
Citation: Ray, P.P. An Overview of

WebAssembly for IoT: Background,

Tools, State-of-the-Art, Challenges,

and Future Directions. Future Internet

2023, 15, 275. https://doi.org/

10.3390/fi15080275

Academic Editor: Michael Sheng

Received: 13 July 2023

Revised: 6 August 2023

Accepted: 15 August 2023

Published: 18 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

An Overview of WebAssembly for IoT: Background, Tools,
State-of-the-Art, Challenges, and Future Directions
Partha Pratim Ray

Department of Computer Applications, Sikkim University, Gangtok 737102, Sikkim, India; ppray@cus.ac.in

Abstract: This paper explores the relationship between two emerging technologies, WebAssembly
(Wasm) and the Internet of Things (IoT). It examines the complementary roles of these technologies
and their impact on modern web applications. First, it delves into the capabilities of Wasm as a
high-performance binary format that allows developers to leverage low-level languages for computa-
tionally intensive tasks. Second, it seeks to explain why integration of IoT and Wasm is important.
Third, it discusses the strengths and limitations of various tools and tool chains that are crucial for
Wasm development and implementation, with a special focus on IoT. Fourth, it presents the state-of-
the-art with regard to advances that combine both technologies. Fifth, it discusses key challenges
and provides future directions. Lastly, it provides an in-depth elaboration of the future aspects of
Wasm, with a strong focus on IoT, concluding that IoT and Wasm can provide developers with a
versatile toolkit that enables them to balance productivity and performance in both web and non-web
development scenarios. The collaborative use of these technologies opens up new possibilities for
pushing the boundaries of web application development in terms of interactivity, security, portability,
scalability, and efficient computational capabilities. As web and non-web embeddings continue to
evolve, the integration of IoT and Wasm will play a crucial role in shaping the future of innovative
application development. The key findings of this extensive review work suggest that existing tool
sets can be easily conglomerated together to form a new era in WebAssembly–IoT infrastructure
for low-power, energy-efficient, and secure edge–IoT ecosystems with near-native execution speed.
Furthermore, the expansion of edge–IoT ecosystems can be augmented with prospective cloud-side
deployments. However, there remains a strong need to more cohesively advance the amalgamation
of Wasm and IoT technologies in the near future.

Keywords: WebAssembly; IoT; stack; virtual machine; binary format

1. Introduction

In this section, a basic introductory overview of Wasm and IoT is provided as a
foundation for understanding the remainder of this article. First, a holistic background is
presented, followed by the motivation behind this study. The key objectives, contributions,
and organization of this article are presented in the subsequent parts.

1.1. Background and Significance

The onset of the digital age has ushered in a plethora of technological advancements,
among which web development has played a significant role. As the world becomes
increasingly interconnected via the World Wide Web, the demand for more efficient, robust,
and secure web applications is surging. JavaScript, while integral to web development,
is showing its limitations as these applications grow more intricate and demanding. This
trend has sparked the creation of WebAssembly (Wasm), an innovative binary instruction
format engineered to complement JavaScript by providing a performance profile closer to
machine code [1]. Wasm is designed with the purpose of allowing web pages to run high-
performance applications efficiently, bringing a new level of dynamism and interactivity to
the web [2,3].

Future Internet 2023, 15, 275. https://doi.org/10.3390/fi15080275 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15080275
https://doi.org/10.3390/fi15080275
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-2306-2792
https://doi.org/10.3390/fi15080275
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15080275?type=check_update&version=1

Future Internet 2023, 15, 275 2 of 77

However, the influence of Wasm extends far beyond traditional web applications [4].
A particularly promising avenue lies in the rapidly evolving field of the IoT [5,6]. IoT
connects physical devices with the digital world, forming an interconnected network
that allows data exchange and automated control. This technology is transforming many
sectors, from home automation and healthcare to industrial systems and smart cities. As the
IoT ecosystem expands it poses unique challenges, particularly concerning performance,
security, and interoperability.

The unique characteristics of Wasm make it well-suited to addressing these challenges.
Its compact binary format allows for quick transmission and loading, a critical requirement
in IoT systems where devices may have limited computational power and network connec-
tivity [7]. Wasm’s near-native performance ensures efficient execution, enabling real-time
processing of complex tasks. Moreover, its security features help to mitigate potential risks
in IoT applications, where vulnerabilities can have serious implications [8–10].

The significance of Wasm, therefore, lies not only in its impact on web development
but in its potential to revolutionize the IoT landscape. By understanding and leveraging
Wasm, we can unlock new possibilities for IoT, making our interconnected world faster,
safer, and more efficient.

1.2. Motivation

Wasm has been nothing short of revolutionary in the realm of web development.
Originally designed as a high-performance target for languages such as C, C++, and Rust,
it effectively bridges the divide between JavaScript’s agility and the demand for rigorous
low-level computation in web applications. Its attributes include the following. (1) Com-
pact Binary Format: Wasm’s concise binary representation not only ensures a reduced file
size, optimizing loading times, it offers rapid parsing and execution, which is pivotal in
environments such as IoT devices where resources are limited. (2) Near-Native Execution
Speed: Wasm promises execution at near-native speed, a feat that ensures intensive compu-
tational tasks can be executed seamlessly, enhancing the user experience and ensuring that
IoT devices can process information swiftly. (3) Language Interoperability: the ability to
compile code from multiple languages into Wasm means that developers are not shackled
to a single language. This adaptability is crucial, especially in the diverse ecosystem of
IoT, where devices might have been developed using various programming paradigms.
(4) Sandboxed Security Model: Wasm’s execution within a sandboxed environment offers a
robust security paradigm, ensuring code confidentiality and integrity. This is particularly
vital in the IoT spectrum, where devices often lack in built-in security features and can be
frequent targets for attacks.

As the realm of IoT burgeons with billions of interconnected devices, the quest for
efficient, secure, and universally compatible technological foundations is paramount. The
unprecedented scaling of IoT accentuates the need for solutions that are not just energy-
efficient but compact, secure, and maintainable. Herein lies the potential of Wasm, with
its unique strengths positioning it as an invaluable asset in the IoT toolkit. It is puzzling,
considering its evident potential, that there remains a conspicuous absence of extensive
literature focusing on the fusion of Wasm and IoT. While the intersection of these two
burgeoning technologies possesses the potential to redefine our technological landscape,
the lack of thorough research and understanding has left many nuances unexplored. Our
motivation stems from this very gap. We embark on a journey to deeply understand,
dissect, and then articulate the synergies between Wasm and IoT. This paper aims to be
a beacon, shedding light on Wasm’s architecture, its symbiotic relationship with IoT, the
tools paving its developmental pathway, the intricacies of its security model, and the vistas
it promises to unlock in the near future.

1.3. Objectives

The primary objectives of this review are as follows:

Future Internet 2023, 15, 275 3 of 77

• To understand Wasm by providing a comprehensive understanding of the technical
specifications, architectural design, and operational mechanics of Wasm.

• To explore the intersection of Wasm and IoT by investigating how the features of Wasm
address the unique challenges of IoT environments and can improve the efficiency,
security, and interoperability of IoT applications.

• To analyze Wasm tools and toolchains through in-depth examination of the tools and
toolchains developers use to compile, debug, and optimize Wasm code, including
their respective strengths and weaknesses.

• To highlight real-world applications by showcasing real-world applications of Wasm
in the IoT sector, thereby demonstrating its capabilities and practical value.

• To discuss key challenges by analyzing the security model of Wasm, its benefits, and
any potential vulnerabilities, particularly in the IoT context.

• Finally, speculating on future trends, to deal with the coming prospects and evolving
trends of Wasm and its potential future impacts on the IoT.

1.4. Contributions

This comprehensive review makes several noteworthy contributions to the body of
knowledge on Wasm and IoT:

• A wide-ranging review offering a broad and inclusive perspective on Wasm, encom-
passing its technical specifications, technological relevance, interplay with IoT, tools
and toolchains, and future trends.

• An in-depth analysis of Wasm in IoT that fills an informational void by providing an
exhaustive exploration of the role and potential of Wasm in the IoT sector.

• Comparison of tools through a comprehensive examination of various Wasm tools
and toolchains, which can provide a valuable resource for developers.

• Inclusion of real-world examples, making this review a practical guide for developers
seeking to leverage Wasm in IoT projects.

• Finally, the future perspectives provided in the forward-looking section of the review
can provide strategic insights for those planning to engage with Wasm and IoT in
the future.

1.5. Organization of the Paper

Figure 1 presents the organization of this paper. Section 2 deals with the overall
understanding of Wasm. Section 3 aligns Wasm with IoT. Section 4 covers various tools
for Wasm development. Section 5 presents a comprehensive state-of-the-art. Section 6
discusses about key challenges and future directions. Section 7 provides future aspects of
Wasm. Section 8 concludes the review work.

Future Internet 2023, 15, 275 4 of 77

Section 2. Understanding
WebAssembly

Section 3. WebAssembly and
IoT

Section 4. Tools for
WebAssembly Development

Section 5. State-of-the-Art
Section 6. Key Challenges

and Future Directions
Section 7. Prospective

Aspects of WebAssembly

Organization of Paper

Overview of WebAssembly

WebAssembly Architecture

WebAssembly Binary Format

Why Does WebAssembly
Complement JavaScript?

Web Embedding

Non-Web Embedding

Portability

Interoperability of
WebAssembly

Interfacing with the Host
Environment

The Security Model of
WebAssembly

Why WebAssembly is Fitted
into Web Platforms?

Why WebAssembly for IoT?

WebAssembly Support for
IoT Programming

WebAssembly and IoT
Security

WebAssembly and IoT
Performance Optimization

Practical Applications of
WebAssembly in IoT

WebAssembly and IoT
Networking

WebAssembly Compilers

WebAssembly Runtimes

Build Tools/Frameworks with
WebAssembly Support

WABT: The WebAssembly
Binary Toolkit

WebAssembly Standardized
Features for Existing Web

Browsers and Tools

WASM Versus WASI Versus
WAGI

Selected Articles in IoT-
Wasm

OS Development

IoT Programming

Debugging

Development Environment
Execution

Access Control Framework

Secure Execution

Containerization

Serverless

Application and Evaluation

Virtual Machine

Edge-Cloud Integration

Limitations of Current
WebAssembly

Implementations

Challenges in IoT Integration
with WebAssembly

Role of WebAssembly in
Advancing IoT

Prospective WebAssembly
Specifications

Need of Garbage Collection
and Resource Management

Exception Handling

Memory64

Threads and Atomics

Type Reflection

Need of Enhanced Security
Measures

Prospective WebAssembly
Ecosystem Growth

Multiple Memories

Prospective Alignments with
Technologies

Figure 1. Organization of the paper.

2. Understanding WebAssembly

This section deals with an overview of Wasm, its usage in the IoT context, support
system, security aspects, performance optimization, networking, and practical applications
of Wasm in IoT.

2.1. Overview of WebAssembly

WebAssembly, colloquially known as Wasm, is a stack-based virtual machine [11]. It
was designed as a portable target for the compilation of high-level languages such as C,
C++, and Rust, enabling deployment on the web for client and server applications. Wasm
provides a compact binary format that is designed to be fast to decode and execute. In
addition, it is designed to be safe, operating inside a sandboxed environment separated
from the host system. Wasm provides a compelling target for a range of programming
languages. Wasm operates in conjunction with JavaScript, often as a complementary
technology. While JavaScript does not “compile” to Wasm, it is important to understand
that JavaScript interacts with Wasm modules in browsers, facilitating communication
between the DOM and Wasm functions. Currently, it supports C, C++, Rust, Assembly
Script, C#, F#, Dart, Go, Kotlin, Swift, D, Pascal, Zig, and Grain.

• The Rationale Behind WebAssembly
The introduction of Wasm was in response to the need for an efficient low-level code
representation that could be processed effectively within the stringent performance
constraints of web environments. Over the course of their evolution, web applications
have grown in complexity, requiring more computational resources and demanding
superior performance from client-side scripts. JavaScript, while instrumental in the
development and functionality of these applications, has limitations in terms of per-
formance optimization that have become more evident with the increasing complexity
of web tasks. Wasm was developed to address this performance gap, complement-
ing JavaScript by running complex computational tasks at near-native speed. This

Future Internet 2023, 15, 275 5 of 77

leap in performance opens up new possibilities for web-based applications, allow-
ing them to handle more complex tasks that have traditionally been the domain of
desktop applications.

• Portability and Interoperability
A key attribute of Wasm is its design as a portable bytecode that can be executed across
a variety of platforms. This universality makes it a versatile tool in heterogeneous
environments, including the IoT, where devices of various types are interconnected. A
Wasm module can run on any platform that hosts a compliant Wasm virtual machine,
irrespective of the device’s specific hardware or operating system. The interoperability
of Wasm is another key aspect of its design. It is designed to work in conjunction with
JavaScript, leveraging the existing web platform’s infrastructure. This interoperabil-
ity allows for a smoother transition to Wasm, as developers can gradually replace
performance-critical sections of JavaScript code with more efficient Wasm modules
without disrupting the application’s overall functionality.

• Safety and Security
Web technologies must prioritize safety and security, and Wasm is no exception. Wasm
operates inside a secure sandbox environment separate from the host system, much
as JavaScript does. This design restricts any potential malicious activity within the
confines of the sandbox, providing a crucial layer of security. Even if an attacker
manages to exploit a vulnerability within the Wasm code, they will be contained
within the sandbox environment, mitigating the potential damage to the host system.

• Evolution and Community Engagement
Wasm has received substantial interest and support from both the developer com-
munity and industry giants such as Google, Mozilla, Microsoft, and Apple. This
widespread backing coupled with active community engagement has fostered rapid
evolution. There have been numerous improvements and extensions to the Wasm
specification since its initial release, highlighting the ongoing development of this
powerful technology. The community engagement around Wasm drives its evolution
and aids in exploring new possibilities for its application across various domains,
including IoT. The continued research and development efforts around Wasm, in-
cluding exploring potential use cases, improving security measures, and refining its
performance, ensure its place at the forefront of web and IoT technologies.

• High-Level Goals of WebAssembly
The primary objectives of Wasm can be summarized as follows:

– Establish a binary format that is portable and efficient, serving as a target for
compilation to achieve native execution speed on a wide range of platforms,
including mobile and IoT devices.

– Implement the standard in incremental stages, beginning with a Minimum Viable
Product (MVP) that offers functionality comparable to asm.js, with a specific
focus on C/C++ development. Additional features, such as threads, zero-cost
exceptions, and Single Instruction and Multiple Data Stream (SIMD), including
support for languages beyond C/C++, will be introduced based on feedback
and priorities.

– Ensure seamless integration with the existing web platform by aligning with its
evolutionary nature, maintaining compatibility with JavaScript, enabling syn-
chronous communication with JavaScript, adhering to security policies such
as same-origin and permissions, accessing browser functionality through exist-
ing Web Application Programming Interfaces (APIs), and providing a human-
readable text format that can be converted to and from the binary format, sup-
porting the “View Source” functionality.

– Support non-browser embeddings, enabling the usage of Wasm in diverse envi-
ronments beyond the web.

– Enhance the platform by developing a new LLVM backend and accompanying
clang port specifically for Wasm, encouraging the adoption of other compilers

Future Internet 2023, 15, 275 6 of 77

and tools targeting Wasm and fostering the development of additional useful
tooling to enrich the Wasm ecosystem.

2.2. WebAssembly Architecture

Wasm’s architecture is one of its key strengths, contributing significantly to its speed,
security, and versatility. It operates through a stack-based virtual machine. This means
that unlike register-based code, which requires different instructions to execute on various
physical machine architectures, Wasm code can be run consistently across different plat-
forms. Wasm modules declare the types, functions, tables, memories, and globals that they
use, and these elements interact in well-defined ways. Furthermore, the architecture in-
cludes features for direct memory access and control flow, providing for efficient execution.
Figure 2 presents the data flow architecture of Wasm.

• Overview
Wasm is a stack-based virtual machine, which has significant implications for its
design and operation. Stack-based machines use a stack to manage computations,
which means that operands are pushed onto the stack, operations are performed on
the top elements of the stack, and results are stored on the stack. This design makes
the architecture of the virtual machine simple and efficient.

• Stack-Based Design
The stack-based design of Wasm is a significant factor contributing to its portability
and efficiency. Stack machines are inherently simpler than register machines, as they
have no need to manage and allocate registers. Furthermore, stack machines are
agnostic to the specifics of the host’s physical machine architecture. This means that
the same Wasm code can be run consistently across different platforms, enhancing
its portability. Wasm’s design is based on a stack machine model. This means that it
performs computations using a stack data structure where operands are pushed onto
the stack; operators pop operands off the stack and push the results back onto it. This
design enhances the portability of the Wasm binary format and helps to simplify the
process of validation and execution. In addition, the stack machine model results in
highly compact bytecode. In a register-based machine model it is necessary to specify
the register for each operand and result. In contrast, a stack-based machine model
implicitly uses the top of the stack, eliminating the need for such specifications and
yielding a smaller binary size.

• WebAssembly Modules
Wasm code is organized into modules, which are the unit of deployment, loading,
and compilation. These modules are stateless and can be statically analyzed, which
contributes to both the safety and efficiency of Wasm. Modules declare the types,
functions, tables, memories, and globals that they use, and these declarations form
the basis of Wasm’s structured control flow. In Wasm, a module is a binary format
file that contains a program’s compiled code along with all the data and information
necessary to execute it. Each module includes a series of sections that specify types,
functions, imports, exports, memory, data, tables, elements, globals, and more. Wasm
modules are stateless and side-effect-free, meaning that they do not have access to
any state or perform any operations unless they explicitly receive access from the host
environment. This characteristic ensures isolation between modules and their host
environment, improving security.

• Linear Memory Model
Wasm uses a linear memory model. Each Wasm module has access to a single resizable
array of bytes, known as its linear memory. This memory is sandboxed from the host
environment and other instances, and is accessed using integer indices. This design
simplifies memory management and improves safety by isolating the memory of
different instances. This memory is initialized during instantiation of the module, and
can be accessed and manipulated through memory instructions provided by Wasm.
While this model may seem limiting, it is important to note that each Wasm module can

Future Internet 2023, 15, 275 7 of 77

have its own memory, allowing for isolation of different Wasm programs. Additionally,
the host environment can create and provide shared memory to Wasm modules,
enabling communication and shared memory concurrency between Wasm threads.

• Direct Memory Access
Wasm operates a linear memory model that is directly accessible by the program
through load and store operations. This direct memory access is a fundamental aspect
of Wasm’s design and performance efficiency. Memory in Wasm is a resizable array
buffer, and every load or store operation accesses this buffer directly. Load and store
instructions specify an immediate offset as well as the alignment for effective memory
access. This means that programs can read and write data to memory one byte at a
time if needed, or in larger chunks when it is more efficient. Importantly, this direct
memory access does not compromise safety. Even though the program can read and
write directly from and to memory, every access is checked to ensure that it falls within
the bounds of the Wasm module’s memory. If an out-of-bounds memory access is
attempted, a runtime error is triggered, halting execution and preventing any data
corruption or security breach.

• Control Flow
Control flow in Wasm revolves around structured constructs that facilitate the design
of a wide array of programs and algorithms. These constructs include common
elements such as loops and conditionals along with function calls and returns, forming
the building blocks of Wasm’s control flow. Wasm employs a structured control flow,
meaning that control flow constructs such as loops and conditionals have clearly
defined entry and exit points. This structure significantly simplifies the validation,
compilation, and optimization of Wasm programs. Moreover, control flow in Wasm is
designed to be robust and resilient, limiting potential security vulnerabilities. This
is particularly evident in how the language prevents unbounded jumps or “gotos,”
limiting possible control flow graphs to structured and predictable patterns. As a
result, Wasm’s control flow enables the construction of complex programs while
ensuring that their execution remains safe and secure.

• Interacting Elements
Wasm has been designed with deep interaction and interoperability in mind. This
extends not only to the interaction between Wasm modules and the hosting environ-
ment, but between multiple Wasm modules and between Wasm and JavaScript. The
elements within a Wasm module, such as functions, globals, tables, and memories,
interact in well-defined ways. Functions can be called with parameters and return
results, globals can be read from and written to, tables allow for dynamic function dis-
patch, and memories provide the raw storage for application data. These interactions
are carefully controlled to ensure the safety and reliability of Wasm applications.

– WebAssembly and JavaScript
One of the key features of Wasm is its ability to work seamlessly with JavaScript.
Wasm and JavaScript can interact through a set of APIs that allows them to share
data and functions. JavaScript can create a Wasm module instance and call its ex-
ported functions, while Wasm can call into JavaScript through imported functions.
They can share data via Wasm’s linear memory or through JavaScript objects.

– WebAssembly and the Host Environment
Wasm modules interact with their host environment through a system of imports
and exports. A module can export functions, memory, tables, and global variables
that can be used by the host or by other modules. Conversely, a module can
import functions and variables from the host, allowing it to interact with the
outside world. This makes Wasm a highly adaptable technology that can be
integrated into a wide variety of host environments.

– Multiple WebAssembly Modules
Multiple Wasm modules can interact and work together within a single applica-
tion. This is done by instantiating the modules with appropriate imports from

Future Internet 2023, 15, 275 8 of 77

other modules, allowing them to share functions, memory, tables, and globals.
This modular design supports the creation of large, complex applications built
from smaller, reusable components. These interacting elements contribute signifi-
cantly to the versatility and power of Wasm, enabling it to perform tasks from
high-performance computing to dynamic generation of web content. This makes
Wasm an essential part of the modern web platform and a valuable tool for the
IoT space.

Figure 2. WebAssembly data flow architecture.

2.3. WebAssembly Binary Format

Wasm’s binary format embodies a compact low-level representation of Wasm code
structured to allow rapid decoding and execution [11]. Engineered as the machine-readable
blueprint of Wasm programs, this format is crucial for Wasm runtimes when they aim for ef-
ficient execution, as highlighted in Figure 3. At its core, the binary format is segmented into
multiple sections, each catering to a distinct aspect of the Wasm module. First, the “Version”
section explicitly determines the version of the format, such as version 1. Diving deeper,
the “Type Section” encapsulates function signatures used within the module, defining both
parameters and return values to ensure smooth interaction with other modules and the
runtime. To maintain extensibility, the “Import Section” enumerates external functionali-
ties and global variables imported from distinct modules. Following suit, the “Function
Section” categorizes the module’s functions, correlating them with respective function
signatures from the “Type Section”. To foster efficient indirect function calls and dynamic
dispatch, the “Table Section” stipulates table types, sizes, and element types. Meanwhile,
the “Memory Section” delineates the linear addressable memory parameters of the module.
The “Global Section” holds the global variables, defining their characteristics and initial
values. Ensuring accessibility to other modules, the “Export Section” enlists the module’s
exportable entities. If initialization is necessitated upon module load, the “Start Section”
pinpoints the relevant start function. For modules leveraging tables, the “Element Section”

Future Internet 2023, 15, 275 9 of 77

lays out the initialization criteria. The crux of the module’s functionality is enshrined
in the “Code Section”, which comprises the compiled code of all functions. To establish
a foundation of initial data, the “Data Section” manages memory initialization specifics.
Lastly, the “Custom Sections” offer an avenue for integrating optional data pertinent to the
module’s broader context.

(i32, i32) → (i32)

(i64, i64) → ()

() → ()

Module: "env", Name: "print", Type: 0

Type Index: 0

Type Index: 1

Type Index: 2

00000010

0 Size

Global Variables

Version 1

Type

Import

Function

Table

Linear Memory

Global

...

Continued...

Name: "add", Kind: Function, Index: 0

Export

Function 2

Start

Name: "add", Kind: Function, Index: 0

Element

Offset: 0, Elements: [0, 1, 2]

Start

Code for Function 0

Code for Function 1

Code for Function 2

Code

Offset: 0, Data: [0x01, 0x02, 0x03]

Data

Custom Data

Custom Sections

Figure 3. Wasm binary data format.

2.4. How Does WebAssembly Complement JavaScript?

JavaScript and Wasm are two powerful technologies that, when used together, can
complement each other and provide significant benefits in web development [12]. We
next explore how JavaScript and Wasm work together and how they can enhance each
other’s capabilities.

• Performance Enhancement: JavaScript is the traditional language used in web de-
velopment, and is known for its versatility and ease of use. However, JavaScript is
an interpreted language, which can sometimes result in slower execution compared
to lower-level languages such as C and C++. By leveraging Wasm, developers can
offload computationally intensive tasks to the Wasm module, resulting in improved
performance and responsiveness.

• Language Compatibility: JavaScript has a vast ecosystem of libraries, frameworks,
and tools that have been developed over the years. It is the language of the web, and
many developers are already familiar with it. Wasm, on the other hand, supports
multiple programming languages, including C/C++, Rust, and more. This means
that developers can utilize their existing codebase written in different languages and
compile it to Wasm to run in the browser. This enables developers to reuse and
integrate existing code with JavaScript seamlessly.

• Code Portability: JavaScript is supported by all modern web browsers, making
it highly portable. However, there are cases in which certain algorithms or com-
plex computations are more efficiently implemented in lower-level languages. With
Wasm, developers can compile code from these languages into Wasm modules,
which can then be executed in any web browser that supports Wasm. This porta-

Future Internet 2023, 15, 275 10 of 77

bility allows developers to target multiple platforms without the need for language-
specific implementations.

• Security and Isolation: JavaScript executes within the browser’s sandbox environ-
ment, which provides a level of security by preventing direct access to the underlying
system resources. Wasm runs within a sandboxed environment as well; however,
it provides additional security features such as memory isolation and fine-grained
control over resource access. By utilizing Wasm, developers can ensure a higher level
of security when executing potentially untrusted code.

• Extending JavaScript’s Capabilities: Wasm can be used as a complementary technol-
ogy to extend JavaScript’s capabilities. Developers can leverage Wasm modules to
perform computationally intensive tasks, data processing, or even run existing soft-
ware libraries. JavaScript can act as a glue language, interacting with Wasm modules
and providing a higher-level interface or handling UI-related tasks.

• Improved Developer Experience: Wasm and JavaScript work hand in hand to en-
hance the developer experience. Developers can utilize their preferred language for
different parts of the application, choosing JavaScript for UI interactions, DOM manip-
ulation, and event handling while offloading performance-critical or complex compu-
tations to Wasm modules. This division of labor allows developers to write cleaner
and more maintainable code and to optimize performance where it matters most.

2.5. Why WebAssembly Is a Good Fit for Web Platforms

Wasm is a valuable addition to the web platform, working alongside JavaScript to
enhance its capabilities and address certain limitations. The web platform consists of
a virtual machine (VM) that executes web app code and a collection of web APIs for
controlling browser/device functionality [13]. Traditionally, the VM can only handle
JavaScript, which, while is powerful, may face performance challenges in intensive use
cases such as 3D games, augmented reality, and image editing. Moreover, downloading
and parsing large JavaScript applications can be time-consuming, especially on resource-
constrained devices. Wasm serves as a complementary language to JavaScript rather than
a replacement. JavaScript excels as a high-level language for web applications, offering
flexibility, expressiveness, and an extensive ecosystem of frameworks and libraries. On
the other hand, Wasm is a low-level language with a compact binary format that delivers
near-native performance. It serves as a compilation target for languages such as C++ and
Rust, providing them with a web-compatible execution environment. While JavaScript
is dynamically typed and does not require a compilation step, Wasm supports low-level
memory models and aims to support garbage-collected languages in the future. With the
integration of Wasm into browsers, the VM can now load and execute both JavaScript and
Wasm code. These two code types can interact with each other seamlessly. The Wasm
JavaScript API allows JavaScript to call exported Wasm code, while Wasm code can import
and call JavaScript functions synchronously. Wasm modules, the basic units of Wasm code,
exhibit similarities to ES modules in their structure and functionality. Wasm encompasses
several key concepts that are essential to understanding its operation within the browser.

Several of these concepts are directly reflected in the Wasm JavaScript API, as men-
tioned below:

• Module
Represents a Wasm binary that has been compiled by the browser into executable
machine code. Similar to a Blob, a Module is stateless and can be shared between
windows and workers explicitly through methods such as postMessage(). It declares
imports and exports, similar to an ES module.

• Memory
A resizable ArrayBuffer that holds the linear array of bytes accessed by Wasm’s
low-level memory instructions for reading and writing.

• Table

Future Internet 2023, 15, 275 11 of 77

A resizable typed array that stores references, for instance function references, which
cannot be stored directly as raw bytes in Memory due to safety and/or portability
considerations.

• Instance
A combination of a Module and its associated runtime state, including a Memory,
Table, and imported values. An Instance is akin to an ES module loaded into a specific
global context with specific imports.

The Wasm JavaScript API empowers developers to create modules, memories, ta-
bles, and instances. With a Wasm instance, JavaScript code can synchronously invoke its
exports, which are exposed as regular JavaScript functions. Conversely, Wasm code can
synchronously call arbitrary JavaScript functions by passing them as imports to a Wasm
instance. Considering that JavaScript has control over the downloading, compilation, and
execution of Wasm code, JavaScript developers can view Wasm as a JavaScript feature
designed to generate highly efficient and high-performance functions. In the future, Wasm
modules will be loadable in a similar fashion to ES modules, allowing JavaScript to fetch,
compile, and import Wasm modules with the same ease as ES modules using the <script
type = ‘module’> syntax.

2.6. Web Embedding

It comes as no surprise that Wasm is designed to be utilized on the web, primarily
within web browsers. However, its purpose is not limited to the web alone. The integration
of Wasm with the web platform involves various aspects, such as leveraging existing
web APIs, adhering to the web’s security model, ensuring portability, and allowing for
evolutionary development. These objectives align closely with the overarching goals of
Wasm. Notably, the Wasm Minimum Viable Product (MVP) aims to maintain a security
level no less stringent than that of JavaScript modules. To facilitate this integration, several
key points of interaction between Wasm and the web platform have been considered:

• JavaScript API
A dedicated JavaScript API enables developers to compile Wasm modules, perform
limited reflection on compiled modules, store and retrieve compiled modules from
offline storage, instantiate modules with JavaScript imports, invoke exported functions
from instantiated modules, and establish memory aliases, among other functionalities.
It is important to note that these APIs may not be available in non-web environments.

• Developer-facing display conventions
Similar to how browsers and JavaScript engines handle JavaScript artifacts and
language constructs, Wasm adopts conventions for representing its constructs in a
developer-friendly manner. For example, locations in Wasm binaries can be displayed
similarly to JavaScript source locations, ensuring consistency across different contexts.

• Modules
Wasm modules seamlessly integrate with the ES6 module system, facilitating interop-
erability between the two.

• Names
Wasm modules utilize UTF-8 byte sequences to identify imports and exports. To
align with web conventions, a mapping of export names to exports is represented as a
JavaScript object, where each export is a property with a UTF-16 encoded name. On the
web platform, successful transcoding of names to UTF-16 is a validation requirement
for Wasm modules.

• Security
Wasm’s security model aligns with the web’s same-origin policy, employing mech-
anisms such as cross-origin resource sharing (CORS) and subresource integrity to
enable distribution through content delivery networks and support dynamic linking.

• Future Features
When features such as Single Instruction, Multiple Data (SIMD), and garbage col-
lection become supported, Wasm will adhere to established conventions, leveraging

Future Internet 2023, 15, 275 12 of 77

specifications from existing standards such as SIMD.js and TC39 for SIMD operations
and reusing backend implementations. With garbage collection support, Wasm code
will be capable of referencing and accessing JavaScript objects, the DOM, and other
WebIDL-defined objects.

By taking these considerations into account, Wasm integrates seamlessly into the web
platform, making use of existing infrastructure while enhancing web applications with
improved capabilities and performance.

2.7. Non-Web Embeddings

Although Wasm is primarily designed for web usage, it is important for it to be
compatible with other environments beyond the web. These environments can vary from
simple shells used for testing purposes to fully-fledged application environments found in
data centers, IoT devices, and desktop or mobile apps. There may be a need to incorporate
Wasm within larger software programs as well. Non-web environments may provide
different sets of APIs compared to web environments, which can be easily discovered and
utilized through features such as testing and dynamic linking. While JavaScript virtual
machines such as node.js can support Wasm, the design of Wasm aims to ensure that it
can function independently without relying on a JavaScript VM. The Wasm specification
itself does not attempt to define a comprehensive portable library similar to libc. However,
certain core features in Wasm semantics that resemble functions found in native libc
are included as primitive operators in the core Wasm specification. For example, the
“grow_memory” operator, similar to the “sbrk” function, is part of the core specification. In
the future, additional operators similar to “dlopen” may be included. In cases where there
is overlap between web and non-web environments, shared specifications can be proposed;
however, these would be separate from the Wasm specification. An example of this is the
Loader specification, which is being developed for both web and node.js environments
and is distinct from the JavaScript specification. To achieve source code-level portability, it
is expected that communities will create libraries that map source-level interfaces to the
capabilities provided by the host environment. These libraries can be developed during
either the build-time or runtime process. Wasm provides essential components such as
feature testing, built-in modules, and dynamic loading to facilitate the creation of these
libraries. Examples of anticipated libraries include Portable Operating System Interface
(POSIX) and Specification and Description Language (SDL). Overall, by ensuring that
non-web implementations do not rely on web APIs, Wasm can be used as a portable binary
format across various platforms. This offers advantages in terms of portability, tooling, and
language compatibility, as Wasm supports semantics at the level of languages such as C
and C++.

2.8. Portability

Wasm’s binary format is designed for efficient execution across various operating
systems and instruction set architectures, both within and beyond the web environment.
Efficient execution in different environments may require certain characteristics. Even
if an execution environment lacks these characteristics, it may be able to execute Wasm
modules by emulating the unsupported behaviors, although this could result in suboptimal
performance. As the standardization of Wasm progresses, these requirements and adapta-
tions for new platforms will be formalized. The portability of Wasm relies on execution
environments that provide the following features:

• Eight-bit byte representation.
• Byte-level memory addressing.
• Support for unaligned memory accesses or reliable trapping mechanisms to emu-

late them.
• Support for 32-bit two-complement signed integers, with the option for 64-bit support.
• Compliance with the IEEE 754-2008 standard for 32-bit and 64-bit floating-point

numbers, with a few exceptions.

Future Internet 2023, 15, 275 13 of 77

• Little-endian byte ordering.
• Efficient addressing of memory regions using 32-bit pointers or indices. The wasm64

extension allows for linear memory larger than 4 GiB with 64-bit pointers or indices.
• Secure isolation between Wasm modules and other modules or processes running on

the same machine.
• Guarantee of forward progress for all execution threads, even in non-parallel execu-

tion scenarios.
• Availability of lock-free atomic memory operators for 8-, 16-, and 32-bit accesses,

including an atomic compare-and-exchange operator. The wasm64 extension requires
lock-free atomic memory operators for 64-bit accesses.

• Wasm does not define specific APIs or system calls. Instead, it relies on an import
mechanism in which the available imports are determined by the host environment.
In web environments, functionality is accessed through the Web APIs provided by the
web platform. Non-web environments have the flexibility to implement standard Web
APIs, standard non-web APIs (such as POSIX), or develop their own custom APIs.

2.9. Interoperability of Wasm

The portable nature of Wasm’s binary format enables it to run across a variety of
platforms and environments. This cross-platform compatibility is central to Wasm’s design
philosophy, allowing developers to write code once and run it anywhere, whether in a
desktop browser, a mobile browser, a server environment, or an IoT device. Wasm provides
a foreign function interface (FFI) for interoperation with other languages. This means that
Wasm can be used to build web applications as well as to provide high-performance com-
ponents for Python, Ruby, PHP, Java, and .NET applications, among others. Wasm’s design
supports interoperability, ensuring that it can function seamlessly alongside traditional
web technologies such as JavaScript and can access various web APIs. This section further
explores the various aspects of Wasm’s interoperability.

• Interaction with JavaScript
Wasm is designed to complement and work side-by-side with JavaScript. Wasm
modules can be loaded and executed from JavaScript, allowing developers to run
complex computations using Wasm while leveraging JavaScript for less performance-
sensitive tasks. This interaction between JavaScript and Wasm is facilitated by the
Wasm JavaScript API, which includes functions to compile and instantiate Wasm
modules. Furthermore, Wasm and JavaScript can share data using Wasm’s linear
memory, a contiguous and resizable array of bytes that JavaScript can read from and
write to. This shared memory model allows for efficient communication between
Wasm and JavaScript, enabling complex applications that utilize the strengths of
both languages.

• FFI
The FFI is a mechanism through which a program written in one programming
language can call routines or make use of services written in another [14,15]. FFI
is used when two languages do not share a common interface or when they cannot
interact directly with each other. Wasm utilizes an FFI to enable interoperability
with JavaScript and other programming languages. Through the FFI, Wasm can call
functions written in JavaScript and vice versa. This is critical because it allows Wasm to
leverage the extensive ecosystem of JavaScript libraries and the broader web platform.
The FFI plays a significant role in Wasm’s integration with other languages in non-web
contexts as well. Languages such as Rust, Go, and C/C++ can compile to Wasm and
interact with other systems or libraries through the FFI. This interaction is critical for
many use cases, especially when it comes to system-level programming in fields such
as IoT. However, working with the FFI can be quite complex due to the difference in
memory models between Wasm and other languages. Wasm’s linear memory model
is different from the models used by most programming languages, and translating
between the two can be challenging. Solutions such as the Wasm Interface Types

Future Internet 2023, 15, 275 14 of 77

proposal are aimed at making this easier, and interoperation between Wasm and other
languages is expected to become more seamless as these improvements are adopted.

• Access to Web APIs
Wasm can indirectly access various web APIs through JavaScript. While Wasm cannot
directly call web APIs, it can call JavaScript functions that can interact with these APIs.
This model provides a layer of abstraction that enhances security while enabling the
rich functionality that web APIs offer. In the future, with the integration of the Wasm
Interface Types proposal, Wasm modules will be able to directly interact with web
APIs, enhancing its interoperability and functionality.

• Compatibility Across Browsers
Wasm modules are designed to be portable, meaning that they can run on any plat-
form that provides a compliant Wasm virtual machine. This includes all modern web
browsers (Google Chrome, Mozilla Firefox, Safari, and Edge). This cross-browser com-
patibility ensures that a Wasm module developed on one platform can run seamlessly
on another, enhancing the reach and usability of web applications built with Wasm.

• Use in Non-Web Environments
Although Wasm was designed for the web, properties such as its compact binary
format, sandboxed execution environment, and deterministic behavior make it an
attractive option for non-web environments as well, including IoT devices, edge
computing, and serverless computing. Wasm modules can be run outside of a web
browser using a runtime such as Wasm System Interface (WASI), further enhancing
its interoperability. This broad interoperability of Wasm in terms of working with
other web technologies and compatibility across a wide range of platforms is one of
its key strengths. As Wasm continues to evolve its interoperability is likely to expand,
further increasing its potential use cases and influence in the web development and
IoT ecosystems.

2.10. Interfacing with the Host Environment

• How WebAssembly Interacts with the Host
Wasm modules are designed to be embedded within a host environment, which
in most cases is a web browser [16]. A Wasm module cannot interact with the host
environment directly; instead, it must interact through JavaScript using a set of explicit
imports and exports. This mechanism allows Wasm to interact with JavaScript APIs,
access the Document Object Model (DOM), and more, all while maintaining a clear
boundary between the Wasm module and the host environment.

• Web APIs and JavaScript Glue Code
To interact with web APIs, Wasm relies on JavaScript “glue” code that serves as an
intermediary. This glue code can call web APIs and pass the results back to the Wasm
module. This mechanism allows Wasm to take advantage of the wide range of APIs
available on the web, such as those for accessing hardware capabilities, networking,
storage, and more.

• WebAssembly JavaScript API
Wasm provides its own JavaScript API, which is used to load, compile, and instantiate
Wasm modules. This API allows developers to interact with Wasm directly from their
JavaScript code, providing a high degree of control over the lifecycle of Wasm modules.

• Direct DOM Access
While Wasm cannot currently access the DOM directly, and must rely on JavaScript,
there is an ongoing proposal to add direct DOM access to Wasm. This would allow
Wasm to manipulate the DOM without having to go through JavaScript, potentially
leading to performance improvements for certain types of applications.

• Beyond the Browser
While the primary host environment for Wasm is the web browser, it is not limited to
this context. Wasm can be hosted in non-web environments, for instance, standalone
runtimes such as Wasmer and Wasmtime, or embedded in other applications. This

Future Internet 2023, 15, 275 15 of 77

flexibility makes Wasm an appealing choice for a variety of use cases, from server-side
applications to IoT devices and more.

2.11. The Security Model of WebAssembly

Wasm incorporates a security model with two primary goals: (1) protecting users from
potentially malicious or faulty modules, and (2) providing developers with effective tools
and measures to create secure applications within the given constraints [17].

• User Protection
Wasm modules operate within a secure sandbox environment that uses fault isolation
techniques to separate them from the host runtime. This ensures the following:

– Applications run independently within the sandbox, and cannot escape without
using appropriate APIs.

– Deterministic execution is generally maintained, with limited exceptions.
– Modules adhere to the security policies of their embedding. In web browsers, this

includes restrictions imposed by the same-origin policy, while other platforms
may have their own security models.

• Developer Support
Wasm’s design focuses on supporting the development of secure programs by elimi-
nating dangerous features from its execution semantics while remaining compatible
with C/C++ code.

– Modules must declare all accessible functions and associated types during load
time, even when utilizing dynamic linking. This enables implicit control-flow
integrity through structured control flow. Immutable compiled code and lack of
runtime observability protect Wasm programs from control flow hijacking attacks.

– Function calls within Wasm must specify valid target indices that correspond to
entries in the function index space or table index space.

– Indirect function calls undergo runtime type signature checks, ensuring that the
selected function matches the expected signature.

– The use of a protected call stack prevents buffer overflows in the module heap
and ensures safe function returns.

– Branches within functions must point to valid destinations within the same function.
– Variables in C/C++ are represented using primitives in Wasm, depending on their

scope. Local variables with fixed scope and global variables are stored as fixed-
type values indexed by their respective indices. Local variables are initialized to
zero and stored in the protected call stack, while global variables reside in the
global index space and can be imported from external modules. Local variables
with uncertain static scope are stored in a separate user-addressable stack in linear
memory during compilation. Bounds checking is performed at the region level to
prevent out-of-bounds accesses. Future enhancements may include support for
multiple memory sections and more advanced memory operations.

– Traps are used to immediately terminate execution and signal abnormal behavior.
They are triggered by operations such as invalid index access, mismatched type
signature in indirect function calls, exceeding the maximum size of the protected
call stack, out-of-bounds linear memory access, or illegal arithmetic operations.

• Memory Safety
Wasm’s execution semantics mitigate certain memory safety issues compared to tra-
ditional C/C++ programs. Local and global variables stored in the index space are
protected from buffer overflows due to their fixed sizes and indexed addressing. Lin-
ear memory accesses are checked at the region level, preventing out-of-bounds access.
However, control-flow integrity and the protected call stack prevent direct code injec-
tion attacks. Hence, mitigations such as data execution prevention and stack smashing
protection are unnecessary for Wasm programs. However, certain types of bugs are not
obviated by Wasm’s semantics. Control flow hijacking attacks can manipulate module

Future Internet 2023, 15, 275 16 of 77

control flow using code reuse attacks against indirect calls. Nevertheless, common
techniques such as return-oriented programming are not possible in Wasm due to
enforced control-flow integrity. Additionally, race conditions, side channel attacks,
and time of check to time of use vulnerabilities can occur. Future enhancements may
provide additional protections such as code diversification, memory randomization,
or bounded pointers.

• Control-Flow Integrity
Control-flow integrity is crucial for measuring security effectiveness. Wasm provides
implicit guarantees for direct function calls through function section indexes and
for returns through the protected call stack. Indirect function calls undergo runtime
type checks to ensure coarse-grained control-flow integrity. Fine-grained control-flow
integrity can be achieved through the use of the Clang/low level virtual machine
(LLVM) compiler infrastructure, which offers built-in support for Wasm.

• Clang/LLVM CFI
Enabling fine-grained control-flow integrity (CFI) using the Clang/LLVM compiler
has several advantages. It provides enhanced defense against code reuse attacks
involving indirect function calls, and performs function signature checks at the C/C++
type level. Although enabling this feature incurs a slight performance cost for each
indirect call, future updates will optimize it by leveraging built-in support for multiple
indirect tables.

• Code Validation and Verification
Wasm implements a two-step validation process to ensure the safety of its modules.
The first step involves structural validation to check whether the module follows the
binary format specification. The second step includes control flow and type checking
to ensure that the code is well-structured and does not perform illegal operations.

• Safe Interoperability with JavaScript
Considering that Wasm is designed to work alongside JavaScript in the same web en-
vironment, it is crucial to ensure safe interoperability between the two. Wasm modules
can interact with JavaScript through a set of explicit exports and imports, allowing for
controlled interaction between the two. By strictly defining these interfaces, Wasm
ensures that the security of the web platform is preserved.

3. WebAssembly and IoT

Wasm is proving to be a game-changer in the field of IoT. Its performance efficiency,
security, and cross-platform compatibility make it an ideal choice for IoT applications. In
this section, we delve deeper into the reasons behind this fit and the practical applications
of Wasm in IoT.

3.1. Why WebAssembly for IoT?

Wasm offers features and benefits that are notably impactful in the IoT ecosystem.
These facets, outlined below, enhance its applicability across a range of IoT devices, ranging
from low-power sensors to more complex edge computing systems.

• Performance Efficiency
Wasm, designed as a low-level binary format, delivers near-native performance, an
essential consideration for IoT devices as they are often constrained by limited re-
sources. The fast downloading, efficient parsing, and swift execution times offered
by Wasm contribute to reduced latency, a significant requirement in real-time IoT
applications. The IoT landscape is characterized by a multitude of interconnected
devices, and these are often constrained by computational resources while needing
to perform tasks efficiently and quickly. Wasm’s performance efficiency presents a
significant advantage in this context.

– Near-Native Speed
At its core, Wasm is a low-level binary format designed to be decoded and
executed at near-native speed. Unlike traditional web scripting languages such

Future Internet 2023, 15, 275 17 of 77

as JavaScript, which are parsed and executed at runtime, Wasm is a compiled
binary, allowing it to run much faster. This speed is of paramount importance in
IoT environments where real-time processing is often required.

– Resource Optimization
Wasm’s binary format is designed to be both small in size and fast to parse, leading
to a reduction in the required amount of resources. This makes it particularly
suitable for IoT devices, which often have limited memory and processing power.
Reduced binary size means less storage space and quicker download times, while
faster parsing leads to improved execution speed, both of which are crucial to the
performance optimization of IoT applications.

– Concurrent and Parallel Processing
Wasm is designed to support concurrent and parallel processing. It enables multi-
threading capabilities using Web Workers in the web environment. This means
that Wasm can execute instructions on multiple cores simultaneously, making
it even more efficient for computationally intensive tasks. This feature can be
highly beneficial for IoT environments in which tasks need to be performed in
parallel, and can improve the overall performance of the system.

– Stream Compilation and Tiered Compilation
Wasm benefits from stream compilation, meaning it can be compiled and opti-
mized while being downloaded. This leads to faster startup times, and becomes
crucial in IoT scenarios, where quick application startup can be critical. In addi-
tion, modern Wasm engines use tiered compilation, a technique where the code
is first compiled and optimized for speed, then re-optimized during execution
for improved overall performance.

– Optimized Execution Environment
Wasm runs within a highly optimized execution environment which is designed
to utilize the capabilities of modern CPUs to the fullest extent. It can take advan-
tage of common hardware capabilities and processor features, further boosting
execution speed. This is particularly useful for IoT devices, where the computa-
tional capabilities of the device need to be used efficiently.

• Flexibility
Wasm’s platform-agnostic nature adds flexibility to IoT development, enabling the
same code to run across multiple devices and platforms. This universal compatibility
eliminates the need for platform-specific adaptations, reducing development time and
effort, which is critical in fast-evolving IoT ecosystems. Wasm’s design as a platform-
agnostic bytecode provides a high degree of portability and flexibility, particularly
beneficial in the diverse landscape of IoT. This section delves into the aspects that
make Wasm’s portability and flexibility a critical advantage for IoT applications.

– Platform-Agnostic Nature
Wasm is designed to be platform-agnostic. It can be run on any device with a
compliant Wasm runtime, irrespective of the underlying hardware or operating
system. This portability is especially critical in IoT, where a wide range of devices
need to be programmed, from small sensors to large industrial machines. Devel-
opers can write code once and run it on any IoT device, reducing the time, effort,
and cost of development.

– Language Independence
Wasm allows developers to work in multiple high-level programming languages.
At present, languages such as C/C++, Rust, and AssemblyScript can be compiled
to Wasm. This means developers can choose the language that best suits their
use case or expertise, adding to the flexibility of the development process.

– Interoperability with JavaScript
Despite being an independent format, Wasm is designed to be highly interop-
erable with JavaScript. It can leverage the existing web platform and interact
seamlessly with JavaScript APIs. This attribute is essential in IoT contexts, where

Future Internet 2023, 15, 275 18 of 77

Wasm and JavaScript can be used interchangeably or together within the same
application, enabling a highly flexible and adaptive development approach.

– Resource Efficiency
The binary nature of Wasm enables smaller file sizes, leading to faster downloads
and reduced network overhead. This is particularly beneficial in IoT environ-
ments, where network bandwidth can be constrained and devices have limited
storage and processing power.

– Evolving Ecosystem
The ecosystem around Wasm, including tools, libraries, and runtime environ-
ments, is continuously evolving and improving. This evolving ecosystem enables
developers to leverage new features and enhancements over time, adding to the
flexibility and adaptability of Wasm in the IoT context.

• Compactness and Energy Efficiency
Wasm’s compact binary format allows smaller payloads over network communication,
making it ideal for IoT networks, where bandwidth may be limited. Furthermore,
the efficiency of Wasm execution can contribute to lower energy consumption in
battery-powered IoT devices. Wasm’s compact design and energy-efficient execution
make it a particularly attractive technology for IoT applications, which often involve
resource-constrained devices operating in environments where power supply may be
limited or intermittent. This section, explores how Wasm’s compactness and energy
efficiency contribute to its suitability for IoT.

– Compactness and Efficient Execution
Wasm, as a low-level binary format, is far more compact than traditional text-
based languages. This compactness has several implications:

* First, smaller binary sizes mean faster transmission over networks, an essen-
tial attribute for IoT devices that often rely on low-bandwidth networks.

* Second, small binary size leads to less memory usage on devices, an impor-
tant aspect considering many IoT devices operate with limited memory.

* Lastly, because Wasm is a low-level bytecode, it requires fewer process-
ing cycles to execute than high-level languages, resulting in more efficient
execution. These characteristics collectively enable Wasm applications to
be faster and more responsive, which is especially important in real-time
IoT applications.

– Energy Efficiency
Energy efficiency is a critical factor in the IoT landscape, where devices are
often battery-powered or need to operate in energy-efficient modes. The ex-
ecution efficiency of Wasm contributes to reduced power consumption. As a
binary instruction set, Wasm is processed directly by the device, eliminating the
need for resource-intensive operations such as parsing or bytecode interpreta-
tion. This efficiency results in lower CPU usage, which in turn leads to reduced
energy consumption.

– Reducing Network Load
The compactness of Wasm results in less network load, as smaller file sizes require
less bandwidth to transmit. This is a significant advantage in IoT environments,
where network bandwidth may be a scarce resource. By reducing the amount of
data that needs to be transmitted, Wasm can contribute to overall energy savings
in IoT networks.

– Support for Energy-Efficient Programming Paradigms
Wasm’s support for languages such as Rust, which emphasizes zero-cost ab-
stractions and fine-grained control over system resources, allows for energy-
efficient programming paradigms. Developers can optimize their code to manage
resources effectively and minimize energy consumption, which is crucial for
power-constrained IoT devices.

Future Internet 2023, 15, 275 19 of 77

3.2. WebAssembly Support for IoT Programming

In the realm of IoT, programming languages play a crucial role in determining the
performance, compatibility, and ease of development of applications. Wasm is language-
agnostic by its very nature, and currently supports multiple programming languages,
enabling developers to select the one that best suits their needs. In this section, we explore
the languages that can be compiled to Wasm and their potential implications for IoT
development. Wasm’s support for multiple languages (C/C++, Rust, AssemblyScript, Go)
opens the door for developers to utilize their preferred programming languages for IoT
application development. This section covers the various languages that can be compiled
to Wasm and their relative advantages for IoT applications. Table 1 presents a comparison
of key supported languages in the context of Wasm for IoT.

Table 1. Comparison of key supported languages in the context of WebAssembly for IoT.

Features\Languages C/C++ Rust AssemblyScript Go

Performance Efficiency

High, as they provide
low-level hardware access
and enable fine control over
system resources.

High, it combines low-level
control over system
resources with a high-level
syntax.

Comparable to JavaScript;
suitable for less
resource-intensive
applications.

Generally slower than
C/C++, but easier to write
and maintain.

Memory Safety
Manual memory
management can lead to
errors and vulnerabilities.

Rust has built-in memory
safety without garbage
collection, effectively
preventing common
memory errors.

Memory management is
similar to JavaScript and is
garbage collected.

Go has a garbage collector
which can impact
performance but increases
safety and ease of use.

Concurrency
Manual management,
complex to handle but
allows fine-grained control.

Advanced concurrency
support with ownership
and lifetime concepts.

Not inherently built-in,
relies on the concurrency
model of Wasm.

Native support for
concurrent programming
using goroutines.

Interoperability with
Web Tech

Not designed with web
technologies in mind, but
can be used effectively with
Wasm.

Compatible with web
technologies through
Wasm.

Being a variant of
TypeScript, it has excellent
compatibility with web
technologies.

Fully compatible with
Wasm, but not specifically
designed for web
technologies.

Learning Curve
Steep, especially for
developers unfamiliar with
low-level programming.

Moderately steep, but
offers more safety
guarantees than C/C++.

Easy for
JavaScript/TypeScript
developers.

Easier compared to C/C++
and Rust.

Ecosystem and
Community

Mature and extensive
libraries and tools. Large
community.

Growing rapidly with
increasingly robust libraries
and tools.

Smaller community and
less mature ecosystem, but
growing.

Large community, mature
ecosystem but Wasm
support is still
experimental.

Use Cases in IoT
System-level programming,
performance-critical
applications.

Safety-critical systems,
applications where memory
safety is paramount.

Applications with a strong
web-based component, less
resource-intensive
applications.

Networking applications,
distributed systems, less
performance-critical
applications.

3.3. WebAssembly and IoT Security

Security is a significant concern in IoT due to the distributed nature of devices and their
exposure to various networks. This section delves deeper into the mechanisms through
which Wasm enhances security in IoT applications. It discusses sandboxing, the features
of Wasm, and how these mechanisms can help to mitigate common security risks in IoT.
Considering the interconnectivity of devices and the often sensitive nature of the data being
processed, ensuring that robust security measures are in place is crucial. Wasm’s design
inherently addresses several significant security concerns, making it a compelling choice
for IoT applications. In this section, we explore various aspects of Wasm that can enhance
security in IoT environments.

• Secure Sandboxing
One of the central features of Wasm is that it runs in a secure sandbox environment [18].
This means that the Wasm code execution is isolated from the rest of the system,
preventing it from engaging in uncontrolled interactions with other parts of the
system. This feature is critical in the IoT context, where devices are often connected to

Future Internet 2023, 15, 275 20 of 77

public networks, where they are vulnerable to various kinds of attacks. By confining
each Wasm module to its sandbox, the damage an attacker can cause is limited.

• Controlled Interactions with the Host Environment
In Wasm, all interactions with the host environment must be explicitly defined through
imports and exports. This means that a Wasm module can only access the host
resources that it has been explicitly granted access to. This capability provides a
strong isolation between the Wasm module and the host system, limiting the potential
attack surface and reducing the risk of unauthorized access to sensitive resources, a
particularly desirable trait for IoT applications.

• Verification and Validation
Wasm modules undergo a validation process before execution. This validation ensures
that the module adheres to the Wasm specification and is free of certain types of errors,
further enhancing its security. Moreover, certain Wasm compilers, such as those used
in the Rust ecosystem, offer even more robust validation and verification processes,
further enhancing the security of IoT applications.

• Secure IoT Applications with WebAssembly
The security features offered by Wasm are not merely theoretical; they are being
actively leveraged in real-world IoT applications. For instance, edge computing appli-
cations, which require processing data close to the source, often utilize Wasm for its
secure execution environment. Similarly, industrial IoT solutions benefit from the security
and isolation features of Wasm when dealing with critical infrastructure components.

• Future Directions in WebAssembly and IoT Security
While Wasm already brings significant security benefits to IoT, the technology contin-
ues to evolve, and future enhancements may further bolster these security credentials.
Initiatives such WASI aim to define a secure and portable interface for Wasm modules,
broadening their applicability beyond the web browser while maintaining robust
security guarantees. As IoT continues to expand and evolve, the security capabilities
of technologies such as Wasm can be expected to evolve alongside.

3.4. WebAssembly and IoT Performance Optimization

Performance optimization is a critical aspect of IoT application development. IoT de-
vices often operate on limited resources and have power efficiency requirements, making it
essential to maximize computational efficiency and minimize resource usage. With its high-
performance characteristics, Wasm serves as an ideal choice for optimizing IoT applications.
This section delves deeper into how Wasm contributes to performance optimization in
IoT, and explores how the performance benefits of Wasm can be leveraged to optimize IoT
applications. It discusses aspects such as lower resource usage, reduced latency, and faster
execution times, which are crucial for the smooth functioning of IoT applications.

• Fast Execution Speed
Wasm is designed to offer near-native performance, which is crucial for IoT devices
that often have to process complex tasks within strict time constraints. With its
efficient binary format, Wasm instructions can be executed quickly and effectively,
which results in faster application performance. This speed is particularly valuable in
IoT environments, where real-time data processing can be critical.

• Efficient Use of Memory
Wasm implements a linear memory model, which means all memory is managed
in a single, contiguous block. This approach reduces memory fragmentation and
allows more efficient memory usage. Furthermore, Wasm’s compact binary format
requires less memory for code storage. These memory management practices can
greatly benefit IoT devices, which often operate with limited memory.

• Streamlined Parsing and Compilation
Wasm’s binary format is designed to be fast to parse and compile. Compared to
traditional text-based languages, binary formats are significantly quicker to process.
This feature can greatly speed up the time from fetching the code to executing it, an

Future Internet 2023, 15, 275 21 of 77

important factor in IoT devices, as they often need to start quickly and perform their
tasks in real-time.

• Parallelism and Concurrency
Wasm is designed with parallelism and concurrency in mind. With the proposal
of Wasm threads, developers can leverage multicore processors more effectively by
parallelizing their computations. This feature can be especially beneficial in the IoT
context, where devices equipped with multi-core processors can utilize Wasm to run
computationally intensive tasks more efficiently.

• Performance in Real-world IoT Applications
Wasm’s performance features are not just theoretical; they have practical implications
in the world of IoT. For instance, in edge computing, where latency is a critical
factor, Wasm’s fast execution speed and efficient memory usage can greatly improve
application responsiveness. Similarly, in the realm of smart devices and wearables,
where battery life and responsiveness are crucial, the efficient use of resources that
Wasm allows can lead to significant improvements.

3.5. WebAssembly and IoT Networking

IoT systems are often characterized by networks of devices communicating with each
other. Wasm’s compact binary format can reduce the load on these networks and increase
their efficiency. This section discusses the role of Wasm in IoT networking and how it can
support efficient communication in IoT systems. With its cross-platform compatibility,
security features, and performance efficiency, Wasm is well-positioned to support net-
working in IoT applications. This section discusses the role and implications of Wasm in
IoT networking.

• Cross-platform Communication
One of the challenges in IoT networking is the heterogeneous nature of IoT devices.
They can have different operating systems, architectures, and capabilities. Wasm,
with its cross-platform nature, can help to bridge these differences. Regardless of the
device’s specific hardware or operating system, a Wasm module can run on any device
with a compliant Wasm runtime. This provides a common platform that can facilitate
communication and data exchange across diverse devices.

• Efficient Data Transfer
Wasm’s compact binary format facilitates efficient execution while contributing to
efficient data transfer. Compared to traditional text-based code, Wasm’s binary format
is smaller and quicker to load, which can result in less network usage and faster
transfer speeds. This is particularly important in IoT networks, which can involve the
transfer of large amounts of data.

• Secure Communication
Security is a paramount concern in IoT networks due to the potentially sensitive nature
of the data being transferred. Wasm contributes to secure communication in number
of ways:

– Wasm operates within a sandboxed environment, meaning that it is isolated from
the rest of the system, helping to contain any potential security threats.

– Wasm is designed to be integrated with existing web platform security mecha-
nisms, meaning that it can leverage features such as HTTPS for secure data transfer.

• Real-time Communication
Many IoT applications require real-time or near-real-time communication. Whether a
security system detecting an intruder or a health monitor tracking a patient’s vitals,
quick and responsive communication can be critical. Wasm’s efficient execution and
fast parsing can help to facilitate this kind of real-time communication.

• WebAssembly Networking in Real-world IoT Applications
Wasm’s networking features are being leveraged in various IoT applications. For
instance, in the realm of smart home devices Wasm can facilitate efficient and secure
communication between devices, including lighting systems, thermostats, and security

Future Internet 2023, 15, 275 22 of 77

cameras. In industrial IoT, Wasm can enable real-time monitoring and control of
equipment across a network.

3.6. Practical Applications of WebAssembly in IoT

Wasm’s compatibility with IoT is not merely theoretical, and it is already being uti-
lized across numerous IoT applications. This section presents an array of these practical
applications in which Wasm is proving its mettle.

• Edge Computing
Edge computing refers to the paradigm of processing and analyzing data at or near
the edge devices in an IoT network, rather than relying solely on centralized cloud
infrastructure. By moving computational tasks closer to the data source, edge comput-
ing enables real-time processing, reduced latency, improved privacy, and bandwidth
optimization. Wasm has emerged as a promising technology for practical applications
in IoT edge computing environments.

– One of the key advantages of Wasm in the context of IoT is its ability to execute
efficiently on resource-constrained edge devices. IoT devices often have limited
computational power, memory, and battery life, making it challenging to run
complex applications directly on the devices. Wasm’s compact binary format and
efficient execution enable the deployment of lightweight and high-performance
applications on IoT devices. This allows for the offloading of computational
tasks from cloud servers to the edge, reducing network traffic and enabling faster
response times.

– Wasm’s security features play a significant role in IoT edge computing. With the
sandboxed execution environment provided by Wasm, the risk of malicious code
execution or unauthorized access to sensitive data is mitigated. This is crucial in
the context of IoT, where devices may be vulnerable to security threats. Wasm’s
security model ensures that only authorized and verified code can be executed
on edge devices, enhancing the overall security posture of the IoT ecosystem.

– In practical applications, Wasm in IoT edge computing can enable a wide range
of use cases. For instance, it can facilitate real-time analytics and decision-making
at the edge by running machine learning algorithms for sensor data processing,
anomaly detection, and predictive maintenance. Wasm’s low latency execution
allows for immediate response to critical events and minimizes the need for
constant communication with the cloud.

– Additionally, Wasm can enable edge devices to interact with existing web tech-
nologies and APIs. This allows developers to leverage the vast ecosystem of
web-based tools, libraries, and frameworks for building IoT applications. Wasm’s
interoperability with JavaScript and other web languages further simplifies the
integration of edge devices into larger IoT systems.

– Moreover, the flexibility of Wasm makes it suitable for dynamic edge computing
environments. The ability to dynamically load and update Wasm modules on
edge devices enables the deployment of over-the-air updates, application cus-
tomization, and remote management of IoT deployments. This dynamic nature
of Wasm empowers IoT systems with greater adaptability and scalability.

• Smart Home Devices
Smart home devices in which various devices are interconnected and communicate
with each other to create intelligent and automated living spaces play a crucial role in
the IoT ecosystem. Wasm technology offers practical applications in enhancing the
capabilities and performance of smart home devices within the IoT framework. There
are a number of practical benefits to using Wasm in smart home devices:

– Efficient and Fast Execution
Wasm allows smart home devices to execute code with near-native performance.
By compiling code into a compact and efficient binary format, Wasm enables

Future Internet 2023, 15, 275 23 of 77

smart home devices to perform complex tasks and computations quickly, result-
ing in improved responsiveness and overall user experience.

– Cross-platform Compatibility
Wasm provides a platform-independent execution environment, enabling smart
home devices to run the same code across various operating systems and hard-
ware architectures. This compatibility allows developers to build applications
and services that work seamlessly on different devices, reducing development
efforts and ensuring broader device support.

– Enhanced Security
Security is a critical aspect of smart home devices, and Wasm contributes to
strengthening device security. With its sandboxed execution environment, Wasm
ensures that malicious code cannot access or manipulate sensitive data within the
smart home device. This protection layer helps to prevent unauthorized access
and safeguard user privacy.

– Extensibility and Flexibility
Wasm allows developers to extend the functionalities of smart home devices by
easily integrating third-party libraries and modules. This extensibility empowers
developers to leverage existing libraries and tools to enhance the capabilities of
smart home devices without having to rewrite the entire codebase, and promotes
the creation of a vibrant ecosystem of reusable components and modules for
smart home applications.

– Offline and Edge Computing
Smart home devices often operate in environments with intermittent or limited
internet connectivity. Wasm enables the execution of code offline and supports
edge computing scenarios, where computation is performed locally on the device
rather than relying solely on cloud services. This capability ensures that smart
home devices can continue functioning even in situations where internet access
is unavailable or unreliable.

– User Interface and Interactivity
Wasm allows developers to create rich and interactive user interfaces for smart
home devices. By leveraging web technologies such as HTML, CSS, and JavaScript,
developers can design intuitive and visually appealing interfaces that enable users
to seamlessly control and monitor their smart home devices. This flexibility in
user interface design enhances the overall user experience and makes smart home
devices more accessible to a wider range of users.

– Over-the-Air Updates
Wasm facilitates over-the-air updates for smart home devices, allowing manufac-
turers to efficiently deliver software updates and bug fixes. With Wasm, updates
can be delivered in a modular and incremental manner, reducing the impact
on device performance and minimizing downtime. This capability ensures that
smart home devices can benefit from the latest features, security patches, and
improvements without requiring manual intervention.

• Industrial IoT
The Industrial Internet of Things (IIoT) refers to the use of interconnected devices
and systems in industrial environments, such as manufacturing plants, factories, and
industrial facilities. Wasm technology has practical applications in enhancing the
capabilities and efficiency of IIoT systems. There are several ways in which Wasm can
be applied in the IIoT context:

– Real-time Data Processing
IIoT systems generate a vast amount of sensor data in real time. Wasm enables ef-
ficient and high-speed data processing by executing code closer to the edge. With
its near-native performance, Wasm can process and analyze data streams rapidly,
facilitating real-time decision-making and automation in industrial processes.

– IIoT Edge Computing

Future Internet 2023, 15, 275 24 of 77

In IIoT applications, low-latency processing is essential for time-critical opera-
tions. Wasm enables edge computing by allowing computations to be performed
directly on edge devices or gateways. This reduces the dependency on cloud
services and enables faster response times, making IIoT systems more resilient
and efficient.

– Compatibility and Interoperability
Wasm’s platform-independent nature makes it an ideal technology for achieving
compatibility and interoperability in IIoT environments. It enables seamless exe-
cution of the same code across different devices, operating systems, and hardware
architectures, facilitating the integration of diverse systems and components in
industrial settings.

– Security and Safety
Industrial environments require robust security measures to protect critical in-
frastructure and sensitive data. Wasm enhances the security of IIoT systems by
providing a sandboxed execution environment that isolates code execution and
prevents unauthorized access or tampering. This helps in safeguarding industrial
processes, ensuring data integrity, and mitigating potential cybersecurity threats.

– Legacy System Integration
Many industrial facilities rely on legacy systems and equipment that may not
natively support modern technologies. Wasm enables the integration of legacy
systems by providing a bridge between old and new technologies. By compiling
legacy code into Wasm modules, industrial organizations can leverage the benefits
of IIoT without the need for a complete system overhaul.

– Remote Monitoring and Control
IIoT systems often involve remote monitoring and control of industrial processes.
Wasm enables the development of lightweight and efficient web-based user in-
terfaces that can be accessed from anywhere using standard web browsers. This
allows remote operators and engineers to monitor real-time data, control indus-
trial equipment, and make informed decisions remotely, improving operational
efficiency and reducing downtime.

– Offline Operation and Fault Tolerance
Industrial environments may experience network disruptions or operate in re-
mote areas with limited connectivity. Wasm enables IIoT systems to operate
offline or with intermittent connectivity by executing code locally on edge de-
vices. This ensures uninterrupted operation, data logging, and fault tolerance
even in challenging network conditions.

– Customization and Modularity
Wasm’s modular architecture enables the creation of customized IIoT applications
by combining pre-built modules and components. This promotes code reusability,
accelerates development cycles, and allows for the creation of tailored solutions
that address specific industrial requirements. It facilitates easy maintenance and
updates by enabling modular replacement or addition of functionality.

• Wearable Devices
Wearable devices have gained significant popularity in recent years, offering various
functionalities and improving the way we monitor and interact with our health, fitness,
and daily activities. With the emergence of Wasm, these wearable devices can benefit
from its practical applications in the IoT ecosystem. There are a number of ways in
which Wasm can be applied in the context of wearable devices:

– Enhanced Performance
Wasm enables wearable devices to efficiently execute computationally intensive
tasks. By leveraging near-native performance, Wasm can handle complex algo-
rithms and data processing tasks, providing a seamless user experiences without
compromising battery life or device performance. This allows wearable devices to

Future Internet 2023, 15, 275 25 of 77

perform tasks such as real-time health monitoring, fitness tracking, and advanced
data analysis without significant lag or slowdown.

– Cross-platform Compatibility
Wasm’s platform-independent nature makes it an ideal technology for developing
wearable applications that can run across different operating systems and hard-
ware platforms. This cross-platform compatibility ensures that wearable devices
can offer consistent functionality and user experiences regardless of the device or
operating system being used. Developers can write code once and deploy it on
multiple wearable platforms, saving time and effort in application development.

– Offline Functionality
Wearable devices often operate in situations where internet connectivity may
be limited or unreliable. Wasm enables offline functionality by allowing key
application components to run locally on the wearable device. This ensures
that critical functionalities such as heart rate monitoring or step counting can
continue even when the device is not connected to the internet or a smartphone.
Offline functionality enhances the usability and reliability of wearable devices in
various scenarios.

– Customizable User Interfaces
Wasm empowers developers to create customized user interfaces for wearable
devices. With its ability to integrate with web technologies, Wasm allows for
the development of interactive and dynamic user interfaces that can adapt to
different screen sizes and input methods. This enables wearable devices to
provide intuitive and personalized user experiences, enhancing user engagement
and satisfaction.

– Secure Data Processing
Data security and privacy are crucial considerations in wearable devices, espe-
cially when handling personal health and fitness information. Wasm’s sandboxed
execution environment provides an additional layer of security by isolating code
execution from the underlying system. This helps to protect sensitive data and
prevent unauthorized access or tampering, ensuring the confidentiality and in-
tegrity of user information.

– Connectivity and Interoperability
Wearable devices often interact with other IoT devices, smartphones, or cloud
services to provide a comprehensive user experience. Wasm facilitates seamless
connectivity and interoperability by allowing wearable devices to communicate
with other devices through standardized web APIs. This enables data shar-
ing, synchronization, and integration with companion apps or cloud platforms,
enhancing the functionality and versatility of wearable devices.

– Efficient Application Updates
Wasm simplifies the process of updating wearable device applications. With
Wasm, developers can deliver updates by sending optimized binary modules that
can be quickly downloaded and executed on the device. This eliminates the need
for time-consuming app store updates and enables wearable devices to receive
the latest features and bug fixes promptly.

– Extendable Functionality
Wearable devices often have limited resources and storage capacity. Wasm’s mod-
ular architecture allows developers to create extensible applications by leveraging
pre-built modules and components. This enables wearable device manufactur-
ers to provide additional functionalities through modular upgrades, such as
adding new sensors or integrating with third-party services, without the need for
significant hardware changes or device replacements.

• IoT Gateways
IoT gateways play a critical role in the practical implementation of Wasm in the IoT
ecosystem. These gateways act as intermediaries between IoT devices and the cloud

Future Internet 2023, 15, 275 26 of 77

or edge infrastructure, facilitating seamless communication, data processing, and
management. There are a number of ways in which Wasm can be applied in the
context of IoT gateways:

– Protocol Translation
IoT gateways often need to support multiple communication protocols to interact
with a diverse range of IoT devices. Wasm can be leveraged to implement protocol
translation layers within the gateway. The gateway can efficiently convert data
between different protocols using Wasm modules, ensuring compatibility and
interoperability among various IoT devices and systems. This enables seamless
integration of devices that use different communication standards, such as MQTT,
CoAP, Zigbee, and Bluetooth.

– Edge Computing and Data Processing
IoT gateways act as the edge computing nodes, bringing computational capabili-
ties closer to the IoT devices and reducing latency. Wasm can be utilized within
the gateway to execute compute-intensive tasks and perform data processing
at the edge. By running Wasm modules on the gateway, critical data analysis,
filtering, or aggregation can be performed locally, reducing the need to transmit
large volumes of raw data to the cloud. This improves response time while
minimizing bandwidth consumption and cloud infrastructure costs.

– Security and Access Control
Wasm enhances the security of IoT gateways by providing a sandboxed execution
environment for executing untrusted code. This allows the gateway to execute
Wasm modules securely, isolating them from the underlying operating system
and protecting the gateway from potential vulnerabilities or malicious code. Ad-
ditionally, Wasm enables the implementation of access control policies, ensuring
that only authorized modules can be executed on the gateway and granting
specific permissions based on the module’s trust level.

– Gateway Management and Orchestration
Wasm can be leveraged in the management and orchestration of IoT gateways.
Thanks to its modular and lightweight nature, Wasm modules can be used to im-
plement gateway management functionalities such as configuration management,
firmware updates, and remote monitoring. These modules can be dynamically
loaded, enabling flexible and efficient gateway management without the need for
complex software updates or downtime.

– Offline Operation and Local Decision Making
IoT gateways often operate in environments with intermittent or unreliable in-
ternet connectivity. Wasm enables the gateway to operate offline by executing
critical logic and decision-making processes locally. By running Wasm modules
on the gateway, it can continue to function autonomously even when discon-
nected from the cloud or experiencing network disruptions. This ensures that
essential operations such as real-time control, event processing, and local data
analytics can be performed without relying on constant internet connectivity.

– Intelligent Edge Analytics
Wasm allows IoT gateways to perform advanced analytics and machine learn-
ing tasks at the edge. By executing Wasm modules that incorporate pre-trained
models or algorithms, the gateway can analyze sensor data in real time, identify
patterns, detect anomalies, and derive valuable insights locally. This enables
timely and intelligent decision-making at the edge, reducing the need to trans-
mit raw data to the cloud for analysis and enabling faster response times for
critical applications.

– Scalability and Flexibility
Wasm offers scalability and flexibility in IoT gateway deployments. The modular
nature of Wasm allows developers to build and deploy custom functionalities and
services as lightweight modules. These modules can be dynamically loaded or

Future Internet 2023, 15, 275 27 of 77

unloaded on the gateway, enabling easy customization and scalability based on
specific use cases or changing requirements. Wasm’s ability to run across different
hardware architectures and operating systems further enhances the flexibility
and compatibility of IoT gateway deployments.

– Over-the-Air Updates
Wasm simplifies the process of updating IoT gateway applications and function-
alities. By delivering optimized Wasm binary modules, developers can perform
over-the-air updates on the gateway, allowing seamless deployment of new fea-
tures, bug fixes, and security patches without interrupting device operation.
This ensures that the gateway remains up-to-date with the latest capabilities
and improvements, enhancing the overall performance and security of the IoT
ecosystem. Table 2 presents a comparison of practical applications in the context
of Wasm in IoT.

Table 2. Comparison of practical applications in the context of WebAssembly in IoT.

IoT Application Performance Efficiency Security Portability Noteworthy Use Case

Edge Computing

Wasm’s near-native
performance enables
real-time data processing
on edge devices,
reducing latency.

The sandboxed execution
model isolates applications,
enhancing security on edge
devices that are often
exposed to the network.

The same Wasm codebase
can run across a variety of
edge devices regardless of
their hardware or
operating system.

Wasm allows sophisticated
computation close to the
data source, minimizing
bandwidth usage
and latency.

Smart Home
Devices

Efficient use of resources,
enabling high-speed
operation on devices with
limited resources.

Sandboxed execution
enhances the security of
personal data often
handled by these devices.

Cross-platform nature
allows for a variety of
smart devices to run the
same Wasm applications.

Powers applications on
devices like smart
thermostats, home security
systems, etc., enabling
quick responses and
reliable operation.

Industrial IoT

Ability to process complex
tasks quickly is critical in
industrial scenarios, e.g.,
real-time monitoring of
industrial processes.

Strong isolation between
applications minimizes the
impact of security breaches
in an industry setting.

The same code can run on a
variety of industrial
devices, reducing
development efforts.

Wasm can be used for
predictive maintenance,
automation of tasks, etc.,
improving
operational efficiency.

Wearable Devices

Wasm’s efficient use of
resources enables
applications to run
smoothly even on
wearables with
limited resources.

The sandboxed
environment ensures user
data on the devices
remains secure.

The device-agnostic nature
of Wasm means
applications can run on
various types of wearables.

Powers applications on
devices like smartwatches,
fitness bands, enabling
efficient operation and
real-time responses.

IoT Gateway

Enhanced due to edge
computing, protocol
translation, and efficient
data processing
using Wasm.

Fortified with Wasm’s
sandboxed execution for
untrusted code and robust
access control policies.

High, thanks to Wasm’s
compatibility across
various hardware
architectures and
operating systems.

Protocol translation layers
for seamless integration of
diverse IoT devices and
performing advanced
analytics at the edge using
pre-trained models.

4. Tools for WebAssembly Development

Several tools exist that can be used for Wasm programming and system development.
This section discusses compilers, runtimes, build tools/frameworks, and the Wasm Binary
Toolkit (WABT). Table 3 shows a comparison of Wasm compilers, Table 4 presents a com-
parison of Wasm runtimes, Table 5 presents a comparison of build tools/frameworks with
Wasm support, and Table 6 presents a comparison of tools belonging to the WABT.

Future Internet 2023, 15, 275 28 of 77

Table 3. Comparison of WebAssembly compilers.

Compiler Language
Support Optimization Community

Support Ecosystem Performance IoT
Support

Development
Complexity Documentation

Emscripten C/C++ High High Wide Moderate Yes Moderate Extensive

tinygo Go Moderate Moderate Growing High Yes Low Moderate

WARDuino C Low Low Arduino Low Yes Low Limited

wasm3 C/C++ Low Moderate Limited Moderate Yes Low Limited

AssemblyScript TypeScript-
like Moderate High Growing High Yes Moderate Extensive

wasmino-core C/C++ Low Low Limited Low Yes Low Limited

Binaryen Multiple High Moderate Wide High Yes Moderate Extensive

rustc (Rust) Rust High High Growing High Yes Moderate Extensive

Zigwasm Zig Moderate Low Growing High Yes Moderate Limited

fable-compiler F# Moderate Moderate Limited Moderate No Moderate Extensive

Pyodide Python Low Low Limited Low No Low Limited

Table 4. Comparison of WebAssembly runtimes.

Runtime Performance Compatibility Language
Support Ecosystem Security IoT

Support
Development
Complexity Documentation

Wasmer High High Multiple Growing Moderate Yes Moderate Extensive

WAMR Moderate Moderate C/C++ Limited High Yes Low Limited

Node.js Moderate High JavaScript Wide Moderate Yes Moderate Extensive

Wasmtime High High Multiple Growing High Yes Moderate Extensive

WAVM High High Multiple Limited High Yes Moderate Limited

Deno Moderate High JavaScript Limited High Yes Moderate Extensive

Lucet High High C/C++ Limited High Yes High Limited

wascc Moderate High Multiple Limited High Yes Moderate Limited

Kotlin/JS Moderate High Kotlin Growing Moderate Yes Moderate Extensive

WasmEdge High High Multiple Extensible High Yes Moderate Good

Table 5. Comparison of build tools/frameworks with WebAssembly support.

Tool/Framework Language
Support Ecosystem Performance Build Opti-

mization
Learning
Curve

Browser Com-
patibility

Development
Experience

IoT
Support

CheerpX C/C++ Limited High High Moderate Moderate C/C++
Development Limited

Go Go Moderate High High Low High Go
Development Moderate

Webpack JavaScript Wide Moderate High High High JavaScript
Development Limited

Rollup JavaScript Moderate Moderate High Moderate High JavaScript
Development Limited

Blazor C# Wide Moderate Moderate Moderate Moderate .NET
Development Limited

wasm-bindgen Rust Moderate High Moderate Moderate High Rust and
JS/Wasm Limited

Future Internet 2023, 15, 275 29 of 77

Table 6. Comparison of tools belonging to WABT.

Tool Description Purpose Features Performance Usability

wat2wasm Translate from Wasm text
format to binary format Conversion, compilation Control over formatting,

comments, labels
Fast and
efficient Easy

wasm2wat Translate from binary
format back to text format

Inspection, understanding
of module structure Control over output format Fast and

efficient Easy

wasm-objdump Print information about a
Wasm binary file Analysis, debugging Control over output format Fast and

efficient Moderate

wasm-interp Decode and run a Wasm
binary file using interpreter

Testing, debugging,
analyzing behavior

Tracing function calls,
step-by-step execution

Moderate
performance Easy

wasm-
decompile

Decompile a Wasm binary
into readable C-like syntax

Decompilation,
code analysis

Control over
decompilation settings

Varies
depending on
complexity

Moderate

wat-desugar Parse .wat text form and
print “canonical” flat format Parsing, transformation Support for s-expressions,

flat syntax

Varies
depending on
input size

Moderate

wasm2c Convert a Wasm binary file
to C source and header

Porting, integration with
existing codebases

Control over C
code generation

Varies
depending on
input size

Moderate

wasm-strip Remove sections of a Wasm
binary file

File size reduction,
optimization

Control over
stripping options

Fast and
efficient Easy

wasm-validate Validate a file in Wasm
binary format Verification, security Detection of malformed or

invalid modules
Fast and
efficient Easy

wast2json Convert a file in wasm spec
test format to JSON

Test conversion, JSON
output

Associated wasm binary
files generation

Varies
depending on
input size

Easy

wasm-
opcodecnt

Count opcode usage
for instructions Instruction analysis Detailed opcode statistics Fast and

efficient Easy

spectest-interp Read a Spectest JSON file
and run tests in interpreter Testing, validation Compliance with

Spectest suite

Varies
depending on
test complexity

Easy

4.1. WebAssembly Compilers

• Emscripten
Emscripten is a popular compiler toolchain that enables the translation of C/C++
code into Wasm, allowing developers to run code written in these languages on the
web [19].

– Pros

* Wide adoption and active community support
* Provides high compatibility with existing C/C++ codebases
* Offers integration with popular web frameworks and libraries and provides

advanced optimization options

– Cons

* Requires a more substantial toolchain setup and configuration
* Compilation process can be slower compared to other compilers
* Code output can be larger in size, impacting load times

• TinyGo
The TinyGo is a compiler is specifically designed to compile Go code into Wasm [20].
It aims to provide a minimal and efficient Go runtime for running Go applications in
resource-constrained environments.

– Pros

* Produces small Wasm binaries optimized for size and speed
* Provides good compatibility with the Go programming language

Future Internet 2023, 15, 275 30 of 77

* Supports direct interaction with JavaScript APIs, offering a lightweight and
fast compilation process

– Cons

* Limited support for certain Go language features and standard library packages
* Less mature compared to other Go compilers
* Smaller ecosystem and community compared to mainstream Go

• WARDuino
WARDuino is a compiler that targets the Arduino platform, allowing developers to
write programs in a subset of the C language and compile them to run on Arduino
devices [21].

– Pros

* Enables developers to write Arduino programs using a higher-level language
* Provides abstraction and simplification for Arduino programming Offers

compatibility with Arduino libraries and hardware

– Cons

* Limited to Arduino-specific use cases
* Less support for advanced features compared to general-purpose compilers
* Requires familiarity with the Arduino platform

• wasm3
Wasm3 is a lightweight Wasm runtime and interpreter that allows Wasm modules to
be run efficiently [22]. It is designed for resource-constrained environments and has a
small footprint.

– Pros

* Lightweight and efficient runtime suitable for embedded systems and IoT
devices

* Provides fast startup and execution times
* Supports multiple Wasm language bindings

– Cons

* Limited support for some advanced Wasm features
* Lacks extensive tooling and development ecosystem compared to larger

runtimes
* Limited support for interacting with host environments

• AssemblyScript
AssemblyScript is a programming language similar to TypeScript that is designed to
compile to Wasm [23]. It allows developers to write high-level code that compiles to
efficient Wasm modules.

– Pros

* Familiar syntax and tooling for TypeScript developers
* Provides type safety and high-level abstractions
* Offers seamless integration with JavaScript code and libraries
* Generates efficient Wasm modules

– Cons

* Limited support for advanced JavaScript features
* Less mature compared to mainstream programming languages
* Smaller community and ecosystem compared to other languages

• wasmino-core
Wasmino-core is a compiler and runtime for Wasm modules specifically designed for
running Wasm on resource-constrained microcontrollers [24].

– Pros

Future Internet 2023, 15, 275 31 of 77

* Optimized for microcontrollers and embedded systems
* Provides a lightweight runtime with a small memory footprint
* Supports C/C++ programming languages

– Cons

* Limited to microcontroller-specific use cases
* Less extensive tooling and community support compared to mainstream

compilers
* Limited support for advanced Wasm features

• Binaryen
Binaryen is a compiler infrastructure project that provides a suite of tools and libraries
for working with Wasm [25]. It includes a Wasm optimizer, a binary format parser,
and various other utilities.

– Pros

* Offers powerful optimization capabilities for Wasm modules
* Provides a flexible and modular toolset for working with Wasm binaries
* Supports multiple input languages, including C/C++ and Rust

– Cons

* Primarily a development library and toolset, not a standalone compiler
* Requires integration into custom build systems or toolchains
* Advanced features may require more expertise to utilize effectively

• rustc (Rust)
Rustc is the official compiler for the Rust programming language [26]. It can compile
Rust code to various target platforms, including Wasm.

– Pros

* Offers a modern and expressive programming language with strong memory
safety guarantees

* Provides efficient code generation and optimization for Wasm
* Offers seamless interoperability with JavaScript and other Wasm modules
* Benefits from the Rust ecosystem and active community support

– Cons

* Requires familiarity with the Rust programming language
* Compilation times can be slower compared to other compilers, and it may

have a learning curve for developers new to Rust.

• Zigwasm
Zigwasm is a compiler that enables developers to write code in the Zig programming
language and compile it to Wasm [27].

– Pros

* Offers a modern, expressive, and safe programming language with a focus
on performance

* Provides seamless interoperability with C and other Wasm modules
* Generates efficient Wasm code with low overhead

– Cons

* Smaller community and ecosystem compared to mainstream programming
languages

* Limited tooling and library support compared to more established languages
* May require familiarity with the Zig programming language

• fable-compiler
Fable-compiler is a compiler specifically designed for the F# programming language,
targeting JavaScript and Wasm as output formats [28].

Future Internet 2023, 15, 275 32 of 77

– Pros

* Allows developers to write code in F# and compile it to Wasm
* Offers seamless integration with JavaScript and popular web frameworks
* Provides interoperability with JavaScript libraries

– Cons

* Limited to F# programming language use cases
* Smaller community and ecosystem compared to mainstream languages
* Less mature compared to other compilers

• Pyodide
Pyodide is a project that aims to bring the Python programming language to the
web by compiling it to Wasm. It provides a way to run Python code directly in the
browser [29].

– Pros

* Enables running Python code in the browser without the need for a Python
interpreter

* Provides access to a wide range of Python libraries and packages
* Allows for interactive Python programming on the web

– Cons

* Limited to Python-specific use cases
* Python runtime in the browser may have performance limitations compared

to native Python execution
* Smaller ecosystem and community compared to mainstream Python

4.2. WebAssembly Runtimes

• Wasmer
Wasmer is a standalone runtime for executing Wasm modules. It supports multiple
programming languages and provides a secure and efficient runtime environment [30].

– Pros: Fast startup time, low memory footprint, supports multiple languages,
supports ahead-of-time (AOT) and just-in-time (JIT) compilation, extensible
with plugins.

– Cons: Limited ecosystem compared to Node.js, relatively new compared to
other runtimes.

• WAMR
WebAssembly Micro Runtime (WAMR) is a lightweight and efficient runtime designed
for resource-constrained devices [31]. It focuses on low memory usage and fast
startup time.

– Pros: Lightweight and efficient, designed for resource-constrained devices, supports
AOT and interpreter execution modes, platform-specific optimizations available.

– Cons: Limited language support compared to other runtimes, limited ecosystem
and community support.

• Node.js
Node.js is a popular JavaScript runtime that supports Wasm. It provides a rich
ecosystem and extensive libraries and tools [32].

– Pros: Vast ecosystem and community support, mature and stable runtime, easy
integration with JavaScript code, wide range of libraries and tools available.

– Cons: Relatively slower startup time and higher memory usage compared to
some other runtimes, single-threaded by default.

• Wasmtime
Wasmtime is a standalone runtime developed by the Bytecode Alliance. It focuses on
security, compatibility, and performance [33].

Future Internet 2023, 15, 275 33 of 77

– Pros: High performance, supports AOT and JIT compilation, integration with the
Cranelift code generator, compatible with multiple platforms.

– Cons: Limited language support compared to Node.js, less mature compared to
some other runtimes.

• WAVM
Wasm Virtual Machine (WAVM) is a standalone Wasm runtime designed for high-
performance applications. It focuses on providing low-latency execution [34].

– Pros: High performance, low-latency execution, supports AOT and JIT compila-
tion, compatible with multiple platforms.

– Cons: Limited language support compared to Node.js, less mature compared to
some other runtimes.

• Deno
Deno is a secure JavaScript and TypeScript runtime built on the V8 engine. It provides
first-class support for Wasm [35].

– Pros: Secure by default, built-in module system, supports TypeScript natively,
allows fine-grained control over permissions.

– Cons: Relatively new and less mature compared to Node.js, limited ecosystem
and library support.

• Lucet
Lucet is a native Wasm compiler and runtime developed by Fastly. It is designed for
high-performance serverless applications [36].

– Pros: High-performance execution, optimized for serverless use cases, low startup
time, efficient memory management.

– Cons: Limited language support compared to Node.js, specialized for serverless
environments.

• wascc
Wasm Secure Capabilities Connector (wascc) is a lightweight Wasm runtime focused
on secure and isolated execution of capabilities-based components [37].

– Pros: Secure and isolated execution, supports capabilities-based security model,
lightweight and efficient, extensible with plug-ins.

– Cons: Limited language support compared to Node.js, specialized for capabilities-
based component execution.

• Kotlin/JS
Kotlin/JS is a language and runtime combination that allows writing Kotlin code that
can be compiled to JavaScript or Wasm [38].

– Pros: Seamless integration with Kotlin language and tooling, support for multi-
platform development, interoperability with JavaScript and Wasm.

– Cons: Limited language support compared to Node.js, less mature Wasm support
compared to other runtimes.

• WasmEdge
WasmEdge is a compact, efficient, and flexible runtime environment for Wasm that
is designed to support a range of applications, including cloud-native, edge comput-
ing, and decentralized systems [39]. It provides the necessary infrastructure to run
serverless applications, embedded functions, microservices, smart contracts, and IoT
devices. WasmEdge offers high performance and can be easily extended to meet the
specific needs of different use cases.

– Pros: WasmEdge provides a secure execution environment, ensuring isolation
and protection for system resources and memory space. It is recognized for its
lightweight design and high-performance capabilities, making it suitable for
serverless computing and resource-constrained environments.

Future Internet 2023, 15, 275 34 of 77

– Cons: WasmEdge is currently not thread-safe, which may restrict its usability in
certain multi-threaded applications. While gaining popularity, its community sup-
port may not be as extensive as other well-established runtime environments, po-
tentially impacting the availability of resources and community-driven libraries.

4.3. Build Tools/Frameworks with WebAssembly Support

• CheerpX
CheerpX is a Wasm compiler that allows developers to compile C/C++ code into
Wasm modules. It provides high-performance execution of C/C++ code in web
applications, enabling developers to leverage existing codebases. CheerpX offers
build optimizations to minimize code size and improve runtime performance [40].
However, it has a limited ecosystem and community support compared to other tools,
and the learning curve can be moderate, especially for developers who are not familiar
with C/C++.

– Pros

* Provides high performance by compiling C/C++ code to Wasm
* Offers build optimizations to minimize code size and improve runtime per-

formance
* Suitable for leveraging existing C/C++ codebases in web applications

– Cons

* Limited ecosystem and community support compared to other tools/frameworks
* Moderately steep learning curve, especially for developers not familiar with

C/C++

• Go
Go is a programming language that provides native support for Wasm [41]. With
Go, developers can write web applications and compile them into Wasm modules.
It offers high-performance execution, a rich ecosystem, and easy integration with
existing Go projects. The learning curve for Go is relatively low, making it accessible
to developers. However, the IoT-specific libraries and frameworks for Go may be
limited compared to other languages, requiring additional effort for integrating with
IoT-specific hardware.

– Pros

* Provides high-performance execution of Go code using Wasm
* Offers a rich ecosystem with various libraries and frameworks for Go devel-

opment
* Easy integration with existing Go projects

– Cons

* Limited IoT-specific libraries and frameworks compared to other languages
* May require additional effort for integrating Go with IoT-specific hardware

• Webpack
Webpack is a popular build tool for JavaScript applications, including those targeting
Wasm [42]. It offers extensive configuration options and advanced build optimization
features such as code splitting and bundling. Webpack has a wide ecosystem and
community support, making it a widely adopted choice. However, the learning curve
for Webpack can be high due to its configuration complexity. Additionally, while
it is a versatile build tool, out-of-the-box support for IoT-specific development may
be limited.

– Pros

* Widely adopted build tool with extensive community support
* Offers advanced build optimization features like code splitting and bundling
* Provides a wide range of plugins and loaders for customizing the build process

Future Internet 2023, 15, 275 35 of 77

– Cons

* Higher learning curve due to its extensive configuration options
* Limited support for IoT-specific development out of the box

• Rollup
Rollup is a JavaScript module bundler that provides efficient code bundling and
tree-shaking capabilities. It is optimized for creating smaller bundles and better
performance [43]. Rollup is well-suited for building libraries or smaller web applica-
tions where size and performance optimizations are crucial. However, more complex
projects may require additional configuration. Similar to Webpack, Rollup has limited
out-of-the-box IoT-specific support.

– Pros

* Optimized for creating smaller bundles and better performance
* Offers tree-shaking capabilities to remove unused code
* Well-suited for building libraries or smaller web applications

– Cons

* Requires additional configuration for more complex projects
* Limited out-of-the-box IoT support

• Blazor
Blazor is a web framework developed by Microsoft that enables developers to build
interactive web applications using C# and .NET. It allows code sharing between
server-side and client-side, providing a familiar development experience for .NET
developers [44]. Blazor leverages Wasm to execute .NET code in the browser. While
it offers the benefits of using the C# and .NET ecosystem, the performance of Blazor
applications may be moderate compared to native JavaScript-based web applica-
tions. Additionally, IoT-specific libraries and frameworks for Blazor may be limited
compared to JavaScript.

– Pros

* Allows developers to build web applications using C# and .NET ecosystem
* Enables code sharing between server-side and client-side
* Offers familiar development experience for .NET developers

– Cons

* Moderate performance compared to native JavaScript-based web applications
* Limited IoT-specific libraries and frameworks compared to JavaScript

• wasm-bindgen
Wasm-bindgen is a Rust library that facilitates seamless integration between Rust and
JavaScript/Wasm. It enables efficient communication between Rust and JavaScript
code, allowing developers to leverage Rust’s performance and safety features in
web applications [45]. Wasm-bindgen simplifies the interaction between Rust and
JavaScript by automatically generating JavaScript bindings for Rust functions and
data structures. However, using wasm-bindgen requires knowledge of both Rust
and JavaScript, and while it offers high performance, out-of-the-box support for
IoT-specific development may be limited.

– Pros

* Provides seamless integration between Rust and JavaScript/Wasm
* Offers efficient communication between Rust and JavaScript code
* Allows leveraging Rust’s performance and safety features in web applications

– Cons

* Requires knowledge of both Rust and JavaScript for effective use
* Limited out-of-the-box IoT-specific support

Future Internet 2023, 15, 275 36 of 77

4.4. WABT: The WebAssembly Binary Toolkit

WABT is a powerful set of tools and libraries designed to work with Wasm binaries [46].
It provides developers with a comprehensive suite of utilities for manipulating, analyzing,
and optimizing Wasm modules. The WABT toolkit is an open-source project that offers
a wide range of functionalities to assist developers in working with Wasm. One of the
key features of WABT is its ability to parse Wasm binary files and generate a structured
representation of the module, allowing developers to inspect and analyze the contents of a
Wasm module. This includes information about functions, imports, exports, memory layout,
and more. By providing this low-level access to the internals of a Wasm module, WABT
enables developers to gain insights into the module’s structure and behavior, facilitating
tasks such as debugging and optimization. WABT offers a set of powerful command-
line tools that simplify the process of working with Wasm binaries. The toolkit includes
tools such as “wasm2wat” and “wat2wasm” that allow conversion between the binary
format and the human-readable Wasm Text Format (Wat). This is particularly useful
when inspecting or modifying the code of a Wasm module, as the Text Format provides
a more readable representation of the module’s instructions and structure. Additionally,
WABT provides tools for validating Wasm modules, ensuring that they conform to the
Wasm specification. The “wasm-validate” tool can check the correctness and integrity
of a WebAssembly module, helping developers to catch errors and potential security
vulnerabilities early in the development process. This validation step is crucial for ensuring
the safe execution of WebAssembly code. Another noteworthy component of WABT
is the “wasm-opt” tool, which performs a variety of optimizations on WebAssembly
modules. These optimizations can significantly improve the performance and efficiency of
WebAssembly code, making it run faster and consume fewer resources. The “wasm-opt”
tool applies transformations such as dead code elimination, function inlining, constant
folding, and more, resulting in optimized Wasm modules that deliver better execution times
and reduced memory footprint. In addition to the command-line tools, WABT provides a
C and C++ API that allows developers to incorporate Wasm manipulation and analysis
capabilities directly into their own applications. This API provides a convenient interface
for working with Wasm modules programmatically, enabling tasks such as dynamic module
loading, code generation, and custom analysis. The WABT provides a rich set of toolsets
that assist developers in working with Wasm binaries. Among the key tools offered by
WABT are:

• wat2wasm
This tool enables the translation of Wasm text format (also known as .wat files) into
the Wasm binary format. It allows developers to write and edit Wasm modules in a
human-readable text format.

• wasm2wat
The inverse of wat2wasm, wasm2wat converts Wasm binary files back to the text
format. It provides a way to inspect and understand the contents of a Wasm module
in a readable and understandable form.

• wasm-objdump
This tool provides detailed information about a Wasm binary file. Similar to the tradi-
tional objdump tool used for object files, wasm-objdump can display various aspects
of a Wasm module, such as sections, function names, and control flow structures.

• wasm-interp
Using a stack-based interpreter, wasm-interp allows the decoding and execution of
Wasm binary files. It provides a runtime environment to run and test Wasm modules
without the need for a browser or dedicated runtime.

• wasm-decompile
This tool decompiles Wasm binaries into a C-like syntax, making the code more
readable and understandable. It can assist in analyzing and reverse-engineering
Wasm modules.

• wat-desugar

Future Internet 2023, 15, 275 37 of 77

Wat-desugar parses Wasm text files in various supported formats (such as s-expressions,
flat syntax, or mixed) and prints them in a canonical flat format. It helps in standardiz-
ing and normalizing Wasm source code.

• wasm2c
Wasm2c converts Wasm binary files to C source code and header files. This allows
developers to integrate Wasm modules into existing C projects or embed them in
C-based applications.

• wasm-strip
This tool removes unnecessary sections from a Wasm binary file, reducing its size and
removing any debug or non-essential information.

• wasm-validate
Wasm-validate verifies the validity and correctness of a Wasm binary file. It performs
a series of checks to ensure that the module adheres to the Wasm specification.

• wast2json
Wast2json converts files in the Wasm spec test format to JSON files and generates
associated Wasm binary files. This tool aids in running and analyzing the official
Wasm specification tests.

• wasm-opcodecnt
Wasm-opcodecnt counts the usage of individual Wasm opcodes or instructions within
a binary file. It provides insights into the composition and distribution of instructions
in a module.

• spectest-interp
Spectest-interp reads a Spectest JSON file and executes its tests using the Wasm
interpreter. It helps ensure compliance with the official Spectest suite for Wasm.

4.5. WASM Versus WASI Versus WAGI

Wasm, WASI, and WAGI are three important technologies that contribute to the
advancement of Wasm and its applications in web and system development. This section
delves deeper into each of these technologies and explores their unique characteristics and
contexts. Table 7 presents a comparison of WASM, WASI, and WAGI.

• Wasm

– Purpose: Wasm is designed to deliver high-performance code execution in web
browsers and other environments. It aims to bridge the gap between high-level
programming languages and the performance available with lower-level lan-
guages, allowing developers to run computationally intensive tasks on the web.

– Use Cases: Wasm finds applications in various areas, including web applications
that require near-native performance, porting existing applications to the web,
gaming, multimedia, virtual reality, and augmented reality.

– Advantages:

* Performance: Wasm offers excellent performance due to its compact binary
format, which allows for efficient parsing and execution.

* Language-Agnostic: Wasm supports multiple programming languages, en-
abling developers to write code in their preferred language and compile it
to Wasm.

* Portability: Wasm is designed to be platform-independent, enabling code to
run consistently across different systems and devices.

* Web Ecosystem Integration: Wasm integrates seamlessly with the web plat-
form, allowing access to web APIs and facilitating interactions with JavaScript.

– Limitations:

* Limited System Access: Wasm operates within a sandboxed environment,
providing security by restricting direct access to system resources.

Future Internet 2023, 15, 275 38 of 77

* Lack of Standardized System Interface: Wasm does not define a standard
system interface, which limits its direct interaction with the underlying
operating system.

• WASI

– Purpose: WASI extends the capabilities of Wasm by providing a standardized
system interface [47,48]. It enables Wasm modules to interact with the host
operating system in a secure and platform-agnostic manner.

– Use Cases: WASI is particularly useful for system-level programming within the
Wasm environment, where access to system resources such as file I/O, network
communication, and system libraries is required.

– Advantages:

* Standardized System Interface: WASI defines a set of system calls and APIs
that facilitate interactions with the host operating system in a consistent and
portable manner.

* Sandboxed Environment: WASI ensures secure and isolated execution of
Wasm modules by enforcing restrictions on system-level interactions.

* Portability: WASI enables Wasm modules to run on different platforms
without modification, as it abstracts the underlying host operating system.

* Compatibility: WASI allows developers to write code that can be executed
on various WASI-compliant runtimes and environments.

– Limitations:

* Restricted System Access: Although WASI provides a standardized system
interface, it imposes certain restrictions to maintain security and prevent
unauthorized access to system resources.

* Limited to Wasm Execution Environment: WASI is primarily focused on
providing system-level interactions within the Wasm execution environment
and does not extend to other technologies or platforms.

• WAGI

– Purpose: WAGI is a specification that defines a standard interface for running
Wasm modules as HTTP serverless functions [49,50]. It simplifies the deploy-
ment and scaling of serverless applications by leveraging the versatility of
Wasm modules.

– Use Cases: WAGI is particularly useful for building lightweight serverless appli-
cations, microservices, and APIs using Wasm modules.

– Advantages:

* Serverless Architecture: WAGI leverages the serverless paradigm, allow-
ing developers to focus on writing business logic in Wasm modules while
abstracting away server management and scalability concerns.

* Language-Agnostic: WAGI supports serverless functions written in different
programming languages that can be compiled to Wasm, providing flexibility
for developers.

* Scalability and Portability: WAGI simplifies the deployment and scaling of
serverless applications by providing a standardized interface that can be
used across multiple cloud providers and platforms.

* Efficient Execution: Wasm’s compact binary format and optimized execution
enable fast and efficient execution of serverless functions.

– Limitations:

* Limited System Access: Similar to Wasm and WASI, WAGI operates within a
sandboxed environment, preventing direct access to system-level resources.

* Focused on HTTP Serverless Functions: WAGI is primarily designed for
building HTTP-based serverless functions, and may not be suitable for all
types of applications or use cases.

Future Internet 2023, 15, 275 39 of 77

Table 7. Comparison of WASM, WASI, and WAGI.

Features Wasm WASI WAGI

Purpose
High-performance code execution in
web browsers and other
environments

Standardized system interface for
Wasm modules

Running Wasm modules as HTTP
serverless functions

Use Cases
Web applications, gaming,
multimedia, VR/AR, porting
applications to the web

System-level programming within
Wasm, secure sandboxed execution

Serverless applications,
microservices, APIs

Portability Platform-independent Platform-independent Platform-independent

Language Agnostic Supports multiple
programming languages

Supports multiple
programming languages

Supports multiple
programming languages

Integration with
Web Platform

Seamless integration with web APIs
and JavaScript

Interaction with host operating
system in a secure and
platform-agnostic manner

Leveraging Wasm modules for
serverless functions

System Access Restricted access to system resources Standardized system interface for
controlled system access Restricted access to system resources

Scalability Suitable for various scales
of applications NA Scalable deployment and

management of serverless functions

Security Sandboxed environment with
limited system access

Secure execution within
controlled boundaries

Sandboxed environment with
limited system access

Interoperability Compatible with multiple runtimes
and environments

Compatible with multiple runtimes
and environments

Compatible with multiple cloud
providers and platforms

Performance Near-native execution speed NA High-performance execution for
serverless functions

Ecosystem Support Large and growing ecosystem of
tools, libraries, and frameworks NA

Growing ecosystem of
WAGI-compatible tools
and integrations

Community Engagement Active community contributions
and collaboration NA Active community involvement

and contributions

IoT Applications Efficient execution on
resource-constrained IoT devices

Standardized system interface for
secure interaction with IoT devices

Integration of Wasm modules for IoT
gateway applications

Device Compatibility Works on a wide range of IoT
devices with Wasm support

Depends on the availability of a
WASI-compliant runtime on
the device

Works on IoT gateways capable of
running WAGI-compatible servers

Low Power Consumption Can be optimized for low power
consumption in IoT scenarios NA

Optimized for low power
consumption in IoT
gateway applications

Real-Time Processing Supports real-time processing
requirements in IoT applications

Depends on the capabilities of the
underlying WASI runtime

Real-time processing capabilities for
IoT gateway applications

NA represents no data availability.

4.6. WebAssembly Standardized Features for Existing Web Browsers and Tools

• JS BigInt to Wasm i64 Integration
The initiation for Wasm BigInt<->i64 conversion in the JS API has been incorporated
into the main specification. As a result, BigInts now have the ability to convert back
and forth between 64-bit integer Wasm values. This conversion can be applied to
parameters and return values of exported Wasm functions, as well as parameters and
return values of host functions. Additionally, BigInts can be used with imported and
exported globals. Reading from or writing to Wasm memory using BigInt64Array or
BigUint64Array, as introduced in the BigInt proposal, can be done without requiring
any additional support.

• Bulk Memory Operations
The introduction of Bulk Memory Operations and Conditional Segment Initialization
in Wasm addresses specific needs and optimizations related to memory operations
and segment initialization.

Future Internet 2023, 15, 275 40 of 77

Bulk Memory Operations (BMO) were introduced in response to observations that
functions such as memcpy and memset are frequently used and can significantly impact
performance in Wasm benchmarks. This proposal aims to provide more efficient mem-
ory copying and filling operations. A prototype implementation of the memory.copy
instruction was created, comparing it to an existing implementation generated by
emscripten. The benchmark tests the performance of copying size bytes of data from
one address to another without overlapping, and repeats this process N times. The
results show potential for significant performance improvements with optimized bulk
memory operations.
Conditional Segment Initialization (CSI) is motivated by the need to share Wasm
modules among multiple agents. Under the current threading proposal, if a module
is shared, it needs to be instantiated multiple times, potentially resulting in multiple
initializations of linear memory and overwriting of stores. CSI introduces the concept
of passive segments that are not automatically copied into memory or tables during
instantiation. Instead, they require manual application using the new memory.init and
table.init instructions. By distinguishing between active and passive segments, finer
control over memory initialization is achieved, ensuring proper sharing of modules
without data corruption.
The design of BMO involves new instructions such as memory.copy, table.copy, and
memory.fill. These instructions enable efficient copying and filling of memory regions
and tables. The binary format for the data section includes segments with a memory
index, an initializer expression for offset, and raw data. The proposal repurposes
the memory index field to serve as a flags field, allowing for additional meanings
attached to nonzero values. Passive segments, indicated by the low bit of the flags
field, are not automatically copied on instantiation, and require manual application
using memory.init and table.init instructions. Segments can be shrunk to size zero using
the data.drop and elem.drop instructions. As with passive segments, active segments
have an implicit initialization and drop process as part of the module’s start function.
Furthermore, the reference-types proposal introduces the notion of function refer-
ences, and allows element segments to be used for forward-declaring functions with
addresses that will be taken. The proposal introduces the bulk instructions table.fill
and table.grow, which take a function reference as an initializer argument.
The validation process and initialization behavior are updated with the bulk memory
scheme. Active segments are initialized in module-definition order, with out-of-
bounds checks to prevent instantiation failures. Data that have already been written
for previous in-bounds segments remain unchanged.
Instructions such as memory.init, data.drop, memory.copy, memory.fill, table.init, elem.drop,
and table.copy enable efficient segment initialization, copying, and filling operations in
Wasm. The parameters and signatures of these instructions determine the source and
destination addresses, offsets, and sizes, ensuring that bounds checks are performed
to prevent memory access violations.
The introduction of the DataCount section addresses the issue of memory.init and
data.drop instructions breaking the guarantee of single-pass validation. This new
section provides information about the number of data segments defined in the Data
section, enabling proper validation during the parsing of the Code section.
Overall, these proposals enhance the memory management capabilities of Wasm,
allowing for more efficient memory operations, controlled initialization of segments,
and optimized sharing of modules among multiple agents.

• Extended Constant Expressions
This approach aims to expand the capabilities of constant expressions in Wasm. The
current specification for constant expressions is limited, and was always intended to
be extended. This proposal introduces new instructions that can be used in constant
expressions, enhancing the flexibility and functionality of this feature.

Future Internet 2023, 15, 275 41 of 77

The main motivation behind this approach comes from LLVM, where the use of
integer addition in global initializers and segment initializers could provide significant
benefits. These use cases are particularly relevant for dynamic linking, which is
currently an experimental feature.
In dynamic linking scenarios, data segments are relative to a global import named
“__memory_base,” which is supplied by the dynamic linker. However, the current
limitations prevent the expression “__memory_base + CONST_OFFSET” from being
used in segment initializers. As a result, all memory segments need to be combined
into one. Additionally, the linker has to generate dynamic relocations for certain Wasm
globals due to the inability to initialize a global with the value of “__memory_base
+ CONST_OFFSET”. This situation arises when the static linker determines that a
symbol is local to the module, resulting in the creation of a new global that points to a
data segment, i.e., its value is an offset from “__memory_base” or “__table_base,” which
are themselves imported.
This concept introduces several new instructions that are considered valid constant
instructions. These instructions include integer addition, subtraction, and multiplica-
tion for both 32-bit and 64-bit integers. The new instructions provide more flexibility
and enable complex constant expressions to be used in Wasm programs.
The concept has made progress in terms of implementation across various platforms
and tools. The spec interpreter, Firefox, Chrome/v8, wabt, LLVM, binaryen, and
emscripten have all implemented support for the extended constant instructions.
However, the implementation status in Safari is currently unknown.
This technqiue expands the capabilities of constant expressions in Wasm, addressing
the limitations of the current specification. By introducing new instructions and
enabling more complex expressions, developers can leverage enhanced functionality
in their Wasm programs.

• Multi-Value
The Multi-Value Extension approach aims to enhance the functionality of Wasm by
allowing functions, instructions, and blocks to consume multiple operands and pro-
duce multiple results. While the current specification limits functions and instructions
to at most one result, this proposal seeks to generalize them to accept and produce
multiple values. The concept of multi-value semantics is well-understood and has
been implemented in platforms such as V8.
The motivation behind this concept is to address the asymmetries in the current Wasm
design, which restrict functions and instructions to a single result. By enabling multiple
return values for functions and instructions, several benefits can be achieved. This
includes the ability to unbox tuples or structs returned by value, efficient compilation
of multiple return values, and support for instructions that produce several results,
such as divmod or arithmetic operations with carry.
Additionally, allowing inputs to blocks opens up new possibilities. Loop labels can
have arguments, enabling the representation of phis on backward edges and facili-
tating the future implementation of a pick operator that can cross block boundaries.
The macro-definability of instructions with inputs is enabled, allowing for concise and
expressive code patterns.
This technique provides examples to illustrate the usage of multiple return values,
instructions with multiple results, and blocks with inputs. These examples showcase
how the extension enhances the flexibility and expressiveness of Wasm programs. For
instance, a swap function can be defined to exchange two values, an addition function
can produce an additional carry bit, and instructions such as divrem and add_carry
can produce multiple results.
This changes to the Wasm specification in this approach mainly involve the general-
ization of type syntax. The resulttype is extended from [valtype?] to [valtype*], allowing
for multiple values. Block types in block, loop, and if instructions are generalized

Future Internet 2023, 15, 275 42 of 77

from resulttype to functype. Validation rules are adjusted accordingly, removing arity
restrictions and replacing “?” with “*” in type occurrences.
The execution of multiple results involves replacing “?” with “*” and handling the
entry of blocks with operands by popping the values from the stack and pushing them
back after the label.
The binary format requires an extension to support function types as block types, allow-
ing references to function types. The text format undergoes minimal changes, primarily
in the syntax for block types, which is generalized to accommodate multiple values.
The scheme addresses the typing of administrative instructions and provides a for-
mulation of formal reduction rules. Possible alternatives and extensions are under
discussion, including more flexible block and function types using references to the
type section or unifying the encoding of block types with function types.
An open question is whether locals are sufficient for destructuring or reshuffling
multiple values, or if additional instructions such as pick or let should be introduced
to enhance these capabilities.
In summary, the Multi-Value Extension expands the capabilities of Wasm by enabling
functions, instructions, and blocks to consume and produce multiple operands and
results. This extension enhances expressiveness, facilitates efficient compilation, and
opens up new possibilities for code patterns and optimizations.

• Mutable Globals
Import/Export Mutable Globals aims to address the inconvenience of providing
mutable thread-local values in Wasm that can be dynamically linked. The proposal
focuses on the ability to import and export mutable globals, specifically using the C++
stack pointer (SP) as a motivating example. While the examples revolve around the
SP, the rationale can be extended to other thread-local variables or the TLS pointer
itself. The motivation behind this concept stems from the limitation of not being able
to import or export mutable globals in the MVP of Wasm. To illustrate the need for
mutable globals, consider the scenario of dynamically linking two modules, m1 and
m2, both utilizing the C++ stack pointer. In the MVP, this cannot be achieved directly.
In a single-agent program, a workaround involves storing the stack pointer in linear
memory. However, this solution fails when linear memory is shared, as each agent
requires a different memory location for its stack pointer. The scheme presents several
solutions to address the challenge of importing and exporting mutable globals.

– Solution 1
Use Per-Module Immutable Global: one approach is to utilize a per-module
immutable global to store the location of the SP in linear memory. This can be
extended to other thread-local variables as well. However, this solution has
drawbacks, such as the need to read the global every time the SP is accessed and
the SP in linear memory being vulnerable to to interference from other agents.

– Solution 2
Use Internal Mutable Global with Shadow in Linear Memory: a mutable global
can be employed to optimize SP access. In this approach, the SP is stored in a
mutable global, and when crossing module boundaries it is spilled to linear mem-
ory in the caller and loaded in the callee. Although this solution could be further
optimized, such as spilling SP only when necessary, it incurs additional overhead
for every function call and requires spilling and loading of other thread-local
values in the same manner. Moreover, the SP remains susceptible to interference
from other agents.

– Solution 3
Modify Function Signature to Pass SP as Parameter: instead of spilling the SP
to linear memory, it can be passed as a parameter in function signatures. How-
ever, because it is not known whether an imported function will use the SP, all
exported functions must be modified accordingly. The SP value is ultimately
saved in a mutable global and loaded from the parameter at function entry points.

Future Internet 2023, 15, 275 43 of 77

This approach provides an optimization, as passing the SP to all functions is
unnecessary and it is only required for exported functions.

– New Solution for Globals using Wasm.Global:
the new solution suggests loosening the restriction on importing and exporting
mutable globals to provide a better solution for thread-local values. This allows
for the usage of mutable globals as thread-local storage. In the web binding,
exported globals are of the Wasm.Global type rather than being converted to
JavaScript Numbers. A Wasm.Global object comprises a single global value that
can be simultaneously referenced by multiple Instance objects. Each Global object
has two internal slots.

The Import/Export Mutable Globals scheme aims to enhance Wasm’s capabilities by
allowing the import and export of mutable globals. This enables the provision of
mutable thread-local values that can be dynamically linked, addressing scenarios
such as utilization of the C++ stack pointer. This proposal presents multiple solutions,
highlighting the benefits and drawbacks of each approach. By allowing the import
and export of mutable globals, Wasm gains greater flexibility in handling thread-local
variables and opens up new possibilities for dynamic linking.

• Reference types
The Reference Types for Wasm proposal aims to introduce new types and instructions
to enhance interoperation with the host environment and provide more flexibility
within Wasm. The motivation behind this proposal includes easier and more efficient
interoperability, manipulation of tables (paving the way for future extensions), and
smoother transition paths to features such as garbage collection.
The proposal introduces the following key additions.

– New Types
The schem adds the type “externref,” which can be used as both a value type and
a table element type. Additionally, “funcref” is introduced as a value type.

* Table Instructions
Instructions are provided to get and set table slots, ensuring that basic manip-
ulation of tables is possible within Wasm. Furthermore, missing instructions
such as table size, grow, and fill are added.

* Multiple Tables
The scheme allows for the use of multiple tables, increasing flexibility and
enabling more complex data structures.

– Possible Future Extensions
The technique mentions potential future extensions that could be explored.

* Subtyping
The introduction of a simple subtype relation between reference types to
enable various extensions.

* Equality on References
Allows references to be compared by identity while ensuring implementation
details are not observable in a non-deterministic manner.

* Typed Function References
Enhances the representation of function pointers and enables the easy passing
of functions between modules.

* Down Casts
Introduces a cast instruction to enable the implementation of generics using
anyref as a top type. It is worth noting that several of the future exten-
sions mentioned here are covered by separate proposals, such as the Typed
Function References proposal and the garbage collection proposal.

The Reference Types proposal for Wasm suggests the introduction of new types, in-
structions, and features to improve interoperability, table manipulation, and flexibility

Future Internet 2023, 15, 275 44 of 77

within Wasm. These additions aim to enhance the overall capabilities of Wasm while
setting the stage for potential future extensions.

• Non-Trapping float-to-int Conversions
The Non-Trapping Float-to-Int Conversions technique aims to address the undefined
behavior of float-to-int conversions in LLVM and establish a convention for saturating
operations. The primary motivations behind this proposal are to improve the consis-
tency of float-to-int conversions and provide a convention that can be shared with
SIMD operations to avoid trapping.
The motivation for this scheme stems from LLVM’s undefined result for float-to-int
conversions and the desire for SIMD operations to behave more like SIMD hard-
ware without trapping. The proposal aims to establish a convention for saturating
operations that can be used by SIMD operations, ultimately avoiding trapping. It
is important to note that this proposal is driven by the desire for consistent and
non-trapping conversions, not performance concerns.
The issue of non-trapping float-to-int conversions has been discussed in various con-
texts, including GitHub issues and CG meetings. The discussions have involved con-
siderations of performance effects and encoding strategies. While initial performance
concerns were addressed through implementation fixes, no real-world performance
problems related to this issue have been reported.
The scheme introduces eight new instructions that provide saturating versions of
float-to-int conversions for both signed and unsigned integers. The semantics of these
instructions are the same as the corresponding non-saturating instructions, with the
following differences:

– Instead of trapping on positive or negative overflow, the saturating instructions
return the maximum or minimum integer value, respectively, without trapping.

– Instead of trapping on NaN, the saturating instructions return 0 without trapping.

To accommodate the new instructions, a new prefix byte is introduced, labeled “misc”,
which is intended to be used for future miscellaneous operations. The encodings
for the new instructions utilize this prefix, allowing for clear differentiation from
other instructions. The Non-Trapping Float-to-Int Conversions proposal presents a
solution to the undefined behavior of float-to-int conversions in LLVM and introduces
saturating versions of the instructions. By providing consistent and non-trapping
conversions, this proposal aims to enhance the reliability and predictability of float-to-
int conversions in Wasm.

• Sign-extension Operations
The Sign-Extension Operators proposal focuses on introducing new sign-extension
operators as a post-MVP feature for Wasm. This proposal aims to add support for
sign-extending 8-bit, 16-bit, and 32-bit values with the introduction of five new inte-
ger instructions.
To facilitate sign-extension, five new sign-extension operators are proposed:

– i32.extend8_s: sign-extend a signed 8-bit integer to a 32-bit integer.
– i32.extend16_s: sign-extend a signed 16-bit integer to a 32-bit integer.
– i64.extend8_s: sign-extend a signed 8-bit integer to a 64-bit integer.
– i64.extend16_s: sign-extend a signed 16-bit integer to a 64-bit integer.
– i64.extend32_s: sign-extend a signed 32-bit integer to a 64-bit integer.

It was later added for consistency, as its behavior differs from i64.extend_s/i32.
The instruction syntax and binary format are modified to accommodate the new sign-
extension operators. The instruction syntax is expanded to include the new operators,
while the binary format assigns specific values to each operator for encoding purposes.
The Sign-Extension Operators proposal offers an enhancement to Wasm by introducing
new instructions that enable sign-extension for various integer sizes. By incorporating
these sign-extension operators, Wasm gains increased flexibility and functionality in
working with signed integer values.

Future Internet 2023, 15, 275 45 of 77

• Fixed-Width SIMD
This specification presents an extension to Wasm that introduces a 128-bit packed
Single Instruction Multiple Data (SIMD) feature. This extension is designed to effi-
ciently leverage the capabilities of current instruction set architectures commonly used
in hardware.
The primary motivation behind this proposal is to enable Wasm to utilize the SIMD in-
structions available in hardware, thereby achieving performance levels close to native
execution speed. SIMD instructions in hardware allow simultaneous computations
on packed data within a single instruction, often employed to enhance multimedia
application performance. This proposal defines a portable subset of operations that
closely aligns with commonly used SIMD instructions found in modern hardware.
The Wasm extension introduces a new value type called v128 that is specifically
tailored for SIMD operations. The v128 type corresponds to a 128-bit representation
with bits numbered from 0 to 127. It serves as a mapping to a vector register in
SIMD instruction set architectures. The interpretation of the 128 bits within the vector
register is determined by individual instructions. When representing a v128 value as
16 bytes, bits 0-7 are stored in the first byte, with bit 0 as the least significant bit (LSB);
bits 8-15 are stored in the second byte, and so on.
The v128 SIMD type is versatile and capable of representing various types of packed
data. For example, it can represent four 32-bit floating-point values, eight 16-bit signed
or unsigned integer values, and more.
Instructions in this specification follow a naming convention: interpretation.operation.
The interpretation prefix indicates how the bytes of the v128 type are interpreted by
the operation. For instance, the f32x4.extract_lane and i64x2.extract_lane instructions
perform the same operation of extracting the scalar value of a vector lane. How-
ever, the f32x4.extract_lane instruction returns a 32-bit floating-point value, while the
i64x2.extract_lane instruction returns a 64-bit integer value.
The v128 vector type interpretation treats the vector as a collection of bits. The
vlane_widthxn interpretations (e.g., v32x4) view the vector as n lanes, each consisting of
lane_width bits. The tlane_widthxn interpretations (e.g., i32x4 or f32x4) treat the vector
as n lanes, with each lane having a type of tlane_width.
Attempting to access SIMD types in Wasm module imports or exports from JavaScript
results in an error.
If an imported function in JavaScript expects or returns a v128-type argument or result,
invoking that function immediately throws a TypeError.
When instantiating a Wasm module using a moduleObject, an exception of type Link-
Error is thrown if a global value has the type v128 and the imported object is not
a Wasm.Global.

• Tail Calls
This scheme aims to enable tail call optimizations in Wasm, which are currently
prohibited. Tail call elimination is crucial for correct and efficient implementations
of languages that rely on this optimization, as well as for certain compilation and
optimization techniques such as dynamic recompilation, tracing, and CPS. By intro-
ducing tail call support, Wasm can better handle control constructs such as co-routines,
continuations, and finite state machines.
Tail calls involve unwinding the current call frame before performing the call, re-
gardless of any differences between the caller and callee functions. This proposal
introduces explicit tail call instructions distinct from the regular call instructions that
explicitly disallow TCE. Tail calls behave as a combination of a return instruction
followed by a call instruction, unwinding the operand stack similar to a return and
keeping only the necessary call arguments. While tail calls to host functions cannot
guarantee tail behavior (beyond the scope of the specification), tail calls across Wasm
module boundaries do guarantee tail behavior.

Future Internet 2023, 15, 275 46 of 77

Tail calls are performed using separate call instructions designed explicitly for tail calls.
This proposal introduces a tail version of each existing call instruction. An alternative
approach involving a single instruction prefix applicable to every call instruction was
considered and rejected by the WebAssembly Community Group. Although Wasm may
include additional call instructions in the future, such as call_ref, the use of instruction
prefixes as modifiers is not employed elsewhere in the Wasm specification.
Tail calls behave as a combination of return and call instructions, as they unwind
the operand stack similar to a return instruction. They only retain the necessary call
arguments. It is important to note that tail calls to host functions cannot guarantee tail
behavior, whereas tail calls across Wasm module boundaries do ensure tail behavior.
Tail call instructions are stack-polymorphic due to their combining call and return op-
erations. Previously, there was a question of whether tail calls should induce different
function types. Four possibilities were considered: distinguishing tail-callees by type,
distinguishing tail-callers by type, both, or neither. After careful consideration, the
fourth option was chosen as the simplest option conceptually. Experimental validation
showed no significant performance benefit to the first option, and bifurcating the
function space with the third option could lead to difficulties with function tables and
dynamic indirection.
Validating the new instructions combines the typing rules for returns and the existing
call instructions, resulting in stack-polymorphic behavior. The type of a return_call
instruction with function index x is derived from the type of the function referred
to by x. If x has a function type [t1*] -> [t2*], then return_call x has the type [t3* t1*]
-> [t4*], where t3* and t4* can be any types provided that the current function has a
return type of [t2*]. The same principle applies to return_call_indirect instructions.
The execution semantics of the new instructions involve popping the call operands,
clearing and popping the topmost stack frame like a return instruction, pushing
back the operands, and then delegating to the semantics of the corresponding plain
call instructions.
The reserved opcodes following the existing call instructions are used for the new
instructions in the binary format; specifically, return_call is represented by 0x12 and
return_call_indirect is represented by 0x13.
Table 8 presents a comparison of existing WebAssembly standardized features in
various web browsers and tools.

Table 8. Comparison of existing WebAssembly standardized features in various web browsers
and tools.

Standardized
Features Chrome Firefox Safari Wasmtime Wasmer Node.js Deno wasm2c

JS BigInt to Wasm
i64 integration 85 78

Supported in
desktop Safari
since 14.1 and
iOS Safari since
14.5

N/A N/A 15 1.1.2 N/A

Bulk memory
operations 75 79 15 0.2 1 12.5 0.4 1.0.30

Extended constant
expressions 114

Enabled in
Nightly,
unavailable in
Beta/Release

N/A N/A N/A

Requires flag
–experimental-
wasm-
extended-const

Requires flag
–v8-flags=–
experimental-
wasm-
extended-const

N/A

Multi-value 85 78 Yes 0.17 1 15 1.3.2 1.0.24

Mutable globals 74 61 Yes Yes 0.7 12 0.1 1.0.1

Reference types 96 79 15 0.2 2 17.2 1.16 1.0.31

Future Internet 2023, 15, 275 47 of 77

Table 8. Cont.

Standardized
Features Chrome Firefox Safari Wasmtime Wasmer Node.js Deno wasm2c

Non-trapping
float-to-int
conversions

75 64 15 Yes Yes 12.5 0.4 1.0.24

Sign-extension
operations 74 62

Supported in
desktop Safari
since 14.1 and
iOS Safari since
14.5

Yes Yes 12 0.1 1.0.24

Fixed-width SIMD 91 89 16.4 0.33 2 16.4 1.9 N/A

Tail calls 112 N/A N/A N/A N/A

Requires flag
–experimental-
wasm-return-
call

Requires flag
–v8-flags=–
experimental-
wasm-return-
call

N/A

Number in each cell represents the version number as on July 2023.

5. State-of-the-Art

In this section, existing research articles and review papers are presented. First,
selected review articles are presented. Later, the rest of the literature is segregated into the
categories of operating system development, IoT programming, virtual machine debugging,
development environment, access control network, secure execution, containerization,
serverless aspects, evaluation, and edge–cloud integration.

5.1. Selected Articles on IoT-Wasm

This subsection includes the articles that have discussed the use of Wasm in IoT and
edge ecosystems in the recently published literature.

In [51], the authors introduced the use of Wasm as an application virtual machine
in embedded systems, which are prevalent in IoT deployments. The work provides an
overview of Wasm’s basic concepts, the current runtime environments, and challenges
involved in its efficient implementation in embedded systems. The paper concludes with a
case study illustrating Wasm’s practical applications and a discussion of unresolved issues
and future work. Another study [52] explored the potential of Wasm for the development
of comprehensive IoT applications. It posits that Wasm can run identical application
code on a diverse range of devices in a headless mode outside of the web browser. To
mitigate the issues of IoT edge devices related to latency, privacy, compatibility, and
migratability, ref. [53] addresses the emerging interest, fueled by latency and privacy
concerns, in computational offloading to the edge, along with the proliferation of smart
and IoT devices. It focuses on code compatibility as a core challenge in achieving a stable
edge-offloading platform due to the varied nature of edge devices. Furthermore, the
article suggests leveraging Wasm for edge computing and compares its performance and
potential to other solutions. Several methods to achieve migratability with Wasm are
proposed, alongside an analysis of their trade-offs and deployment costs. In [54], the
authors provided an overview of the evolution of virtualization technologies culminating
in the advent of Wasm. It outlines how the focus has shifted from virtual machines to Linux
containers and now to Wasm, a computation unit within a Linux process. Wasm, as an
industry-wide collaborative effort by major tech players, offers improved security, speed,
and portability for a range of applications, including serverless workloads. The paper
discusses the application of Wasm in IoT devices, its potential in serverless deployments,
and its built-in security capabilities. Other topics discussed include the stack-based virtual
machine operation of Wasm runtimes, its universal bytecode format, and future proposals
for additional data types in Wasm. The document introduces the WAS, which allows
interoperability across different Wasm runtimes. The thesis in [55] presented a systematic
literature review involving various use cases, key aspects, possibilities, and challenges in

Future Internet 2023, 15, 275 48 of 77

the Wasm-enabled IoT ecosystem. Lastly, ref. [56] provides a practical guide to embedded
programming in book form, focusing on low-powered devices and complex IoT systems
using TinyGo and Wasm. It offers hands-on DIY projects to demonstrate how to build
embedded applications and program sensors, and to work with microcontrollers such as
Arduino UNO and Arduino Nano IoT 33. The book aim to educate its readers on the use
of TinyGo to program and interact with various sensors, hardware devices, and network
protocols, and guides the integration of TinyGo in modern browsers using Wasm.

5.2. OS Development

The operating system is a key component for managing the activities of Wasm. Was-
machine, an operating system designed to securely and efficiently run Wasm applications
in IoT and Fog devices with constrained resources, is presented in [57]. Instead of the
conventional approach, Wasmachine compiles Wasm ahead-of-time (AOT) into native
binary, executing it in kernel mode to enable zero-cost system calls. To ensure memory
safety, Wasmachine’s OS kernel is implemented in Rust. By utilizing Wasm’s sandboxing
features, Wasmachine achieves high security. Benchmark tests have demonstrated Wasma-
chine’s performance, revealing up to an 11% speed advantage over Linux. Adoption of
Wasm for non-web environments is tricky due to its high portability and security. Another
similar study [58] acknowledges the performance gap of Wasm with native code, primarily
due to the conventional Wasm runtimes’ lack of complex code optimization and the high
overhead of system calls. It uses Wasmachine with an improved performance evaluations,
with results indicating that Wasm applications running on Wasmachine are up to 21%
faster than native Linux applications. Another work [59] introduces ThingSpire OS, an IoT
operating system that integrates cloud–edge computing through Wasm. Wasm is central to
ThingSpire OS’s design, which uses it to ensure consistent execution across IoT devices,
edges, and the cloud. ThingSpire OS employs a Wasm runtime based on Ahead-of-Time
(AoT) compilation to facilitate efficient execution on resource-constrained devices. Other
notable features include seamless inter-module communication regardless of the modules’
locations and optimizations such as lightweight pre-emptible invocation for memory isola-
tion and control-flow integrity. The abstract concludes with a brief mention of preliminary
evaluations on the prototype of ThingSpire OS’s intermodule communication performance.

5.3. IoT Programming

WiProg is an integrated IoT application programming solution based on Wasm, ad-
dressing the challenges of platform dependency and inefficient migration across device,
edge, and cloud environments [60]. By enabling edge-centric programming through
peripheral-accessing SDKs and computation placement annotations, WiProg optimizes for
efficiency in the IoT application lifecycle. Through dynamic code offloading and compact
memory snapshotting, WiProg ensures reduced energy consumption and execution time.
Developers are provided with interfaces for customization of offloading policies. Real-
world application and computation benchmark results demonstrate an average reduction in
energy consumption and execution time between 18.7–54.3% and 20.1–57.6%, respectively.
In [61], the authors introduced an automated static program analysis designed to enhance
the security of Wasm applications. Noting the security challenges that have exposed users
of Wasm websites to malicious code, they proposed a compositional analysis focused on
information flow. For every Wasm function, a summary is computed to soundly depict
where information from its parameters and the global program state can flow. The sum-
maries can then be applied during subsequent function call analyses. The approximation
of the information flow in the Wasm program is achieved through a classical fixed-point
formulation. The proposed method proved effective on a set of 34 benchmark programs,
with at least 64% of function summaries precisely computed in less than a minute. A sucre
programming approach was discussed in [62] to investigate the feasibility of obfuscation
techniques for Wasm programs. The authors explored numerous obfuscation techniques
applied to both benign Wasm-based web applications and cryptojacking malware instances.

Future Internet 2023, 15, 275 49 of 77

In [63] the authors used a WebAssembly interpreter (WAMR) embedded in the DoRIoT soft-
ware stack to address issues of security, scheduling, and coordination. This approach offers
a user-friendly programming environment that does not limit developers to hardware-
oriented paradigms and languages, supporting standard building blocks and language
choices by introducing a Wasm toolchain and architecture that supports the orchestration
of multiple parallel requests.

5.4. Debugging

Traditional offline debugging techniques such as logs and dumps are unsuitable for
IoT due to their overhead on devices and their inability to capture contextual informa-
tion to identify the source of bugs. In [64], the authors discussed the extension of the
WARDuino IoT platform with an online debugging tool called WOOD, designed to over-
come the challenges of debugging IoT applications. Online debugging seems more fitting
for IoT, as it allows remote debugging; however, it faces issues such as the probe effect,
non-reproducibility, and high latency. The same work explores an out-of-place debugging
technique that brings the state of a running application to the developer’s machine, en-
suring low latency remote debugging. It discusses features of WOOD such as capturing,
moving and reconstructing debugging sessions, and updating live code. Similar work on
“out-of-things” debugging is demonstrated in [65] to recognize the debugging as a major
challenge for IoT developers due to unique properties such as non-deterministic data and
hardware restrictions. Out-of-things debugging is always-on and works by transferring the
state of a failing application to the developer’s machine. The developer can then locally
debug the application, apply necessary operations, and commit bug fixes to the device.
This approach provides a flexible interface for accessing remote resources and mitigates
debugging interference by eliminating network delays during debugging operations. The
above work implemented the debugger on a Wasm Virtual Machine and demonstrated its
suitability for IoT systems based on various metrics. A systematic study was conducted
in [66] to understand and detect bugs in Wasm runtimes, a platform often used for various
software applications including mobile and desktop apps. Cnosidering that bugs in Wasm
runtimes can lead to application crashes, the researchers collected and studied 311 real-
world bugs from GitHub posts and categorized them into 31 distinct bug types, providing
common fix strategies for each. They developed a pattern-based bug detection framework
to automatically identify bugs in Wasm runtimes and successfully discovered 53 previously
unreported bugs in five popular Wasm runtimes. Of these, fourteen were confirmed and
six were fixed by the runtime developers.

5.5. Virtual Machine

The VM is core to the Wasm environment. To investigate the potential of using VM
approaches, ref. [67] used two minimal VMs, extended Berkeley Packet Filters (eBPF) and
Wasm, on low-power microcontroller-based IoT devices. The authors designed rBPF, a
register-based VM derived from eBPF, and compared it to a stack-based VM based on Wasm
adapted for embedded systems. Each VM was implemented in the RIOT IoT operating
system, with measurements performed on commercial IoT hardware. As expected, both
Wasm and rBPF VMs introduced execution time and memory overhead compared to
not using a VM. Interestingly, while the Wasm VM doubled the memory budget for a
simple networked IoT application, the rBPF VM only added negligible memory overhead,
making it a promising choice for hosting small updatable software modules on low-power
networks. In [68], the authors proposed the use of Wasm, a VM standard, to simplify the
programming of wearable sensor systems, which currently require different programming
languages for different system components. The researchers demonstrated the possibility
of implementing a Wasm interpreter for embedded systems such as the Texas Instruments
CC2652R system-on-chip, enabling the same code to run across all system parts. Their
proof-of-concept implementation used Bluetooth low energy for communication, meaning

Future Internet 2023, 15, 275 50 of 77

that smartphones can program the device without special hardware. This suggests that
Wasm could potentially streamline development processes for wearable sensor systems.

5.6. Development Environment Execution

A proof-of-concept integrated development environment (IDE) for executing Wasm
modules on microcontrollers was demonstrated in [69], featuring a built-in web server that
provides a browser-based IDE for direct AssemblyScript code development, compilation,
and flashing to a device. This approach could help create a simplified and efficient op-
erationalization context for data streaming and process adaptations in industrial devices.
In [70], the authors introduced WaTZ, a system combining a secure runtime for trusted
Wasm code execution in Arm’s TrustZone Trusted Execution Environments (TEEs) and
a lightweight remote attestation system optimized for Wasm applications. While TEEs
protect software assets, they do not guarantee code trustworthiness or tamper-proofing.
Remote attestation is used to assess the code pre-execution. WaTZ, which has been formally
verified and evaluated using synthetic and real-world IoT tasks, provides comparable
execution speeds to standard Wasm runtimes and about half the speed of native execu-
tion. The trade-off is enhanced security and interoperability offered by Wasm. A study
by [71] delved into the potential of Rust, a promising young programming language, as
a platform for IoT and ubiquitous computing. This work introduces these two concepts
before moving on to discuss the current Rust ecosystem. It then examines how effectively
the Rust ecosystem can meet the requirements of these domains, emphasizing the need
for secure, high-performance, and efficient software writing with minimized potential for
human error. In [72], the authors explored Wasm’s performance in a desktop environment,
providing empirical comparisons between programs compiled in native machine code and
those compiled in Wasm. The main objective of the work was to examine Wasm’s flexibility
in compiling code written in different languages for web applications while maintaining
performance comparable to native applications. The work highlights the potential for
Wasm to serve as a semantic abstraction layer for embedded devices in Cyber–Physical
Systems (CPS) development, despite existing issues related to semantic heterogeneity,
maintainability, and development. Another work [73] presented a comprehensive study
of standalone Wasm runtimes, aiming to elucidate their characteristics, which have been
unclear due to limited academic research. This study covered five major standalone Wasm
runtimes, and included the construction of a benchmark suite, WABench, used for testing.
The study revealed that all studied runtimes introduce a performance slowdown when
running Wasm binaries compared to native executions, indicating the need for effective
and low-cost dynamic optimization. The same work observed architectural impacts such as
increased branch prediction misses and higher cache pressure, providing insights for future
Wasm deployment in non-web domains. Another study [74] evaluated the performance
and portability of these technologies, demonstrating that Wasm generally outperforms
JavaScript and can in certain cases match native code performance. Despite its limitations,
Wasm shows potential benefits across various environments, with prospects for further
growth outside the web. In [75], the implications of Wasm for browser-based computation
were shown, noting its potential to enable universal applications that can run on any
machine with a web browser. The paper proposed a design to enhance the performance of
web applications using Wasm.

5.7. Access Control Framework

In the wake of growing demands for decentralized computing due to application
latency requirements, privacy, and security, ref. [76] introduced Aerogel, an access control
framework designed to bridge the security gap between bare-metal IoT devices and the
Wasm execution environment, particularly regarding access control for sensors, actuators,
processor energy usage, and memory usage. The framework views the runtime as a
multi-tenant environment in which each Wasm-based application is a tenant. It utilizes
the intrinsic sandboxing mechanisms of Wasm to enforce access control policies without

Future Internet 2023, 15, 275 51 of 77

trusting the bare-metal operating system. Evaluation on a cortexM4 based development
board (nRF52840) demonstrated that Aerogel can effectively enforce compute resource and
peripheral access control policies with minimal runtime overhead and without additional
energy consumption. Another study [77] introduced CAPLets, an authorization mechanism
that extends capability-based security to provide fine-grained access control for multi-scale
IoT deployments. CAPLets uses a robust cryptographic structure to ensure integrity
while maintaining computational efficiency for resource-constrained systems. The system
enhances capabilities with dynamic user-defined constraints to describe arbitrary access
control policies. The same paper introduced CapVM, a Turing-complete virtual machine,
along with eBPF and Wasm, to describe constraints. Empirical evaluation of CAPLets
shows that it can express permissions and requirements at a granular level, aiding in
constructing complex access control policies. The results demonstrate that CAPLets is
significantly faster and more energy-efficient than current IoT authorization systems.

5.8. Secure Execution

In [78], the authors introduced a portable and efficient implementation of a Crystals–
Kyber post-quantum key encapsulation mechanism (KEM) algorithm based on Wasm.
The overall software is written in JavaScript with core performance components in Wasm.
This software was shown to significantly outperform other JavaScript-based Kyber im-
plementations in terms of key generation, encapsulation, and decapsulation. In [79], an
identity-based cryptography library called CryptID was designed for efficiency and porta-
bility across various platforms, including desktop, mobile, and IoT. Enabled by Wasm,
CryptID can operate both client-side and server-side. One unique aspect of CryptID is
the use of structured public keys that can contain arbitrary metadata, allowing for a wide
range of domain-specific use cases. In [80], a comprehensive review of recent malware
and security threats related to IoT systems is provided. This review proposes a solution
that allows secure applications to run on IoT devices in a secure execution framework by
using verified bytecode in an isolated environment. This ensures that security is enforced
by software and does not rely on the security features provided by the hardware com-
ponents. Another survey paper [81] studied various techniques and methods for Wasm
binary security and proposed future research directions regarding the current lack of Wasm
binary security research. Memory safety aspect is very important to Wasm environment.
In [82], the authors introduced MS-Wasm, an extension to Wasm that allows developers
to capture low-level C/C++ memory semantics at compile time. At deployment time,
Wasm compilers can use these added semantics to enforce different models of memory
safety depending on user preferences and the hardware available on the target platform.
MS-Wasm offers a range of security–performance trade-offs, and allows users to upgrade
to stronger models of memory safety as hardware evolves. In [83], the security implications
of cross-compiling C programs to Wasm are investigated. This work found that the exe-
cution of certain binaries produced different results across platforms for various reasons,
including the use of different standard library implementations, lack of security measures
in Wasm, and differing semantics of the execution environments. These findings suggest
that porting existing C programs to Wasm may require source code adaptations to maintain
security. Swivel was proposed in [84]. It is a compiler framework designed to harden Wasm
against Spectre attacks, which can bypass Wasm’s isolation guarantees. Swivel ensures
that potentially malicious code cannot exploit Spectre attacks to break out of the Wasm
sandbox or force other Wasm clients to leak secret data. The work presents two designs, a
software-only approach and a hardware-assisted approach, and demonstrates that Swivel’s
overhead is much lower than existing defenses. Finally, a multi-layer secure framework
dedicated to hardware-constrained devices, which is increasingly important considering
the proliferation of IoT devices, was developed in [85].

Future Internet 2023, 15, 275 52 of 77

5.9. Containerization

A lightweight container using Wasm that offers flexible deployment and live code
migration in isomorphic IoT systems was proposed in [86] with the goal of supporting
developers in creating liquid IoT applications that enable seamless and hassle-free use
of multiple devices. Another study [87] investigated the use of Wasm for containers in
IoT devices and compared it with Docker, the current leader in container technology. The
findings showed that while Docker is more efficient in most cases, Wasm excels in scenarios
involving sporadic execution of simple programs, suggesting its suitability for serverless
computing at the edge. Another study found that performance of Wasm runtimes (e.g.,
Wasmer and Wasmtime) in terms of execution speed, memory footprint, and maturity,
could outperform similar Docker solutions in certain instances, especially for short tasks
on IoT devices [88]. In [89,90], attempts were made to replace Docker with Wasm. The
results indicated that Wasm containers can achieve faster cold starts and higher throughput,
suggesting their suitability for low-latency serverless edge computing with improved
security and fault tolerance. An isomorphic microservice deployment architecture for
IoT-based systems was proposed in [91]. It uses Wasm to achieve a uniform computing
environment to simplify software deployment on future heterogeneous devices. Another
study introduced WASMICO, a full-cycle management solution for containers built on
the Wasm3 interpreter and the FreeRTOS operating system [92]. The platform allows
developers to write programs in various programming languages, compile them to Wasm,
and remotely manage tasks on low-end resource-limited IoT devices through an HTTP API
and command line interface. It enables access to device capabilities through ready-to-use
abstractions in higher-level specifications. The authors found that WASMICO performed
better than other solutions in terms of efficiency, computation, and memory usage. By
facilitating firmware development similar to software development, it can bridge the gap
between these two computing paradigms.

5.10. Serverless

In [93], an examinination was conducted into a serverless edge computing architecture
through a Wasm-based approach, comparing its performance to native and container-based
applications using the ARM architecture toolchain. The benchmarks for comparison in-
cluded several types of applications, including compute-intensive, memory-intensive, and
file I/O-intensive applications, along with a basic image classification machine learning
application. The paper presented the experimental setup, performance results, and con-
clusion. Sledge was proposed in [94], which is a Wasm-based serverless framework for
edge computing. Sledge is designed for the unique needs of serverless workloads, includ-
ing high-density multi-tenancy, low startup time, and short-lived computations. Using
optimized scheduling policies and efficient work distribution, Sledge offers a lightweight
function isolation model implemented with Wasm-based software fault isolation infras-
tructure. Compared to Nuclio, an open-source serverless framework, Sledge achieved
up to four times higher throughput and four times lower latency. Another article [95]
examined the use of Wasm as a lightweight alternative to container technologies such
as Docker for serverless functions, with a focus on edge computing settings. The paper
presented a Wasm-based runtime environment for serverless edge computing, called WOW,
which significantly reduced cold-start latency, improved memory consumption, and en-
hanced function execution throughput on low-end edge computing equipment compared
to Docker-based container runtime. Another work [96] discussed the recent developments
that enable Wasm to be used for server-side applications and serverless functions. The goal
of this work was to integrate Wasm with existing cloud and edge infrastructure. While
Wasm has been identified as a solution to the cold start problem in serverless platforms,
this study concluded that further work is needed and suggested the support of multiple
runtime environments in addition to Wasm. Another study [97] investigated the potential
of Wasm to transform serverless computing. Wasm’s strengths, such as reduced cold start
times, efficiency, easy portability, and compatibility with popular programming languages,

Future Internet 2023, 15, 275 53 of 77

were evaluated using a benchmarking suite comprised of thirteen different functions. An
initial step towards integrating Wasm runtimes with the APIs and command line interfaces
of popular container runtimes was discussed. In the results the Wasm runtimes outper-
formed containered runtimes on ten out of thirteen tests, with Wasmtime being the fastest
Wasm runtime. In [98], the authors introduced a nomenclature for characterizing server-
less function access patterns to derive the basic requirements of a serverless computing
runtime. Their paper proposed the use of Wasm as an alternative method for running
serverless applications. They showed that a Wasm-based serverless platform can provide
the same isolation and performance guarantees as container-based platforms while having
reduced application start times and requiring fewer resources. A white paper expresses
the security aspects of Wasm in the libc implementation [99]. This extension can help
Wasm compilers and JITs to enforce different models of memory safety depending on user
preferences and available hardware on the target platform. MS-Wasm offers a range of
security–performance trade-offs, and allows users to move to progressively stronger mod-
els of memory safety as hardware evolves. The comprehensive survey in [100] discusses
the suitability of serverless computing for IoT data processing at the edge in considera-
tion of the limitations of existing solutions based on VMs and containers. It introduces a
Wasm-based serverless framework, aWsm, to manage efficient serverless operations at the
edge, with opportunities for function profiling and SLO-driven performance management.
Initial assessments show aWsm performing efficiently, with an average startup time of
12 to 30 microseconds and an economical memory footprint ranging from 10 to 100s per kB
for a subset of MiBench microbenchmarks used as functions.

5.11. Applications and Evaluation

In [101], the authors evaluated the use of Wasm to enhance the performance of
JavaScript applications in IoT environments. Tests were conducted on a Raspberry Pi
using the Ostrich Benchmark Suite. The study found that when JavaScript was executed
in Wasm, performance improved by 39.81% in terms of execution time, there was a slight
increase in memory usage, and battery consumption decreased by 39.86%. The authors
of [102] delved into Wasm as a potential solution for performance issues in JavaScript
applications, especially highly user-interactive websites and browser-based games. In a
continuation of our previous research on the GraalVM ecosystem, we examined Truffle-
Wasm, a Wasm based system hosted on GraalVM and Truffle Java framework, outlining
the architecture and performance of TruffleWasm within the GraalVM-based ecosystem
based on tests conducted in our academic environment. Another work investigated the
correlation between energy consumption and the use of Wasm versus JavaScript [103].
This research showed that Wasm consumes less energy than JavaScript. It was found that
Firefox has significantly lower energy consumption compared to Chrome for both Wasm
and JavaScript. These findings indicate that utilizing Wasm for web application develop-
ment can reduce energy consumption and improve Android device battery life. In another
article [104], the authors sought to evaluate advances in JavaScript and Wasm execution
environments across a variety of devices. Using the Ostrich benchmark suite, they assessed
the improvements in JavaScript-based browser engines, a performance comparison of
JavaScript and Wasm, the performance of portable versus vendor-specific browsers, and
server-side versus client-side JavaScript/Wasm, with the aim of determining the best per-
forming browser/language and device. The thesis in [105] provides a general introduction
to Wasm and its potential to revolutionize web application development. After a review
of articles and lectures, Wasm’s applications and capabilities were evaluated and it was
found to have the potential to change web and other applications in the future. This thesis
demonstrates how to create a simple Wasm module with the Rust language to decode
QR code data from images. In [106], the authors examined the performance of numerical
computing on the web, including both JavaScript and Wasm, across a variety of devices.
They created a new benchmarking approach for centralized benchmarking on mobile and
IoT devices, and conducted four performance studies using the Ostrich benchmark suite,

Future Internet 2023, 15, 275 54 of 77

then analyzed the performance evolution of JavaScript, the relative performance of Wasm,
and the performance of server-side Node.js while providing a comprehensive performance
analysis for a wide range of devices. The need for isomorphic software architectures in
IoT development was investigated in [107]. Such architectures can allow for consistency
in programming across various devices, enabling applications and their components to
be deployed or migrated dynamically without any alterations to their original format.
Another study [108] explored the use of Wasm beyond the browser environment. Wasm
is a relatively new technology designed to provide a compilation target for numerous
programming languages, with the aim of deploying both client and server applications
on the web. This study particularly focused on partitioning Wasm applications into mod-
ules and linking them during execution, potentially reducing memory usage, binary size,
and compilation and startup time. Another paper proposed a method for slicing Wasm
programs to aid applications in reverse engineering, code comprehension, and security,
among others [109]. Program slicing creates a minimal version of the original program that
maintains the behavior at a specific location. The proposed approach, which focuses on
Wasm’s specific dependencies, faces the challenge of performing dependence analysis at
the binary level. The approach was implemented and evaluated on a suite of real-world
Wasm binaries, and its efficiency was compared to previous works. In [110], the authors
addressed the limitations of existing container-based serverless computing systems, such
as cold-start issues and complex architecture for stateful services and multi-tenancy. The
proposed solution involves positioning serverless functions according to data locality and
executing them as a web-assembly sandbox. This approach results in improved execution
latency and reduced network usage compared to existing architectures. The serverless
runtime designed for this solution provides resource isolation (CPU, memory, file-system)
and supports multi-tenancy executions. The architecture’s effectiveness was assessed using
IoT workloads with various performance metrics.

5.12. Edge–Cloud Integration

Studies have discussed the increasing integration of IoT devices and cloud servers to
enhance the efficiency of IoT applications [111,112]. While Wasm is considered a potential
solution to overcome the heterogeneity between devices and servers, it presents challenges
for resource-constrained devices. The authors of the aforementioned studies proposed
WAIT, a lightweight Wasm runtime for such devices, which optimizes memory usage
and ensures safe sandbox execution while reducing energy consumption. Several articles
have discussed the challenges and potential of harnessing data from previously untapped
sources in the manufacturing industry [113,114], including a concept and prototype for
retrofitting aged machines using Wasm on edge devices. This concept provides a uniform
development environment from the cloud to the edge, achieving near-native performance
with modularity similar to container-based service architectures. Another work looked into
the interest in edge computing and computational offloading due to latency and privacy
concerns anlong with the spread of IoT devices. The authors assessed how popular tech-
nologies achieve portability and migratability, and highlighted the benefits of Wasm as a
platform for femtocloud offloading. The same paper introduced Nomad, a Wasm environ-
ment capable of live-migrating across different systems and hardware architectures [115].
A thesis [116] investigated the use of Wasm for computational offloading at the edge in
the context of edge computing and 5G. The aim was to improve program performance by
reducing the execution time and energy consumption on the end device. A proof-of-concept
offloading system was presented and evaluated through several use cases. Another work
discussed the high demand for computing power due to the rapid growth of IoT and AI
and how edge computing can meet these demands [117]. Existing offloading approaches
based on virtual machines and containers are criticized for their slow operation and large
memory footprint. This work proposes LAWOW, a lightweight and high-performance
framework that utilizes the Wasm runtime wasmedge for task offloading, providing a
cross-platform solution to reduce computation costs and memory footprint.

Future Internet 2023, 15, 275 55 of 77

Identified Gaps:

• Analyzing the provided articles, the key research gaps in the field of Wasm, especially
when applied to edge computing, IoT devices, and serverless architectures, appear to
be as follows:

• Efficient Execution on Resource-Constrained Devices: [111] discusses the problem
of executing Wasm on resource-constrained IoT devices. It appears that further
research is needed to optimize the execution of Wasm applications on devices with
limited memory, processing power, or energy resources.

• Migration and Portability: [108,109,115] highlight the need for more research into
the migration and portability of Wasm applications. There is a need for frameworks
or solutions that allow Wasm applications to be dynamically deployed, migrated, or
partitioned without changing their form while working across different operating
systems and hardware architectures.

• Performance Analysis and Optimization: while many of the discussed works [111,
113,114,116] involve efforts to optimize the performance of Wasm applications, it is
clear that more research is needed in order to understand the performance implications
of Wasm in different contexts, e.g., edge computing, IoT, offloading computational
tasks, etc., and to further improve it.

• Secure and Multi-Tenancy Executions: [110] hints at the challenge of ensuring secure
and isolated execution environments for Wasm in serverless computing contexts. Fur-
ther research into ways of ensuring security and facilitating multi-tenancy executions
using Wasm might be needed.

• Applications in Industrial Retrofitting: two articles [113,114] indicate a gap in the ap-
plication of Wasm in retrofitted industrial equipment. More studies are needed in order
to test and evaluate how Wasm can be implemented in real-world industrial settings.

• Improving Energy Efficiency: a few articles [111,116] touch on energy efficiency in
running Wasm on IoT devices and computational offloading, respectively. However,
more research could be carried out on ways of optimizing energy consumption when
executing Wasm in different scenarios.

• Generalization of Deployments: multiple works [108,112] suggest a need for broader
application of Wasm outside browser environments and across different hardware
devices and software environments. This indicates a gap in how Wasm can be general-
ized and deployed beyond the specific use cases studied to date.

Lessons Learned:

• Wasm is Versatile: Wasm offers a highly flexible approach for executing code across a
variety of environments, from IoT devices to cloud servers and from in-browser to
edge computing contexts.

• Performance Gains: when correctly optimized, Wasm can yield substantial perfor-
mance improvements in certain contexts even on resource-constrained devices. For
example, [111] demonstrates how a correctly optimized Wasm runtime can achieve
substantial reductions in RAM usage and energy consumption.

• Benefit for IoT and Edge Computing: Wasm can be beneficial in the contexts of edge
computing and IoT. It can aid in overcoming issues of device heterogeneity, resource
constraints, and the need for close-to-source data processing. In addition, it supports
the idea of computational offloading, enabling more efficient execution of tasks.

• Potential for Industrial Applications: there are potential benefits of using Wasm in
retrofitting industrial machinery for smart manufacturing (Industry 4.0), as suggested
by [113,114]. It can help to modernize old equipment without substantial upfront
investment, making it a cost-effective solution for businesses.

• Migration and Portability Challenges: despite its versatility, Wasm faces challenges
regarding the portability and migration of applications. Efforts are being made to
address these challenges, such as the development of solutions that allow Wasm
applications to be dynamically deployed, migrated, and partitioned.

Future Internet 2023, 15, 275 56 of 77

• Security and Multi-tenancy: while implementing secure and isolated execution envi-
ronments for Wasm in serverless computing contexts can be complex, it is crucial in
order to ensure the safety of operations and data.

• Energy Efficiency: while there is ongoing research into ways of optimizing energy con-
sumption when executing Wasm, it is clear that energy efficiency is an important factor,
especially when deploying on IoT devices or in computational offloading scenarios.

• Non-Browser Deployments: Wasm’s use is not limited to the browser environment;
it shows promise in various other environments, including the cloud–edge continuum,
servers, and IoT devices. Its capabilities in these environments are currently being
explored and better understood.

6. Key Challenges and Future Directions

Wasm and IoT integration is not without challenges. In this section, a comprehensive
discussion of the current issues around integrating Wasm to IoT is presented. Later, an
in-depth subsection deals with the future directions in this regard moving forward.

6.1. Limitations of Current WebAssembly Implementations

• Lack of Garbage Collection
One of the major hurdles when dealing with Wasm in the context of IoT is the lack
of native support for garbage collection. Garbage collection is a form of automatic
memory management that can greatly simplify programming, and is a critical feature
in many high-level programming languages. Wasm does not directly support garbage
collection, which can complicate things for developers.

– Understanding the Problem
Garbage collection is the process of identifying and freeing up memory that
is no longer in use by the program. It is used in many modern programming
languages, including JavaScript, Python, Java, and Go. The absence of native
garbage collection support means languages that rely on it cannot be fully or
effectively compiled to Wasm.
In IoT scenarios, where devices often have constrained memory resources, effi-
cient memory management is essential. Without garbage collection developers
have to manually manage memory, which is more challenging and error-prone as
well as time-consuming.

– Current Solutions and Workarounds
For languages such as C and C++, which do not use garbage collection and
allow developers to manually manage memory, this is not an issue. How-
ever, for languages that depend on garbage collection there are a few solutions
and workarounds.

* Compile the Garbage Collector
One approach is to compile the garbage collector of the source language into
Wasm along with the program itself. This can make the resulting Wasm mod-
ule self-contained and capable of doing its own garbage collection. However,
this can significantly increase the size of the resulting module, which might
not be suitable for IoT devices with limited memory.

* Use WASI
The WASI provides a capability-oriented system interface that allows Wasm
modules to interact with system resources, including memory management.

* Use Linear Memory
Wasm’s linear memory can be manipulated manually from within Wasm
code (or from JavaScript, if running in a browser environment). How-
ever, this places the burden of memory management onto the programmer,
increasing complexity.

Future Internet 2023, 15, 275 57 of 77

• Interoperability Challenges
Interoperability refers to the ability of different systems or applications to communi-
cate, exchange, and utilize data effectively. It is a critical aspect of modern technology
stacks, in which multiple languages, libraries, and services often need to work together
seamlessly. There are certain interoperability challenges that emerge when considering
Wasm in the context of IoT, predominantly due to the varying nature of IoT devices
and Wasm’s unique operational dynamics.

– Communication between JavaScript and WebAssembly
While Wasm was designed to coexist with JavaScript in a web environment, com-
munication between the two is not always straightforward. Currently, interaction
between JavaScript and Wasm is mainly restricted to numeric data types. This
constraint means that transferring more complex data types such as strings or
objects between JavaScript and Wasm requires them to be broken down into
simple numeric components or transferred using shared memory. The process of
data conversion adds an extra layer of complexity to application development,
and can introduce a performance overhead. It requires careful management to
ensure data integrity, and can lead to errors if not properly implemented. While
proposals such as Wasm Interface Types aim to improve this, the problem remains
a significant challenge for developers.

– Compatibility With Various Devices
IoT devices come in various forms and use a range of software and hardware con-
figurations. Certain IoT devices might use different architectures and operating
systems, creating a need for additional layers of abstraction in the application
code. Wasm’s goal of “write once, run anywhere” promises to ease this problem
by providing a universal binary format. However, the Wasm runtime needs to
be ported to each new system architecture, which can require considerable effort.
Even then, the device’s resource constraints, such as memory, CPU power, or
battery life, can limit the complexity or the number of Wasm modules that can
be used.

– Interactions with IoT Protocols
IoT applications often communicate using IoT-specific protocols such as MQTT,
CoAP, and DDS. Currently, Wasm cannot directly interact with these protocols
because it has no direct access to the underlying system or network I/O opera-
tions. Therefore, developers need to rely on JavaScript or the host environment
to manage these interactions, which may not always be feasible or efficient in an
IoT context. The existing interoperability issues pose hurdles for developers, and
addressing these challenges is a critical area of focus in the ongoing evolution
of Wasm. With further development and enhancements, Wasm’s impact on the
IoT world could be revolutionary, turning these challenges into opportunities for
creating more robust, efficient, and secure IoT applications.

• Memory Management
The manual memory management required by Wasm’s design can pose challenges for
developers used to languages with automatic memory management. This can lead to
a steep learning curve and potential memory management issues. In the context of
Wasm and IoT, managing memory efficiently presents a distinct set of challenges. The
uniqueness of the Wasm memory model and the often resource-constrained nature of
IoT devices amplify these challenges.

– Wasm’s Linear Memory Model
Wasm employs a linear memory model in which all data (both code and state) are
stored in a large contiguous block of memory. This model is simple and efficient,
making it easy for the Wasm virtual machine to manage memory. However,
it means that the application must manually manage memory allocation and

Future Internet 2023, 15, 275 58 of 77

deallocation. This is a complex task and prone to human error, with potentially
serious consequences such as memory leaks or buffer overflows.

– Lack of Automatic Garbage Collection
Wasm does not yet have support for automatic garbage collection, which is a
feature found in many high-level languages that automatically reclaims memory
no longer in use. Although there is ongoing work to add garbage collection
support to Wasm, the lack of it currently means that developers must manually
manage memory, increasing the complexity of developing Wasm applications.
This issue is particularly important in the context of IoT, where devices are often
constrained in terms of memory resources. An IoT application with inefficient
memory usage can easily consume too much memory, potentially causing the
device to crash or behave unpredictably.

– Limited Memory Resources on IoT Devices
IoT devices range from powerful edge servers to tiny sensors with very limited
processing power and memory. For devices at the lower end of this spectrum, the
relatively large size of the Wasm runtime and the memory consumed by Wasm
applications can be a significant problem. Developers must carefully optimize
their applications to reduce memory usage, a task that is made more difficult by
the current limitations of Wasm’s memory management.

– Difficulty Debugging Memory Issues
Wasm’s binary nature and the lack of a built-in debugger make debugging
memory-related issues challenging. While developers can use tools such as
source maps to map the Wasm code back to the original source code, these tools
might not always provide enough information to diagnose a memory problem.
Additionally, the linear memory model of Wasm is very low-level, making it
difficult to understand how memory is being used and where potential problems
might lie.

• Limited Access to Web APIs
Wasm modules do not have direct access to web APIs and need to go through
JavaScript, which can result in performance bottlenecks and increased complexity.
Wasm’s integration into the web ecosystem presents unique challenges, particularly
in the context of access to web APIs. While Wasm has been designed to work along-
side JavaScript, its ability to directly access web APIs has been a significant concern,
especially for IoT applications.

– Restricted Direct Access to Web APIs
Wasm cannot directly access the web APIs that JavaScript can. Instead, in order to
use these APIs Wasm needs to call out to JavaScript, which can be a cumbersome
and inefficient process. This is due to the fact that Wasm runs in a sandboxed en-
vironment to ensure security, which inherently limits its ability to directly interact
with the host environment. For IoT applications, this limitation can be particu-
larly restrictive. Many IoT applications require real-time interaction with various
system APIs for tasks such as device control, data collection, and communication
with other devices or services. The current inability of Wasm to directly access
these APIs adds an extra layer of complexity to building these applications.

– WASI and Interface Types
To address these limitations, two proposals are being developed in the Wasm
community: the WASI and Interface Types. The WASI aims to provide a system
interface for Wasm that abstracts away the details of the host system. This
allows Wasm applications to interact with the system without compromising
security. The WASI, however, is mainly designed for server-side or standalone
applications, and does not provide access to most web-specific APIs. Interface
Types, on the other hand, aim to define a way for Wasm modules to communicate
with each other and with the host environment using high-level data types. This
would allow Wasm to interact with web APIs in a more direct and efficient way

Future Internet 2023, 15, 275 59 of 77

without needing to go through JavaScript. These two proposals, if accepted and
implemented, would go a long way in addressing the current limitations of Wasm
in terms of API access.

– Implications for IoT
The current state of Wasm’s limited access to web APIs presents a challenge for
IoT development. However, the advancements in the form of WASI and Interface
Types bring a promising future. Access to web APIs in a more direct and efficient
manner would enable developers to build more sophisticated, high-performing,
and secure IoT applications using Wasm.

• Debugging and Testing Challenges
In light of its binary nature, debugging and testing Wasm applications can be more
challenging compared to JavaScript. While a number of tools are available, they often
provide less visibility and convenience than developers are accustomed to. As Wasm
finds its footing in the landscape of IoT development, the challenges associated with
debugging and testing of Wasm modules are becoming increasingly evident. These
challenges stem from a few aspects of Wasm’s design and the current state of tooling.

– Lack of Mature Debugging Tools
While Wasm’s design is optimized for efficient execution, its binary format makes
debugging a complex task. Compared to traditional programming languages,
debugging tools for Wasm are in their nascent stages. While there are debugging
protocols available, such as Dwarf for Wasm, they may not be as mature or fully
featured as those available for other languages.

– Source Map Limitations
Source maps are used to map the compiled Wasm code back to the original source
code, making debugging easier. However, the effectiveness of source maps can
be limited by the fact that they only provide information about where the code
originated, not how the compiled code is behaving. This can make it harder
to debug complex issues that involve the runtime environment or interactions
between different parts of the code.

– Interoperability Issues
Considering the interoperability of Wasm with JavaScript and other web tech-
nologies, debugging can be complicated by issues that span multiple languages
and technologies. For instance, an issue might involve both JavaScript and Wasm
code, requiring developers to use different tools and strategies to debug different
parts of the application.

– Testing Challenges
Similar to debugging, testing Wasm modules, especially in the context of IoT
applications, presents its own set of challenges. Considering the wide variety
of devices and environments in IoT, it can be difficult to effectively test Wasm
applications in order to ensure they work correctly in all potential scenarios.

• Restricted Networking Capabilities
In its current state, Wasm lacks direct access to networking APIs, limiting its capabil-
ities for networking tasks without interaction with JavaScript, which can introduce
complexity and performance drawbacks. As Wasm’s use expands in the world of IoT,
it encounters unique challenges, one of which is its restricted networking capabilities.
This section highlights these challenges and discusses their impact on the use of Wasm
in IoT applications.

– Wasm’s Networking Model
Wasm currently operates within the constraints of the same-origin policy, mean-
ing that it can only make network requests to the same source from which the
Wasm module was loaded. While this policy is a crucial security feature in web
environments, it can limit the direct networking capabilities of Wasm, particularly

Future Internet 2023, 15, 275 60 of 77

in the context of IoT, where devices often need to communicate with different
servers and devices.

– Lack of Direct Access to Networking APIs
As of now, Wasm does not have direct access to networking APIs. This means
that Wasm applications must rely on the host environment, typically a JavaScript
environment in a web browser, to make network requests on their behalf. This
lack of direct access can lead to inefficiencies and makes it more difficult to
implement networking functionality in a straightforward manner.

– Implications for IoT
These networking restrictions can be particularly problematic for IoT applications.
IoT devices often need to communicate with various servers, devices, and services,
often across different origins. The lack of direct access to networking APIs
presents a challenge, as it means that all networking operations must go through
the host environment, which could potentially impact performance and introduce
additional complexity.

– Potential Solutions
Proposed solutions to this challenge involve extending Wasm’s capabilities either
through new Wasm APIs or via the WASI. In particular, the latter aims to provide
Wasm applications with more direct access to system capabilities, including
networking. This evolution could significantly enhance the utility and power of
Wasm in the context of IoT.

6.2. Challenges in IoT Integration with WebAssembly

• IoT Device Garbage Collection
Garbage collection is a critical feature in many programming languages, helping to
manage memory automatically by detecting and freeing up memory that is no longer
needed and thereby reducing the risk of memory leaks. While JavaScript has built-in
garbage collection, Wasm currently lacks this feature. However, there is a promising
proposal on the horizon to introduce garbage collection to Wasm, which could have
significant implications for its application in IoT contexts.
The proposal for garbage collection in Wasm aims to offer the same level of memory
management that high-level languages such as JavaScript, Python, and Ruby provide,
with the goal of enabling these and other languages to target Wasm more efficiently.
The integration of garbage collection into Wasm could vastly simplify the development
process, improve performance, and make Wasm a more attractive and feasible choice
for a wider range of applications, including IoT.
By enabling managed languages to compile to Wasm efficiently, it would become
much easier to port existing libraries, tools, and applications to run in the Wasm
environment without the need for complex workarounds or compromises. This could
lead to a significant increase in the ecosystem of available software and libraries, which
would in turn boost the utility and versatility of Wasm.
Moreover, the addition of garbage collection could reduce the size of Wasm modules by
allowing them to leverage the host environment’s garbage collector instead of having
to include their own memory management code. This would make the modules more
lightweight and faster to load, which is an important consideration in the bandwidth-
constrained environments typical of IoT.
However, introducing garbage collection into Wasm is a complex task, and there are
several challenges that need to be addressed. For example, there needs to be a balance
between the increased overhead of garbage collection and its benefits. In addition, it
is important to ensure that the garbage collector is efficient and does not introduce
significant performance overhead.
Overall, the proposal of garbage collection for Wasm represents an exciting direction
for the future. The successful implementation of this feature could unlock a new level
of functionality and efficiency, paving the way for a broader application of Wasm

Future Internet 2023, 15, 275 61 of 77

in IoT and other domains. As such, it will be crucial to monitor the progress of this
proposal and its potential impact on the Wasm ecosystem.

• Enhancing the WebAssembly Ecosystem
Efforts are ongoing to further develop and refine the tooling and libraries around
Wasm with the aim of addressing current challenges and making the technology more
approachable and easier to use.
A robust and well-supported ecosystem is vital for the success and wider adoption
of any technology. As of now, the Wasm ecosystem is burgeoning, propelled by its
promising capabilities and the support of industry stalwarts such as Google, Mozilla,
Microsoft, and Apple. However, there is much to be done in order to fully realize its
potential, especially in the IoT domain. Here, we discuss key future directions for
enhancing the Wasm ecosystem.

– Improved Tooling
Improving the toolchain is crucial for the broader adoption of Wasm. This in-
cludes refining existing tools and developing new ones that cater specifically to
the needs of Wasm developers. For example, creating user-friendly debuggers,
profilers, and performance analyzers designed for Wasm can significantly ease
the development process and foster its adoption.

– Broadening Language Support
While Wasm currently supports a variety of languages, broadening this support
is essential. Efforts should be aimed at making the compilation to Wasm seamless
and efficient for a wider array of languages. This would enable developers of
different backgrounds and expertise to leverage the benefits of Wasm, promoting
its use in diverse applications, including IoT.

– Encouraging Community Engagement
One of the most effective ways to enhance the Wasm ecosystem is to foster a
strong and active community of developers and users. This not only fuels the
evolution of the technology through a constant influx of ideas and improvements,
it helps to uncover new possibilities for its application. In the context of IoT, this
could mean finding innovative ways to use Wasm in edge computing, wearable
technology, smart homes, and more.

– Establishing Standards and Best Practices
As Wasm matures, it is crucial to establish clear standards and best practices for
its use. This includes defining guidelines for security, performance optimiza-
tion, interoperability, and more. Establishing these standards can streamline
the development process and ensure that Wasm applications are robust, secure,
and efficient.

– Developing IoT-Specific Libraries and Frameworks
In light of the unique constraints and requirements of IoT applications, devel-
oping libraries and frameworks specifically designed for IoT could significantly
accelerate the adoption of Wasm in this domain. These could provide out-of-the-
box solutions for common IoT tasks such as networking, data processing, and
device management, easing the development process and improving efficiency.

• Enhanced Security Features
Security is a priority for future Wasm updates, with expectations for enhanced memory
protection, more granular control over system resources, and improvements to the
existing sandboxing mechanisms to further secure Wasm execution. In an era where
cyberthreats are increasing in both number and sophistication, security is a paramount
concern for any computing system, and the IoT landscape is no exception. In fact, the
distributed nature of IoT networks and the sensitive data they often handle makes
security even more critical. In this section, we discuss potential future directions for
enhancing the security features of Wasm in IoT applications.

Future Internet 2023, 15, 275 62 of 77

– WebAssembly and Secure Execution Environments
In the future, there could be an increased focus on integrating Wasm with secure
execution environments (SEEs) such as Intel SGX, ARM TrustZone, or even
custom-built SEEs. This could enable sensitive computations to be isolated at a
hardware level, providing a higher degree of security than software-level isolation
mechanisms alone. In this scenario, Wasm could serve as a portable and efficient
execution format for code running inside these secure environments.

– Formal Verification of Wasm Code
Another direction could be the application of formal methods to verify the secu-
rity properties of Wasm code. Formal methods involve mathematically proving
that a piece of software satisfies certain properties, and are typically used in high-
assurance systems where security is critical. By developing tools and method-
ologies for formally verifying Wasm code, it could be possible to provide strong
mathematically-backed guarantees about the security of Wasm applications.

– Fine-Grained Sandboxing
While Wasm already operates in a sandboxed environment, future developments
could see a move towards more fine-grained sandboxing mechanisms. This could
involve isolating different components of a Wasm application from each other,
thereby limiting the potential impact of a security vulnerability in one component.

– Enhanced Cryptographic Capabilities
Wasm could be extended with more advanced cryptographic capabilities, such as
support for secure multi-party computation (SMPC), homomorphic encryption,
or quantum-resistant cryptography. These enhancements could allow Wasm
to securely handle sensitive data in a wider range of scenarios, and could be
particularly beneficial in IoT networks, where sensitive data is often transmitted
between devices.

– Improved Auditability and Transparency
With the potential integration of blockchain technology into IoT, the aspect of
auditability and transparency of code execution becomes crucial. Wasm, with
its human-readable text format (WAT), can play a significant role here. Enhance-
ments can be made to the Wasm ecosystem to facilitate the verification and
auditing of code.

• Improved Networking Capabilities
Efforts are underway to provide Wasm with direct access to networking APIs in order
to eliminate the need for JavaScript intermediation and unlock the potential for more
powerful and efficient networked applications. Networking is a crucial aspect of
any IoT application. Devices in an IoT network communicate with both each other
and with cloud-based services, necessitating reliable, efficient, and secure networking
capabilities. However, Wasm’s initial design does not have inherent networking
capabilities, instead relying on the host environment for this. In the future, there are
several directions Wasm could take to improve networking capabilities in the context
of IoT.

– Networking APIs in WebAssembly
One of the most promising developments in Wasm is the proposal for adding
networking APIs directly to the WASI. This would allow Wasm applications
to establish network connections, send and receive data, and perform other
networking operations without relying on JavaScript or other host environment
features. This could significantly improve the efficiency of networking in Wasm-
based IoT applications.

– Peer-to-Peer Networking
Peer-to-peer networking is an important feature for many IoT applications, espe-
cially those that involve direct device-to-device communication. Future versions
of Wasm could include support for peer-to-peer networking protocols, allow-

Future Internet 2023, 15, 275 63 of 77

ing devices to establish direct connections with each other without needing a
central server.

– Secure Networking
Security is paramount in IoT networking due to the sensitive nature of the data
being transferred. Future developments could focus on enhancing the security of
Wasm’s networking capabilities, for instance by integrating secure networking
protocols directly into Wasm or providing APIs for cryptographic operations.

– Network Performance Optimization
Efficient use of network resources is important in IoT, especially in applications
where bandwidth is limited or expensive. Future iterations of Wasm could
include features for optimizing network performance, such as support for data
compression or efficient binary protocols.

– Advanced Networking Features
There are numerous other advanced networking features that could be beneficial
in an IoT context. For example, support for multicast or broadcast communication
could allow a single Wasm application to efficiently send data to multiple devices.
Similarly, support for real-time communication protocols could enable use cases
such as VoIP or live video streaming.

6.3. Role of WebAssembly in Advancing IoT

• Performance Optimization in IoT Devices
Wasm plays a crucial role in advancing the performance optimization of IoT devices
thanks to its compact binary format, efficient execution, and ability to work seamlessly
with other web technologies. Here, we delve deeper into the elements that make
Wasm a key player in performance optimization for IoT.

– Efficient Binary Format
Wasm’s binary format is both compact and designed for fast parsing, two factors
which greatly benefit performance. On resource-constrained IoT devices, these
qualities make it possible to execute complex tasks with less memory and pro-
cessing power than traditional interpreted languages. Furthermore, its compact
size allows for faster download times, a critical advantage for devices operating
on networks with limited bandwidth.

– Near-Native Execution Speed
Wasm code is compiled to a form that is very close to machine code, enabling it
to execute at near-native speed. This speed advantage is particularly beneficial
in the IoT space, where devices must often process data and make decisions in
real time.

– Interoperability with JavaScript and Web APIs
Wasm is designed to interoperate seamlessly with JavaScript and existing web
APIs, enabling it to take advantage of the broad ecosystem of web technologies.
This interoperability can lead to performance improvements, as developers can
use each technology for what it does best, such as using Wasm for compute-
intensive tasks and JavaScript for interaction with web APIs.

– Thread and Memory Management
Wasm’s linear memory model and its proposal for threading capabilities play a sig-
nificant role in performance optimization. For devices handling complex operations
or managing multiple processes simultaneously, Wasm’s efficient memory manage-
ment and potential multithreading support can boost performance significantly.

– Edge Computing Applications
Wasm’s performance characteristics make it particularly well-suited to edge com-
puting applications, which aim to reduce latency by performing data processing
at the edge of the network closer to the source of data. Wasm’s high execution
speed and low resource requirements enable it to run complex algorithms on
edge devices, which are often resource-constrained.

Future Internet 2023, 15, 275 64 of 77

• Strengthening Security in IoT
Wasm’s sandboxing and planned security enhancements can significantly bolster IoT
security. As a result, it could serve as a powerful tool to mitigate common security
risks such as buffer overflow and injection attacks. The role of Wasm in enhancing the
security of IoT ecosystems is of immense value. Due to their pervasive nature and the
sensitivity of the data they often handle, IoT devices are attractive targets for attackers.
Wasm, with its security-focused design, offers several key elements that can help to
strengthen the security of IoT deployments.

– Strong Isolation
Each Wasm module operates within a well-defined sandbox environment. This
means that code executing in one Wasm module is isolated from both the host
system and other Wasm modules, preventing any malicious activity from affecting
other parts of the system. This isolation makes it difficult for attackers to exploit
vulnerabilities in one part of the system to compromise others.

– Managed Memory
Wasm’s memory model offers security advantages as well. Wasm programs
manipulate a linear memory array, which is isolated from the host memory
and checked for out-of-bounds accesses. This model helps to prevent common
vulnerabilities such as buffer overflows that attackers could otherwise exploit.

– Secure Interactions
Interactions between Wasm and the host environment (typically JavaScript in a
browser context) are strictly controlled, with a clear interface for calling functions
and transferring data. This clear interface makes it harder for an attacker to trick
the program into executing malicious code or accessing sensitive data.

– Futuristic Scope
Proposed enhancements to Wasm, such as the addition of garbage collection and
the WASI, could offer additional security benefits. Garbage collection can help
prevent memory leaks, which can sometimes be exploited to carry out attacks,
while WASI could provide a more secure way for Wasm modules to interact with
system resources.

• Enabling Advanced Features in IoT
Wasm’s efficient execution can enable more advanced features in IoT devices, including
edge computing, real-time analytics, and machine learning. As Wasm continues to
evolve and improve, it can be expected that these capabilities will be further enhanced.
Wasm’s potential extends beyond the immediate benefits of performance and security.
Its flexibility and portability open doors to new possibilities for the advancement of
IoT applications. This section explores how Wasm can enable more advanced features
in the IoT realm.

– Edge AI and Machine Learning
The high performance of Wasm enables the deployment of Artificial Intelligence
(AI) and Machine Learning (ML) models directly onto edge devices. This ca-
pability allows IoT devices to make intelligent decisions in real time without
relying on a cloud-based service, thereby reducing latency and bandwidth usage.
Additionally, running AI/ML models on-device can offer privacy benefits, as
sensitive data no longer need to be transmitted over the network.

– Digital Twins
Wasm’s cross-platform compatibility can play a significant role in the imple-
mentation of digital twins, a concept that involves creating a digital replica of
a physical object or system. Wasm allows the same digital twin code to run on
various platforms, from small IoT devices to cloud servers, enabling real-time
synchronization between the physical entity and its digital replica.

Future Internet 2023, 15, 275 65 of 77

– Advanced Augmented Reality (AR)
Wasm can power more advanced AR applications in wearable IoT devices such
as smart glasses. Its efficiency and performance can enable complex AR tasks
such as object recognition or positional tracking to be performed directly on the
device, offering a more responsive and immersive user experience.

– Ubiquitous Computing
Wasm’s portability and efficient performance make it a promising technology for
ubiquitous computing, a concept in which computing is embedded in everyday
objects and activities. With Wasm, developers can write code once and run it
on a multitude of devices, facilitating the integration of computing into peoples’
daily lives.

• Standardization of IoT Development
The language-neutral and platform-agnostic nature of Wasm could contribute to
standardization in IoT development, reducing fragmentation and simplifying the
development process across various platforms and devices. The IoT landscape is
inherently diverse and fragmented, with a multitude of different devices, platforms,
and technologies. This fragmentation can often be a barrier to the widespread adop-
tion and development of IoT applications. Here, Wasm’s platform-agnostic nature
and standardization can provide a unifying layer to facilitate the standardization of
IoT development.

– Unifying the Development Process
Wasm offers a single uniform target for all IoT developers. Its universal byte-
code can be executed on any device that has a Wasm runtime, regardless of
the underlying hardware or operating system. This universality simplifies the
development process, as developers no longer need to build different versions of
the same application for different platforms; instead, they can focus on building
one version that can run across all platforms.

– Facilitating Code Reuse
The ability to write code once and run it anywhere encourages code reuse. In
traditional IoT development, code often needs to be rewritten when moving
from one platform to another due to differences in APIs, operating systems, or
hardware capabilities. Wasm mitigates this issue, as the same Wasm code can be
used across different devices and platforms.

– Ensuring Predictable Performance
Wasm’s low-level nature ensures that it offers predictable performance across
platforms. Its compact binary format is designed for fast download, parsing,
and execution. This predictability allows developers to create applications with
consistent performance regardless of the platform on which they are running.

– Promoting Interoperability
Wasm promotes interoperability among IoT devices. It can serve as a universal
runtime for executing IoT applications, allowing devices from different manufac-
turers and platforms to run the same application code and communicate more
seamlessly with each other.

• Resource Management in IoT
Wasm’s efficient memory and resource utilization could play a critical role in managing
the constrained resources of IoT devices, thereby enhancing their performance and
capabilities. In IoT systems, resource management is a critical consideration. IoT
devices, ranging from small sensors to more complex machines, usually operate under
tight resource constraints, including limited processing power, memory, storage, and
energy. Wasm, with its compact, low-level format and efficient execution model, offers
several advantages for resource management in IoT.

Future Internet 2023, 15, 275 66 of 77

– Efficient Use of Processing Power
Wasm’s compact binary format and efficient execution model ensure that it
uses processing power optimally. Unlike interpreted languages, which require
parsing and interpreting at runtime, Wasm’s bytecode is pre-compiled and can
be executed quickly by the Wasm virtual machine. This reduces the processing
overhead, making it ideal for resource-constrained IoT devices.

– Compact Memory Footprint
Wasm has a compact memory footprint. It uses a linear memory model, which
provides a single, contiguous array of bytes representing the application’s mem-
ory. In combination with Wasm’s efficient use of memory, this model reduces
the amount of memory needed to run applications, an important advantage for
memory-limited IoT devices.

– Energy Efficiency
Efficient use of processing power and memory translates to energy efficiency, a
critical consideration for IoT devices, many of which are battery-powered. By
minimizing the computational resources needed to run applications, Wasm helps
to reduce the energy consumption of IoT devices, extending their battery life and
reducing the overall energy footprint of the IoT system.

– Granular Control over Resources
Wasm’s low-level nature provides developers with granular control over system
resources. For example, developers can control memory allocation and deallo-
cation explicitly in Wasm, which is often not possible in high-level languages.
This control allows for more efficient use of resources and can lead to better
performance and reduced resource consumption.

– Future Developments
Proposed enhancements to Wasm, such as the introduction of garbage collection
and improved resource management primitives, are expected to further enhance
Wasm’s resource management capabilities for IoT. These developments can help
to address the current limitations and make Wasm an even more attractive option
for resource-constrained IoT devices.

7. Prospective Aspects of WebAssembly

The prospective aspects of Wasm hold significant promise, as numerous improve-
ments and new specifications are on the horizon. These specifications aim to expand the
functionality and applicability of Wasm across different domains. For instance, the pro-
posal to add garbage collection to Wasm would revolutionize how memory management is
carried out, making it easier to interface with host languages and enhancing performance
in memory-intensive applications. Another critical aspect is the WASI, which seeks to
standardize how Wasm modules interact with the operating system, thereby opening doors
for universal applications that can run anywhere regardless of the system architecture. In
addition, enhanced debugging support is in the pipeline, which will make development
and troubleshooting processes more efficient and accessible. These advancements signify
the commitment of the Wasm community towards continuous innovation, paving the way
for a bright and transformative future for Wasm.

7.1. Prospective WebAssembly Specifications

Wasm, as a crucial aspect of modern web technology, continues to evolve and expand
in scope and functionality. As it has been adopted in diverse fields such as IoT, the
development community and browser vendors are keen to continue rolling out new features
and specifications that bolster the language’s power and flexibility. This section explores
several of the potential future specifications and enhancements to Wasm that could have
profound implications for its usage in IoT and beyond.

Future Internet 2023, 15, 275 67 of 77

• WASI
The WASI is another promising future specification. It seeks to standardize the way
in which Wasm modules interact with the underlying operating system to facilitate
consistent and secure system calls. With WASI, developers can create universal
applications that are platform-independent, enhancing the portability of Wasm. For
IoT, this could mean that a single Wasm module could run on a myriad of devices,
irrespective of the device’s specific operating system or architecture.

• Multi-Threading and SIMD Support
Future specifications of Wasm include the introduction of multi-threading and SIMD
support. Multi-threading would allow Wasm applications to execute multiple threads
simultaneously, significantly increasing computational speed and efficiency for multi-
core processors. SIMD, on the other hand, would enable a single operation to be
performed on multiple data points at once, which is crucial for heavy computational
tasks such as graphics rendering, audio processing, or machine learning algorithms.

• Enhanced Debugging Support
Another area of focus for future Wasm specifications is enhanced debugging support.
At present, debugging Wasm code can be challenging, especially when compared to
more traditional languages such as JavaScript. Future enhancements promise a more
accessible and efficient debugging process, enabling developers to easily track and
fix bugs within their Wasm code. This would make the development process more
streamlined while resulting in more stable and reliable Wasm applications.

• Module Types The Module Types proposal is a future specification that aims to
provide a robust mechanism for defining the interface of a Wasm module. This
includes the functions it exports, the types of these functions, the memories it uses, and
more. With this feature, developers could build more complex modular applications
with clearly defined interactions between different modules.

7.2. Need for Garbage Collection and Resource Management

One of the significant future directions for Wasm involves integrating garbage col-
lection and advancing its resource management capabilities. The absence of automatic
garbage collection is a known limitation in the current Wasm specification, and addressing
it will mark a significant milestone.

• The Impact of Garbage Collection
Garbage collection has a profound impact on software development. The automatic
memory management provided by garbage collection removes the burden of manually
tracking and freeing up unused memory from developers, prevents memory leaks,
and reduces the likelihood of certain types of bugs.
In the context of Wasm, the addition of garbage collection support could drastically
simplify the process of compiling high-level garbage-collected languages to Wasm.
Languages such as JavaScript, Python, and many others use garbage collection, and
their direct compilation to Wasm would be more straightforward with the introduction
of garbage collection support.

• Resource Management Advancements
In addition to garbage collection, future improvements to Wasm’s resource manage-
ment capabilities are expected to evolve. Currently, Wasm operates with a linear
memory model, which offers simplicity and performance advantages but presents
limitations. As IoT devices continue to grow in complexity and capability, more
sophisticated memory management techniques may be needed.
Future developments could see the emergence of more advanced memory models
in Wasm, including support for shared memory between modules or even between
threads. This would allow for more complex multi-threaded applications and for
modules that can communicate and share data more efficiently.

Future Internet 2023, 15, 275 68 of 77

• Garbage Collection and IoT
In the specific context of IoT, the addition of garbage collection to Wasm could provide
significant advantages. IoT devices often need to run for extended periods without
manual intervention, and can ill afford memory leaks or other resource management
issues that can disrupt their operation. Thus, the inclusion of automatic garbage col-
lection would enhance the reliability and robustness of Wasm-based IoT applications.

7.3. Exception Handling

This section discusses the future deployment aspects of exception handling in Wasm.
The proposal for exception handling reflects the current version agreed upon by the Wasm
Community Group; however, it is important to note that the specifics may evolve as
the proposal progresses. The inclusion of exception handling in Wasm opens up new
possibilities for handling errors and exceptional situations in future deployments. With
exception handling, developers can break the control flow when an exception is thrown,
allowing for more robust error handling and recovery mechanisms. In future deployments,
exception handling can enhance the reliability and stability of Wasm applications. It
enables developers to handle various types of exceptions, both known and unknown,
ensuring that critical errors are properly handled and the application can gracefully recover
from exceptional situations. The introduction of a new section for declaring exceptions
provides a standardized way to define and manage exceptions in Wasm modules. This
allows developers to precisely specify the types of exceptions that can be thrown and
caught within their applications. One of the future directions for exception handling in
Wasm is the potential expansion of the tag section. Currently, the attribute value for a
tag can only specify that it is for an exception. However, the proposal allows for future
extension by defining a more general format tag that can accommodate other types of
typed tags. This opens up possibilities for handling different types of exceptional situations
beyond traditional exceptions. As exception handling evolves, it is expected that the
Wasm ecosystem will provide tools, libraries, and frameworks to facilitate the development
and deployment of exception-aware applications. These tools will help developers write
robust code that effectively handles exceptions and ensures the overall stability of Wasm
applications. The future deployment of exception handling in Wasm holds promise for
improving the reliability and error handling capabilities of applications. By providing a
standardized mechanism for handling exceptions, Wasm enables developers to build more
resilient and fault-tolerant applications that can recover from exceptional situations. As
the Wasm ecosystem matures, further advancements and tooling support are expected to
enhance the exception handling capabilities of Wasm applications.

7.4. Memory64

Wasm utilizes a page-based measurement system for linear memory objects, where
each page consists of 65536 (216) bytes. In the current version of Wasm (version 1), the
maximum number of pages allowed is 65536, resulting in a total memory size of 232 bytes
(4 gibibytes). This limitation extends to memory instructions, which currently employ the
i32 type as a memory index. Consequently, these instructions can address a maximum
of 232 bytes of memory. For most applications, the 4 gibibyte memory limit proves to be
sufficient. In such cases, utilizing 32-bit memory indexes offers the advantage of smaller
pointers in the producer language, leading to memory savings. However, certain applica-
tions may require more memory than the current limit permits. Regrettably, the existing
Wasm feature set lacks straightforward solutions to address this challenge. However, in-
troducing the capability for a Wasm module to select between 32-bit and 64-bit memory
indexes effectively resolves both concerns. Furthermore, considering that Wasm serves as
a Virtual Instruction Set Architecture (ISA), hosts may prefer to employ the Wasm binary
format as a portable executable format while supporting other non-virtual ISAs. With the
widespread adoption of 64-bit memory addresses in most ISAs, hosts may be reluctant to
maintain support for 32-bit memory addresses in their Application Binary Interface (ABI).

Future Internet 2023, 15, 275 69 of 77

7.5. Multiple Memories

Developers are aiming to extend the capabilities of Wasm in the future by allowing
the use of multiple memories within a single module. While it is currently possible to
create multiple memories in a Wasm application, each memory is isolated within its own
module, and a module or function cannot access multiple memories simultaneously. This
limitation prevents efficient data transfer between memories, as it requires individual
function calls into different modules for each value. The motivation behind supporting
multiple memories in a single module is driven by several use case scenarios. First, for
security purposes, a module may want to separate public memory which is shared with
the outside from private memory that is encapsulated within the module. By isolating
these memories, data exchange can be controlled and managed effectively. Second, even
within a single module it is beneficial to have separate memories for shared memory used
by multiple threads and memory used in a single-threaded manner. This isolation ensures
better memory management and avoids potential conflicts or data corruption. Another use
case is the need for persistence. An application may want to preserve certain memory states
between runs by storing them in a file. However, not all memory needs to be persistent,
and separating memories allows for greater flexibility in managing memory lifetimes. This
proposal addresses the issue of linking multiple Wasm modules into one. Many tools exist
that can merge multiple modules through static linking. However, if the modules define
more than one memory, this merging process becomes challenging. Allowing multiple
memories in a single module resolves this limitation and enables seamless merging of
modules. Additionally, the ability to use multiple memories is crucial for scaling purposes.
With the current 32-bit memory address space limitation, applications requiring more
than 4 GB of memory face efficiency challenges. Multiple memories provide an efficient
workaround until 64-bit memories become available. Furthermore, the proposal supports
polyfilling, which emulates certain features such as garbage collection or interface types
in existing Wasm. The ability to add auxiliary memories distinct from the module’s
address space facilitates the implementation of these features within the current Wasm
infrastructure. The design of this extension aligns with the original Wasm design and
introduces minimal changes. It allows for multiple memory imports and definitions in
a single module, adds memory index parameters to memory-related instructions, and
extends validation and execution semantics accordingly. The binary and text formats are
updated to accommodate these changes. Implementations of Wasm engines already handle
multiple memories, although code within a module has been limited to accessing a single
memory. Reserving a register for the base address of the main memory has been a common
technique. With multiple memories, engines may require an extra level of indirection to
access the desired memory. In summary, this proposal enhances the capabilities of Wasm
by enabling the use of multiple memories within a single module. It addresses various
use case scenarios, improves memory management, facilitates data exchange, and aligns
with the existing design of Wasm. By allowing the explicit definition and access of multiple
memories, Wasm becomes more flexible and versatile in its memory handling capabilities.

7.6. Threads and Atomics

This section focuses on the introduction of threading and atomics features in Wasm.
The proposal suggests the addition of shared linear memory type and new operations for
atomic memory access. The responsibility for creating and joining threads is left to the
embedder. Agents, which are execution contexts for Wasm modules, are introduced, and
can be seen as threads within the web embedding context. Agents belong to an agent
cluster, which in the case of web embedding is the ECMAScript agent cluster. Shared
linear memory allows memory to be shared among all agents in an agent cluster. While
it can be imported or defined within a module, it must be specified in the module’s
memory import if it is shared. Modification of shared memory by one agent can be
observed by other agents in the same cluster. The resizing of shared linear memory
requires the specification of a maximum memory size. The future design of Wasm will

Future Internet 2023, 15, 275 70 of 77

address instantiation, initialization, and memory access operations. When a module with
imported memory is instantiated, its data segments are copied into the memory. The
initialization of data segments follows a specific order and granularity. The proposal allows
for memory to be initialized only once by placing all data segments in a separate module
that is instantiated once and then shared with other modules. The proposal introduces
atomic memory accesses, which can be performed on both shared and unshared linear
memories. These accesses include load/store operations, read–modify–write operators,
and compare–exchange operators. Atomic memory accesses have sequentially consistent
ordering, and misaligned accesses in atomic operations result in traps. Additionally, the
proposal introduces wait and notify operators, which are optimizations for value change
detection. The wait operator waits for a value to change, and the notify operator wakes up
waiters. Alignment requirements and validation rules are defined for these operators. The
fence operator is included to preserve synchronization guarantees in higher-level languages.
Overall, this proposal aims to enhance Wasm by introducing threading capabilities and
providing atomic memory access operations, allowing for more efficient and synchronized
execution in multi-threaded scenarios.

7.7. Type Reflection

Type reflection in Wasm is the focus of this proposal, aiming to provide improved
access to type information for Wasm modules and objects through the JavaScript API.
Wasm is a typed language, and its types contain valuable details such as import and
export specifications, memory and table size limits, and global mutability. The need to
query this information from JavaScript has been raised in various contexts, including the
development of a JS-hosted linker or an adapter mechanism for modules. Therefore, this
proposal introduces new functionality to the JS API in a systematic manner. The future
design will consist of three main components. First, it defines a representation of Wasm
types as JavaScript objects. This representation allows for a direct and extensible mapping
of Wasm types to JSON-style JS objects. Second, the API classes are extended with a
type method that enables the retrieval of the underlying Wasm object’s type. Finally, a
new class called Wasm.Function is introduced, which subclasses JavaScript’s Function
and specifically represents exported functions in Wasm. This class provides a constructor
to create Wasm exported functions from regular JS functions, enabling the usage of JS
functions in tables, which was not previously possible. To achieve type representation, a
simple grammar is used to define all Wasm types, which can then be mapped to JSON-
style JS objects. The existing descriptor interfaces in the API are repurposed as types,
with slight renaming and restructuring. Furthermore, the proposal introduces additional
methods to query types, such as type() for Memory, Table, and Global interfaces. The
constructors for Memory and Table are adjusted to accept the updated type parameters.
Additionally, the Wasm.Function class is introduced, allowing exported functions to have a
distinct type attribute and supporting explicit construction of Wasm exported functions. By
implementing this proposal, developers gain enhanced access to type information in Wasm
through the JavaScript API. They can retrieve and manipulate type details for imports,
exports, memories, tables, globals, and exported functions. The proposal offers improved
compatibility, flexibility, and extensibility for working with Wasm modules in JavaScript,
enabling more sophisticated tools and mechanisms to interact with Wasm code.

7.8. Need for Enhanced Security Measures

Security is a paramount concern in the IoT landscape in light of the critical nature of
many IoT applications and the potentially sensitive data they handle. While the secure-
by-default nature of Wasm is one of its strongest advantages, further enhancements in this
area expected as the technology matures and its use in IoT grows.

• Expanding Sandbox Capabilities
One of the key security features of Wasm is its sandboxing mechanism, which isolates
Wasm modules from each other and from the rest of the system. This containment

Future Internet 2023, 15, 275 71 of 77

prevents a module from affecting other parts of the system in case it becomes com-
promised. Future developments could further enhance this sandboxing mechanism
to provide even stronger isolation and control over module interactions, as well as to
provide more granular permissions and capabilities to each module.

• Advanced Cryptographic Features
Cryptography is a cornerstone of secure communications, and as Wasm is increasingly
used for IoT applications we may see the introduction of advanced cryptographic
features directly into the Wasm standard. This could include possibilities such as built-
in support for encryption and decryption functions, digital signatures, secure random
number generation, and other cryptographic primitives. These features would make
it easier for developers to build secure IoT applications with Wasm while potentially
improving performance by providing these capabilities at a low level.

• Hardware Security Integration
Another promising direction for enhancing Wasm’s security is deeper integration with
hardware security features. Many modern processors offer hardware-level security
features such as secure enclaves, which provide a protected area of memory where
sensitive data can be processed securely. Through integration with these features,
Wasm could offer an even higher level of security for IoT applications.

• Fine-Grained Access Control
As Wasm evolves, we may see the introduction of more fine-grained access control
mechanisms. These could allow for detailed control over what resources a Wasm
module can access, such as specific devices, network interfaces, or files. This would
provide an additional layer of security by ensuring that a module can only access the
resources it needs to function and nothing more.

• Security in a Multi-Tenant Environment
With the rise of edge computing and the proliferation of IoT devices, there may be
situations in which multiple Wasm applications coexist on the same device. In such
scenarios, ensuring isolation and security in a multi-tenant environment would be
crucial. Future Wasm specifications could cater to such use cases, providing robust
security mechanisms to ensure data privacy and system stability.

7.9. Prospective WebAssembly Ecosystem Growth

The growth of the Wasm ecosystem is an integral part of the language’s future, partic-
ularly in the realm of IoT. As more developers adopt Wasm for their IoT solutions, there is
an increasing need for comprehensive tools, libraries, and community resources to support
this growth. This section explores the potential future development of the Wasm ecosystem.

• Expansion of Development Tools
The future will likely see a proliferation of development tools tailored for Wasm
and IoT. This could include more comprehensive debuggers, performance profilers,
module optimizers, and improved IDE support for languages compiling to Wasm,
with the goal of making the development process as seamless as possible from writing
code to debugging and deployment.

• Growth of Libraries and Frameworks
Libraries and frameworks play a crucial role in easing the development process by
providing pre-written code for common tasks. As the Wasm ecosystem matures, the
number of available libraries and frameworks can be expected to increase. These
could range from low-level libraries for things such as network communication
and hardware interaction to high-level frameworks that provide entire boilerplate
IoT applications.

• Community Expansion
The Wasm community’s expansion, including developers, users, and researchers, is
crucial for its growth. A larger community means more collaboration, which leads to
more tools, more libraries, and more shared knowledge. This could lead to increased
contributions to the Wasm specification itself, thereby driving the language’s evolution.

Future Internet 2023, 15, 275 72 of 77

• Increased Industry Adoption
Increased industry adoption of Wasm is another key aspect of the ecosystem’s growth.
As more businesses realize the benefits of using Wasm for their IoT solutions, there are
likely to be more industry-sponsored projects, job opportunities for Wasm developers,
and overall investment in the ecosystem.

• Education and Training
As the demand for Wasm in IoT applications grows, so will the need for education
and training in this area. This could result in more online courses, workshops, and
resources for learning Wasm and how to use it in the context of IoT.

7.10. Prospective Alignments with Technologies

As Wasm continues to evolve and mature, it is set to revolutionize various aspects of
IoT applications and usher in a new era of innovation. The flexible, efficient, and secure
characteristics of Wasm make it highly suitable for futuristic IoT use cases. This section
delves deeper into the potential future applications of Wasm in the IoT landscape.

• Dew Computing
Dew computing, an emerging concept in the realm of IoT, envisions a paradigm
in which computing and data processing capabilities are distributed across the net-
work’s edge, closer to the IoT devices and sensors themselves. In the context of
futuristic use cases in IoT, Wasm can play a crucial role in enabling dew computing
architectures. By leveraging Wasm, IoT devices can execute lightweight and efficient
code at the edge, reducing reliance on cloud infrastructure and minimizing latency.
Wasm’s ability to run on resource-constrained devices makes it an ideal technology
for enabling intelligent edge analytics and decision-making. With Wasm, IoT devices
can perform real-time data processing, advanced machine learning tasks, and local
decision-making all while maintaining low power consumption and ensuring fast
response times. This empowers IoT deployments with the ability to derive valuable in-
sights, make autonomous decisions, and respond to critical events in a timely manner
even in scenarios with limited connectivity or stringent privacy requirements. Wasm’s
versatility and compatibility make it a promising technology for realizing the potential
of dew computing in futuristic IoT use cases.

• WebAssembly and AI
AI has become a fundamental component in a variety of technology sectors, bringing
automation and intelligence to tasks traditionally requiring human intervention. As
we anticipate the future of Wasm, its role in enhancing and accelerating AI applications
is an intriguing subject. This section delves into the potential intersections between
Wasm and AI.

– Why Wasm for AI?
The use of Wasm in AI can be attributed to its core strengths of performance, porta-
bility, and security. These attributes can significantly influence the development,
execution, and scalability of AI applications.

– Wasm and AI Models
Many AI models, especially those involving deep learning, require substantial
computational power. Currently, these models are typically trained on powerful
servers and executed on the edge, for instance, in a user’s browser or on an IoT
device. This execution often relies on JavaScript, which, while highly portable,
does not deliver the performance of a compiled language. Wasm, with its near-
native execution speed, offers a compelling alternative for executing AI models
on the edge, potentially improving performance and responsiveness.

– Wasm and On-Device AI
Wasm can enhance on-device AI capabilities. In many scenarios, running AI mod-
els directly on end-user devices such as smartphones or IoT devices can provide
benefits in terms of latency, privacy, and bandwidth. However, these devices
often have diverse architectures and capabilities. Wasm’s portability makes it an

Future Internet 2023, 15, 275 73 of 77

excellent choice for running AI workloads in such a heterogeneous environment,
allowing developers to write their code once and run it on various devices.

– Wasm and AI in the Browser
Wasm can accelerate AI in the browser context as well. It opens up possibilities for
running complex AI models directly in the browser, allowing for real-time AI ap-
plications such as image recognition, natural language processing, and predictive
modeling to run efficiently without the need for server-side computation.

• Decentralized Computing
With the advent of blockchain technologies and decentralized computing, there is
a growing need for efficient, secure, and platform-independent computation mod-
els. Wasm’s platform-agnostic nature in combination with its sandboxed execution
environment make it an ideal candidate for this use case. Wasm could potentially
enable smart contracts execution or complex computations on decentralized platforms,
opening up new possibilities for IoT applications in a decentralized context.

• Heterogeneous Computing
In the future, IoT devices will be increasingly heterogeneous, involving a mix of CPUs,
GPUs, and other specialized hardware. The need for a common runtime that can
efficiently use these diverse resources will be more critical than ever. Wasm, with
its portable and efficient nature, could provide a unified platform for executing code
across this heterogeneous hardware, unlocking new possibilities for IoT applications.

• Advanced Robotics
Wasm’s high performance and real-time capabilities could make it suitable for ad-
vanced robotics applications. Whether controlling robotic movements with precision,
processing sensor data in real time, or running complex navigation algorithms, Wasm
could be instrumental in pushing the boundaries of what is possible in robotics.

8. Conclusions

The integration of Wasm and IoT offers significant advantages for IoT development.
Wasm provides a portable and efficient runtime environment for executing code on resource-
constrained IoT devices. By enabling developers to write code in high-level languages such
as C/C++ and Rust, Wasm simplifies the development process and allows for greater code
reuse across different IoT platforms. Wasm’s small footprint and low overhead make it well
suited for IoT applications, where memory and processing power are typically limited. It
enables the deployment of complex applications and algorithms on edge devices, reducing
the need for data transmission to the cloud and improving real-time responsiveness. Addi-
tionally, Wasm’s sandboxed execution model enhances security by isolating code execution
and preventing unauthorized access to sensitive resources. This is particularly crucial in IoT
deployments, where security vulnerabilities can have severe consequences. The integration
of Wasm and IoT opens up new possibilities for developing innovative IoT solutions, such
as intelligent edge devices, real-time analytics, and machine learning at the edge. It empow-
ers developers to leverage the rich ecosystem of Wasm libraries and frameworks, thereby
accelerating the development of IoT applications and fostering interoperability. Existing
toolsets can be a good starting point to implement and design IoT-based architectures
and applications; however, thorough research and further investigations are required in
order to efficiently deal with the compiler design process. As there exist many types of
IoT devices and toolchains, at present, Wasm toolsets are not enough to cover all the long
list of IoT devices and related peripherals. A more holistic Wasm compiler design with
augmentation of VM-based approach should be put in place in near future in order to
realize the real potential of the Wasm–IoT juxtaposition. Overall, the integration of Wasm
and IoT presents a powerful combination that enhances the capabilities, performance, and
security of IoT systems, driving the advancement of the Internet of Things and enabling
the next generation of connected devices and applications.

Funding: This research received no external funding.

Future Internet 2023, 15, 275 74 of 77

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Haas, A.; Rossberg, A.; Schuff, D.L.; Titzer, B.L.; Holman, M.; Gohman, D.; Wagner, L.; Zakai, A.; Bastien, J.F. Bringing the web up

to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, Barcelona, Spain, 18–23 June 2017; pp. 185–200.

2. Lehmann, D.; Kinder, J.; Pradel, M. Everything old is new again: Binary security of WebAssembly. In Proceedings of the 29th
USENIX Security Symposium (USENIX Security 20), Boston, MA, USA, 12–14 August 2020; pp. 217–234.

3. Yan, Y.; Tu, T.; Zhao, L.; Zhou, Y.; Wang, W. Understanding the performance of webassembly applications. In Proceedings of the
21st ACM Internet Measurement Conference, Virtual Event, 2–4 November 2021; pp. 533–549.

4. Watt, C. Mechanising and verifying the WebAssembly specification. In Proceedings of the 7th ACM SIGPLAN International
Conference on Certified Programs and Proofs, Los Angeles, CA, USA, 8–9 January 2018; pp. 53–65.

5. Ray, P.P. A survey on Internet of Things architectures. J. King Saud Univ.-Comput. Inf. Sci. 2018, 30, 291–319.
6. Ray, P.P. A survey of IoT cloud platforms. Future Comput. Inform. J. 2016, 1, 35–46. [CrossRef]
7. Rossberg, A.; Titzer, B.L.; Haas, A.; Schuff, D.L.; Gohman, D.; Wagner, L.; Zakai, A.; Bastien, J.F.; Holman, M. Bringing the web up

to speed with webassembly. Commun. ACM 2018, 61, 107–115. [CrossRef]
8. Musch, M.; Wressnegger, C.; Johns, M.; Rieck, K. New Kid on the Web: A Study on the Prevalence of WebAssembly in the Wild.

In Detection of Intrusions and Malware, and Vulnerability Assessment: 16th International Conference, DIMVA 2019, Gothenburg, Sweden,
19–20 June 2019; Springer International Publishing: Cham, Switzerland, 2019; pp. 23–42.

9. Wang, W. Empowering web applications with WebAssembly: Are we there yet? In Proceedings of the 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE), Melbourne, Australia, 15–19 November 2021; pp. 1301–1305.

10. Dejaeghere, J.; Gbadamosi, B.; Pulls, T.; Rochet, F. Comparing Security in eBPF and WebAssembly. In Proceedings of the ACM
SIGCOMM 1st Workshop on eBPF and Kernel Extensions, New York City, NY, USA, 10 September 2023.

11. WebAssembly Website. Available online: https://webassembly.org/ (accessed on 1 July 2023).
12. WebAssembly Mozilla. Available online: https://developer.mozilla.org/en-US/docs/WebAssembly/ (accessed on 2 July 2023).
13. Why WebAssembly Is Needed. Available online: https://thenewstack.io/webassembly/what-is-webassembly-and-why-do-

you-need-it/ (accessed on 1 July 2023).
14. Foreign Function Interface. Available online: https://hyperledger.github.io/iroha-2-docs/api/ffi.html/ (accessed on 1 July 2023).
15. FFI Github. Available online: https://github.com/DeMille/wasm-ffi/ (accessed on 2 July 2023).
16. How WebAssembly Modules. Available online: https://training.linuxfoundation.org/blog/how-and-why-to-link-webassembly-

modules/ (accessed on 1 July 2023).
17. WebAssembly Security. Available online: https://webassembly.org/docs/security/ (accessed on 1 July 2023).
18. WebAssembly Sandboxing. Available online: https://thenewstack.io/how-webassembly-offers-secure-development-through-

sandboxing/ (accessed on 1 July 2023).
19. Emscripten. Available online: https://emscripten.org/ (accessed on 1 July 2023).
20. TinyGo. Available online: https://tinygo.org/ (accessed on 1 July 2023).
21. WARDuino. Available online: https://github.com/TOPLLab/WARDuino (accessed on 1 July 2023).
22. Wasm3. Available online: https://github.com/wasm3/wasm3 (accessed on 1 July 2023).
23. AssemblyScript. Available online: https://www.assemblyscript.org/ (accessed on 1 July 2023).
24. Wasmino-Core. Available online: https://github.com/wasmino/wasmino-core (accessed on 1 July 2023).
25. Binaryen. Available online: https://github.com/WebAssembly/binaryen (accessed on 1 July 2023).
26. Rustc. Available online: https://doc.rust-lang.org/rustc/what-is-rustc.html (accessed on 1 July 2023).
27. Zigwasm. Available online: https://www.fermyon.com/wasm-languages/zig (accessed on 2 July 2023).
28. Fable-Compiler. Available online: https://github.com/fable-compiler/Fable (accessed on 2 July 2023).
29. Pyodide. Available online: https://pyodide.org/ (accessed on 2 July 2023).
30. Wasmer. Available online: https://wasmer.io/ (accessed on 2 July 2023).
31. WAMR. Available online: https://github.com/bytecodealliance/wasm-micro-runtime (accessed on 1 July 2023).
32. Node.js. Available online: https://nodejs.org/ (accessed on 1 July 2023).
33. Wasmtime. Available online: https://wasmtime.dev/ (accessed on 1 July 2023).
34. WAVM. Available online: https://github.com/WAVM/WAVM (accessed on 1 July 2023).
35. Deno. Available online: https://deno.land/ (accessed on 1 July 2023).
36. Lucet. Available online: https://github.com/bytecodealliance/lucet (accessed on 1 July 2023).
37. Wascc. Available online: https://github.com/wasmCloud/wascc-actor (accessed on 1 July 2023).
38. Kotlin Wasm. Available online: https://kotlinlang.org/docs/wasm-overview.html (accessed on 2 July 2023).
39. WasmEdge. Available online: https://github.com/WasmEdge/WasmEdge (accessed on 2 July 2023).
40. CheerpX. Available online: https://leaningtech.com/cheerpx-for-flash/ (accessed on 2 July 2023).

http://doi.org/10.1016/j.fcij.2017.02.001
http://dx.doi.org/10.1145/3282510
https://webassembly.org/
https://developer.mozilla.org/en-US/docs/WebAssembly/
https://thenewstack.io/webassembly/what-is-webassembly-and-why-do-you-need-it/
https://thenewstack.io/webassembly/what-is-webassembly-and-why-do-you-need-it/
https://hyperledger.github.io/iroha-2-docs/api/ffi.html/
https://github.com/DeMille/wasm-ffi/
https://training.linuxfoundation.org/blog/how-and-why-to-link-webassembly-modules
https://training.linuxfoundation.org/blog/how-and-why-to-link-webassembly-modules
https://webassembly.org/docs/security/
https://thenewstack.io/how-webassembly-offers-secure-development-through-sandboxing/
https://thenewstack.io/how-webassembly-offers-secure-development-through-sandboxing/
https://emscripten.org/
https://tinygo.org/
https://github.com/TOPLLab/WARDuino
https://github.com/wasm3/wasm3
https://www.assemblyscript.org/
https://github.com/wasmino/wasmino-core
https://github.com/WebAssembly/binaryen
https://doc.rust-lang.org/rustc/what-is-rustc.html
https://www.fermyon.com/wasm-languages/zig
https://github.com/fable-compiler/Fable
https://pyodide.org/
https://wasmer.io/
https://github.com/bytecodealliance/wasm-micro-runtime
https://nodejs.org/
https://wasmtime.dev/
https://github.com/WAVM/WAVM
https://deno.land/
https://github.com/bytecodealliance/lucet
https://github.com/wasmCloud/wascc-actor
https://kotlinlang.org/docs/wasm-overview.html
https://github.com/WasmEdge/WasmEdge
https://leaningtech.com/cheerpx-for-flash/

Future Internet 2023, 15, 275 75 of 77

41. Go. Available online: https://golangbot.com/webassembly-using-go/ (accessed on 2 July 2023).
42. Webpack. Available online: https://webpack.js.org/configuration/experiments/ (accessed on 2 July 2023).
43. Rollup. Available online: https://www.npmjs.com/package/@rollup/plugin-wasm (accessed on 2 July 2023).
44. Blazor. Available online: https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor (accessed on 2 July 2023).
45. wasm-bindgen. Available online: https://rustwasm.github.io/wasm-bindgen/#:~:text=The%20wasm%2Dbindgen%20tool%

20and,can%20find%20that%20documentation%20here (accessed on 2 July 2023).
46. WABT. Available online: https://github.com/WebAssembly/wabt (accessed on 2 July 2023).
47. WASI. Available online: https://wasi.dev/ (accessed on 2 July 2023).
48. WASI Integration. Available online: https://github.com/WebAssembly/WASI (accessed on 2 July 2023).
49. WAGI. Available online: https://github.com/deislabs/wagi (accessed on 2 July 2023).
50. WASI vs WAGI. Available online: https://medium.com/@shyamsundarb/wasm-wasi-wagi-web-assembly-modules-in-rust-af7

335e80160 (accessed on 2 July 2023).
51. Wallentowitz, S.; Kersting, B.; Dumitriu, D.M. Potential of WebAssembly for Embedded Systems. In Proceedings of the 2022 11th

Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 7–10 June 2022; pp. 1–4.
52. Kotilainen, P.; Järvinen, V.; Tarkkanen, J.; Autto, T.; Das, T.; Waseem, M.; Mikkonen, T. WebAssembly in IoT: Beyond Toy Examples.

In International Conference on Web Engineering; Springer Nature: Cham, Switzerland, 2023; pp. 93–100.
53. Hoque, M.N.; Harras, K.A. WebAssembly for Edge Computing: Potential and Challenges. IEEE Commun. Stand. Mag. 2022, 6,

68–73. [CrossRef]
54. Jain, S.M. WebAssembly Introduction. WebAssembly for Cloud: A Basic Guide for Wasm-Based Cloud Apps; Apress: Berkeley, CA, USA,

2022; pp. 1–11.
55. Zhamashev, Y. WebAssembly in Building Internet of Things Systems. Systematic Literature Review of Use Cases, Characteristics,

Opportunities, and Threats. Available online: https://aaltodoc.aalto.fi/handle/123456789/121767 (accessed on 2 July 2023).
56. Theel, T. Creative DIY Microcontroller Projects with TinyGo and WebAssembly: A Practical Guide to Building Embedded Applications for

Low-powered Devices, IoT, and Home Automation; Packt Publishing Limited: Birmingham, UK, 2021; ISBN 9781800560208.
57. Wen, E.; Weber, G. Wasmachine: Bring IOT up to speed with a webassembly OS. In Proceedings of the 2020 IEEE International

Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Austin, TX, USA, 23–27 March
2020; pp. 1–4.

58. Wen, E.; Weber, G. Wasmachine: Bring the edge up to speed with a webassembly OS. In Proceedings of the 2020 IEEE 13th
International Conference on Cloud Computing (CLOUD), Beijing, China, 19–23 October 2020; pp. 353–360.

59. Li, B.; Fan, H.; Gao, Y.; Dong, W. ThingSpire OS: A WebAssembly-based IoT operating system for cloud-edge integration. In
Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services, Virtual Event, 24 June–2
July 2021; pp. 487–488.

60. Li, B.; Dong, W.; Gao, Y. Wiprog: A webassembly-based approach to integrated iot programming. In Proceedings of the IEEE
INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021; pp. 1–10.

61. Stiévenart, Q.; De Roover, C. Compositional information flow analysis for WebAssembly programs. In Proceedings of the 2020
IEEE 20th International Working Conference on Source Code Analysis and Manipulation (SCAM), Adelaide, SA, Australia,
28 September–2 October 2020; pp. 13–24.

62. Bhansali, S.; Aris, A.; Acar, A.; Oz, H.; Uluagac, A.S. A first look at code obfuscation for webassembly. In Proceedings of the 15th
ACM Conference on Security and Privacy in Wireless and Mobile Networks, San Antonio, TX, USA, 16–19 May 2022; pp. 140–145.

63. Fessel, K.; Dietrich, A.; Zug, S. Programming IoT applications across paradigms based on WebAssembly. In Proceedings of the
Workshop on Tools and Concepts for Communication and Networked Systems, Karlsruhe, Germany, 28 September–2 October
2020; pp. 1247–1256.

64. Castillo, C.R.; Marra, M.; Bauwens, J.; Boix, E.G. WOOD: Extending a WebAssembly VM with Out-of-Place Debugging for IoT
applications. In Proceedings of the Workshop on Virtual Machines and Language Implementations (VMIL ’21), Chicago, IL, USA,
17 October 2021.

65. Castillo, C.R.; Marra, M.; Bauwens, J.; Boix, E.G. Out-of-Things Debugging: A Live Debugging Approach for Internet of Things.
arXiv 2022, arXiv:2211.01679.

66. Zhang, Y.; Cao, S.; Wang, H.; Chen, Z.; Luo, X.; Mu, D.; Ma, Y.; Liu, X.; Huang, G. Characterizing and Detecting WebAssembly
Runtime Bugs. arXiv 2023, arXiv:2301.12102.

67. Zandberg, K.; Baccelli, E. Minimal virtual machines on IoT microcontrollers: The case of berkeley packet filters with rBPF. In
Proceedings of the 2020 9th IFIP International Conference on Performance Evaluation and Modeling in Wireless Networks
(PEMWN), Berlin, Germany, 1–3 December 2020; pp. 1–6.

68. Jacobsson, M.; Willén, J. Virtual machine execution for wearables based on WebAssembly. In EAI International Conference on Body
Area Networks; Springer International Publishing: Cham, Switzerland, 2018; pp. 381–389.

69. Koren, I. A standalone webassembly development environment for the internet of things. In International Conference on Web
Engineering; Springer International Publishing: Cham, Switzerland, 2021; pp. 353–360.

70. Ménétrey, J.; Pasin, M.; Felber, P.; Schiavoni, V. Watz: A Trusted WebAssembly runtime environment with remote attestation for
TrustZone. In Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), Bologna,
Italy, 10 July 2022; pp. 1177–1189.

https://golangbot.com/webassembly-using-go/
https://webpack.js.org/configuration/experiments/
https://www.npmjs.com/package/@rollup/plugin-wasm
https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
https://rustwasm.github.io/wasm-bindgen/#:~:text=The%20wasm%2Dbindgen%20tool%20and,can%20find%20that%20documentation%20here
https://rustwasm.github.io/wasm-bindgen/#:~:text=The%20wasm%2Dbindgen%20tool%20and,can%20find%20that%20documentation%20here
https://github.com/WebAssembly/wabt
https://wasi.dev/
https://github.com/WebAssembly/WASI
https://github.com/deislabs/wagi
https://medium.com/@shyamsundarb/wasm-wasi-wagi-web-assembly-modules-in-rust-af7335e80160
https://medium.com/@shyamsundarb/wasm-wasi-wagi-web-assembly-modules-in-rust-af7335e80160
http://dx.doi.org/10.1109/MCOMSTD.0001.2000068
https://aaltodoc.aalto.fi/handle/123456789/121767

Future Internet 2023, 15, 275 76 of 77

71. Sander, Y. Rust as a platform for IoT. Available online: https://blog.ysndr.de/posts/essays/2021-12-12-rust-for-iot/ (accessed
on 1 July 2023).

72. Junior, J.L.S.; de Oliveira, D.; Praxedes, V.; Simiao, D. WebAssembly potentials: A performance analysis on desktop environment
and opportunities for discussions to its application on CPS environment. In Proceedings of the 2020 the Anais Estendidos do X
Simpósio Brasileiro de Engenharia de Sistemas Computacionais, SBC, Brasilia, Brazil, 23–27 November 2020; pp. 145–150.

73. Wang, W. How Far We’ve Come–A Characterization Study of Standalone WebAssembly Runtimes. In Proceedings of the 2022
IEEE International Symposium on Workload Characterization (IISWC), Austin, TX, USA, 6–8 November 2022; pp. 228–241.

74. Spies, B.; Mock, M. An evaluation of WebAssembly in non-web environments. In Proceedings of the 2021 XLVII Latin American
Computing Conference (CLEI), Cartago, Costa Rica, 25–29 October 2021; pp. 1–10.

75. Alamari, J.; Chow, C.E. Computation at the Edge with WebAssembly. In ITNG 2021 18th International Conference on Information
Technology-New Generations; Springer International Publishing: Cham, Switzerland, 2021; pp. 229–238.

76. Liu, R.; Garcia, L.; Srivastava, M. Aerogel: Lightweight access control framework for webassembly-based bare-metal iot devices.
In Proceedings of the 2021 IEEE/ACM Symposium on Edge Computing (SEC), San Jose, CA, USA, 14–17 December 2021;
pp. 94–105.

77. Bakir, F.; Krintz, C.; Wolski, R. Caplets: Resource aware, capability-based access control for IoT. In Proceedings of the 2021
IEEE/ACM Symposium on Edge Computing (SEC), San Jose, CA, USA, 14–17 December 2021; pp. 106–120.

78. Seo, S.C.; Kim, H. Portable and Efficient Implementation of CRYSTALS-Kyber Based on WebAssembly. Comput. Syst. Sci. Eng.
2023, 46, 2091–2107.

79. Vécsi, Á.; Bagossy, A.; Pethő, A. Cross-platform identity-based cryptography using WebAssembly. Infocommun. J. 2019, 11, 3–38.
[CrossRef]

80. Radovici, A.; Cristian, R.U.S.U.; Şerban, R. A survey of iot security threats and solutions. In Proceedings of the 2018 17th
RoEduNet Conference: Networking in Education and Research (RoEduNet), Cluj-Napoca, Romania, 6–8 September 2018; pp. 1–5.

81. Kim, M.; Jang, H.; Shin, Y. Avengers, assemble! Survey of WebAssembly security solutions. In Proceedings of the 2022 IEEE 15th
International Conference on Cloud Computing (CLOUD), Barcelona, Spain, 10–16 July 2022; pp. 543–553.

82. Disselkoen, C.; Renner, J.; Watt, C.; Garfinkel, T.; Levy, A.; Stefan, D. Position paper: Progressive memory safety for webassembly.
In Proceedings of the 8th International Workshop on Hardware and Architectural Support for Security and Privacy, Phoenix, AZ,
USA, 23 June 2019; p. 18.

83. Stiévenart, Q.; De Roover, C.; Ghafari, M. Security risks of porting c programs to WebAssembly. In Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing, Brno, Czech Republic, 25–29 April 2022; pp. 171–1722.

84. Narayan, S.; Disselkoen, C.; Moghimi, D.; Cauligi, S.; Johnson, E.; Gang, Z.; Vahldiek-Oberwagner, A.; Sahita, R.; Shacham, H.;
Tullsen, D.; et al. Swivel: Hardening WebAssembly against spectre. In Proceedings of the 30th USENIX Security Symposium
(USENIX Security 21), Virtual, 11–13 August 2021; pp. 1433–1450.

85. Vochescu, A.; Culic, I.; Radovici, A. Multi-Layer Security Framework for IoT Devices. In Proceedings of the 2020 19th RoEduNet
Conference: Networking in Education and Research (RoEduNet), Bucharest, Romania, 11–12 December 2020; pp. 1–5.

86. Mäkitalo, N.; Mikkonen, T.; Pautasso, C.; Bankowski, V.; Daubaris, P.; Mikkola, R.; Beletski, O. WebAssembly modules as
lightweight containers for liquid IoT applications. In International Conference on Web Engineering; Springer International Publishing:
Cham, Switzerlan, 2021; pp. 328–336.

87. Napieralla, J. Considering Webassembly Containers for Edge Computing on Hardware-Constrained Iot Devices. Available online:
https://www.diva-portal.org/smash/get/diva2:1451494/FULLTEXT02 (accessed on 1 July 2023).

88. Eriksson, F.; Grunditz, S. Containerizing WebAssembly: Considering WebAssembly Containers on IoT Devices as Edge Solution.
Available online: https://www.diva-portal.org/smash/get/diva2:1575228/FULLTEXT01.pdf (accessed on 1 July 2023).

89. Putra, R.P. Implementation and Evaluation of WebAssembly Modules on Embedded System-Based Basic Biomedical Sensors.
Available online: https://www.diva-portal.org/smash/get/diva2:1360063/FULLTEXT01.pdf (accessed on 1 July 2023).

90. Pham, S.; Oliveira, K.; Lung, C.H. WebAssembly Modules as Alternative to Docker Containers in IoT Application Development.
In Proceedings of the 2023 IEEE 3rd International Conference on Electronic Communications, Internet of Things and Big Data
(ICEIB), Taichung, Taiwan, 14–16 April 2023; pp. 519–524.

91. Kotilainen, P.; Autto, T.; Järvinen, V.; Das, T.; Tarkkanen, J. Proposing isomorphic microservices based architecture for hetero-
geneous IoT environments. In International Conference on Product-Focused Software Process Improvement; Springer International
Publishing: Cham, Switzerland, 2022; pp. 621–627.

92. Ribeiro, E.C. Micro-Containerization in Microcontrollers for the IoT. Available online: https://repositorio-aberto.up.pt/bitstream/
10216/142728/2/572043.pdf (accessed on 1 July 2023).

93. Mendki, P. Evaluating webassembly enabled serverless approach for edge computing. In Proceedings of the 2020 IEEE Cloud
Summit, Harrisburg, PA, USA, 21–22 October 2020; pp. 161–166.

94. Gadepalli, P.K.; McBride, S.; Peach, G.; Cherkasova, L.; Parmer, G. Sledge: A serverless-first, light-weight wasm runtime for the
edge. In Proceedings of the 21st International Middleware Conference, Delft, The Netherlands, 7–11 December 2020; pp. 265–279.

95. Gackstatter, P.; Frangoudis, P.A.; Dustdar, S. Pushing serverless to the edge with webassembly runtimes. In Proceedings of the
2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid), Taormina, Italy, 16–19 May 2022;
pp. 140–149.

https://blog.ysndr.de/posts/essays/2021-12-12-rust-for-iot/
http://dx.doi.org/10.36244/ICJ.2019.4.5
https://www.diva-portal.org/smash/get/diva2:1451494/FULLTEXT02
https://www.diva-portal.org/smash/get/diva2:1575228/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1360063/FULLTEXT01.pdf
https://repositorio-aberto.up.pt/bitstream/10216/142728/2/572043.pdf
https://repositorio-aberto.up.pt/bitstream/10216/142728/2/572043.pdf

Future Internet 2023, 15, 275 77 of 77

96. Kjorveziroski, V.; Filiposka, S.; Mishev, A. Evaluating webassembly for orchestrated deployment of serverless functions. In
Proceedings of the 2022 30th Telecommunications Forum (TELFOR), Belgrade, Serbia, 15–16 November 2022; pp. 1–4.

97. Kjorveziroski, V.; Filiposka, S. WebAssembly as an Enabler for Next Generation Serverless Computing. J. Grid Comput. 2023,
21, 34. [CrossRef]

98. Hall, A.; Ramachandran, U. An execution model for serverless functions at the edge. In Proceedings of the International
Conference on Internet of Things Design and Implementation, Montreal, QC, Canada, 12–18 April 2019; pp. 225–236.

99. McFadden, B.; Lukasiewicz, T.; Dileo, J.; Engler, J. Security Chasms of WASM. NCC Group Whitepaper. Available on-
line: https://git.edik.cn/book/awesome-wasm-zh/raw/commit/e046f91804fb5deb95affb52d6348de92c5bd99c/spec/us-18
-Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-On-The-Web-wp.pdf (accessed on 1 July 2023).

100. Gadepalli, P.K.; Peach, G.; Cherkasova, L.; Aitken, R.; Parmer, G. Challenges and opportunities for efficient serverless computing
at the edge. In Proceedings of the 2019 38th Symposium on Reliable Distributed Systems (SRDS), Lyon, France, 1–4 October 2019;
pp. 261–2615.

101. Oliveira, F.; Mattos, J. Analysis of WebAssembly as a strategy to improve JavaScript performance on IoT environments. In
Proceedings of the Anais Estendidos do X Simpósio Brasileiro de Engenharia de Sistemas Computacionais, SBC, Brasilia, Brazil,
18 November 2020; pp. 133–138.

102. Šipek, M.; Muharemagić, D.; Mihaljević, B.; Radovan, A. Next-generation Web Applications with WebAssembly and TruffleWasm.
In Proceedings of the 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO),
Opatija, Croatia, 27 September–1 October 2021; pp. 1695–1700.

103. Van Hasselt, M.; Huijzendveld, K.; Noort, N.; De Ruijter, S.; Islam, T.; Malavolta, I. Comparing the energy efficiency of
webassembly and javascript in web applications on android mobile devices. In Proceedings of the 26th International Conference
on Evaluation and Assessment in Software Engineering, Gothenburg, Sweden, 13–15 June 2022; pp. 140–149.

104. Herrera, D.; Chen, H.; Lavoie, E.; Hendren, L. WebAssembly and JavaScript Challenge: Numerical Program Performance Using Modern
Browser Technologies and Devices; Technical Report SABLE-TR-2018-2; University of McGill: Montreal, QC, Canada, 2018.

105. Niemelä, V.P. WebAssembly, Fourth Language in the Web. Available online: https://www.theseus.fi/bitstream/handle/10024/
507127/Niemela_Vili-Petteri.pdf?sequence=2 (accessed on 1 July 2023).

106. Herrera, D.; Chen, H.; Lavoie, E.; Hendren, L. Numerical computing on the web: Benchmarking for the future. In Proceedings of
the 14th ACM SIGPLAN International Symposium on Dynamic Languages, Boston, MA, USA, 6 October 2018; pp. 88–100.

107. Mikkonen, T.; Pautasso, C.; Taivalsaari, A. Isomorphic internet of things architectures with web technologies. Computer 2021, 54,
69–78. [CrossRef]

108. Mäkitalo, N.; Bankowski, V.; Daubaris, P.; Mikkola, R.; Beletski, O.; Mikkonen, T. Bringing webassembly up to speed with
dynamic linking. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, Virtual, 22–26 March 2021;
pp. 1727–1735.

109. Stiévenart, Q.; Binkley, D.W.; De Roover, C. Static stack-preserving intra-procedural slicing of webassembly binaries. In
Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA, 25–27 May 2022; pp. 2031–2042.

110. Tiwary, M.; Mishra, P.; Jain, S.; Puthal, D. Data aware Web-assembly function placement. In Proceedings of the Companion
Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 4–5.

111. Li, B.; Fan, H.; Gao, Y.; Dong, W. Bringing webassembly to resource-constrained iot devices for seamless device-cloud integration.
In Proceedings of the 20th Annual International Conference on Mobile Systems, Applications and Services, Portland, OR, USA,
27 June–1 July 2022; pp. 261–272.

112. Ménétrey, J.; Pasin, M.; Felber, P.; Schiavoni, V. WebAssembly as a Common Layer for the Cloud-edge Continuum. In Proceedings
of the 2nd Workshop on Flexible Resource and Application Management on the Edge, Minneapolis, MN, USA, 1 July 2022;
pp. 3–8.

113. Nakakaze, O.; Koren, I.; Brillowski, F.; Klamma, R. Retrofitting industrial machines with webassembly on the edge. In International
Conference on Web Information Systems Engineering; Springer International Publishing: Cham, Switzerland, 2022; pp. 241–256.

114. Watt, C.; Rossberg, A.; Pichon-Pharabod, J. Weakening webassembly. Proc. ACM Program. Lang. (OOPSLA) 2019, 3, 1–28.
[CrossRef]

115. Nurul-Hoque, M.; Harras, K.A. Nomad: Cross-Platform Computational Offloading and Migration in Femtoclouds Using
WebAssembly. In Proceedings of the 2021 IEEE International Conference on Cloud Engineering (IC2E), San Francisco, CA, USA,
4–8 October 2021; pp. 168–178.

116. Hansson, G. Computation Offloading of 5G Devices at the Edge Using WebAssembly. Available online: https://www.diva-
portal.org/smash/get/diva2:1571440/FULLTEXT03 (accessed on 1 July 2023).

117. Zhu, S.; Li, B.; Tan, Y.; Wang, X.; Zhang, J. LAWOW: Lightweight Android Workload Offloading Based on WebAssembly
in Heterogeneous Edge Computing. In Proceedings of the 2022 10th International Conference on Information Systems and
Computing Technology (ISCTech), Guilin, China, 28–30 December 2022; pp. 753–758.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10723-023-09669-8
https://git.edik.cn/book/awesome-wasm-zh/raw/commit/e046f91804fb5deb95affb52d6348de92c5bd99c/spec/us-18-Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-On-The-Web-wp.pdf
https://git.edik.cn/book/awesome-wasm-zh/raw/commit/e046f91804fb5deb95affb52d6348de92c5bd99c/spec/us-18-Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-On-The-Web-wp.pdf
https://www.theseus.fi/bitstream/handle/10024/507127/Niemela_Vili-Petteri.pdf?sequence=2
https://www.theseus.fi/bitstream/handle/10024/507127/Niemela_Vili-Petteri.pdf?sequence=2
http://dx.doi.org/10.1109/MC.2021.3074258
http://dx.doi.org/10.1145/3360559
https://www.diva-portal.org/smash/get/diva2:1571440/FULLTEXT03
https://www.diva-portal.org/smash/get/diva2:1571440/FULLTEXT03

	Introduction
	Background and Significance
	Motivation
	Objectives
	Contributions
	Organization of the Paper

	Understanding WebAssembly
	Overview of WebAssembly
	WebAssembly Architecture
	WebAssembly Binary Format
	How Does WebAssembly Complement JavaScript?
	Why WebAssembly Is a Good Fit for Web Platforms
	Web Embedding
	Non-Web Embeddings
	Portability
	Interoperability of Wasm
	Interfacing with the Host Environment
	The Security Model of WebAssembly

	WebAssembly and IoT
	Why WebAssembly for IoT?
	WebAssembly Support for IoT Programming
	WebAssembly and IoT Security
	WebAssembly and IoT Performance Optimization
	WebAssembly and IoT Networking
	Practical Applications of WebAssembly in IoT

	Tools for WebAssembly Development
	WebAssembly Compilers
	WebAssembly Runtimes
	Build Tools/Frameworks with WebAssembly Support
	WABT: The WebAssembly Binary Toolkit
	WASM Versus WASI Versus WAGI
	WebAssembly Standardized Features for Existing Web Browsers and Tools

	State-of-the-Art
	Selected Articles on IoT-Wasm
	OS Development
	IoT Programming
	Debugging
	Virtual Machine
	Development Environment Execution
	Access Control Framework
	Secure Execution
	Containerization
	Serverless
	Applications and Evaluation
	Edge–Cloud Integration

	Key Challenges and Future Directions
	Limitations of Current WebAssembly Implementations
	Challenges in IoT Integration with WebAssembly
	 Role of WebAssembly in Advancing IoT

	Prospective Aspects of WebAssembly
	Prospective WebAssembly Specifications
	Need for Garbage Collection and Resource Management
	Exception Handling
	Memory64
	Multiple Memories
	Threads and Atomics
	Type Reflection
	Need for Enhanced Security Measures
	Prospective WebAssembly Ecosystem Growth
	Prospective Alignments with Technologies

	Conclusions
	References

