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Abstract: In the quest to optimize user experience, network, and service, providers continually
seek to deliver high-quality content tailored to individual preferences. However, predicting user
perception of quality remains a challenging task, given the subjective nature of human perception
and the plethora of technical attributes that contribute to the overall viewing experience. Thus, we
introduce a Fuzzy Logic-bAsed ModEl for Video Quality Assessment (FLAME-VQA), leveraging
the LIVE-YT-HFR database containing 480 video sequences and subjective ratings of their quality
from 85 test subjects. The proposed model addresses the challenges of assessing user perception by
capturing the intricacies of individual preferences and video attributes using fuzzy logic. It operates
with four input parameters: video frame rate, compression rate, and spatio-temporal information.
The Spearman Rank–Order Correlation Coefficient (SROCC) and Pearson Correlation Coefficient
(PCC) show a high correlation between the output and the ground truth. For the training, test,
and complete dataset, SROCC equals 0.8977, 0.8455, and 0.8961, respectively, while PCC equals
0.9096, 0.8632, and 0.9086, respectively. The model outperforms comparative models tested on the
same dataset.

Keywords: video quality; quality of experience; modeling; assessment; prediction; fuzzy logic

1. Introduction
1.1. Background and Motivation

In the past decades, video streaming services have experienced an unprecedented
surge in popularity, becoming an integral part of both fixed and mobile networks. The ease
of access to high-quality content and the proliferation of internet-connected devices have
contributed to this exponential growth, transforming video consumption into a ubiquitous
phenomenon [1]. Nowadays, video traffic constitutes a substantial share of total internet
traffic worldwide. In Ericsson’s 2023 Mobility Report, video is identified as dominant
content across all subscriber clusters, accounting for over 60% of total traffic in the sampled
networks [2]. Moreover, the dynamic nature of video services has enabled them to evolve
beyond mere entertainment platforms, emerging as a leading multimedia channel for
product marketing across various industries, platforms, and user devices [3].

This rapid expansion of video streaming services has been accompanied by an increas-
ing trend in the adoption of high video frame rates, aiming to enhance the overall viewing
experience and immerse users in lifelike visual content. To this end, service providers strive
to deliver content that aligns with users’ perceived quality expectations [1]. Consequently,
the demand for accurate quality assessment tools has become paramount, as the user
Quality of Experience (QoE) plays a pivotal role in shaping user satisfaction, loyalty, and
retention. Understanding and predicting user QoE in the context of video services is critical,
as suboptimal viewing experiences can lead to user churn [4,5].

In response to the escalating demand for precise QoE assessments, the research com-
munity has been engaged in the continuous pursuit of developing advanced models that
can effectively anticipate user QoE in video streaming scenarios. The ITU-T P series of
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recommendations are at the forefront of this quest, often synthesizing the accumulated
knowledge from this domain. Such video quality assessment (VQA) models not only
serve as indispensable tools for optimizing video content delivery but also aid in efficient
Quality of Service (QoS) management to meet user expectations [6]. Notwithstanding,
predicting human perception of video quality is challenging due to the inherent com-
plexity and subjectivity involved in the human visual and perceptual systems. Human
perception is influenced by a myriad of factors, including individual preferences, cogni-
tive biases, and contextual conditions, making it highly variable and difficult to model
accurately. Additionally, different users may have diverse expectations and sensitivities,
leading to variations in perceived quality [7,8]. Even subtle changes in video content, such
as frame-rate adjustments or compression rates, can impact user perception [9,10].

Consequently, attaining a resilient and all-encompassing QoE assessment model ne-
cessitates a meticulous balance between objective technical metrics and subjective user
evaluations, while considering the intricate nuances of human perception of video quality.
The intricate interplay of these diverse influential factors compels researchers to formulate
models that incorporate objective metrics alone, as well as those that synergistically blend
objective metrics with subjective quality ratings.

The objective metrics, used for VQA modeling, are usually extracted directly from
video sequences or traffic flow properties. These metrics typically encompass parameters
such as bit rate, frame rate, resolution, encoding quality (i.e., compression), delay, jitter,
packet loss, etc. The models that rely only on objective metrics use well-defined algorithms
to compute the output, providing an automated and quantifiable approach to assessing
video quality. To develop a model, a large dataset of video sequences with associated
technical parameters is required and is used to train the model, where statistical and
machine learning techniques are commonly employed. The main advantage of these
types of models, relying solely on objective parameters, is their efficiency and ease of
implementation, as they do not require human involvement in the assessment process.
However, they may fall short in capturing the subjective and perceptual aspects of user
experience, thus failing to meet the essence of the QoE concept [7].

On the other end of the spectrum, we have the models that incorporate subjective
user ratings into their inference systems. These models take a different approach: human
subjects are involved in rating the quality of video sequences based on their personal expe-
riences and subjective judgments. These ratings are typically obtained through controlled
experiments, where participants watch a set of video sequences and provide quality ratings,
often using rating scales or scoring systems. The rating scales usually employ linguistic
variables (e.g., bad, poor, fair, good, and excellent) to capture the user perception of the
quality. To develop such models, a subjective testing dataset comprising video sequences
and corresponding subjective ratings is collected. The model is trained to identify patterns
and relationships between the video attributes and the ratings.

The resulting model, unlike its objective counterpart, directly addresses the human
perceptual aspects of QoE. It can describe variations in user experiences that may not be
reflected in objective metrics alone, making it more suitable for accurately assessing user
QoE in complex and dynamic video streaming scenarios [11]. However, developing such a
model requires significant effort in conducting subjective tests, involving a large number of
participants and careful experimental design to obtain reliable and representative data.

In light of these challenges and opportunities, this research aims to address the pressing
need for an accurate quality assessment model tailored explicitly for immersive high-frame-
rate video streaming services. By leveraging a video database consisting of 480 video se-
quences, enriched with 19,000 quality ratings from 85 test subjects (LIVE-YT-HFR database
available in [12] and presented in [9,13]), we propose a novel fuzzy logic-based approach
that endeavors to model user perception of quality more effectively. Employing fuzzy
logic for this task yields several advantages over alternative methods like machine learning
and neural networks. One key strength of fuzzy logic lies in its adeptness at handling
uncertainty and vagueness, both of which are inherent attributes of human perception [14].
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Unlike traditional binary logic or crisp systems that enforce rigid true-or-false classifications,
fuzzy logic allows for gradual transitions and nuanced decision-making, mirroring the way
humans process information. This flexibility enables fuzzy logic to capture the intricacies
of user QoE more effectively [7]. Additionally, it provides an intuitive and interpretable
framework, allowing researchers to easily comprehend and analyze the relationships be-
tween various input variables, such as video characteristics, network conditions, user
preferences, and social context, and their corresponding output assessments, specifically
the video quality ratings in our case. Fuzzy logic’s innate ability to handle uncertainty and
imprecision aligns with the subjective nature of human perception, making it an alluring
choice for capturing the intricacies and subtleties that underlie user QoE.

1.2. Contributions

The primary focus of this research is to develop a consistent and reliable model for
predicting the video quality as perceived by users, which is of vital importance when
managing network performances in a wide range of streaming scenarios. We seek to
contribute to the ongoing pursuit of enhancing user-centric video streaming experiences
and empowering service providers with robust tools for content delivery optimization. The
outline of the main scientific contributions of this research is as follows.

• Our study involved an in-depth analysis of the dataset, revealing intricate relation-
ships between four key video properties (video frame rate, compression rate, spatial
information, and temporal information) and user subjective ratings;

• We developed a fuzzy logic-based video quality assessment model (FLAME-VQA)
capable of assessing the quality for a wide range of streaming scenarios based on the
four video properties;

• The model incorporates an inference system that effectively tackles uncertainty and
vagueness in the data. By employing fuzzy clustering and membership functions, our
model enables more human-like decision-making;

• The proposed model successfully bridges the gap between objective and subjective
evaluation and paves the way for more refined multimedia delivery systems that cater
to users’ preferences and expectations.

1.3. Paper Structure

In the subsequent sections of this paper, we provide an in-depth overview of recent
video quality assessment methods that also employ subjective ratings to deliver the output
(Section 2). Next, we offer a concise explanation of the dataset [9] that we utilized for
our modeling (Section 3). We then discuss the process of applying fuzzy logic in quality
assessment, highlighting its effectiveness in handling uncertainty and vagueness in the data
(Section 4). Furthermore, we present and verify the results obtained from our fuzzy logic-
based video quality assessment model—FLAME-VQA (Section 5). Lastly, in Section 6, we
conclude by discussing the implications of our findings, shedding light on the limitations
of the model, and outlining potential directions for future research.

2. Related Works

As discussed in the previous section, video content has become the dominant form
of media on modern networks. The demand for content is increasing rapidly, leading
to the expansion of Internet traffic. Large-scale video streaming services like YouTube,
Netflix, and Hulu play a significant role in contributing to this growth [15]. This sparked
the development of numerous quality assessment models in parallel. These models have
been designed to evaluate the quality of video-specific formats and properties, as well
as for the specific network conditions and contexts in which the videos are delivered
to end users. Some of these models are already well-established and frequently used,
such as Peak-Signal-to-Noise-Ratio (PSNR), Structural Similarity (SSIM) index, Multiscale
Structural SSIM (MS-SSIM) [16,17] respectively, Feature Similarity Index (FSIM) [18], the
Spatio-Temporal Reduced Reference Entropic Differencing (ST-RRED) algorithm developed
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in [19], and the Spatial Efficient Entropic Differencing for Quality Assessment (SpEED-QA)
model from [20]. It is important to note that delving into that extensive array of studies
and well-established algorithms exceeds the confines of this review. Thus, our focus will be
solely on recent developments in the field of predicting 2D video quality by incorporating
subjective ratings into the inference systems of the models, since our research contributes
specifically to that domain.

In [21], the authors propose a method to predict the subjective video quality based
on the objective video quality measure (specifically, PSNR) using a sigmoid function
model, allowing for the generation of a larger dataset without the need for costly and time-
consuming subjective tests. Schiffner et al. present a method called Direct Scaling (DSCAL)
for assessing the perceptual quality dimensions of video degradations, also aiming to
reduce the experimental effort and allowing for more test conditions to be evaluated [22].
The linear quality prediction model based on the identified perceptual dimensions showed
a strong correlation with subjective test results, indicating its potential for accurately
predicting overall video quality. Pinson et al. [23] introduce a video quality model that
takes into account the perceptual impact of variable frame delays in videos. The model
uses perceptual features extracted from spatial-temporal blocks and a long edge-detection
filter to predict video quality by measuring multiple frame delays. Factor analysis was
used in [24] to analyze the QoS variables, bit stream, and basic video quality metrics to
estimate and predict the subjective quality.

To showcase the vastness of subjective factors impacting the perception of video
quality, we review [25], which delves into the assessment of user engagement within
adaptive bitrate video streaming. The authors investigated the relationship between
viewing time and video quality using two subjective evaluations. The findings revealed
that, in the case of low-quality videos, the decline in viewership follows a logarithmic
pattern over time. Interestingly, instances of video stalling prompted users to discontinue
playback after a 5-s wait. The rate at which users ceased playback post-stalling was
contingent on factors such as the stalling location, duration, and quality influenced by
coding aspects. To further quantify these observations, the authors formulated a baseline
model solely incorporating stalling attributes. Additionally, they proposed a predictive
model aimed at estimating video completion rates. The effect of stalling the video playback
is also studied in [26]. Adding to the number of factors influencing user QoE, Wang found
that packet loss in Internet Protocol Television (IPTV) transmission significantly affects the
perceived quality, with burst loss having a greater impact than random loss [27].

Bampis et al. [28] propose a variety of recurrent dynamic neural networks that can
predict QoE using subjective QoE databases. They focus on two major impairments in
streaming video: compression artifacts and rebuffering events. By combining multiple
inputs such as video quality scores, rebuffering measurements, and memory-related data,
the models aim to predict QoE on video streams impaired by both compression artifacts and
rebuffering events. The experimental results showed that the proposed models approach
human performance in predicting QoE. The research is continued in [29], where a large-
scale crowdsourcing experiment is conducted to investigate how changes in screen size
affect perceptions of video quality. The experiment involved rescaling video stimuli to
different canvas sizes on participants’ devices and collecting ratings on distorted videos.
The study evaluated subjective modeling techniques and benchmarked objective quality
models across screen sizes. The findings highlighted the importance of screen size in
perceived video quality and the limitations of existing objective quality models in capturing
the effect of screen size changes. The issue of video compression and its relation to user
perception is also studied in [30].

Another example of using neural networks for the evaluation of the perceptual quality
of streaming video can be found in [31]. Using a deep convolutional neural network
(DCNN), the authors assessed the perceptual quality of streaming videos, incorporating the
spatio-temporal characteristics of the videos in their evaluation. Another example of how
learning a human visual behavior, in conjunction with spatial and temporal effects, using
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neural network modeling can be found in [32], where the authors developed a Deep Video
Quality Assessor (DeepVQA) that achieved high levels of assessment accuracy. Ghosh
et al. [33] propose a framework that uses Multi-Feature Fusion (MFF)-based Optimized
Learning Models (OLMs) to predict video quality. The framework uses a combination
of objective quality metrics and impairment factors to predict subjective quality scores.
Machine learning algorithms were used in [34] for modeling QoE in user interactions with
video streaming services, which make up a significant portion of mobile internet traffic. The
research was aimed at modeling the overall quality of user experience with different types
of network traffic. Nguyen et al. [35] evaluate 13 existing QoE models for HTTP (Hyper
Text Transfer Protocol) adaptive streaming. The models are evaluated using 12 different
open databases with varying characteristics. The findings suggest that the performance
of the models varies depending on factors such as video codec, session duration, and
viewing devices. The Long Short-Term Memory (LSTM) model was identified as the best-
performing model, but with still enough room for improvement, especially for different
viewing devices and advanced video codecs.

In [7], fuzzy logic was used to model user QoE for streaming videos. The model used
three input parameters (packet loss rate, number, and the length of the packet loss intervals)
to compute the Mean Opinion Score (MOS). Fuzzy logic can often be combined with other
inference mechanisms to obtain the results. To this end, Gao et al. [36] propose a fuzzy
neural network to predict the opinion score distribution of image quality. A similar method
could be applied to video quality assessment, but we must bear in mind the computational
complexity of such solutions and their suitability for real-time QoS management. Re-
cently, some researchers focused their attention on User-Generated Content (UGC), like Yu
et al. [37] or Cao et al. [38]. In both works, the authors mainly concentrated on constructing
the UGC databases suitable for future QoE research. Yet, both groups of researchers also
proposed VQA models that can be used for QoE assessment [38] or for learning quality-
aware audio and visual feature representations in the temporal domain [38]. Apart from
UGC videos, another specific category of videos, demanding a unique approach to quality
assessment, are nighttime videos, analyzed in [39], where the authors proposed a blind
nighttime video quality assessment model based on feature fusion.

An attempt to develop a somewhat unified model for VQA can be found in [40], where
the authors develop different instances of the AVQBits algorithm. The authors claim that
the algorithm can be used to assess video quality in different contexts, such as video service
monitoring, evaluation of video encoding quality, gaming video QoE, and omnidirectional
video quality. The presented results show that AVQBits predictions closely match subjective
ratings of video quality for videos of up to 4K-UHD resolution.

We can also report that, recently, there has been significant progress in developing
open-access video databases containing diverse video content suitable for testing. Many
of these databases also include subjective ratings, making them valuable sources of data
for developing VQA algorithms. In turn, scholars from this domain are more frequently
focusing on developing models that incorporate subjective ratings into the inference sys-
tems, as they can rely on already completed extensive and resource-consuming subjective
experimentation. Based on the reviewed studies, we draw the following conclusions:

• Inference systems of developed models primarily rely on machine learning, neural
networks, fuzzy logic, or a combination of these techniques;

• Models based on neural networks are content-domain-dependent and require application-
specific training [41];

• Video-related parameters, such as video frame rate, compression, and spatio-temporal
properties, have been identified as crucial factors influencing the human perception of
video quality;

• Online video databases serve as excellent starting points for developing VQA models,
offering rich, diverse, and subjectively rated video content, and adhering to interna-
tional standards for conducting research in this field;
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• Given the abundance of diverse video content and streaming scenarios in various
network contexts, it is challenging to create a universal VQA model.

3. Dataset Properties

The data used in this study (LIVE-YT-HFR database) come from [12], while the method-
ology for its creation and interpretation of the results obtained from the subjective study are
presented in [9]. We discussed earlier that the video database contains 480 video sequences.
The sequences were derived from 16 videos (with manipulated compression and frame
rates) and were rated by 85 test subjects. For an in-depth insight into the database, its
properties, and the applied methodologies, we urge the readers to visit the abovementioned
resources. This section will only provide a brief overview of the data.

3.1. The Video Sequences

The database contains a set of 16 uncompressed source videos. This assortment
encompassed 11 sequences procured from the Bristol Vision Institute High Frame Rate
(HFR) video database [42] (recorded with a RED Epic-X video camera, at 3840 × 2160 pixels
and 120 frames per second). The Institute’s public version of the database contained
spatially downsampled videos in 1920 × 1080 (HD) YUV 4:2:0 8-bit format, lasting 10 s
each. Additionally, five videos with high-motion sports content, captured by the Fox
Media Group at 3840 × 2160 pixels, YUV 4:2:0 10-bit format, were also included, and
each of them had a duration of 6 to 8 s. In Figure 1, we captured frames of each source
video to showcase the genres of the sequences, which include sports, scenes from nature
or urban areas, interior scenes, etc. To ensure a diverse range of scenes and motions in
the selected source sequences, the authors calculated Spatial Information (SI), Temporal
Information (TI), and Colorfulness (CF) measures for the videos. However, the results of
the SI and TI measurements were not included in the public dataset; hence, we performed
those calculations for 480 videos using the MSU Quality Measurement Tool (version 14.1)
software package [43].

To generate test sequences featuring a range of frame rates, the authors employed a
frame-dropping technique, sidestepping motion blur and yielding lower frame-rate videos
that aligned more closely with their inherent capture rates. Subsequently, they undertook
the subsampling of 30 test sequences from each source, across six distinct frame rates: 24, 30,
60, 82, 98, and 120 fps. These sequences were then exposed to five tiers of VP9 compression.
Notably, frame-rate values of 82 and 98 were deliberately integrated, notwithstanding their
relatively lesser popularity. This inclusion aimed to yield more intricate evaluations of
video quality, particularly within the spectrum of 60 fps to 120 fps. This nuanced selection
played a pivotal role in refining video quality assessment and consequently fostering the
development of a more sophisticated model.

The compression procedure entailed the utilization of FFmpeg VP9 compression [44],
employing single-pass encoding while manipulating five distinct Constant Rate Factor
(CRF) values. This manipulation led to the generation of five distinct bit rates. The selection
of these five compression tiers for a given source sequence unfolded in an ensuing manner.
The primary and fifth tiers corresponded to the lossless (CRF = 0) and maximum (CRF = 63)
feasible compression levels attainable within VP9, respectively. Conversely, the three inter-
mediary bit rates were chosen to ensure that compression yielded approximately equitable
bit rates across all frame rates, thereby engendering a tangible perceptual distinction among
them. To that end, the CRF values for the remaining videos, emanating from the source
sequence, were aligned with these stipulated bit rates. Consequently, every source content
spawned a suite of 30 test sequences (arising from the multiplication of six frame rates
by five compression tiers). This procedure was iterated for every source sequence within
the database.
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Figure 1. Extracted frames from the sequences of the LIVE-YT-HFR database: (a) a person running;
(b) three persons running; (c) a person doing flips; (d) runners jumping hurdles; (e) a long-jump video;
(f) a bobblehead spinning; (g) a shelf filled with books; (h) underwater ball bounce; (i) two persons
passing a ball; (j) a street cyclist; (k) a hamster running a wheel; (l) a lamppost in a park; (m) falling
leaves; (n) a spinning top; (o) underwater bubbles; (p) water waves splashing.

Note that we accepted the authors’ annotations, which impacted the naming conven-
tion of the input values of our model (discussed in Section 4.2.1).

3.2. The Subjective Experiment

The evaluation of subjective video quality for the prepared sequences utilized the
Single-Stimulus Continuous Quality Evaluation (SSCQE) method, as outlined in [45].
Following the details presented in [9], a total of 85 volunteer undergraduate participants
were engaged from the authors’ university. This group consisted of 14 females and 71 males,
spanning an age range of 20 to 30 years. All participants possessed regular or corrected-
to-normal color vision. Each participant evaluated a set of sequences in the same viewing
conditions. The sequences were played on a 27-inch screen (3840 × 2160 pixels), using
Venueplayer, and the viewing distance was set to 30 inches, (around 76 cm).

To mitigate potential biases, the video database underwent division into four distinct
subsets, each encompassing 120 videos. Every participant assessed two out of the four sets
across two sessions, thereby resulting in each subject evaluating 240 videos. For the sake
of introducing randomness, playlists were curated for each participant by subjecting the
120 sequences to a randomized reordering process. This strategy ensured that sequential
videos originated from distinct source sequences and frame rates, thereby effectively min-
imizing the influence of contextual and memory biases in the assessment of subjective
quality. Furthermore, to prevent any prejudicial impact related to viewing order, unique
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playlists were individually tailored for each participant within every session. This mea-
sure was adopted to avert any potential bias arising from the sequence in which videos
were presented.

During the evaluation process, an interactive continuous quality rating scale was
presented on-screen following the conclusion of each video. The scale comprised five Likert
indicators, ranging from bad to excellent, providing the participants with a guided frame-
work for their rating task. Participants were explicitly instructed to evaluate the perceived
quality of the content while disregarding any personal preferences or content-related in-
terests. To combat potential subjective fatigue, a minimum interval of 24 h was mandated
between successive rating sessions. The duration for each session was kept within 40 min,
and each video was rated by a minimum of 42 users to ensure sufficient data for analysis.
To validate the reliability of the subjects’ ratings, the authors undertook supplementary
analyses to evaluate both inter-subject and intra-subject consistency.

In their work, the authors analyzed the obtained results from the subjective study, for
instance, calculating MOS for each video sequence. But in our analysis, we use the raw
data published on the GitHub page of the authors’ project (the link to the page is published
also in [12]). Note that we divided the dataset randomly into two subsets. One was used
for model training and the other for testing. The ratio between the training and test data
subsets was 80:20, respectively, i.e., the ratings of the 68 test subjects were used for the
model training, and the rest (17) were used for model testing. As discussed earlier, each
test subject rated 240 videos, meaning both of our data subsets contained the ratings for
every video in the database.

4. Fuzzy Logic in User Experience Assessment

In this section, we first provide an overview of the applicability of fuzzy logic in quality
assessment algorithms, focusing on its advantages over other comparative approaches.
Second, we continue this section by discussing the model development process, which
involves the fuzzification of scalar input and output values, the development of the set of
rules for the fuzzy inference system (FIS), and the defuzzification of the fuzzy output to
obtain crisp results, i.e., VQA for specific input values (video properties).

4.1. Applicability of Fuzzy Logic

Fuzzy logic is a mathematical technique for dealing with uncertainty and imprecision
systematically. It is based on the concept of fuzzy sets [46], which are sets that have
degrees of membership rather than crisp boundaries. Fuzzy logic can be used to model
complex phenomena that are difficult to capture with conventional methods, such as human
perception, reasoning, and decision-making. One such phenomenon is the user QoE, since
it is not a binary concept, but rather a continuum that can vary from bad to excellent.

When employing fuzzy logic, one can benefit from its advantages compared to other
methods like machine learning and neural networks. One key advantage lies in its ability
to handle and represent uncertainty and vagueness, which are inherent characteristics of
human perception. Unlike traditional binary logic or crisp systems, fuzzy logic allows
for gradual transitions between true and false states, mimicking human decision-making
processes that involve shades of gray rather than strict yes-or-no choices. Moreover, fuzzy
logic provides an intuitive and interpretable framework for capturing complex relationships
between input variables (e.g., video characteristics, network conditions, user preferences,
social context, etc.) and output assessments (quality rating, in our case). In contrast,
machine learning and neural networks may achieve high predictive accuracy, but they
often lack interpretability, making it challenging to understand why specific predictions
are made. This “black box” nature can be problematic when modeling human perception,
as the underlying factors driving the predictions may remain unclear.

Additionally, fuzzy logic-based models require less data for training compared to
complex neural networks, making them more suitable for scenarios with limited datasets,
such as subjective human ratings. The fuzzy-based models are computationally efficient and
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can be implemented with relatively simpler algorithms, making them practical for real-time
applications, such as real-time QoS management and provisioning, where quick decision-
making is essential. This ability to handle uncertainty, interpretability, and efficiency made
it our favorable choice when modeling human perceptions of video quality.

4.2. The Model Development Process

The development of a typical inference system based on fuzzy logic involves:

1. Fuzzification. This step entails transforming crisp input and output values into fuzzy
sets that describe the variable states. The grouping of the values into the fuzzy sets
allows for handling uncertainty and vagueness in the data;

2. Defining a rule-based system to operate with the fuzzy states. These rules are typically
in the form of “IF [condition] THEN [conclusion]” and use linguistic variables to
express relationships between inputs and outputs. For instance, an example rule
could be “IF [video fps IS low] AND [video compression IS high] THEN [quality
IS bad]”;

3. Defuzzification. The final step involves converting the fuzzy output (e.g., quality IS
bad) back into a crisp result. This process produces a clear and quantitative assessment
based on the inference system of the model.

4.2.1. Fuzzification of the Scalars

The presented model in this contribution aims to assess video quality, as perceived
by users, based on four video parameters: video frame rate (annotated with Video FPS),
compression rate (dependent on the CRF, hence, Video CRF), SI, and TI. The model de-
velopment process involves the fuzzification of scalar values for these parameters using
the Fuzzy C-Means (FCM) clustering approach [14]. The method groups all data points
into clusters based on their similarities. Unlike traditional hard clustering methods like
K-Means, FCM assigns membership degrees to data points for each cluster rather than
assigning a single cluster label. This enables data points to belong to multiple clusters with
varying degrees of membership, reflecting the uncertainty and partiality of data points’
association with clusters. Therefore, i-th data point (xi) can be a member of several clusters
(j) with different degrees of membership (uij). Based on [14], to perform the fuzzification,
the model minimizes the objective function Jm, as given by Equation (1):

Jm =
L

∑
i=1

C

∑
j=1

uij
m·||xi − cj||2 (1)

where cj represents the center of the d-dimension cluster, ||∗|| is a norm that expresses the
similarity between the measured data and the center, and m is any real number greater
than 1. In this study, m = 2, which implies that a specific data point can belong to two fuzzy
clusters. The iterative process of finding fuzzy clusters and their centers involves updating
uij and cj using Equations (2) and (3), respectively (N represents the number of data points);
the process continues until the stopping criteria (ε) is met (Equation (4); k are the iteration
steps) [14]. In our case, we used the value of ε = 10−5.

uij =
1

∑C
k=1

( ||xi−cj ||
||xi−ck ||

) 2
m−1

(2)

cj =
∑N

i=1 uij
m·xi

∑N
i=1 uij

m
(3)

maxij

{∣∣∣uij
(k) − uij

(k−1)
∣∣∣} < ε. (4)
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The FCM clustering approach was implemented in Python (version 3.11.4) using
the latest version of the skfuzzy package. The decision regarding the optimal number of
clusters for the FCM algorithm initially involved a heuristic approach using two clustering
validity indices, namely the FCM partition coefficient (PC) and partition entropy (PE). In
this initial phase, we aimed to establish a foundational clustering structure using the PC
and PE methods, which served as a starting point for further refinement. We executed the
FCM algorithm for a range of cluster numbers (c), spanning from two to a user-defined
maximum value that we initially set at five. For each iteration of clustering, both the PC and
PE were calculated, employing Equations (5) and (6), respectively, as outlined in [47]. These
indices allowed us to quantitatively evaluate the quality and coherence of the resulting
partitions. The PC serves as a measure of cluster compactness, gauging how closely data
points within each cluster are grouped. On the other hand, the PE offers insights into
the fuzziness or overlap present among clusters, providing a sense of how distinct or
intermingled the partitions are. By analyzing the PC and PE values, we could gain an initial
understanding of the suitability of different cluster numbers in representing the underlying
data distribution. In this initial phase, the data points for each input variable of the model
were clustered into two fuzzy clusters.

PC =
1
N ∑N

i=1

(
1
c ∑c

j=1 uij
m
)2

. (5)

PE = − 1
N ∑N

i=1 ∑c
j=1
(
uij

m·log
(
uij
))

. (6)

However, as our analysis progressed, we observed that the FCM partitions formed
with two clusters per input variable did not fully capture the complexity and nuances
of the video quality assessment task. Subsequently, we decided to refine our approach
by introducing an additional cluster for each input variable, resulting in a total of three
clusters for each. This adjustment was motivated by our recognition that a more detailed
representation of the data through increased cluster granularity could yield more accurate
and insightful quality assessments. This approach allowed us to iteratively adjust the cluster
centers based on the distribution of data points, resulting in a clustering configuration
that was tailored to the inherent characteristics of the dataset. By taking this approach, we
aimed to strike a balance between capturing the underlying data structure and avoiding
overfitting, thereby enhancing the generalization capabilities of the model. The resulting
clusters and their respective centers, for the dataset discussed in Section 3 and used for the
model development, are depicted in Figure 2.

In Figure 2 subplots, each data point represents the quality rating given by one test
subject to one video, and the color codes indicate the membership of each point to a
specific fuzzy cluster. Since the fuzzy rule-based system operates with linguistic variables
to produce outcomes, we have named the derived clusters as shown in the figure captions.
Furthermore, each subplot corresponds to one input variable of our model, and the number
of clusters on the subplots represents the number of states a specific input can be in.
For instance, video fps can be in three states: low, medium, and high video frame rate
(Figure 2a).

The figure also shows that we used subjective ratings of video quality to fuzzify scalar
values of the input parameters, which can be observed from the y-axes. We discussed
in Section 3.2 that the dataset utilized for this study adopted a widely recognized user
rating scale, consisting of the following ratings: 0 = Bad, 1 = Poor, 2 = Fair, 3 = Good, and
4 = Excellent. To maintain consistency with the approach followed in [9], where the ratings
were multiplied by a factor of 10, we adopted the same methodology. In addition, before
clustering, we multiplied the SI and TI metrics of each video sequence by a factor of 1000.
This helped execute the FCM algorithm; otherwise, the algorithm returned the error, since
the values were too small to determine the cluster boundaries.
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Figure 2. Results of the FCM clustering. For each input variable, three fuzzy clusters were used.
(a) Video FPS cluster names: low, medium, and high frame rate; (b) Video CRF cluster names:
low, medium, and high compression; (c) SI cluster names: low, medium, and high complexity;
(d) TI cluster names: low, medium, and high frame diversity.

The figure also underscores the dispersion of data points encompassing all MOS rating
categories, thereby posing a challenge in elucidating the precise correlation between the
inputs and the model output. It is important to recall that the clustering was executed on
the training set, which contained 80% of the original data.

After completing the FCM process and obtaining the coordinates of the cluster centers,
we created the membership functions for each cluster. The membership function serves as
a quantitative indicator of the extent to which individual data points are associated with
a particular cluster. To accomplish this, we employ Gaussian combination membership
functions (Gauss2) for each cluster. The Gauss2 function is characterized by its utilization
of two distinct Gaussian membership functions, a feature that facilitates fine-tuning of
both the mean and sigma values, allowing for a more accurate representation of the data’s
clustering behavior. The sigma of a function has to be defined so that the function tail
reaches y = 0 at the x coordinate of the adjacent cluster center. The obtained membership
functions for each cluster are depicted in Figure 3.
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As in Figure 2, the x-axes values in Figure 3 correspond with the properties of the
video sequences discussed in Section 3.1. Specifically, there were six different video frame
rate values (24, 30, 60, 82, 98, and 120 fps), with CRF values ranging from 0 to 63, depending
on the fps and the resulting bitrate. To compute the SI and TI values, we utilized the MSU
Quality Measurement Tool (version 14.1) [43], calculating them for each of the 480 test
sequences and then multiplying them by 1000 to enable clustering.

The Gaussian-shaped membership function is preferred in fuzzy clustering algorithms,
such as FCM, due to its smoothness, centeredness, and decay properties. Centering the
Gaussian function at the cluster center ensures that data points closer to the center have
higher membership degrees, indicating a stronger association with the cluster. The decay
property enables the function to capture the gradual decrease in membership as data points
move away from the center. Additionally, the Gaussian function’s parameters have intuitive
interpretations, making it more interpretable and facilitating the understanding of fuzzy
assignments. Lastly, the mathematical tractability and efficiency of the Gaussian function
simplify the optimization process during fuzzy clustering, making it computationally
efficient for practical applications with complex data patterns and overlapping clusters.

As we delved deeper into the performance analysis of our model and extensively
experimented with various rules, membership function shapes, and configurations, we
identified a specific scenario that warranted a slight modification in our approach. For the
medium compression cluster associated with the video crf input variable, we observed that
the standard Gauss2 function did not fully align with the underlying data distribution. To
address this challenge, we made a judicious adjustment to the membership function for
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that specific cluster. We introduced a subtle alteration that resulted in a trapezoidal-like
shape, with a gentle rightward inclination (Figure 3b). This tailored modification allowed
the membership function to better align with the characteristics of the data points associ-
ated with that particular cluster, enabling more precise modeling of the nuances within
that region of the input space. The adjustment of the function engendered a heightened
membership strength for CRF values exceeding the cluster center (37.17) yet remaining
below or equal to 54, specifically directing them towards the Medium compression cluster.
This contrasted with the behavior observed in the High compression cluster, where the
same range of CRF values exhibited comparatively lower membership.

Finally, the process of fuzzification was applied to the output of the model, which
represents the assessed video quality, quantified using MOS. We generated five distinct
fuzzy clusters to represent the output, with each cluster center aligned to the corresponding
numerical rating (Figure 4). In Table 1 we list the properties of the defined membership
functions depicted in Figures 3 and 4.
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Figure 4. Membership functions that describe the fuzzy output.

Table 1. Properties of the membership functions of the input and output parameters. For the input
parameters, the Gauss2 types of functions were used; hence, their properties are listed as (sigma1,
mean1, sigma2, mean2). For the output parameter, conventional Gauss functions were used; hence,
their properties are listed as (sigma, mean).

Model Parameter Fuzzy Cluster Function Type and Properties

Video FPS
High frame rate Gauss2: (11, 111, 1 121)

Medium frame rate Gauss2: (13, 72.94, 11, 72.94)
Low frame rate Gauss2: (−1, −1, 13, 27.64)

Video CRF
High compression Gauss2: (2.8, 59.13, 1, 64)

Medium compression Gauss2: (9.5, 37.17, 2.7, 50)
Low compression Gauss2: (−1, −1, 9.5, 2.67)

Video SI
High complexity Gauss2: (2.5, 50.07, 1, 81)

Medium complexity Gauss2: (4.9, 41.84, 2.5, 41.84)
Low complexity Gauss2: (−1, −1, 5.5, 22.17)

Video TI
High frame diversity Gauss2: (12.8, 131.7, 1, 226)

Medium frame diversity Gauss2: (11, 77.94, 16, 77.94)
Low frame diversity Gauss2: (−1, −1, 12, 38.18)

MOS

Bad Gauss: (3, 0)
Poor Gauss: (3, 10)
Fair Gauss: (3, 20)

Good Gauss: (3, 30)
Excellent Gauss: (3, 40)
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4.2.2. A Set of Fuzzy Rules and Defuzzification to the Scalar Result

In the preceding subsection, we delved into the procedure of transforming the crisp
values of input and output parameters into fuzzy variables, a pivotal step in constructing the
model’s inference system. Yet, to generate a measurable output, i.e., the quantified level of
video quality rating in numerical terms (referred to as MOS), the fuzzy values must undergo
a process of defuzzification (as illustrated in Figure 5). This entails establishing a set of
fuzzy rules, choosing between a conjunctive or disjunctive rule system, and implementing
a defuzzification technique to compute the output. Several widely used defuzzification
methods include the max membership principle, centroid method, weighted average
method, and center of sums, among others.
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Figure 5. FIS block diagram of the FLAME-VQA model.

The model’s inference system relies on a set of 36 fuzzy rules, which can be found in
Table A1 of Appendix A. The rules were defined using a hybrid method that combines
multiple approaches. As domain experts, the authors formed an initial set of linguistic
rules which were then iteratively fine-tuned using rule induction from the data. We
used previously defined fuzzy cluster boundaries and tested each combination of input
parameters to see the desired outcome, i.e., MOS value from the ground truth. We then
compared the output of our model with the sought-after outcome and, when necessary,
tweaked the rules to achieve error reduction. The connections between the linguistic
values of the input and output variables are established using IF, AND, and THEN logical
operators. The model was implemented using the widely used Mamdani inference system,
where the output yk consists of a set of r propositions:

IF x1 is Ak
1 AND x2 is Ak

2 AND x3 is Ak
3 AND x4 is Ak

4 THEN yk is Bk with Wk

for k = 1, 2, . . . , r.
(7)

x1, x2, x3 and x4 from Equation (7) are the inputs, Ak
1, Ak

2, Ak
3 and Ak

4 are the fuzzy sets
representing the k-th input quadruplets and Bk is the fuzzy set representing the k-th output.
While experimenting with the FIS of the model, we found that adding certainty grade
(i.e., rule weights Wk) [48] to the rules improves the accuracy and helps in capturing
the ambiguity of the subjective ratings. The model adopts the widely used disjunctive
system of rules. Hence, the output y is represented by the fuzzy union of all individual
rule contributions yi, where i = 1, 2, . . . r, and r is the number of IF-THEN propositions,
as follows:

y = y1 ∪ y2 ∪ . . . ∪ yr (8)
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Finally, for defuzzification purposes, we used the centroid method. The method
calculates the center of gravity, or centroid, of the fuzzy set’s membership function. This
centroid represents the typical or representative value of the fuzzy number. It is calculated
by finding the weighted average of the universe of discourse using the membership degrees
as weights. The method can be described with Equation (9), where y∗ is the defuzzified
value and u(y) is the curve describing the fuzzy union derived from Equation (8). Note
that Equations (7)–(9) are derived from [49].

y∗ =
∫

u(y)·y dy∫
u(y) dy

(9)

5. Results and Discussion

In this section, we evaluate the performance of the developed model. First, we show
the model output and use different metrics to quantify the correlation between the ground
truth, i.e., MOS from the training, test, and complete datasets. Second, we show how our
model performs when compared with other models that were previously tested on the
same LIVE-YT-HFR dataset.

5.1. Evaluation of the Model Output

The evaluation of the performance of our proposed VQA model is carried out by
comparing the obtained outputs with multiple data subsets, including the training, test,
and complete dataset. We used common metrics for the evaluation of the output accuracy,
namely, coefficient of determination (R2), Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Spearman Rank–Order Correlation Coefficient (SROCC), and Pearson Corre-
lation Coefficient (PCC). Figure 6 depicts the comparison between different MOS ratings,
for every video in the LIVE-YT-HFR database (480), obtained from the datasets and our
model, while the performance metrics can be found in Table 2.
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Table 2. The evaluation of the predictive performance of the model.

Metric Training Data Test Data Complete Dataset

R2 0.827 0.7447 0.8253
MSE 8.7819 13.6213 8.7605

RMSE 2.9634 3.6907 2.9598
SROCC 0.8977 0.8455 0.8961

PCC 0.9096 0.8632 0.9086
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The performance of the model on the training dataset shows a high level of correlation
and accuracy. The R2 value indicates that about 82.7% of the variance in the output of
the model can be explained by the variance in the training dataset MOS. The low MSE
and RMSE values of 8.7819 and 2.9634, respectively, confirm the ability of the model to
minimize assessment errors. In addition, the SROCC and PCC values of 0.8977 and 0.9096,
respectively, demonstrate the strong positive monotonic and linear correlation between the
assessments of the model and the MOS values from the training dataset. When evaluating
the performance of the model on the independent test dataset, we find a slightly decreased
but still significant level of predictive ability. The SROCC and PCC values of 0.8455 and
0.8632, respectively, illustrate a robust correlation between the assessments of the model
and the test dataset MOS. The performance of our model over the entire dataset further
underscores its effectiveness.

Comparison of performance across the three datasets provides valuable insights into
the generalization capabilities of the model. The high R2 and correlation coefficients in all
datasets indicate that the model has learned meaningful patterns from the training data
and can make accurate predictions for unseen samples. The slightly higher assessment
errors in the test dataset compared to the training dataset can be attributed to the inherent
variability in the data, i.e., subjective quality perception ratings and fewer ratings per video
in the test dataset. Nonetheless, the consistent and robust correlation observed in both
SROCC and PCC metrics underscores the reliability of the model, especially when keeping
in mind the different genres of the sequences (Figure 1).

The results also show how the utilization of fuzzy logic holds promise in addressing
the inherent complexities of video quality assessment, as it acknowledges the multifaceted
nature of visual perception. The model’s ability to encompass both objective technical
attributes and subjective perceptual aspects within a unified framework offers a novel
approach to VQA. Moreover, the incorporation of fuzzy logic introduces a level of in-
terpretability and adaptability, allowing the model to effectively capture the intricate
interdependencies and uncertainties that characterize human judgment.

Since the model is trained with HFR video content and built for its quality assessment,
it makes sense to compare how different pairs of input parameters affect its output. To this
end, Figure 7a shows the model behavior for a range of Video CRF and Video FPS values.
Figure 7b does the same for another input pair, particularly of interest in HFR videos,
namely, Video FPS and Video TI. As seen from the figures, a complex relationship between
the input pairs and the predicted MOS exists. The subplot (a) shows how high frame rates
cannot guarantee high MOS values if the level of video compression also remains high.
This is somewhat expected, since the high compression levels introduce various video
artifacts, adversely affecting the overall quality and user experience.

In high-frame-rate videos (over 60 fps), the relationship between frame rate and
temporal information becomes interesting, hence the subplot (b). With higher frame rates,
there are more frames captured and displayed in a given time interval. This increase in
frames leads to smoother motion and a more accurate representation of high-speed actions.
This can be particularly important in videos with fast-moving subjects, sports events,
or action scenes, which were included in the LIVE-YT-HFR dataset. High frame rates
enhance the temporal information because the shorter time gap between frames captures
rapid changes and motion more accurately. Figure 7b portrays this behavior which allows
us to conclude that this complex relationship was successfully captured by the FIS of
the model.
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5.2. Comparative Performance Analysis

In Table 3, we present a comparison between our FLAME-VQA model and several
other established models commonly used for video quality assessment which were previ-
ously used to evaluate the video quality of the LIVE-YT-HFR dataset. The analysis is based
on two key metrics, namely SROCC and PCC.

Table 3. Comparison of performance of our fuzzy logic-based model (FLAME-VQA, on the complete
dataset) with state-of-the-art models on the LIVE-YT-HFR dataset. The best and the second-best
values in each column are marked in boldface.

Model Name SROCC PCC

PSNR 0.695 0.6685
SSIM [16] 0.4494 0.4526

MS-SSIM [17] 0.4898 0.4673
FSIM [18] 0.5251 0.5008

ST-RRED [19] 0.5531 0.5107
SpEED [20] 0.4861 0.4449
FRQM [50] 0.4216 0.452
VMAF [51] 0.7303 0.7071

DeepVQA [32] 0.3463 0.3329
GSTI [13] 0.7909 0.791

AVQBits|M3 [40] 0.7118 0.7805
AVQBits|M1 [40] 0.4809 0.5528
AVQBits|M0 [40] 0.4947 0.5538

AVQBits|H0|s [40] 0.7324 0.7887
AVQBits|H0|f [40] 0.674 0.7242

FLAME-VQA 0.8961 0.9086

While examining the data presented in the table, it becomes evident that FLAME-VQA
stands out prominently among the comparative models. It showcases higher SROCC and
PCC values than the benchmark models, indicating its robustness across a wide range
of scenarios. These results signify the model’s ability to capture and replicate human
perception of video quality. Among the other models, a few exhibit notable performance
as well. GSTI boasts a substantial SROCC of 0.7909 and an almost equally high PCC
of 0.791, positioning it as a strong competitor. AVQBits|H0|s and AVQBits|M3 also
demonstrate commendable correlation coefficients, highlighting their efficacy in assessing
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video quality. However, some models fall short in comparison to FLAME-VQA. Notably,
DeepVQA exhibits lower SROCC and PCC values, of 0.3463 and 0.3329, respectively,
indicating a weaker alignment with human perception. Similarly, SSIM and FRQM also
display comparatively lower coefficients, suggesting limitations in accurately assessing
video quality.

The performance of FLAME-VQA can be attributed to its utilization of fuzzy logic
and its incorporation of four crucial input parameters—video frame rate, compression
rate, spatial information, and temporal information. By leveraging these factors within a
fuzzy logic framework, FLAME-VQA adeptly captures the intricate interplay of technical
attributes and subjective perceptual aspects, resulting in quality assessments that closely
resonate with human judgments.

6. Conclusions

By harnessing the resources of an open-access LIVE-YT-HFR video database and
utilizing results obtained from a subjective experiment involving 85 participants who
assessed the quality of 480 test sequences, we have successfully engineered a robust fuzzy
logic-based model and named it FLAME-VQA. This model exhibits the capacity to evaluate
video quality of low and high frame rates, as perceived by users. The framework operates
based on four key input parameters intrinsic to the video: video frame rate, CRF, SI, and
TI properties.

What distinguishes our model is its ability to perform evaluations without necessitat-
ing further human experimentation or imposing significant computational overhead. This
aspect positions FLAME-VQA as a compelling alternative to approaches rooted in machine
learning or neural networks. Notably, we have demonstrated that fuzzy logic shines par-
ticularly in scenarios marked by uncertainty and ambiguity, a characteristic inherent to
subjective experimentation. Through the integration of fuzzy sets and the derivation of
membership functions, we have effectively modeled intricate phenomena, showcasing the
model’s high accuracy in conducting video quality assessments across a diverse array of
streaming scenarios (the SROCC and PCC values higher than 0.89). Incorporating fuzzy
logic as the underlying engine of our model not only validates its efficacy in reflecting
human perception but also demonstrates a forward-looking approach to bridging the gap
between technical metrics and subjective experience.

Looking ahead, our research trajectory will be devoted to the continual refinement and
enhancement of this model, as well as testing the model performance on different datasets,
i.e., video databases. Presently, the scope of the model is confined to four input parameters,
and its applicability is limited to videos featuring a maximum of 120 frames per second. A
promising avenue for future development involves the incorporation of video resolution
as an additional input parameter within the model. This expansion promises to further
enrich the FLAME-VQA capacity to accurately gauge user QoE across a broader spectrum
of video streaming contexts.
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Appendix A

Table A1 lists the fuzzy rules, describing the FLAME-VQA decision-making process.

Table A1. A set of fuzzy rules. The annotations for the input variables L/M/H denote low, medium,
or high, respectively, levels of FPS, CRF, SI, or TI. The model output MOS can be bad, poor, fair,
good, or excellent, which is annotated with a B, P, F, G, and E set of characters, respectively. Different
outputs can have different rule weights (Wk from Equation (7)), indicated by the numbers in the B, P,
F, G, and E columns. Some combinations of input parameters lead to the same consequence; hence, in
such cases, we use the OR logical operator to connect different input combinations.

Rule
Number

IF Video fps = l/m/h AND Video crf = l/m/h
AND Video si = l/m/h AND Video ti = l/m/h

THEN mos=b/p/f/g/e (Wk) AND mos=b/p/f/g/e
(Wk)

FPS CRF SI TI B P F G E

1 High Low Low Medium 1 0.4

2 High Low Low High 1 0.3

3 High Low Low Low 0.6 1

4 High Low Medium High 0.5 1

5 Medium Low Low High 1 0.3

6
High Low Medium Medium

OR 1High Low High Medium
High Medium Low Medium

7
High Medium Low Low

OR 1 0.4High High Low Medium

8 High Medium Low High 1 0.8

9 High Medium Medium Low 1 0.5

10 High Medium Medium Medium 1 1

11 High Medium Medium High 1 0.6

12 Low Low Low High 0.7 1

13 Medium Low Medium High 0.6 1

14
Low Low High High

OR 0.5 1Medium Low High High

15 High High Low Low 0.5 0,1

16 Low Medium Medium Low 0.35 1

17
Low Low Medium Medium

OR 0.3 1Low Low Medium High
Medium Low Medium Medium

18
High Medium High Low

OR 0.2 1High High Medium High

19

Low Low Low Low

OR 1

Low Low Low High
Medium Low Low Low
Medium Medium Medium Low
Medium High Medium Low

High High Medium Low

20
Low Low Low Medium

OR 1 0.3Medium Medium Low Medium

21
Low Low High Medium

OR 1 0.2High High High Low

22 Low Medium High High 1 0.7
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Table A1. Cont.

Rule
Number

IF Video fps = l/m/h AND Video crf = l/m/h
AND Video si = l/m/h AND Video ti = l/m/h

THEN mos=b/p/f/g/e (Wk) AND mos=b/p/f/g/e
(Wk)

FPS CRF SI TI B P F G E

23
Low High Medium Low

OR 1 0.5Medium Medium High High

24
Medium Low Low Medium

OR 1 0.1High High Medium Medium

25 Medium Low High Medium 1 0.05

26 Medium Medium Low High 1 0.8

27 Medium High Low Medium 1 1

28 Medium Medium Medium Medium 0.7 1

29 Low Medium Low High 0.5 1

30 Low Medium Medium Medium 0.4 1

31

Medium High Low Low

OR 0.3 1
Medium Medium High Medium
Medium High Medium Medium
Medium High High High

32 Low Medium Low Low 1 0.3

33

Low Medium Low Medium

OR 1

Low High Low Medium
Low High Medium Medium
Low High High High

Medium Medium Low Low
Medium High High Medium

34
Low Medium High Medium

OR 1 0.5Medium Medium High Low
Medium High High Low

35 Low High High Medium 1 0.2

36
Low Medium High Low

OR 0.6 1Low High Low Low
Low High High Low
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of Experience of Telecommunication Service Users Using Machine Learning Models. Sustainability 2022, 14, 17053. [CrossRef]

35. Nguyen, D.; Pham Ngoc, N.; Thang, T.C. QoE Models for Adaptive Streaming: A Comprehensive Evaluation. Futur. Internet
2022, 14, 151. [CrossRef]

https://doi.org/10.1109/LSP.2023.3283541
https://live.ece.utexas.edu/research/LIVE_YT_HFR/LIVE_YT_HFR/index.html
https://doi.org/10.1109/LSP.2020.3028687
https://doi.org/10.5281/zenodo.1081049
https://doi.org/10.3390/jimaging4100117
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2011.2109730
https://www.ncbi.nlm.nih.gov/pubmed/21292594
https://doi.org/10.1109/TCSVT.2012.2214933
https://doi.org/10.1109/LSP.2017.2726542
https://doi.org/10.1109/TBC.2014.2365260
https://doi.org/10.1016/j.comcom.2017.12.010
https://doi.org/10.1109/TCSVT.2017.2768542
https://doi.org/10.1109/TIP.2018.2815842
https://doi.org/10.3390/electronics12143036
https://doi.org/10.1016/j.jvcir.2022.103526
https://doi.org/10.1016/j.image.2022.116766
https://doi.org/10.3390/su142417053
https://doi.org/10.3390/fi14050151


Future Internet 2023, 15, 295 22 of 22

36. Gao, Y.; Min, X.; Zhu, Y.; Zhang, X.-P.; Zhai, G. Blind Image Quality Assessment: A Fuzzy Neural Network for Opinion Score
Distribution Prediction. IEEE Trans. Circuits Syst. Video Technol. 2023, 1, 1–16. [CrossRef]

37. Yu, X.; Ying, Z.; Birkbeck, N.; Wang, Y.; Adsumilli, B.; Bovik, A.C. Subjective and Objective Analysis of Streamed Gaming Videos.
IEEE Trans. Games 2023, 1–14. [CrossRef]

38. Cao, Y.; Min, X.; Sun, W.; Zhai, G. Subjective and Objective Audio-Visual Quality Assessment for User Generated Content. IEEE
Trans. Image Process. 2023, 32, 3847–3861. [CrossRef]

39. Da, P.; Song, G.; Shi, P.; Zhang, H. Perceptual Quality Assessment of Nighttime Video. Displays 2021, 70, 102092. [CrossRef]
40. Ramachandra Rao, R.R.; Göring, S.; Raake, A. AVQBits—Adaptive Video Quality Model Based on Bitstream Information for

Various Video Applications. IEEE Access 2022, 10, 80321–80351. [CrossRef]
41. Lodha, I. Subjective and No-Reference Quality Metric of Domain Independent Images and Videos. Comput. Graph. 2021, 95,

123–129. [CrossRef]
42. Mackin, A.; Zhang, F.; Bull, D.R. A Study of Subjective Video Quality at Various Frame Rates. In Proceedings of the 2015 IEEE

International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 3407–3411.
43. MSU Graphics & Media Lab. MSU Quality Measurement Tool. Available online: https://www.compression.ru/video/quality_

measure/ (accessed on 3 August 2023).
44. Mukherjee, D.; Han, J.; Bankoski, J.; Bultje, R.; Grange, A.; Koleszar, J.; Wilkins, P.; Xu, Y. A Technical Overview of VP9—The

Latest Open-Source Video Codec. In Proceedings of the SMPTE 2013 Annual Technical Conference & Exhibition, Hollywood, CA,
USA, 22–24 October 2013; pp. 1–17.

45. ITU-R. Methodology for the Subjective Assessment of the Quality of Television Pictures, Document ITU-R Recommendation
BT.500-11. 2000. Available online: https://www.itu.int/rec/R-REC-BT.500-11-200206-S/en (accessed on 15 July 2023).

46. Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [CrossRef]
47. Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The Fuzzy c-Means Clustering Algorithm. Comput. Geosci. 1984, 10, 191–203. [CrossRef]
48. Ishibuchi, H.; Yamamoto, T. Rule Weight Specification in Fuzzy Rule-Based Classification Systems. IEEE Trans. Fuzzy Syst. 2005,

13, 428–435. [CrossRef]
49. Ross, T.J. Fuzzy Logic with Engineering Applications, 4th ed.; Wiley: Hoboken, NJ, USA, 2016.
50. Zhang, F.; Mackin, A.; Bull, D.R. A Frame Rate Dependent Video Quality Metric Based on Temporal Wavelet Decomposition and

Spatiotemporal Pooling. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China,
17–20 September 2017; pp. 300–304.

51. Netflix VMAF—Video Multi-Method Assessment Fusion. Available online: https://github.com/Netflix/vmaf (accessed on 12
August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TCSVT.2023.3295375
https://doi.org/10.1109/TG.2023.3293093
https://doi.org/10.1109/TIP.2023.3290528
https://doi.org/10.1016/j.displa.2021.102092
https://doi.org/10.1109/ACCESS.2022.3195527
https://doi.org/10.1016/j.cag.2021.01.013
https://www.compression.ru/video/quality_measure/
https://www.compression.ru/video/quality_measure/
https://www.itu.int/rec/R-REC-BT.500-11-200206-S/en
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/0098-3004(84)90020-7
https://doi.org/10.1109/TFUZZ.2004.841738
https://github.com/Netflix/vmaf

	Introduction 
	Background and Motivation 
	Contributions 
	Paper Structure 

	Related Works 
	Dataset Properties 
	The Video Sequences 
	The Subjective Experiment 

	Fuzzy Logic in User Experience Assessment 
	Applicability of Fuzzy Logic 
	The Model Development Process 
	Fuzzification of the Scalars 
	A Set of Fuzzy Rules and Defuzzification to the Scalar Result 


	Results and Discussion 
	Evaluation of the Model Output 
	Comparative Performance Analysis 

	Conclusions 
	Appendix A
	References

