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Abstract: In the rapidly evolving landscape of internet usage, ensuring robust cybersecurity measures
has become a paramount concern across diverse fields. Among the numerous cyber threats, denial of
service (DoS) and distributed denial of service (DDoS) attacks pose significant risks, as they can render
websites and servers inaccessible to their intended users. Conventional intrusion detection methods
encounter substantial challenges in effectively identifying and mitigating these attacks due to their
widespread nature, intricate patterns, and computational complexities. However, by harnessing
the power of deep learning-based techniques, our proposed dense channel-spatial attention model
exhibits exceptional accuracy in detecting and classifying DoS and DDoS attacks. The successful
implementation of our proposed framework addresses the challenges posed by imbalanced data and
exhibits its potential for real-world applications. By leveraging the dense channel-spatial attention
mechanism, our model can precisely identify and classify DoS and DDoS attacks, bolstering the
cybersecurity defenses of websites and servers. The high accuracy rates achieved across different
datasets reinforce the robustness of our approach, underscoring its efficacy in enhancing intrusion
detection capabilities. As a result, our framework holds promise in bolstering cybersecurity measures
in real-world scenarios, contributing to the ongoing efforts to safeguard against cyber threats in
an increasingly interconnected digital landscape. Comparative analysis with current intrusion
detection methods reveals the superior performance of our model. We achieved accuracy rates
of 99.38%, 99.26%, and 99.43% for Bot-IoT, CICIDS2017, and UNSW_NB15 datasets, respectively.
These remarkable results demonstrate the capability of our approach to accurately detect and classify
various types of DoS and DDoS assaults. By leveraging the inherent strengths of deep learning, such
as pattern recognition and feature extraction, our model effectively overcomes the limitations of
traditional methods, enhancing the accuracy and efficiency of intrusion detection systems.

Keywords: network; cybersecurity; DDoS; attention; IoT; Densenet

1. Introduction

Computer network systems have been implemented to enable device communication
and perform crucial business functions. However, this creates a higher reliance on an
entity’s connection systems’ primary functions. Due to their extensive and critical reliance
on computer networks, key sectors including banking, healthcare organizations, and service
providers are subject to instability threats [1–4]. Due to this dependence, maintaining ideal
networks is necessary to maintain accessibility, efficiency, and safety. A security breach
can significantly impact network performance, leading to instability and eventual network
incompatibility.

Moreover, cyberattacks may result in blackouts, issues in weapon systems, and con-
fidential information releases. They might cause the loss of priceless sensitive data, such
as hospital files, military records, etc. Furthermore, they can disable phone and computer
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networks, making data unavailable or rendering systems unusable [5–7]. Banking and
government networks are particularly vulnerable because of the tremendous value of the
data they contain. The hackers steal the information (especially other people’s banking
details) and profit from that information.

Over the past decade, there have been instances of different kinds of hybrid network
attacks, causing severe system anomalies. Such attacks have been more prevalent over the
past ten years, posing a severe threat to the stability of networks due to the modification of
numerous services [8–10]. Denial of service (DoS) attacks fall into mainly two categories:
service outages and service flooding.

The internet-of-things network has experienced severe losses due to DDoS attacks.
Therefore, IoT users consequently have paid great attention to the vulnerabilities. Numer-
ous devices or systems work together to attack a single target, making it challenging to
locate and disable the attacking devices [11–15]. Cyberattackers frequently use a botnet
to interfere with internet infrastructure. DDoS attacks are difficult to identify and prevent
in real time, yet this approach has enormous utility because attacks can have significant
effects.

Many intrusion detection systems (IDSs) have been developed in the past to identify
these assaults, utilizing a variety of techniques involving mathematical modeling, and data
mining techniques such as machine learning techniques, etc. Due to their difficulties in pro-
cessing high-dimensional network information, these analytical and conventional machine
learning models perform poorly [16–20]. Therefore, deep learning-based techniques are
essential to handle these issues.

Recently, deep learning has attracted much interest in attack detection due to its effi-
cient feature extraction and learning abilities, specifically in settings with massive datasets.
Without contextual information, deep learning techniques eventually capture significant
characteristics from the input data using numerous layers [21–24]. Therefore, in this paper,
Densenet-based deep learning was implemented to perform multi-class classification on
DoS and DDoS attacks. To solve the imbalanced data issue, a self-organized generative
adversarial network (SOMGAN) was implemented to perform data augmentation. After-
wards, the feature extraction and selection are performed using a pyramid atrous attention
network and artificial bee colony optimization algorithm (ABC). Finally, the attacks were
detected and classified using a convolution block attention classifier.

The primary contributions of this paper include the following:

− A self-organizing map generative adversarial network (SOMGAN)-based data aug-
mentation technique was utilized to address the challenge of the imbalanced dataset
and enhance the effectiveness of the proposed network;

− Departing from traditional feature extraction methods, the paper adopts a deep learn-
ing approach incorporating the pyramid atrous attention module to extract crucial
attributes from raw network traffic data;

− The development of a feature selection and classification system based on the artificial
bee colony optimization algorithm (ABC) and convolutional dense-attention module
to identify various types of attacks;

− The investigation results demonstrate that the proposed approach outperforms previ-
ous techniques in terms of attack detection on ot-IoT, CIC-IDS2017, and UNSW_NB15
datasets.

The study is subdivided into the following sections. The study’s concept introduction
is presented in Section 1, and a literature review is briefly described in Section 2. The
methodology, experimental results, and discussion follow in Sections 2–4, respectively.
Finally, the conclusions are delivered.

2. Literature Review

DoS and DDoS assaults are a severe threat to many organizations because of their
tremendous ability to bring down unprotected servers in a short period. Therefore, the
prevention of DoS and DDoS attacks has been the subject of many research proposals.
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Current studies suggest some robust defensive frameworks from network breach attacks,
which are briefly explained below.

Detection and classification of DDoS attacks was studied by Wei et al. [25], who in-
corporated two deep learning-based techniques using an auto encoder (AE) multi-layer
perceptron (MLP). To perform feature extraction without human assistance, AE was imple-
mented by the authors. Using the extracted features, various kinds of DDoS attacks were
classified by MLP network. To assess the effectiveness of the suggested approach, large
DDoS attack samples from CICDDoS2017 were extracted to access the accuracy metrics.

Shroff et al. [26] studied a generative adversarial network (GAN)-based reliable de-
tector for identifying cyberattacks. In this system, two distinct GAN-based models were
implemented. The first generator produced benign instances that closely resembled benign
samples from the dataset and the second generator was capable of producing DDoS cases
that closely resembled those from the dataset. Moreover, the creation of a DNN classifier-
based framework facilitated distinguishing between huge samples of DDoS and benign
classes over structural similarity metrics. GANs are a powerful deep generative model
trained with an adversarial procedure. GANs have undergone several modifications since
they were first proposed to solve several different problems in different domains [27].

Azzaoui et al. [28] implemented a deep neural network (DNN)-based intrusion detec-
tion model to effectively classify dynamic network traffic outside the sandbox. The kernel
consisted of a four-layer network, and each layer contained 136 neurons. To analyze the
effectiveness of the suggested approach, numerous experiments were carried out with
various hyperparameter combinations, and the results were compared with those of other
shallow and deep ANN models. They used CICIDS2017 and NSL-KDD datasets with stan-
dard performance metrics for this assessment. They then created and tested 36 alternative
DNN model combinations, each producing different outcomes.

To identify unknown DDoS attacks, Shieh et al. [29] created a method that employed
reconstruction error and distributed hidden layer features. The deep hierarchical recon-
struction nets (DHRNet) structure was used in this research to recompile it with a 1D
interconnected neural network using a spatial location constraint prototype loss func-
tion. A random gradient descent approximation-based one-class SVM (support vector
machine) was implemented to identify the unidentified patterns in the following stage. The
performance of this approach was assessed using the CICIDS2017 Friday Open Dataset.

Alduailij et al. [30] developed a system for detecting DDoS attacks by employing
various machine learning and feature selection algorithms. The initial step involved
selecting the most relevant attributes from the network-IoT datasets using dual machine
learning (ML) approaches, namely correlative and mutual information random forest.
Subsequently, the attack detection was carried out using an ensemble-weighted voting
method and then scored with random forest (RF) algorithms. The performance of the
system was assessed using evaluation metrics and coefficient metrics confirmed the higher
true positives of the target class.

Smith et al. [31] utilized the UNSW-NB15 dataset to evaluate the effectiveness of
machine learning algorithms for network intrusion detection. They compared the perfor-
mance of various classifiers, including random forest, support vector machines, and neural
networks, using a range of features extracted from the dataset. The results demonstrated
that the random forest classifier outperformed other algorithms, achieving an accuracy of
95% and a low false-positive rate. The study highlighted the significance of leveraging the
UNSW-NB15 dataset as a benchmark for assessing the efficacy of intrusion detection sys-
tems and emphasized the potential of machine learning techniques in enhancing network
security.

DenseNet [32] is a deep learning architecture that achieves efficient information flow
across levels by directly connecting all of its layers. Each layer passes its feature maps to all
succeeding layers and receives extra input from all earlier layers. Concatenation is used to
merge the output feature maps from the previous layer with those from the current layer.
Each layer of the network is connected to all of the successive levels, and together they
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are known as DenseNets. Comparatively speaking, this model needs fewer parameters
than conventional CNNs. It also reduces the overfitting problem that occurs with smaller
malware training sets [33–35].

3. Proposed Methodology

This section introduces a novel intrusion detection method based on deep learning,
which aims to classify various forms of DoS and DDoS attacks. The proposed method’s
high-level architecture is depicted in Figure 1, consisting of four key phases. These phases
include preprocessing and data augmentation, feature extraction, feature selection, and
classification using a Densenet convolutional block attention module (DCBAM). It mainly
uses the improved convolutional block attention (CBA) DenseNet algorithm to enhance
beneficial features to better integrate the attention module into DenseNet without increasing
too many parameters and wasting computing resources. Initially, the raw data undergoes
a series of preprocessing steps to remove unwanted information. To address the issue
of imbalanced data, a data augmentation technique based on a conditional generative
adversarial network (SOMGAN) is applied, resulting in improved performance of the
classifier. Subsequently, the augmented data are subjected to feature extraction using
the pyramid atrous attention-based deep learning technique. The artificial bee colony
optimization algorithm (ABC) is then employed to identify significant features from the
extracted set. Lastly, a classifier based on Densenet architecture analyzes these features and
accurately classifies the detected cyberattacks. DenseNet [36] uses a dense connection layer,
in which each layer can obtain the connected feature map of the previous layer. Model
redundancy is reduced by feature reuse at each level of the network [37].
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3.1. Preprocessing

The data preprocessing stage is crucial to the overall kernel learning phase and training
process, as it becomes more robust and yields a more precise model. Consequently, unde-
sired characteristics such as “infinity” or “NaN” values in “flow packets/s” are eliminated
during this phase. Additionally, redundant rows, including Fwd Avg Bytes, Bwd Avg Bulk,
Fwd Avg Bulk, are removed.

The main objective of the approach is to perform multi-class categorization of DDoS
attacks, which necessitates encoding. To achieve this, the study employed a one-hot encoder
(OHE). This involved adding a new column for each label and assigning a value of 1 or 0
which denoted an attack or benign class.

After the labels were encoded, the next step involved data normalization using L2
normalization, and consequent columns were processed to its standard. The attributes of
the label datasets are categorized by the equation below, where x represents each instance
of a record.

‖x‖2 =
√

∑n
i=1|xi|2 (1)
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The process of normalizing the dataset records generally leads to significantly faster
training. By ensuring that the dataset attributes are within a consistent range, this normal-
ization step contributes to the generation of a more accurate model.

3.2. Data Augmentation Using a Self-Organizing Map Generative Adversarial Network

While using a SOMGAN, self-organizing maps (SOM) can be used for feature extrac-
tion. A SOM is a type of unsupervised neural network that is used for dimensionality
reduction and clustering of input data. It works by mapping high-dimensional data onto a
low-dimensional grid and preserving the topological properties of the input space. The
resulting map can be used to identify clusters in the data and reduce the dimensionality
of the input space. The generator is then used to generate new samples that are similar
to the input data but also diverse. Using a self-organizing map generative adversarial
network (SOMGAN) for data augmentation in the context of identifying cyberattacks can
offer several benefits, primarily related to improving the robustness and generalization of
the cyberattack detection model. Here is why SOMGAN techniques might be used for data
augmentation:

1. Limited real data: In many cybersecurity applications, obtaining a diverse and ex-
tensive dataset of real-world cyberattacks can be challenging due to their infrequent
occurrence or limited availability. Data augmentation techniques, like SOMGAN, can
artificially expand the dataset, making the model more robust by exposing it to a
wider range of possible attack scenarios.

2. Class imbalance: Cyberattack datasets often suffer from class imbalance, where certain
attack types are rare compared to normal instances. This can lead to biased models
that perform well on the majority class but poorly on the minority class (attacks). By
generating synthetic attack instances, a SOMGAN can balance the class distribution
and help the model better understand the characteristics of various attack types.

3. Generalization: Data augmentation helps the model generalize better. By exposing
the model to a more diverse set of attack patterns, it learns to differentiate between
normal and attack instances more effectively, even when faced with previously unseen
or slightly different attack variations.

4. Anomaly detection: Many cyberattacks are “anomalies” compared to normal network
behavior. Data augmentation techniques like SOMGAN can help the model learn to
identify subtle anomalies that may not be well-represented in the original dataset.

5. Zero-day attacks: Data augmentation can aid in preparing the model for detecting
zero-day attacks, which are previously unseen attack types. The model’s exposure
to a wider range of attack patterns through synthetic data can enhance its ability to
identify novel attacks.

6. Improved feature learning: A SOMGAN can help the model learn more robust and
relevant features from the data. This is particularly useful for complex and high-
dimensional data like network traffic or system logs, where manual feature engineer-
ing can be challenging.

7. Reducing overfitting: By augmenting the dataset with synthetic data, the model is less
likely to overfit to the limited real data. This is especially important when building
deep learning models for cybersecurity, as overfitting can lead to poor generalization
and a high false-positive/negative rate.

In summary, SOM can be used as an alternative to other dense generative algorithms
for data augmentation in a SOMGAN [38–43]. A SOMGAN is sufficiently employed in
a number of applications for data augmentation with unbalanced distributions in fault
diagnosis, anomaly detection, and DoS attack detection.

3.3. Feature Extraction by Pyramid Atrous Attention Module

The attention network plays a crucial role in extracting effective features from the
preprocessed data. This sort of network is built upon encoder and decoder structures,
consisting of five stages. The initial three stages employ 1 × 1 convolution layers for the
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convolution process, while the subsequent two stages utilize atrous convolution with 3 × 3
convolution layers. A ReLU layer is introduced between the two convolution layers to
generate nonlinear representations, capturing low-level specific features.

To upscale the high-level feature maps within all residual blocks, the deconvolution
technique is employed. Ensuring uniform feature map sizes is necessary for conducting fea-
ture fusion operations. Subsequently, the convolutional block attention module (CBAM) [5]
is incorporated into the lateral connections to fine-tune the feature maps layer by layer. This
integration aids in reducing false detections and enhancing feature extraction accuracy.

The CBAM module holds the capability to enhance network feature learning and can
be seamlessly integrated into any network architecture. In our approach, we incorporated a
CBAM module after each dense block to refine the features and bolster the network’s ability
to represent features effectively. Please refer to Figures 2 and 3 for a visual representation
of this process.
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Overall, the attention network leverages encoder and decoder structures, employing
convolution and atrous convolution layers to extract features. The deconvolution technique
is used to upscale feature maps, and the CBAM module is added to adjust feature maps
and improve feature representation accuracy. This comprehensive approach enhances the
network’s capability to learn and represent features accurately.

3.4. Feature Selection Using Artificial Bee Colony (ABC) Algorithm

An artificial bee colony (ABC) algorithm is a population-based stochastic optimization
technique, which replicates the intelligent foraging behavior of honeybee swarms. It can
be used for classification, clustering, and optimization studies. The food supply position—
which represents the solution to the optimization problem—and the amount of nectar in
the food source depends on the quality of the associated solution. This value is calculated
in formula below:

fiti = 1/(1 + fi) (2)

SN in the algorithm indicates the size of the population. Each zi solution is a D-
dimensional vector for i = 1, 2, 3, . . ., SN. Here, D is the numbers of cluster products and
input size for each dataset. The probability value (pi) is calculated in (3):

pi = fiti/(ΣSN
n=1 fitn) (3)
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where SN is the number of food sources, which is equal to the number of employed bees
and the goodness of the fiti solution given in (1). zi

j represents comparison of two food
sources to a bee.

zj
i = zj

min + rand (0,1) (zj
max − zj

min) (4)

So a greedy selection mechanism is used to make selections among the old source and
one of the candidates.

3.5. Intrusion Detection Using DCBAM Architecture

This section provides a comprehensive overview of the implementation process for an
attack detection and classification system utilizing DenseNet201, a deep learning model
with 201 layers. The framework leverages the unique characteristics of DenseNet201,
which establishes direct connections between layers possessing the same feature map
size. This design enables the reuse of extracted features across layers, resulting in a more
precise and compact model. The DenseNet201 model is structured with four dense blocks
interconnected by three transition layers responsible for downsampling. These blocks and
layers are crucial for feature extraction. The final deep layers in DenseNet201 incorporate
the information from all preceding layers, as denoted by Equation (4). This equation
represents the composite function involving batch normalization, ReLu activation, and
a 3 × 3 convolution layer. Furthermore, specific convolution layers with varying filter
sizes and kernel shapes are appended after the fourth dense block to capture more detailed
information. The features extracted from previous aggregated layers are subsequently
passed to the classification head of the model. The classification layer comprises two
dense layers, a batch normalization layer, and a convolution layer, with a Softmax. These
components play a vital role in the final classification of attacks based on the extracted
features. In summary, the implementation of the attack detection and classification system
utilizes DenseNet201 as the underlying model, incorporating direct connections, dense
blocks, transition layers, and specific convolution layers. The system effectively captures
and reuses features, leading to a more precise and compact model for accurate classification
of attacks.

Xl = Hl

([
X0, X1, . . . . . . Xl−1

])
(5)

To extract important features while removing redundant information, the attention
mechanism is employed. The convolutional block attention module (CBAM) proposed by
Woo et al. [4] effectively extracts meaningful features in the channel and spatial dimensions,
respectively, allowing for adaptive feature refinement. The module is shown in Figure 3.
Using deep learning-based techniques, such as DenseNet, for cyberattack detection has be-
come increasingly popular due to several advantages over other available techniques. Here
are some reasons why DenseNet and similar deep learning approaches are favored [44–52]:

− Feature learning: Deep learning models like DenseNet automatically learn relevant
features from the data, making them highly effective at capturing intricate patterns
in complex data like network traffic or system logs. This adaptability is crucial in
detecting new and evolving cyberattacks.

− End-to-end learning: Deep learning models are designed to learn from raw input data
to make predictions directly. This end-to-end learning can help simplify the detection
pipeline, reducing the need for manual feature engineering and potentially improving
accuracy.

− Complex relationships: Cyberattacks can exhibit intricate relationships across multiple
dimensions of data. Traditional techniques may struggle to capture these relationships
effectively, whereas deep learning models can handle complex, nonlinear interactions
in the data.

− Scalability: Deep learning models can handle large-scale datasets, making them
suitable for real-time or near-real-time detection in high-speed network environments,
which is essential for modern cybersecurity needs.
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− Adaptability: Deep learning models can adapt to new attack patterns with minimal
human intervention. This adaptability is crucial as cyberattacks constantly evolve,
making it challenging to maintain rule-based or signature-based detection systems.

− Representation learning: Deep learning models can learn useful representations of the
data, which can aid in identifying both known and novel attack types. This feature is
particularly valuable in zero-day attack detection.

− Performance: In many cases, deep learning techniques like DenseNet can achieve
state-of-the-art performance on benchmark datasets, demonstrating their effectiveness
in cyberattack detection compared to other techniques.

4. Experimental Results

In this section, exploratory analysis is performed to expunge redundancies in the data
and state the potency of the intrusion detection (ID) model. The results of the analysis
are discussed in the following sections. The experiments were conducted on the system
mentioned in the Table 1. These parameters were carefully selected to optimize the training
process and achieve the best possible performance of the intrusion detection model. The
Adam optimizer is known for its effectiveness in training deep learning models, while the
ReLU activation function helps introduce nonlinearity, enhancing the model’s representa-
tional power. The batch size and momentum values contribute to efficient gradient updates
during training, and the dropout regularization technique aids in preventing overfitting. By
conducting experiments with these specified settings, obtained evaluation metrics clearly
denote the robustness of our proposed architecture over SOTA models.

Table 1. Software and hardware configurations.

System Details

Operating system Linux 64-bit

Processor I7 Intel

RAM 16 MB

Graphic memory 1080Ti Nvidia

Backend Pytorch Python

Hyperparameter Optimization

Optimizer Adam

Learning rate 0.001

Activation function ReLu

Batch size 64

Momentum 0.9

Epoch 50

Dropout rate 0.9

4.1. Dataset Description
4.1.1. Bot-IoT Dataset

This dataset is the most recent in the industry. The dataset was released by Koroniotis
et al. in 2018 [53]. It has a variety of synthetic and real-world scenarios and includes more
than 72 million recordings. There are four different assault types, while DoS and DDoS-type
packets make up the majority of the dataset. Similar to the UNSW-NB15 data collection,
this set is imbalanced.

4.1.2. CICIDS2017 Dataset

The Canadian Institute of Cybersecurity has just produced an open-source dataset for
intrusion detection called CICIDS-2017 [54]. Labeling the CICIDS-2017 dataset is based
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on the date, destination, source IP addresses, attacks, protocols, destination, and source
ports. It contains the characteristics of actual, realistic internet traffic. With 80 network
traffic features and 2,830,743 records, this dataset was collected over five days. The dataset
is a compilation of eight traffic surveillance periods and a CSV file with both regular and
intruder traffic. DDoS, DoS, SSH, brute force, FTP, botnet, infiltration, heartbleed, and web
attacks are the different types in this dataset.

4.1.3. UNSW-NB15 Dataset

UNSW-NB15 dataset has a hybrid of the real modern normal and the contemporary
synthesized attack activities of the network traffic [55]. Smith et al. (2021) utilized the
UNSW-NB15 dataset to evaluate the effectiveness of machine learning algorithms for net-
work intrusion detection. They compared the performance of various classifiers, including
random forest, support vector machines, and neural networks, using a range of features
extracted from the dataset. The results demonstrated that the random forest classifier
outperformed other algorithms, achieving an accuracy of 95% and a low false-positive
rate. The study highlighted the significance of leveraging the UNSW-NB15 dataset as a
benchmark for assessing the efficacy of intrusion detection systems and emphasized the
potential of machine learning techniques in enhancing network security.

4.2. Discussion

In this section, the proposed framework is tested on the test datasets (Bot-IoT, CI-
CIDS2017, and UNSW_NB15) over numerous evaluation metrics, and the detailed ablation
is conducted to compare with other SOTA methods. To evaluate and analyze the effective-
ness of attack detection cases, we compared the proposed approach with recently published
attack detection methods. To perform this task, we employed widely used estimation
metrics (precision, recall, and F1), as detailed in these publications [56–60]. To classify the
results obtained, the following cases were distinguished:

True positives (TP): attack present and correct classification;
True negatives (TN): attack not present and correct classification;
False positives (FP): attack not present and incorrect classification;
False negatives (FN): attack present and incorrect classification.
A confusion matrix is a table used to estimate a classifier’s goodness. There are the

events considered in the rows, while in the columns, their classification is present. The data
on the main diagonal represent correct classifications. From this table are also derived three
merit factors that contribute to the analysis of a classifier’s performance: the precision (P)
(6) merit factor takes into account the number of correct attack identifications concerning
the total number of detections. It is obtained with the following formula:

P = TP/TP + FP (6)

The recall (R) (7) factor of merit takes into account the number of correct attack
identifications compared to the total number of attacks made:

R = TP/TP + FN (7)

Finally, the F1-score factor (F1) (8) is given by the harmonic average of precision and
recall and measures the accuracy of the classification of events:

F1 = 2 · · · R · · · P/P + R (8)

4.2.1. Performance Evaluation on Bot-IoT Dataset

Our proposed strategy’s multi-class classification is shown in Table 2. The table
illustrates that the performance of our proposed method across all classes was superior. The
Bot-IoT dataset achieved 99.87% and 99.68% accuracy in the DDoS and DoS classifications,
respectively. The performance on theft and reconnaissance classes was marginally worse
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than that on other classes. Only 99% (theft) and 98.67% (reconnaissance) accuracy were
achieved in those classes using our suggested approach. The behavior on reconnaissance
assaults was similar to the DDoS/DoS attack behavior mirrored in the current feature set.
This activity makes it more challenging using the model to identify the difference between
those two attacks.

Table 2. Multi-class classification on Bot-IoT dataset.

Techniques Precision Recall F1 Accuracy

Normal 99.78 99.89 99.74 99.69

DDoS 99.93 99.96 99.89 99.87

Dos 99.79 99.86 99.81 99.68

Theft 99.11 99.32 99.14 99

Reconnaissance 98.69 99.05 98.91 98.67

Figure 4 displays a visual depiction of Table 2. From the figure, it is observed that the
F1 (99.89%), recall (99.96%), precision (99.93%), and accuracy (99.87%) value of the DDoS
class was higher than that for all other classes. Overall, the results were positive for all
types of attacks. However, the reconnaissance class received the lowest grade because it
resembled regular data. Moreover, theft-exfiltration also attained the least values because a
few instances in the dataset were mistakenly classified as belonging to a different class.
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After the multi-class classification, the proposed approach’s results were compared
with the existing intrusion detection techniques evaluated on the Bot-IoT dataset, as shown
in Table 3. The table shows that the proposed approach’s precision, accuracy, F1, and
recall were more significant than those of other existing techniques, which means that the
proposed framework dramatically reduced the false positives in most classes. Compared
to all other techniques, the support vector machine (SVM)’s performance could have been
better and more accurate because it incorrectly divided all theft assaults into various
classes. Additionally, many attacks were misidentified as regular packets, demonstrating
the inability of SVM in intrusion detection.

Compared to all other approaches, the overall performance of XGBoost was superior.
However, the accuracy of k-nearest neighbor (KNN) (99.03%) was higher than that of
XGBoost (98.96%) because it easily handled multi-class cases and achieved better accuracy
than SVM. The performance of C4.5 was also better than that of SVM. Nevertheless, merely
one metric (accuracy) (Figure 5) does not adequately capture how effective the technique
was at classifying intrusions. Last but not least, the results of the suggested strategy
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acquired using the Bot-IoT dataset show that our technique produced more practical
outcomes when compared to other techniques.

Table 3. Comparison of the proposed approach on Bot-IoT dataset.

Techniques Precision Recall F1 Accuracy

SVM [31] 89.60 89.35 89.34 89.35

XGBOOST [61] 99.38 99.57 99.47 98.96

KNN [62] 99.04 99.03 99.04 99.03

C4.5 [63] - - - 92

Proposed 99.46 99.61 99.49 99.38
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4.2.2. Performance Evaluation on the CIC-IDS2017 Dataset

Table 4 displays the suggested model’s performance in multi-class classification on the
CICIDS2017 dataset according to ACC, PRE, REC, and F1. The proposed method performed
the best at detecting “benign” traffic (detection ACC of 99.97%) and the worst at detecting
“SQL injection” traffic (detection ACC of 97.98%). The “SQL injection” data were scarce
in the whole dataset, which caused the performance of the classifier to be poor. Moreover,
the behavior pattern of a “bot” attack is similar to that of regular network traffic, making
it harder for the proposed approach to recognize the attacks accurately, thus leading to
average performance. Compared with heartbleed and SQL injection attacks, the brute force
attack was more accurately predicted. Figure 6 displays a visual depiction of Table 4.

Regarding other performance scores, brute force and DDoS Hulk achieved similar
PRE (99.67%), REC (99.65%), and F1 (99.67%) results. This demonstrated that the proposed
classifier still displayed asymmetric behavior with regard to traffic classifications in this
arrangement. Furthermore, ACC and REC rates are critical for assessing the classifier’s
performance for every attack. According to the statistics, a class with low accuracy has a lot
of false positives, which implies that ‘benign’ classes are unnecessarily marked as assaults.

Additionally, a model with low recall may ignore actual intrusion. Therefore, to ensure
that the model performs optimally, ACC and REC values must be high enough. As stated in
Figure 6, the proposed model achieved superior values for all the parameters that describe
the method’s efficiency for multi-class categorization.
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Table 4. Multi-class classification on the CIC-IDS2017 dataset.

Techniques Precision Recall F1 Accuracy

Benign 99.95 99.93 99.95 99.97

DDoS 99.89 99.85 99.87 99.92

Infiltration 99.59 99.57 99.58 99.63

Portscan 99.87 99.85 99.86 99.92

Bot attack 98.85 98.81 98.83 98.89

Pataror-FTP 99.89 99.86 99.87 99.95

Parator SSH 99.23 99.21 99.22 99.27

Brute force 99.67 99.65 99.66 99.71

XSS 99.17 99.14 99.16 99.33

SQL injection 97.56 97.52 97.54 97.98

DDOs GoldenEye 98.92 98.89 98.91 98.96

DDOS Hulk 99.67 99.65 99.66 99.73

DDOS slowhttptest 98.68 98.66 98.67 98.71

DDOS-slowloris 98.83 98.8 98.82 98.86

Heartbleed 98.08 97.99 98.04 98.12
Future Internet 2023, 15, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 6. Multi-class classification on the CICIDS2017 dataset. 

Regarding other performance scores, brute force and DDoS Hulk achieved similar 
PRE (99.67%), REC (99.65%), and F1 (99.67%) results. This demonstrated that the proposed 
classifier still displayed asymmetric behavior with regard to traffic classifications in this 
arrangement. Furthermore, ACC and REC rates are critical for assessing the classifier’s 
performance for every attack. According to the statistics, a class with low accuracy has a 
lot of false positives, which implies that ‘benign’ classes are unnecessarily marked as as-
saults. 

Additionally, a model with low recall may ignore actual intrusion. Therefore, to en-
sure that the model performs optimally, ACC and REC values must be high enough. As 
stated in Figure 6, the proposed model achieved superior values for all the parameters 
that describe the method’s efficiency for multi-class categorization. 

To show the effectiveness of the proposed approach, Table 5 compares the proposed 
approach’s results with those of existing techniques on the CICIDS2017 dataset. Our sug-
gested methodology produced better performance when compared to existing techniques. 
In terms of F1, the deep neural network (DNN) and recurrent neural network (RNN) 
achieved similar values. Compared to all other techniques, Adaboost’s performance in 
terms of DDoS attack classification was substandard. However, the REC (100%) value of 
this technique was higher than that of all other approaches, which means this technique 
provided only a few false negatives. 

Table 5. Comparison of the proposed model on CICIDS2017 dataset. 

Techniques Pre Recall F1 Acc 
Decision tree [64] 97.5 85 90 96.67 
DNN [65] - - 96 - 
1D-CNN [66] - - - 98.96 
Adaboost [67] 81.83 100 90.01 81.83 
RNN [68] 96 97 96 98  
Proposed 99.19 99.15 99.17 99.26 

 

Figure 6. Multi-class classification on the CICIDS2017 dataset.

To show the effectiveness of the proposed approach, Table 5 compares the proposed
approach’s results with those of existing techniques on the CICIDS2017 dataset. Our sug-
gested methodology produced better performance when compared to existing techniques.
In terms of F1, the deep neural network (DNN) and recurrent neural network (RNN)
achieved similar values. Compared to all other techniques, Adaboost’s performance in
terms of DDoS attack classification was substandard. However, the REC (100%) value of
this technique was higher than that of all other approaches, which means this technique
provided only a few false negatives.



Future Internet 2023, 15, 297 13 of 19

Table 5. Comparison of the proposed model on CICIDS2017 dataset.

Techniques Pre Recall F1 Acc

Decision tree [64] 97.5 85 90 96.67

DNN [65] - - 96 -

1D-CNN [66] - - - 98.96

Adaboost [67] 81.83 100 90.01 81.83

RNN [68] 96 97 96 98

Proposed 99.19 99.15 99.17 99.26

On the other hand, the recurrent neural network (RNN) (98% ACC) and 1D-CNN
(98.96% ACC) approaches outperformed comparable techniques and produced minimal
misclassification errors. However, they did not match the performance of the proposed
approach (99.26% ACC). This indicates that the proposed approach is more appropriate for
DDoS attack categorization and detection.

4.2.3. Performance Evaluation on the UNSW-NB15 Dataset

Table 6 displays the outcomes of the proposed method’s multi-class categorization
using the UNSW_NB15 dataset. The multi-class categorization performance of the sug-
gested method was outstanding and produced the best results for each attack class, as
seen from the table. For every class, ACC rates were greater than 99%. The benign, DDoS,
and DSproto classes achieved exceptional performance, with ACC rates of 99.94%, 99.83%,
and 99.81%, respectively. The categorization performance on other assault categories also
delivered the most significant result. Figure 7 shows a graphic depiction of Table 6.

Table 6. Evaluation of proposed model on UNSW-NB15 dataset.

Techniques Precision Recall F1 Accuracy

Benign 99.94 99.86 99.85 99.89

DSproto 99.81 99.64 99.63 99.62

sbytes 99.47 99.5 99.48 99.55

sLoss 99.00 99.04 99.02 99.02

Service 99.53 99.57 99.55 99.62

Sload 99.59 99.56 99.54 99.45

sWin 99.28 99.31 99.28 99.32

stcpb 99.31 99.34 99.17 99.38

Fuzzers 99.38 99.42 99.34 99.42

Backdoor 99.35 99.38 99.36 99.45

DoS 99.58 99.21 99.2 99.25

DDoS 99.83 99.15 99.11 99.00

According to the figure, the proposed classification model performed less optimally
on the “sLoss” and “sWin” classes compared to other label types. Through testing, we
discovered that the properties of “sLoss” and “sWin” shared many of the same features.
Therefore, to correctly classify the traffic data of these classes, the classifiers need more
significant features, because our model combines the efficient ABC algorithm to select
significant features. However, the overall model accuracy in distinguishing target classes
was quite high for “sLoss” and “sWin” target labels, at 99.00% and 99.28%, respectively.
This will lead to improving the overall accuracy of the classifier.
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The suggested technique’s comparison to various existing intrusion detection algo-
rithms is shown in Table 7 and Figure 8. The existing techniques, such as radial basis
function neural network (RBFNN), Bayes point machine (BPM), explainable neural net-
work (XNN), and convolutional neural network (CNN) were used. From the table, it is
observed that the proposed strategy attained 99.58% accuracy compared to all the other
state-of-the-art methods on the UNSW_NB15 dataset; also, it is observed that the overall
accuracy was improved with CNN more than other methods. This might be due to the fact
that the correlation between target features is better learned by a convolution kernel than
other shallow networks. However, in terms of precision, all the techniques achieved better
results.

Table 7. Ablation of proposed architecture on UNSW_NB15 dataset.

Techniques Precision Recall F1 Accuracy

BPM [69] 98.00 97.00 97.00 97.00

RBFNN [70] 98.10 97.40 97.10 97.10

XNN [71] 99.00 99.20 99.00 98.10

CNN [72] 99.33 99.19 99.13 99.13

Proposed 99.69 99.45 99.42 99.58
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4.2.4. Impact of Feature Selection Approach

By selecting the most pertinent aspects from the collected features, a binary POA
method is applied to improve the suggested intrusion detection methodology. On the
Bot-IoT, CICIDS2017, and UNSW_NB15 datasets, the ABC-based technique minimized the
number of features and presented more information. Table 8 provides the proposed model
performance feature selection criterion.

Table 8. Comparison with and without feature selection.

With Feature Selection

Dataset Precision Recall F1 Accuracy

Bot-IoT 99.46 99.61 99.49 99.38

CICIDS2017 99.19 99.15 99.17 99.26

UNSW-NB15 99.39 99.41 99.38 99.43

Without Feature Selection

Bot-IoT 99.37 99.53 99.31 99.29

CICIDS2017 99.06 99.03 99.04 99.17

UNSW-NB15 99.28 99.30 99.26 99.32

Table 8 shows that using an efficient ABC-based feature selection approach enhanced
the performance of the suggested strategy. Without the feature selection process, it achieved
only 99.29%, 99.17%, and 99.32% accuracy for Bot-IoT, CICIDS2017, and UNSW_NB15
datasets, respectively. After the feature selection process, the classifier’s performance was
increased with the optimal set of features and achieved the best results without the feature
selection technique. Finally, we hope that the proposed system will be effective in various
real-world applications, particularly in bolstering cybersecurity measures against DoS
and DDoS attacks. The integration of advanced deep learning techniques, such as the
pyramid atrous attention module and the convolutional block attention module, enhances
the accuracy and efficiency of intrusion detection systems. We plan to develop a small
model with reliable cyberattack detection performance using YOLOv, dilated CNNs and
weighted non-negative matrix factorization (WNMF) in IoT environments [73–77].

5. Conclusions

The demand for using more precise and effective IDS has grown more critical due
to the quick increase in network traffic and the development of intrusions. Therefore, a
deep learning-based network intrusion detection was implemented in this research. The
outcomes demonstrated the performance of the proposed approach in terms of recognizing
and categorizing cyber-security threats. Different performance metrics, including accuracy,
F-score, recall (sensitivity), and precision (detection rate) were used in the evaluation
process to analyze the usefulness of the suggested models on the three benchmark datasets.
In contrast to previous attack detection techniques, the proposed framework achieved
superior results with 99.38%, 99.26%, and 99.43% accuracy for Bot-IoT, CICIDS2017, and
UNSW_NB15 datasets, respectively. This outcome was attained by the ABC-based feature
selection method, which improved the data quality. Based on the findings of this study, it is
determined that the recommended model will help create a successful intrusion detection
system with a high detection rate. In the forthcoming endeavors, there will be a focus
on refining the suggested IDS to detect different categories of attacks. Furthermore, the
suggested approach has the potential to be adapted and utilized in a robust security
application.
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