sensor devices. The RAN method may arbitrarily select
a transmission direction to result in charging some devices that have been fully charged.
The RR method has a similar problem to the RAN method. Both the RAN and RR methods
suffer from a high charging time regardless the number of devices mainly because of the
poor charging efficiency for those distance devices.

We show the performance of the overflow energy for different methods in Figure 11.
The overflow energy is related to the charging time and the selected transmission directions.
The Fix method results in the most overflow energy for 50 devices because the devices
are more distant. Both RAN and RR methods lead to a higher amount of wasted energy
because of redundant charging. The RR method slightly outperforms the RAN method
because the RAN method repeatedly charges devices. Both the proposed greedy and DE
algorithms outperform the other methods. Although the DE algorithm requires a slightly
longer charging time than the proposed greedy algorithm in Figure 10, it achieves the
least overflow energy. In particular, the DE algorithm improves the overflow energy of
the greedy algorithm by 12.9%, 9%, and 7.8% for 30, 40, and 50 devices. The improvement
decreases as the number of devices increases because having more devices in a sector may
result in more devices with overflow energy. We believe that the tradeoff between a slightly
longer charging time and less overflow energy is reasonable.

5.3.2. Different Transmission Angles

Next, we use three different transmission angles, 30, 60 and 90, to show the perfor-
mance for different schemes. Figure 12 shows the charging time for 30 devices and the
offset value, 10. We observe that the charging time of DE, RAN, RR decreases with smaller
transmission angles. Because the antenna gain is related to the transmission angle, a small
transmission angle can provide a narrow transmission beam to increase the antenna gain
as well as the amount of energy received. Thus, the received energy of 30 degrees is higher
than that of 60 and 90 degrees. However, a small transmission angle also results in more
sectors. If the number of sectors increases, our DE algorithm may consume considerable
computation time owing to the lengthy solution. All of these methods also require more
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charging iterations for all sectors. In particular, the charging time of DE is 54.1, 40.9, 31.9 s
for 90, 60, and 30 degrees. The Greedy algorithm can still shorten the charging time effec-
tively. Fix can improve its charging time efficiency with narrow transmission angle, so do
RAN and RR.
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Figure 10. The charging time for different numbers of devices.
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Figure 11. The overflow energy for different numbers of devices.

We further show the overflow energy in Figure 13. We can see that the greedy al-
gorithm also outperforms the Fix method because of the optimization of the charging
time. Additionally, our DE algorithm can lower the ratios of overflow energy of the greedy
algorithm by 12.9%, 16.4%, and 20.4% for 90, 60, and 30 degrees. It can thus decrease
the number of fully charged devices by reducing overflow energy while maintaining a
low charging time. A narrow transmission degree can significantly reduce the amount of
energy wasted compared to that of other methods. Both RAN and RR also suffer from more
overflow energy due to their inefficient charging schedules.

5.3.3. Different Offset Values

In the following experiment, we show the charging time and overflow energy for
different schemes by using different offset angles. Figure 14 shows the charging time
for three different offset angles, 10, 5 and 3, where the number of devices is 30 and the
transmission angle is 90. The charging time of our greedy algorithm is 53.7, 51.6, and 51.4 s
for 10, 5, and 3 degrees, while the charging time of DE is 54.1, 52.2, and 51.5 s. Because a
smaller offset degree also indicates more transmission directions, the greedy algorithm
can thus achieve a shorter charging time. Our DE algorithm also provides a performance
comparable to that of the greedy algorithm. However, the charging efficiency of Fix, RAN
and RR cannot be improved with a smaller offset. The RAN and RR methods have more
sectors to choose from with a smaller offset and result in a longer charging time.
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Figure 12. The charging time for different transmission angles.
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Figure 13. The overflow energy for different transmission angles.
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Figure 14. The charging time of different offset.

The overflow energy of different algorithms for different offsets is shown in Figure 15.
The wasted energy of DE is better than Greedy by 12.9%, 7.4% and 1.6% for 10, 5 and 3 offset
degrees, where DE achieves better improvements for larger offset. This is because the
greedy algorithm can also benefit from a small offset to reduce overflow energy. The greedy
algorithm outperforms the Fix method by 6.1–15%. Both RAN and RR still have the most
overflow energy.



Future Internet 2023, 15, 301 17 of 24

Greedy
DE
Fix
RAN
RR

W
as
te
d	
en
er
gy
	(J
)

0

200

400

600

800

Offset
10 5 3

Figure 15. The overflow energy of different offset.

5.3.4. Different Topologies

In the following experiments, we use four different topologies with 30 nodes to
evaluate the performance. The topologies are shown in Figure 16, where each topology is a
region of 5m×5m. These topologies are described below.

1. Uniform (UN): The nodes are evenly distributed in the region.
2. Power Law (PL): There are more nodes in the center area.
3. BA: There are fewer nodes in the center area.
4. ER: Nodes are uniformly distributed at the region while any two nodes are not close

to each other.

BA ER 

Power Law (PL) Uniform (UN) 

Figure 16. The topology types, where the orange node in each topology is the AP and the blues nodes
are rechargeable devices.

Figures 17 and 18 show the charging time and overflow energy of different algorithms
for different topologies for the 30 devices, where the transmission angle is 90 and the offset
is 10. The charging time of the DE algorithm is about 1% higher than that of the greedy
algorithm for all topologies. Because the nodes in the topologies of BA and PL are close
to each other, the greedy algorithm can thus achieve better performance. The Fix method
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has a better performance for these uneven topologies. All algorithms consume a longer
charging time for both UN and ER topologies because the nodes in these topologies are
uniformly distributed.
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Figure 17. The charging time of different topologies.
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Figure 18. The overflow energy for different topologies.

For the overflow energy, the DE algorithm still has the best performance among all
schemes for all topologies. The improvement is relatively small for ER and UN topologies
because of the even distribution of nodes. The Fix method suffers from more overflow
energy for the PL topology because most nodes are located in the center area. When the
nearby nodes are fully charged quickly, the distant nodes are still charged, resulting in high
overflow energy. In contrast, the overflow energy of all algorithms decreases for the BA
topology because there are only a few nodes in the center area.

5.3.5. Different Charging Ratios

Next, we discuss the performance for different charging ratios, where the charging
ratio is the ratio of the charged battery power. Figures 19 and 20 show the charging time
and overflow energy of different algorithms for 30 devices with different charging ratios,
where the transmission angle is 90 and the offset is 10. The charging time of the DE is about
1% longer than that of the greedy algorithm for all charging ratios. For all algorithms, when
the charging ratio decreases, the charging time also decreases as well.

Figure 20 shows that, for all algorithms, the overflow energy significantly decreases as
the charging ratio decreases, since the charging time is shortened. The greedy algorithm
outperform the Fix method by 7% and the DE algorithm further outperforms the greedy
algorithm by 13%.
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Figure 19. The charging time for different charging ratios.
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Figure 20. The overflow energy for different charging ratios.

5.4. Time Distribution of Fully Charged Devices

The last experiment shows the time distribution for fully charged devices. Figure 21
shows the number of fully charged devices in different iterations for different charging
ratios, where the number of devices is 30, the transmission angle is 90, and the offset
is 10. The results for Fix, RAN, and RR are not included because these methods need
a longer charging time. We can observe that the DE algorithm can efficiently distribute
the charging completion time of devices to different iterations. In Figure 21b, the fully
charged devices of the greedy algorithm only occupy 8 iterations, but those of the DE
algorithm occupy 17 iterations. Both Figure 21a,c show similar trend. This is because
the DE algorithm postpones the charging completion time of a device by decreasing the
charging time for the devices of each sector and increasing the charging time for the devices
of the subsequent sectors. The DE algorithm can thus evenly distribute the fully charged
devices to different iterations.

We further show the average data rate of fully charged devices in each iteration, where
each device periodically transmits data to the AP when it is fully charged. The configuration
of data transmission is based on our previous work [31]. It includes 10 MHz bandwidth
and 100 mW transmission power. The background noise is −100 dbm and the channel gain
is defined as d−α

i , where di is the distance between device i and the AP. The path loss factor,
α, is set to four. However, there is only one wireless channel considered in this work since
these sensor devices can only transmit data when they are fully charged.

As shown in Figure 22, the results show that the DE algorithm can provide a better
transmission performance because it can transmit data in more iterations. Furthermore,
in most iterations, the DE algorithm achieves a higher data rate because there are fewer fully
charged devices in an iteration, as shown in Figure 21. For the iterations with more fully
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charged devices, the date rate of a device would be degraded because of the interference
from more devices. As a result, the DE algorithm can improve the data rate of a fully
charged device.

Figure 23 further shows the total data rate of fully charged devices in each iteration.
The results reveal that the DE algorithm outperforms the proposed greedy algorithm by
providing a higher total data rate of fully charged devices in most iterations. In particular,
for the charging ratio 1, the DE algorithm can improve the average data rate by 160%.
For the charging ratios, 0.6 and 0.8, the average data rate is further improved by 800%.
In summary, although the DE algorithm requires a slightly longer charging time than the
proposed greedy algorithm, it can effectively improve the performance of data transmission.
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Figure 21. The number of fully charged devices in different iterations. (a) Ratio = 1, (b) Ratio = 0.8,
(c) Ratio = 0.6.
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Figure 22. The data rate of fully charged devices in different iterations. (a) Ratio = 1, (b) Ratio = 0.8,
(c) Ratio = 0.6.
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Figure 23. The total data rate of fully charged devices in different iterations. (a) Ratio = 1, (b) Ratio = 0.8,
(c) Ratio = 0.6.

6. Conclusions

In this work, we combine beamforming and directional transmission technology to
decrease the charging time and overflow energy. We propose two algorithms for RF energy
harvesting. The proposed greedy algorithm is designed to minimize the charging time.
The proposed differential evolution algorithm further reduces the overflow energy to
distribute the completion time of fully charged devices. It also has the advantages of
fast convergence and the ability to search for global optimal solutions. We verify the
performance of the proposed algorithms with respect to different scenarios, including
transmission and offset angles, different topologies, and charging ratios. The simulation
results show that the proposed greedy algorithm can reduce the charging time by up to 55%
compared to the baseline algorithms. Although the proposed DE algorithm requires about
10% longer charging time than the greedy algorithm, it also reduces the overflow energy
by 10%. Moreover, by reducing the number of fully charged devices at the same time,
the proposed DE algorithm can drastically improve the data rate of devices by 160% or
more. In summary, the proposed greedy algorithm is suitable for applications without the
demand of the massive data transmission. For applications which require a high data rate,
the DE algorithm can lower the energy overflow to significantly improve the performance
of data transmission.

In our future work, we will consider the computation offloading problem for the
energy-harvesting devices. The lifetime of the devices will be jointly considered with their
computation tasks. More practical limitations of energy-harvesting devices will also be
considered, e.g., variable energy conversion efficiency and channel gain.
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