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Abstract: This paper presents the mHealth Predictive Outbreak for COVID-19 (mPOC) framework,
an autonomous platform based on wearable Internet of Medical Things (IoMT) devices for outbreak
prediction and monitoring. It utilizes real-time physiological and environmental data to assess user
risk. The framework incorporates the analysis of psychological and user-centric data, adopting a
combination of top-down and bottom-up approaches. The mPOC mechanism utilizes the bidirectional
Mobile Health (mHealth) Disaster Recovery System (mDRS) and employs an intelligent algorithm to
calculate the Predictive Exposure Index (PEI) and Deterioration Risk Index (DRI). These indices trigger
warnings to users based on adaptive threshold criteria and provide updates to the Outbreak Tracking
Center (OTC). This paper provides a comprehensive description and analysis of the framework’s
mechanisms and algorithms, complemented by the performance accuracy evaluation. By leveraging
wearable IoMT devices, the mPOC framework showcases its potential in disease prevention and
control during pandemics, offering timely alerts and vital information to healthcare professionals
and individuals to mitigate outbreaks’ impact.

Keywords: Mobile Health (mHealth); COVID-19; Biological Watch (Bio-Watch); mHealth Predictive
Outbreak (mPOC); Predictive Exposure Index (PEI); Deterioration Risk Index (DRI); 5th Generation
Mobile Network (5G); Internet of Medical Things (IoMT); Disaster Recovery System (mDRS)

1. Introduction

The current COVID-19 pandemic has presented significant worldwide challenges, with
millions of cases and fatalities reported to date [1]. In response, governments and global
health organizations have emphasized the importance of vaccination, social distancing,
and mask usage to mitigate the spread of the virus [2]. Airborne transmission, particularly
in indoor spaces, poses a higher risk of viral exposure, leading to more severe illness and
extended hospital stays [3]. Timely diagnosis and effective management are crucial for
increasing survival rates, including early detection during asymptomatic stages and proper
containment measures [4].

Besides the COVID-19 pandemic, infectious disease outbreaks pose significant chal-
lenges to public health systems worldwide, which can lead to increased morbidity and
mortality. The recent COVID-19 pandemic highlighted the critical need for effective out-
break management and disease prevention strategies. Traditional methods of outbreak
management often relied on retrospective data analysis and manual reporting, leading
to delays in detecting and responding to emerging threats. To address these challenges,
there is an increasing demand for innovative and data-driven approaches that can provide
timely and accurate outbreak predictions. Therefore, because the traditional surveillance
methods may not be agile enough to capture real-time data, leading to delays in recog-
nizing the emergence of new infections, the implementation of necessary interventions,
timely detection, and containment of outbreaks are essential to minimize the impact on
public health.

Furthermore, the dynamic nature of infectious diseases requires continuous monitor-
ing and surveillance to track their evolution and spread. Wearable Internet of Medical
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Things (IoMT) technologies offer a potential solution to address this challenge. These de-
vices, such as smartwatches, wristbands, and other mobile-based gadgets, provide a means
for continuous monitoring of individuals’ physiological and environmental data. They can
capture vital signs, body temperature, respiratory patterns, and other relevant health met-
rics in real-time, offering a wealth of information for outbreak prediction and monitoring.

By leveraging the continuous data collection capabilities of wearable devices, public
health authorities and healthcare professionals can gain valuable insights into population
health trends and detect early signs of disease outbreaks. This continuous monitoring en-
ables proactive measures, such as implementing targeted interventions, resource allocation,
and contact tracing, to prevent further spread of infectious diseases.

The critical importance of accurate outbreak predictions cannot be overstated. Early
detection allows for timely response measures, including quarantine protocols, travel
restrictions, and vaccination campaigns. By deploying an autonomous outbreak prediction
and monitoring platform, such as the framework proposed in this paper, public health
officials can optimize resource allocation, identify at-risk populations, and implement
evidence-based measures to control the spread of infectious diseases.

Therefore, the challenges in outbreak management and disease prevention necessitate a
paradigm shift towards data-driven approaches that prioritize timely and accurate outbreak
predictions. Wearable IoMT technologies play a pivotal role in this endeavor, as they offer
real-time data collection and continuous monitoring, enabling public health authorities and
healthcare professionals to take proactive measures that reduce the impact of infectious
diseases on public health. To that effect, the proposed mPOC: Mobile Health (mHealth)
Predictive Outbreak for COVID-19 framework offers a promising solution to address these
challenges by leveraging wearable devices and integrating user-centric and public health
data to provide an innovative and effective tool for outbreak prediction and monitoring.

This paper introduces the mPOC framework, which is an extension to the mDRS
(mHealth Disaster Recovery System), previously presented in reference [5]. While the
mDRS focused on disaster recovery and post-disaster health management, it primarily
addressed immediate response and recovery measures after a disaster or outbreak had
already occurred. The mDRS played a crucial role in providing health services and sup-
port during emergencies, but its capabilities were limited to addressing the aftermath of
an outbreak.

In contrast, the mPOC system was introduced to take outbreak management and
disease prevention to the next level. It extends beyond disaster recovery to provide real-
time outbreak prediction, continuous monitoring, and early warning capabilities. By
leveraging the Internet of Medical Things (IoMT) and wearable devices, the mPOC system
captures user-centric physiological data to gain valuable insights into an individual’s health
status and response to outbreak situations. The mPOC mechanism is designed to address
the need for timely diagnosis and effective management of pandemic-related illnesses on a
public health scale. It incorporates two distinctive and collaborative approaches, namely, a
bottom-up and top-down approaches.

(1) Bottom-up approach: This involved capturing user-centric physiological parameters
(that will be discussed in Section 3), which offers valuable insights into an individual’s
well-being and response to outbreaks. Integrating these parameters into the mPOC
system enables a comprehensive understanding of individuals’ health status, leading
to the evaluation of the Deterioration Risk Index (DRI), which measures users’ medical
risk levels. Concrete examples of data collection scenarios can facilitate personalized
and timely outbreak predictions, thereby optimizing public health responses and
ensuring individual well-being during infectious disease outbreaks. A bottom-up
approach is used to collect and analyze user-centric data, including psychological
factors, to assess and monitor individuals.

(2) Top-down approach: Simultaneously, the mPOC’s top-down approach involves trans-
mission of information to and from the Outbreak Tracking Centre (OTC) and other
public-health-related resources. The top-down approach complements the user-centric



Future Internet 2023, 15, 257 3 of 25

data obtained in the bottom-up approach, providing valuable insights from a broader
perspective. Examples of the top-down data collection include:

Public Health Data—The algorithm receives real-time data on confirmed cases, out-
break trends, and demographic information from health authorities and healthcare
institutions. Analyzing this data helps assess outbreak severity, identify high-risk
regions, and allocate resources effectively.
OTC Information—The mPOC framework establishes a bi-directional connection with
the OTC to transmit daily updates on outbreak progression, containment strategies,
and healthcare capacities. This enables timely adjustments to predictions and response
strategies.
Environmental Data—Integrating data from environmental sensors and weather
databases provide insights into factors influencing disease transmission. For instance,
monitoring air pollution, wind speed, and humidity levels aids in identifying potential
hotspots for rapid outbreak spread.
Healthcare Infrastructure and Resource Availability—Data on hospital bed capacities
and medical supplies contributes to effective outbreak response planning. Assessing
available resources helps determine the healthcare system’s readiness and facilitates
resource allocation.
Mobility and Transportation Data—Analyzing data from transportation systems, such
as public transit usage and travel patterns, offers insights into population movement
and its impact on disease spread. This data supports the optimization of containment
measures, such as travel restrictions and quarantine protocols.

The mPOC algorithm evaluates the top-down data and calculates the Predictive
Exposure Index (PEI). The values of DRI and PEI are then used to assess the current status
and expected pandemic-related exposure, which help create appropriate warnings that are
triggered using an adaptive threshold-based criteria. These warnings are then sent to the
Outbreak Tracking Center (OTC) on a regular basis.

This paper provides a detailed analysis of the mechanisms and algorithm employed.
To summarize, the main contributions of this paper are as follows:

(1) The description of the mPOC framework, based on its intelligent algorithm;
(2) Combining the bottom-up and top-down approaches, leading to the calculations of

the DRI and PEI values from end-user and OTC information gatherings;
(3) Leveraging wearable IoMT devices, based on the Bio-Watch concept;
(4) By combining wearable devices, intelligent algorithms, and real-time data analysis,

the system contributes to enhancing disease prevention and control efforts, providing
valuable insights and timely alerts to mitigate the impact of outbreaks.

The structure of this paper is as follows: Section 2 presents a literature review on the
technological interventions for COVID-19 monitoring. Section 3 explores non-invasive
clinical and physiological presentations (CPPs) of COVID-19, discussing their specificity
and sensitivity measures. Section 4 provides an overview of epidemiology and public
health perspectives of COVID-19. Section 5 focuses on the sensory systems utilized in the
mPOC framework. Section 6 delves into the mPOC algorithm and IoMT protocols. The
feasibility, scalability, and performance evaluation of mPOC are discussed in Section 7.
Section 8 outlines future directions for technology-driven pandemic response systems,
followed by the conclusion and references.

In this paper we aim to address and respond to the following two research questions.

1. How can the mPOC framework effectively utilize wearable and mobile devices to
autonomously predict and monitor outbreaks in pandemic-stricken areas?

2. What are the key features and functionalities of the mPOC system that make it superior
to existing technology-assisted intervention systems for monitoring COVID-19 and
preventing the spread of the virus?
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These research questions focus on understanding the effectiveness and unique aspects
of the mPOC framework in outbreak prediction and monitoring, as well as its advantages
over other technology-assisted interventions.

2. Literature Review on the Technological Interventions for COVID-19 Monitoring

The COVID-19 pandemic has brought about significant and long-lasting changes
in the healthcare system and has emphasized the need for effective technology-assisted
interventions. In this section, we present a comprehensive review of current intervention
systems, specifically focusing on the utilization of mobile-based applications. A total of
30 recent studies conducted between 2020 and 2023 were selected and analyzed to examine
the various smartphone applications used for monitoring the COVID-19 pandemic and its
associated symptoms. These applications were primarily employed for active and passive
screening, as well as contact tracing [6,7].

2.1. Study Selection Criteria

The 30 studies included in this review (references [4–18]) were carefully selected based
on the following criteria:

• Mobile Health (mHealth) Devices: The focus of these studies on the utilization of
app-based digital devices capable of collecting and/or analyzing physiological in-
formation were considered. This includes smartphones, smartwatches, tablets, and
wearable sensors.

• Human Subjects: In each of the studies, a minimum of 10 subjects are included to
ensure an adequate sample size for reliable conclusions.

• Health Monitoring: These studies were specifically designed for monitoring COVID-19
signs and symptoms and ensuring relevance to the recent COVID-19 pandemic.

• Quality Publications: Only peer-reviewed publications were included in this review,
ensuring the reliability and credibility of the research.

• Year of Publication: The considered studies in the literature review were published
between January 2020 and June 2023, encompassing a wide range of coverage in
technology-assisted interventions for the last three years in COVID-19 monitoring.

By applying these rigorous selection criteria, we aimed to ensure the inclusion of high-
quality studies that provide valuable insights into the use of mobile devices for monitoring
and managing the COVID-19 pandemic.

2.2. Literature Review Assessments

A total of 30 research studies were reviewed, encompassing 1047 mobile apps. Among
these studies, 83% (25 out of 30 studies) were conducted in developed countries, with
the United States of America accounting for 40% (10 out of 25 studies). Other countries
involved in the studies included the United Kingdom (UK), Germany, Spain, Denmark,
France, Sweden, Norway, Switzerland, Australia, Korea, Hong Kong, India, Taiwan, and
Japan. The participant demographics in these studies were diverse, covering variations
in genders, age groups, ethnicities, professions, and health conditions, as discussed in
Section 2.1.

The participants in the studies were from various backgrounds, including:
COVID-19 patients (87%) ([4,6–13,15–18]), global participants (67%) (references [4,

6,7,9,10,12,14,15,17,18]), healthcare workers (27%) ([4,12,13,17,18]), academics (staffs and
students) (20%) (references [4,11,16]), elderly (13%) ([4,9], [14,16,18]), and adults with
specific medical conditions (20%) ([8,9,13]). Furthermore, the mHealth tools and techniques
utilized in these studies varied. Approximately 73% of the studies used mobile (iOS
or Android) apps, while 3% utilized tablets and SMS. Additionally, 40% of the studies
integrated wristbands or smartwatches with necessary apps. Table 1 summarizes the
findings from the research studies.
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Table 1. Summary of the literature review findings.

Ref.
No.

Participants

Country Age Group Occupations Performance
Metric

Bottom
Up

Top
Down Research Method/Tools 1

[4] Global 18–60+ Healthcare Availability 3 3 App, SW, WB, OMG, Web

[5] Australia 18+ Diverse MOS-R 2 3 3 App, SW, WB, OMG, Web

[6] UK >40 Diverse
(Patients)

App uptake
measures 3 3 App, SW, WB, OMG, Web

[7] Global 18+ Diverse
(Patients) Questionnaire 3 X App

[8] Iran 18+ Diverse
(Patients) Questionnaire 3 X App, web

[9] Global 52–74 Diverse
(Patients)

Feasibility,
reliability 3 X Web (iPad)

[10] Global 18+ Healthcare Delay 3 X App, web

[11] India 18+ Academics Technology
Acceptance 3 3 App, SW, OMG, Web

[12] Global 19+ Healthcare Data analysis 3 3 App, OMG, Web

[13] USA 16–61 Healthcare Surveys 3 3 App, OMG, Web

[14] Germany 45–83 Healthcare User Experience
survey 3 X App, OMG, Web

[15] Singapore 15–50+ Diverse
(Patients)

Technology
adoption 3 3 App, web

[16] Switzerland 18–79 Academics Technology
Acceptance 3 X App, Web

[17] Germany 18–60+ Healthcare Usability 3 X App, OMG, Web

[18] Pakistan 18–80 Healthcare Availability 3 X App, SW, WB, OMG, Web
1 Mobile applications: App; Smartwatch: SW; Wristband: WB; Web applications: Web; Other Mobile-based
gadgets: OMG; 2 Mean Opinion Score: MOS; Rating Factor: R (quality of service measure in VoIP systems).
3: supported; X: not supported.

Table 1 presents the research results that focused on various participants from global
populations aged 15 to over 80 years of age with diverse backgrounds, including healthcare
professionals, patients, academics, and individuals from different countries, including Aus-
tralia, Iran, India, USA, Germany, Singapore, Switzerland, and Pakistan. The performance
metrics evaluated in the studies varied, including system availability, app uptake measures,
feasibility, reliability, delay measures, technology acceptance, health data analysis, user
experience, technology adoption, and system usability. The majority of the studies were
based on bottom-up approaches, with a few including top-down approaches. The research
method and tools used for data collection and analysis included: mobile applications,
smartwatches, wristbands, web applications, and other mobile-based gadgets.

In contrast to these studies, the proposed mPOC solution offers several unique features
that set it apart from the systems and devices used in the reviewed studies. Firstly, it lever-
ages the combination of a smartwatch and a smartphone app, with potential extensions
to tablets and laptops/PCs without direct user interventions (apart from the initialization
step) in a non-invasive approach. Secondly, the mPOC solution is designed to easily scale
up to the population level. Thirdly, it is adaptive, meaning it can adapt to an individ-
ual user’s physiological information, leading to higher accuracy compared to traditional
systems and approaches. These distinguishing features will be discussed in detail in the
subsequent sections.
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3. Non-Invasive Clinical and Physiological Presentations (CPPs) of COVID-19

The impact of diseases, such as cancers, often involves clinical diagnoses that require
invasive procedures such as biopsies and pathological tests. In contrast, non-invasive
approaches are preferred by patients as they allow medical procedures to be conducted
more comfortably, avoiding the inconvenience and pain associated with invasive proce-
dures. However, these technology-based methods must receive approval from government
and regulatory agencies, such as the Food and Drug Administration (FDA), before com-
plete autonomous usage is permitted. Once approved, these methods can be easily scaled
up for public utilization, alleviating the burden on overwhelmed healthcare systems, as
experienced by many countries during pandemics [18].

This article introduces a novel approach for monitoring COVID-19 symptoms on
a public health scale using the mPOC mechanism, which is based on the bidirectional
mHealth Disaster Recovery System (mDRS) [5]. The mPOC system relies on the physio-
logical symptoms and clinical presentations, which include fever, dry cough, sore throat,
fatigue, and shortness of breath, which can be seen in severe cases and in elderly patients.
The gastrointestinal symptoms (vomiting and diarrhea), cardiac presentations (myocarditis,
pericarditis and/or atrial fibrillation), and loss/reduction of senses (smell and taste) are less
commonly observed in recent COVID-19 subvariants (e.g., XBB) [19,20]. By utilizing these
clinical and physiological presentations (CPPs) within its algorithm, the mPOC system
assesses the user’s health condition and calculates two crucial indices: the Predictive Expo-
sure Index (PEI) and the Deterioration Risk Index (DRI). These indices trigger appropriate
warnings to the user and facilitate the transmission of updates to and from the Outbreak
Tracking Center (OTC). The selection and weighting of CPPs are determined by their
non-invasive detectability, prevalence, specificity, sensitivity (accuracy), and demographic-
specific considerations, enabling the system to adapt to individual users.

Before delving into the list of CPPs, it is important to define several terminologies
associated with the characteristics of CPPs:

Prevalence (PR): Percentage of diagnosed (or to be diagnosed) people displaying the
physiological presentation.

Timeline: The entire timeline of the disease can be divided into several segments:
Incubation Period (IP)—The period right after the initial exposure to the virus until

the time that the initial symptoms appear, which can take up to 5 days for XBB Omicron
subvariant (XBB 1.15 and 1.16) [19].

Early Stage (ES)—The duration of the initial signs and symptoms of Omicron sub-
variants, which can take anywhere from 1 to 5 days, with an average of 3.63 days (95%CI:
3.25–4.02 days). During this stage the patient exhibits flu-like symptoms [21].

Advanced Stage (AS)—This is when the disease progresses into a more serious stage
and the patient’s overall health starts to decline more rapidly. This could happen between
5 to 7 days after the initial exposure. The final stage follows the AS, which can either lead to
the Recovery Stage (RS), when the patient starts to feel better and recovers from the disease
(at least 3 days after last main CPPs), or it progresses into a Terminal Stage (TS), when the
patient enters a critical phase, often requiring a ventilator or a breathing tube. After TS, the
patient either survives and enters the RS or passes away.

Specificity and Sensitivity (SS): Is the percentage of accuracy of diagnosis based on
the detection of a specific CPP. Overall, diagnosing COVID-19 is linked to a relatively low
sensitivity and a high specificity, meaning the initial home-based tests (RAT: Rapid Antigen
Test) may initially yield negative results while the patient has COVID-19 and, eventually
after a few tests, the result will turn positive. However, if the test result becomes positive, it
is with a high percentage (over 95%) of certainty that the patient is actually COVID positive.

Demographic Factor (DF): The algorithm is initialized based on initial values of preva-
lence, timelines, and specificity and sensitivity of each CPP and once the algorithm learns
about the user’s demographic data (e.g., age, gender, ethnicity, BMI (Body Mass Index),
preexisting conditions, etc.), the more accurate weights for the CPP will be calculated.
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The capabilities of the current smartphones and the feasibility of utilizing body-worn
sensors enable the non-invasive detection of the following CPPs: dry cough, fever, heartbeat
rate, fatigue (manifested as unusual inactivity), shortness of breath (dyspnea), nasal con-
gestion, confusion (manifested in abnormal EEG “electroencephalography” readings), and
low blood oxygen level (hypoxemia). Pre-existing medical conditions can also be tracked
by using body-worn sensors, such as electrocardiography (ECG), to track cardiovascular
issues, and terahertz technology, to track diabetes [22].

In the following section, the characteristics of the early CPPs are discussed [23].

3.1. CPPs during Incubation Period (IP)

During the incubation period (IP), most patients typically show little to no signs;
however, a subset of individuals may experience mild symptoms, such as fatigue and a
low-grade fever. These subtle changes in body temperature and behavior can be detected
by sensors.

3.2. CPPs during Early Stage (ES)

The early CPPs, which can be detected using a smartphone, have the following features
and characteristic [24]:

Timeline: Early Stage (ES).
Prevalence: fever (67%), cough (42%), runny nose (rhinorrhea) (33.7%), body ache

(14.5%), fatigue (14.1%), and shortness of breath (dyspnea) (9.6%) ([19–21]).
Specificity and Sensitivity: Each of these early CPPs individually has a sensitivity and

specificity of around 50% for diagnosing COVID-19 using the Rapid Antigen Test (RAT).
However, when combined with the Polymerase Chain Reaction (PCR) test, their accuracy
can reach 95% [25].

This study focuses on tracking and identifying individuals during the incubation
period (IP) and early stage (ES) of COVID-19, wherein they may exhibit minimal or no
symptoms. It is assumed that individuals who are positive for COVID-19 would have
already received treatment during the advanced stage (AS), recovery stage (RS), or terminal
stage (TS). The IP period is considered crucial as it is a time when the infection is more
likely to spread unknowingly, given that the median duration of asymptomatic infection is
2 days [25]. The proposed mPOC system aims to detect and monitor individuals during
this critical phase.

4. Public Health Epidemiology of COVID-19

COVID-19, also known as SARS-CoV-2, belongs to the human coronavirus family
of viruses, sharing genome similarities with SARS (Severe Acute Respiratory Syndrome,
SARS-CoV) and MERS (Middle East Respiratory Syndrome, MERS-CoV). The transmission
of SARS-CoV-2 occurs through droplet transmission (when droplets are >5–10 µm in size),
contact transmission (physical contact with contaminated surfaces and objects, followed by
touching the mouth, nose, or eyes), and aerosol transmission (cloud of droplet particles
<5 µm in size). Both droplet and aerosol transmissions occur when an infected person
coughs or sneezes and an uninfected person inhales the droplets. The virus can remain
active on various surfaces for several days, and the contaminated droplets can stay airborne
for up to an hour, particularly in indoor spaces [26]. Consequently, the risk of transmission
increases in enclosed environments, such as shopping malls, restaurants, and cafes.

Public health agencies play a crucial role in providing the population with essential
pandemic-related information. However, many individuals may struggle to understand
and interpret the overwhelming volume of released and sometimes conflicting information.
Therefore, the presence of an intelligent, user-centric device capable of interpreting and
aligning this information with the user’s demographic details becomes vital.

A fundamental epidemiological concept, known as the reproduction number, or R0,
is utilized to assess the contagiousness of COVID-19. R0 represents the average number
of people that can be infected by a single sick individual. An R0 value of 1 suggests that
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one infected person can spread the virus to one other person, resulting in a relatively stable
number of infections. An R0 value less than 1 indicates that an infected person, on average,
transmits the virus to fewer than one person, leading to a gradual decline in the disease’s
spread. Conversely, an R0 value greater than 1 signifies that an infected person, on average,
transmits the virus to more than one person, resulting in a rapid spread of the disease,
depending on the magnitude of R0. Initially, the estimated R0 for COVID-19 ranged from
2.2 to 3.58 [27]. However, its contagiousness had increased, with R0 values estimated to
have been around 5.08 (95% CI 3.8–8.9) for the Delta variant, and with a 3-to-6-fold increase
to 10–18.6 for the Omicron variant (BA.7 and XBB) (references [28–30]). In comparison, the
flu has an R0 of 1.4–1.6 [31,32].

The mPOC system utilizes the R0 value to calculate the Predictive Exposure Index
(PEI) and Deterioration Risk Index (DRI), which measure the likelihood of users infecting
others based on sensed CPPs and other demographic factors. A higher PEI value indicates
a higher likelihood of users exposing others to the virus, while a higher DRI value indicates
an increased risk of the individual’s health deterioration once exposure occurs.

5. mPOC Sensory System

In this section, we will discuss the design of the innovative mPOC system and its
algorithm, which is based on the Internet of Medical Things (IoMT) protocol. As previously
mentioned, mPOC has been developed as an extension of an existing solution called the
mHealth Disaster Recovery System (mDRS) [5]. The foundation of both, mPOC and mDRS
revolves around the utilization of the Bio-Watch, which captures physiological signals from
users in conjunction with a smartphone running the mPOC/mDRS apps—which are used
in disaster management. The capabilities of the mPOC system have been expanded beyond
the conventional mDRS to cater to COVID-19 applications, including the three stages of the
mPOC algorithm, the DRI and PEI evaluations, as well as the intelligent warning system
that was not included in the mDRS. In the following section, the details of the mPOC
system are presented.

5.1. Smartphone-Embedded Sensory Functionalities

Nowadays, smartphones are equipped with a variety of embedded (on-device) func-
tionalities that serve various purposes. For instance, the microphone is essential for estab-
lishing bidirectional voice communication with humanitarian operators. Moreover, micro-
phones can actively capture various physiological sounds, including the user’s breathing
and respiratory sounds, as well as ambient voices in the background.

The combination of a loudspeaker and visual signals is utilized to issue appropriate
warnings to the user, when necessary, from the humanitarian operators.

The accelerometer and gyroscope sensors are capable of detecting acceleration/
deceleration along different axes using angular velocities. These sensors enable track-
ing of tremors, chills, and fatigue, which are characterized by relatively low mobility
compared to the user’s typical behavior profile. Additionally, sudden falls can also be
detected by these sensors.

Furthermore, smartphones are equipped with a compass, as well as GPS and indoor
tracking tools, allowing for the tracking of the user’s location, heading, and direction in
relation to reference points. This functionality proves helpful in monitoring and keeping
track of the user’s whereabouts.

5.2. The Physiological Watch (Bio-Watch)

The innovative concept of the Bio-Watch framework was introduced in reference [5].
The current article further incorporates various original and additional physiological pa-
rameters to enable autonomous outbreak prediction and monitoring. These parameters
include brainwaves (electroencephalography; EEG), blood pressure, heart pulse rate (elec-
trocardiography; ECG), body temperature, blood oxygen level (SpO2), muscle contractions
(electromyography; EMG), and blood glucose levels (utilizing Terahertz technology [22]).
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Notably, the experimental results from testing ECG, SpO2, EEG, and EMG highlight the
successful processing of sensory data for highly mobile systems [33].

Here we delve into the pertinent technologies deployed in the mPOC framework.

5.3. Fifth Generation (5G) Mobile Networks

The 4G technology, also known as Long Term Evolution (LTE), which was supported
by the 3rd Generation Partnership Project (3GPP), had been a widely adopted mobile
communication standard since 2010. The 5G technology was introduced in 2019 and while
5G and 4G LTE can coexist, 5G operates on various frequency spectrums, including below
1 GHz, sub 6 GHz, and 26–40 GHz (sub-mmWave). While the number of LTE/4G mobile
subscriptions worldwide is expected to peak in 2023 at around 5.4 billion subscriptions and
then gradually decline, the number of 5G subscribers continues to grow, and is forecasted
to pass 1.5 billion in 2023 and reach 4.6 billion globally by the end of 2028 [34].

It should be noted that the sixth Generation (6G) mobile system standard is currently
under development and is planned to be rolled out by 2030 [34].

5.4. Device-to-Device (D2D) Communications

Device-to-Device (D2D) supports the connectivity between mobile applications and
is transparent to users. D2D is supported by both 4G-LTE (initiated with Release 12) and 5G.
The current 3GPP (5G) is based on Release 18, which supports D2D communications [35–37].
In the context of the mPOC system, smartphones in the wireless range of one another can
discover each other and exchange users’ (e.g., health-related) information, in addition to the
information received from the public health agencies, which are then used as a predictive
measure to assess the dynamics of the moving population and forecast the possibility for
further spread of the virus in a pandemic situation. This can be assisted by a mechanism
provided by the LTE protocol, called LTE Direct (LTE-D), which uses line-of-sight com-
munication, and it has a range of up to 500 m. Figure 1 shows the LTE-Direct one-to-one
discovery and registration handshakes (adapted from [5]). The mPOC algorithm utilizes
D2D, which will be discussed in the next section.

It’s important to acknowledge that D2D can also be leveraged through other commu-
nication protocols, such as Bluetooth and NFC (Near Field Communication), which are out
of the scope of this paper.
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6. Novel mHealth Predictive Outbreak for COVID-19 (mPOC) Algorithm and
IoMT Protocol

In this section, we present the design of our innovative mHealth Predictive Outbreak
system for COVID-19 (mPOC). The successful operation of the mPOC system relies on the
presence of an mPOC-ready application installed on users’ smartphones. This application
seamlessly integrates the functionalities of the smartphone, Bio-Watch, and public health
information, as depicted in Figures 1 and 2.
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The mPOC system incorporates an algorithm that progresses through three distinct
stages, as illustrated in Figure 3. These stages will be comprehensively defined and
discussed in the subsequent parts of this section.

6.1. Initial Stage

Once the mPOC application is successfully installed and launched on the smartphone,
the algorithm initiates and collects user-related information, such as the user’s location,
including the suburb, city, and country. This location data can be obtained through various
means, such as GPS, Wi-Fi, or mobile networks. Additionally, the application prompts
the user to provide essential demographic details, including age, gender, ethnicity, height,
weight, and any pre-existing health conditions that may influence the risk of COVID-
19 complications; examples of such conditions encompass cancer, immunocompromised
disorders, diabetes, pulmonary, renal, and cardiovascular diseases.

One notable complication that can arise from COVID-19 infections is the hyperactive
immune response known as Cytokine Storm (CS) [38], wherein the immune system inun-
dates the infection site (e.g., lungs) with inflammatory white blood cells, potentially leading
to multiple organ failure. By conducting a blood test to assess the cytokine/chemokine
profiles, it becomes possible to identify risk factors associated with Cytokine Storm, which
can be considered a pre-existing condition. The DRI value, which indicates the health risk,
is updated accordingly to reflect this information.
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Concurrent with the mPOC algorithm’s execution on the smartphone, the Bio-Watch
device attempts to establish a connection with the smartphone, calibrate its sensors, com-
mence capturing the user’s physiological indicators, and adapt to the typical readings.
This stage occurs once and can be subsequently updated, as depicted in Table 2, to ensure
accurate and reliable data captured for the mPOC system.

Table 2. The three stages of mPOC algorithm.

Stage Device Sensing/Information Input Monitored CPPs/Health Conditions User Inputs

Initial
Smartphone

Location (suburb, city, country),
BMI, pre-existing conditions, job,
number of members of
household

Input: age, gender, ethnicity, height, weight
Input: preexisting conditions: cancer, organ implant, hypertension,
diabetes, and pulmonary/renal/cardiovascular diseases.
Calculate: BMI/Cytokine Storm/age/gender risk factors→DRI

Bio-Watch Sensory data input from
smartphone Calibrating sensors and learning user physiology

IoMT

Smartphone
Microphone (voice/sound),
camera (video/light), gyroscope,
accelerometer, compass, GPS

Dry cough: Mic
Nasal congestion: Mic
Shortness of breath: SpO2
Hypertension: BVP
Pain: BVP, ECG, SCL
Fever: Temperature
Tachycardia: ECG

Disease monitoring:
Restlessness/fatigue/insomnia: PSG
Confusion: EEG
Diabetes: THz
Heart condition: ECG
Diarrhea/vomit: Mic
Data sent to PRaaS to calculate PEI

Bio-Watch

Temperature, accelerometer and
gyroscope, compass, ECG, EMG,
EEG, SpO2, BVP, SCL, THz, PSG
(EEG, EMG, ECG, accelerometer,
gyroscope, gyroscope)

PRaaS

Smartphone LTE-Direct (D2D), PHBA, OTC Anonymous exchange of health details with users in wireless range
and PEI and DRI values are updated and sent to OTC

Bio-Watch Information exchange with
smartphone Information exchange with smartphone

6.2. Internet of Medical Things (IoMT) Stage

The Internet of Medical Things (IoMT), in a classical sense, represents an intercon-
nected network of medical devices, sensors, and software applications designed to collect,
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transmit, and analyze healthcare data. It empowers traditional medical devices with inter-
net connectivity, enabling remote monitoring and real-time data analysis, which are pivotal
in the realm of digital healthcare. These devices and applications establish connectivity
through diverse means, including Wi-Fi, mobile networks, and mesh networks (D2D),
ensuring seamless and efficient information exchange.

Recently, IoMT has seen significant advances in the deployment of wearables with
Device-to-Device (D2D) communication for disaster management. These developments
have revolutionized how healthcare professionals and emergency responders handle crisis
situations. IoMT wearables equipped with D2D capabilities offer enhanced connectivity,
allowing devices to communicate directly with one another, even in the absence of a
centralized network, ensuring seamless data exchange in challenging environments. This
feature is crucial during emergencies when traditional communication infrastructure may
be compromised or overwhelmed. The integration of wearables with IoMT and D2D
communication enables remote patient monitoring, providing real-time tracking of vital
signs and physiological parameters of disaster-affected individuals. Such data empower
rapid triage and decision-making, ensuring timely and appropriate medical interventions.
Additionally, IoMT wearables with D2D facilitate predictive analytics and early warning
systems, continuously monitoring physiological data to detect early signs of distress or
illness in disaster-affected populations, enabling pre-emptive actions to mitigate health
risks. Moreover, the generated data from these wearables provides valuable insights into
disaster-affected areas, identifying hotspots, assessing injuries’ severity, and optimizing
resource allocation for efficient disaster response efforts. D2D-enabled IoMT wearables also
serve as communication tools for first responders, enhancing coordination and information
sharing among rescue teams. Furthermore, wearables equipped with biosensors can
detect hazardous environmental factors in disaster zones, assisting in risk assessment
and ensuring responder and survivor safety. These recent advances in IoMT and D2D
have transformed disaster management, thereby providing real-time data insights and
enabling more efficient and effective responses, ultimately saving lives and improving
healthcare delivery during crises. The ongoing evolution of these technologies promises
further transformative innovations for disaster management in the future ([39,40]).

The IoMT capability is integrated with the mPOC algorithm’s second stage, where
the system continuously scans and senses the user’s physiological signals in an iterative
loop. These signals are subject to meticulous analysis to calculate the user’s Deterioration
Risk Index (DRI) and Predictive Exposure Index (PEI) values based on their physiological
data. Additionally, the system, which encompasses smartphones and/or Bio-Watches,
proficiently captures COVID-19-related Clinical Presentation Profiles (CPPs), such as dry
coughs, nasal congestion, and shortness of breath. By concurrently considering these CPPs
alongside the PEI and DRI values, which fall within a range of 1 to 10, the system provides
invaluable insights into the user’s health condition.

6.3. Pandemic Response as a Service (PRaaS) Stage

During the final stage of the mPOC system, it establishes real-time bidirectional
connections with other smartphones within the D2D wireless range (within 500 m), as well
as with Public Health Broadcast Agencies (PHBA) and the Outbreak Tracking Center (OTC)
through various network channels, such as mobile, internet, and cloud. Through these
connections, the mPOC system collects anonymous location data from users within the
wireless range and exchanges relevant information with the OTC. The PEI value, which
reflects the environmental risk based on the user’s location, activity type, and movement
direction, and the DRI value, indicating the physiological risk factors if exposed to the
virus, play a crucial role in this stage.

The concept of Pandemic Response as a Service (PRaaS) is rooted in the utilization
of cloud technology to provide an effective pandemic response. First introduced in 2014
within the framework of Healthcare as a Service (HaaS) [41], PRaaS shares several common
features with HaaS, including scalability based on regional and hierarchical structures,
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seamless and on-demand operations, virtually infinite computation through fog and edge
computing, big data analytics, online storage, and resource sharing [42,43]. However, it is
important to highlight that the key differentiating factor of PRaaS lies in the integration of
end-user smartphones equipped with Bio-Watch and running the mPOC platform, which
form the backbone of the system’s functionality.

6.4. DRI Construct

This subsection focuses on the calculation of DRI, and as illustrated in Table 2, it
outlines the risk factors involved in determining the DRI value, including age, gender,
ethnicity, height/weight, and pre-existing conditions. The relationships among these risk
factors are as follows:

1. Age: Age plays a significant role in the outcomes following viral exposure. Generally,
a higher age is associated with increased chances of complications. However, it is
important to note that the severity of complications is also influenced by pre-existing
conditions, which have notably contributed to higher mortality rates among younger
patients.

2. Body Mass Index (BMI): BMI is calculated using weight (W) and height (H) with the
formula W/H2 (when weight is in kilograms and height is in meters), or
BMI = 703 ×W/H2 (when weight is in pounds and height is in inches). Individ-
uals who are classified as obese (BMI > 30) face a higher risk of complications during
hospitalization, and this factor is included in the calculation of DRI.

3. Ethnicity: The mortality rate from COVID-19 has an association with patients’ ethnic
backgrounds, which is largely influenced by factors such as healthcare access, educa-
tion, income, and social standing. These factors are taken into consideration when
calculating DRI.

4. Pre-existing conditions: Based on reports from the World Health Organization (WHO),
the increase in mortality rates for individuals with pre-existing health conditions (in
addition to the rates for otherwise healthy individuals) are as follows: cardiovascular
diseases (10.5%), diabetes (7.3%), pulmonary diseases (6.3%), hypertension (6%), and
cancer (5.6%) [44]. These conditions are factored into the calculation of DRI.

The DRI value is presented as a color-coded indicator on the user’s device, as men-
tioned in Table 3. This value is influenced by various scenarios, including the user’s location
at home and subsequent movement to other places. Therefore, the calculation of DRI is
represented by Equation (1), indicating that the future (recursive) value of DRI is a function
of the user’s age, gender, BMI value, ethnicity, pre-existing medical conditions, and the
current value of DRI.

DRI [i + 1] = F(age, g, BMI, e, phc, DRI [i]) (1)

g: gender, e: ethnicity, phc: pre-existing health conditions.

Table 3. User profile risk assessment criteria.

Location
(Now)

Location
(Next)

PEI
(Now) DRI PEI

(Next)
Alert
(Light-Audio)

Home Home ↓ ↓ ≈ G/S

Home Home ↑ ↓ ≈ Y/S

Home Home ↓ ↑ ≈ G/S

Home Home ↑ ↑ ↑↑ A/S

Home LRL ↓ ↓ ≈ G/LRA

Home LRL ↑ ↓ ↑↑ Y/LRA

Home LRL ↓ ↑ ≈ Y/LRA
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Table 3. Cont.

Location
(Now)

Location
(Next)

PEI
(Now) DRI PEI

(Next)
Alert
(Light-Audio)

Home LRL ↑ ↑ ≈ A/LRA

Home MRL ↓ ↓ ≈ A/MRA

Home MRL ↑ ↓ ↑↑ A/MRA

Home MRL ↓ ↑ ≈ R/MRA

Home MRL ↑ ↑ ↑↑ R/MRA

Home HRL ↓ ↓ ≈ A/HRA

Home HRL ↑ ↓ ↑↑ A/HRA

Home HRL ↓ ↑ ≈ R/HRA

Home HRL ↑ ↑ ↑↑ R/HRA

MR LRL ↑ ↓ ↑↑↑ R/VHRA

HR LRL ↑ ↓ ↑↑↑ R/VHRA
LRL: Low-Risk Location; MRL: Medium-Risk Location; HRL: High-Risk Location; ↓: Low (1–5); ↑: High (5–10);
↑↑: Higher (e.g., 3 to 8); ↑↑↑: Highest (e.g., 1 to 10); ≈: Remain; DRI Color Codes: Green (G), Yellow (Y), Amber
(A), Red (R); PEI: Audio Codes: Silent (S), Low Risk Alert (LRA), Medium Risk Alert (MRA), High Risk Alert
(HRA), Very High Risk Alert (VHRA).

6.5. PEI Construct

The Predictive Exposure Index (PEI) is also a recursive index primarily influenced by
environmental and behavioral factors. In the initial stage, the algorithm collects information
from the user regarding their household members, occupations, and other factors that
impact their typical behaviors, as depicted in Equation (2).

During the IoMT stage, the algorithm monitors the user’s physiological changes and
captures environmental sounds, analyzing the rate at which they are changing, particularly
in relation to DRI-related parameters.

In the PRaaS stage, PEI is actively updated by receiving location details from GPS
and mobile networks, tracking the user’s current location, movement, and intended final
destination. The system regularly sends PEI updates to the Outbreak Tracking Center
(OTC) and receives real-time updates from the Public Health Broadcasting Agencies and
OTC. The DRI and PEI updates are translated into audio warnings for the users, indicating
the risk level of their destination. Furthermore, users at the destination are informed about
the risk rating of impending arrivals, showcasing the predictive nature of the system. The
calculation of future PEI values involves considering both current DRI and PEI values
in a recursive manner, as outlined in Equation (2). These dependencies, along with user
behavior and movements, are presented in Table 3. As mentioned, the PEI/DRI calculation
results are converted into audio and video signals, which users receive as health and
location risk alerts and notifications (Table 3).

Upon initializing the mPOC application, PEI starts with a user-specific initial value.
Based on Equation (2) and the user’s movements, PEI is updated with new values. For
instance, if the user remains stationary at home, the PEI value will remain low, and this
information will be conveyed to the OTC. As the user ventures out of their residence,
the PEI value may change depending on the risk factors associated with the trajectory or
destination (for instance, going to a high-risk area will increase the PEI value). The DRI also
continuously senses physiological parameters and updates its values accordingly. These
two indices trigger appropriate light and audio notifications on the smartphone running
the mPOC application to alert the user accordingly. Figure 3 shows the flowchart of the
system and the three stages.

PEI [i + 1] = F(DRI [i], hh, OTC, lm, PEI [i]) (2)
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hh: household data, lm: location and movement.

6.6. The mPOC System Methodology

The mPOC algorithm uses an iterative and recursive approach to provide continuous
monitoring and adaptive capability to support specific users. Below is a detailed description
of each stage aligned with the system’s methodology and algorithm.

(1) Stage 1 (Initial Stage):

- Devices: Smartphone and Bio-Watch
- Sensing/Information Input: The smartphone collects location data (suburb, city,

country), BMI, pre-existing conditions, job information, and the number of mem-
bers in the household. The Bio-Watch receives sensory data input from the
smartphone and calibrates sensors to learn user’s physiology.

- Monitored CPPs/Health Conditions and User Inputs: Users input their age, gen-
der, ethnicity, height, weight, and pre-existing conditions, including cancer, organ
implants, hypertension, diabetes, and pulmonary, renal, CS, and cardiovascular
diseases. The algorithm calculates BMI and risk factors based on age and gender,
resulting in the calculation of DRI.

(2) Stage 2 (IoMT Stage):

- Devices: Smartphone and Bio-Watch
- Sensing/Information Input: The smartphone gathers data from various sensors,

such as microphone (voice/sound), camera (video/light), gyroscope, accelerom-
eter, compass, and GPS. The Bio-Watch collects data from sensors, including
temperature, accelerometer, gyroscope, compass, ECG, EMG, EEG, SpO2, BVP
(Blood Velocity Pulse), SCL (Skin Conductance Level), and THz (Terahertz).

- Monitored CPPs/Health Conditions and User Inputs: Users provide information
about dry cough and nasal congestion through the microphone; shortness of
breath through the microphone and SpO2 reading; hypertension through BVP
sensor; pain level through BVP, ECG, and SCL sensors; fever through the tem-
perature sensor; and tachycardia through ECG. Various diseases can also be
monitored, such as restlessness/fatigue/insomnia using PSG (Polysomnogra-
phy), confusion using EEG, diabetes using THz, heart conditions using ECG, and
diarrhea and vomiting using the microphone.

- Data Exchange: All the collected data is sent to the PRaaS stage, where the PEI is
calculated.

(3) Stage 3 (PRaaS Stage):

- Devices: Smartphone and Bio-Watch
- Sensing/Information Input: The smartphone uses LTE-Direct (D2D), connects

with PHBA (Public Health Broadcasting Agency), and exchanges anonymous
health details with users within wireless range. The PEI value is calculated and
DRI and PEI values are recursively updated and sent to the OTC.

6.7. Simulation Environment and Parameter Setup

The mPOC system has been tested and simulated using the LabVIEW Community
Edition [45], which is a powerful and versatile platform for data acquisition, analysis,
and control. This subsection outlines the simulation environment setup and the related
parameter configuration within the LabVIEW system.

(1) LabVIEW Simulation Environment: The LabVIEW Community Edition provides
an ideal simulation environment for testing the mPOC system’s functionalities in a
controlled and repeatable manner. The LabVIEW graphical programming interface
allows for easy integration of various components, making it suitable for simulating
the complex interactions between wearable IoMT device emulation, data processing
algorithms, and outbreak prediction models.
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(2) Wearable IoMT Device Emulation: To mimic real-world data acquisition from wear-
able IoMT devices, LabVIEW incorporates virtual instrumentation for emulating phys-
iological signals, including EMG, EEG, ECG, and breathing patterns. This emulation
allows for comprehensive testing of the mPOC system’s data collection capabilities
under different outbreak scenarios.

(3) Data Processing Algorithms: LabVIEW’s extensive library of built-in functions and
tools is leveraged to develop and integrate data processing algorithms into the simula-
tion environment. These algorithms simulate the real-time processing and analysis of
user-centric physiological parameters, such as calculating Predictive Exposure Index
(PEI) and Deterioration Risk Index (DRI) based on EMG, EEG, ECG, and breathing
pattern data.

(4) Outbreak Prediction Models: Within LabVIEW, sophisticated machine learning and
artificial intelligence (AI) models are incorporated to predict outbreak trends and
patterns based on the processed physiological data. These models take into account
both bottom-up user-centric data and top-down public health information to make
accurate outbreak predictions.

(5) Parameter Setup: The LabVIEW simulation environment allows for flexible param-
eter configuration to test various outbreak scenarios and system responses. Key
parameters include:

- Outbreak Scenarios—Different outbreak scenarios—including varying disease
transmission rates and geographic spread—can be simulated to assess the mPOC
system’s predictive capabilities under diverse conditions.

- Physiological Signal Variability—LabVIEW allows for the introduction of signal
noise and variability to emulate real-world fluctuations in physiological signals,
enabling robustness testing of the system.

- Network Latency—Parameters related to network connectivity and latency are
adjustable to evaluate the system’s performance in handling real-time data trans-
mission from wearable IoMT devices to the central system.

- Predictive Thresholds—The LabVIEW simulation environment facilitates the
dynamic adjustment of predictive thresholds for PEI and DRI, enabling fine-
tuning of the system’s sensitivity and specificity in issuing outbreak warnings.

The accuracy and responsiveness of the mPOC system during various scenarios were
tested, which are presented in Figure 4 and explained in detail in Section 7.2.
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7. Feasibility, Scalability, and Performance Evaluation

As discussed in the previous sections, the mPOC system relies on a pair of devices,
namely a smartphone and a Bio-Watch, with the mPOC application running on the smart-
phone. The system operates through three distinct modes of information data handling:

(1) Capturing Clinical and Physiological Presentations (CPPs) data: This mode involves
collecting relevant clinical and physiological information. The Bio-Watch and smart-
phone are linked using a Wireless Body Area Network (WBAN), typically utilizing
technologies such as Bluetooth.

(2) Bidirectional communication with the Outbreak Tracking Center (OTC): In this mode,
the mPOC system gathers public health data and maintains continuous communica-
tion with the OTC, ensuring timely updates on outbreaks and relevant information.

(3) Establishing Device-to-Device (D2D) links with other users within wireless range:
The third mode enables the mPOC system to establish D2D connections with nearby
smartphones, facilitating the exchange of vital details. These connections rely on
widely available mobile networks, such as 4G LTE/5G, which are both scalable and
capable of handling the necessary bandwidth. The mPOC system primarily transmits
short text-based messages, resulting in low bandwidth requirements and eliminating
the need for multimedia data exchange.

The computational analysis for the system can be easily performed on the smartphone
itself, and the classification and characterization of health information can be accomplished
using fog/edge computing techniques.

For DRI-related evaluations of the performance of the mPOC system in relation to
COVID-19, reference [46] considers six clusters that indicate various infection complications.
These clusters are as follows:

Cluster 1—flu-like without fever: Symptoms include headache, muscle and chest
pains, dry cough, and sore throat.

Cluster 2—flu-like with fever: Similar to Cluster 1, but with the addition of fever and
voice hoarseness.

Cluster 3—gastrointestinal: Symptoms consist of headache and chest pain, loss of
smell and appetite, diarrhea, and sore throat without cough.

Cluster 4—severity 1, fatigue: This cluster includes headache, fatigue, loss of smell,
dry cough, fever, voice hoarseness, and chest pain.

Cluster 5—severity 2, confusion: Symptoms comprise headache, loss of smell and
appetite, dry cough, fever, voice hoarseness, sore throat, confusion, fatigue, and chest/
muscle pain.

Cluster 6—severity 3, abdominal/respiratory: Similar to Cluster 5, but with the
addition of shortness of breath, diarrhea, and abdominal pain.

These clusters indicate an increased likelihood of patients requiring supplemental
oxygen or ventilators, ranging from 1.5% (Cluster 1) to 19.8% (Cluster 6). It’s worth noting
that most of these CPPs, except for loss of smell and appetite (which is less prevalent in the
recent COVID-19 subaviants), are applicable to our mPOC system with a relatively high
degree of accuracy (gold standard of 90% and above). Tracking the loss of smell/taste can
be incorporated through a simple question-and-answer query issued to the user by the
mPOC application.

7.1. The mPOC Technical Feasibility Study

The mPOC technical feasibility study evaluates various factors to determine if the
system is feasible from technical, economical, operational, social, legal, ethnical, scalability,
sustainability, and risk perspectives. In this article, we will only cover the technical fea-
sibility aspect of the mPOC system. The feasibility of other factors can be considered in
future studies.

The technical feasibility of the mPOC system focuses on evaluating the practicality
and viability of its technology components. This assessment considers various technical
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aspects to determine if the system can be successfully developed, deployed, and operated.
Here are the key factors involved in the technical feasibility of the mPOC system:

System Availability: This includes assessing the availability of hardware components,
such as smartphones and wearable devices (e.g., Bio-Watch). It also considers the availabil-
ity of software components, including the mPOC application and algorithms necessary for
data processing and analysis.

Sensor Integration: The mPOC system relies on the integration of sensors to capture
clinical and physiological data. This assesses the availability and functionality of sensors
that can accurately and reliably measure vital signs, symptoms, and other relevant health
data. This includes evaluating the compatibility of sensors with the smartphone and
wearable device, ensuring seamless data collection and transmission.

Connectivity: The mPOC system requires connectivity options to transmit data be-
tween the smartphone, wearable device, and other public domain stakeholders, such as
the OTC. This feasibility study examines the availability of wireless communication tech-
nologies, such as Bluetooth, Wi-Fi, or cellular networks (4G/5G), to establish reliable and
secure connections. It ensures that the chosen connectivity options are capable of handling
the required timely (real-time) information exchange.

Data Processing and Analysis: This required the computational evaluation of the
capabilities of the smartphone to handle the processing and analysis of data collected by the
mPOC system. This includes assessing the processing power, memory, and storage capacity
of the smartphone to perform complex algorithms and classification tasks. Additionally, it
considers the availability of fog/edge computing techniques to offload some computational
tasks and improve efficiency.

Data Security and Privacy: This technical feasibility encompasses the assurance of
robust (personal/public) data security and privacy measures within the mPOC system.
This involves assessing encryption mechanisms, secure data transmission protocols, and
access to control measures to protect sensitive health information. The system may require
compliance with relevant data protection regulations and standards (e.g., NIST).

System Scalability: This examines the scalability of the mPOC system to accommodate
a potentially large number of users. It assesses whether the system can handle increased
data volume, simultaneous connections, and user interactions without compromising
performance or data accuracy. Scalability considerations may involve evaluating the
network infrastructure, server capabilities, and data storage capacity.

Integration with Existing Infrastructure: In many cases, the mPOC system needs to
integrate with existing healthcare infrastructure and information systems. This feasibility
study evaluates the compatibility and interoperability of the mPOC system with Electronic
Health Record (EHR) systems, laboratory information systems, or public health databases.
It ensures seamless integration and data exchange between the mPOC system and other
healthcare systems.

By conducting a thorough Technical Feasibility assessment, the end-users can deter-
mine if the mPOC system’s technology components are readily available, compatible, and
capable of meeting the system’s requirements. This evaluation provides valuable insights
into its development.

7.2. The mPOC Performance Evaluation

In this section, the performance evaluation of the mPOC prediction model is analyzed.
The mechanism involves capturing physiological data from users, which can be suscep-
tible to unwanted noise and occasional faulty readings. To enhance the specificity and
sensitivity of the diagnosis, appropriate filtering techniques, such as Kalman filtering, are
employed [47].

The second mode of operation relies on the timely delivery of real-time health and
outbreak information by the authority, necessitating the establishment and maintenance
of anytime and anywhere connectivity. This is generally not a challenge in metropolitan
areas. The third mode of operation involves establishing proper device-to-device (D2D)
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connections with community members for information exchange. Since no multimedia
data, such as voice, video, or images, are transmitted across the network, there is no need
to maintain a high-quality communication link. The transmitted information is in the form
of text, allowing for some degree of delay.

The mPOC system is capable of tracking the physiological signs of users during
the advanced stage (AS) if they require the attention of a healthcare professional while
self-isolating at home.

For the end-to-end performance evaluation, we utilized LabVIEW Community Edi-
tion [45], simulating the mobile/Bio-Watch user, the Outbreak Tracking Center (OTC), and
various infection clusters. The algorithm (Figure 3) is deployed and simulated revolving
around the movement of the mobile user from a low-risk area (residence) to various high-
risk areas. The local visual and auditory feedback systems were utilized and recorded
during the movements. Figure 4 illustrates the achieved accuracy based on the movements
from a Low-Risk Location (LRL) to a High-Risk Location (HRL) and vice versa.

The performance scatterplot demonstrates that the accuracy measures for correctly
identifying the user’s risk when moving from one LRL to another LRL are at the highest
levels, with a mean value of 92.8% accuracy with the variations ranging from 91% to 95%.
The accuracy measures slightly decrease for movements from LRL to HRL, with a mean
value of 87.08% accuracy with the variations between 85% and 90%. The accuracy measures
further decline for movements from HRL to HRL, with a mean value of 84.84% with the
variations between 83% and 88%. This decline can be attributed to the increased utilization
of the algorithm to capture, transmit, and interpret the rapidly changing parameters.

The accuracy measures display high variation during movements from HRL to LRL,
with a mean value of 84.12% and significant variations between 79% and 89%. This variation
is influenced by differences in parameter reporting between high- and low-profile locations.

A crucial aspect of the application that needs to be addressed is the security and
privacy capabilities of the mPOC system. Since mPOC users are within the D2D wireless
range of each other (within 500 m), they will receive personalized DRI and PEI values
from other users, which are to be passed to the OTC. To address security and privacy
requirements, each mPOC system is assigned a unique anonymous 10-digit code, which
remains private and secured from all users. All communication channels between mPOC
users are encrypted to prevent Man-In-The-Middle Attacks, ensuring that adversaries
cannot impersonate valid users or hijack established communication channels. The OTC
stores and maintains the list of validated secure codes for all users in its database.

Although the accuracy versus movement performance measure is by far the most
important performance measure that can be considered in this article, other metrics can
also be used to study the performance of the mPOC system, such as:

(1) The economical, operational, social, legal, ethnical, scalability, and sustainability
aspects of the mPOC system;

(2) The feasibility and readiness of the elderly and non-tech savvy users to use the mPOC
technology for disaster management;

(3) Delay studies for OTC to reach end-users;
(4) The effectiveness of the mPOC system in keeping infected users in isolation once

signs and symptoms of COVID-19 appear in a specific user, after which the system is
capable of issuing appropriate warnings and instructions, thereby guiding the user to
get tested at the nearest testing center and self-isolate at home.

Other performance measures may include the system’s capability in contact tracing,
which may also be possible and is envisioned in the system, which can be included in
future studies.

8. Future Directions for Technology-Driven Pandemic Responses

Utilizing technology for containing pandemics and outbreaks, such as COVID-19, has
demonstrated promising results and is crucial for achieving a safer community. As we look
towards the future, it is evident that investing in the current technologies is the most viable
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path forward. The following are important technology-driven capacities that should be
developed and enhanced ([48–53]):

8.1. Leveraging Digital Technologies for Detection

Rapid viral detection is essential for containing viral pandemics with an R0 higher
than 1, which is the case for most diseases, including the flu and COVID-19. Various digital
technologies can be utilized to increase the speed of disease detection, particularly when
limited or no symptoms are present; the mPOC system serves as a perfect example of such
a technology.

8.2. Real-Time Monitoring and Contact Tracing

Once an infection is detected and confirmed, it becomes crucial to monitor the infected
population in real-time and perform contact tracing. Technologies that enable real-time
monitoring and contact tracing play a vital role in managing the spread of the virus.
However, because of the inherent delay in the operations of the conventional contact
tracing systems and the rapid evolvements of the newer COVID-19 subvariants, which
caused the R0 values to increase by up to six-fold, the performance of the contact tracing
systems gradually decreased from 67.1% to 15% [54]. The future technologies for contact
tracing need to consider high R0 values to ensure adequate performance. The mPOC
system, when deployed at a population level, has the capability to fulfill this requirement.

8.3. Critical Data Sharing Capability

With the frequent movement of individuals across cities, states, and countries, the
sharing of critical data becomes increasingly important. This data sharing helps in un-
derstanding and mitigating the emergence of new and more dangerous viral subvariants.
Additionally, addressing the issue of social media disinformation and managing conflicting
data are essential, and proper data assessment and sharing can contribute to tackling this
challenge effectively.

8.4. Pandemic-Ready Smart Cities

A crucial aspect of smart cities is having a technology-enabled and interconnected
city infrastructure. During a pandemic, having a predictive system that can show the
trajectory of localized infections’ severity becomes vital. By integrating pandemic readiness
into smart city frameworks, cities can proactively respond to outbreaks and effectively
allocate resources.

8.5. Top-Down Meeting Bottom-Up Approaches

The top-down approach involves information flowing from infrastructure, government
agencies, and regulators down to end-users and the general population. Conversely, the
bottom-up approach prioritizes the well-being of the general population. To achieve the
best possible outcomes, both approaches should run in parallel. This approach, where
top-down and bottom-up approaches converge, is adopted in the mPOC system and should
be embraced in future technology-driven pandemic responses.

8.6. Vendor-Specific Bottom-Up Systems/Technologies

There are several recent gadgets and vendor-specific technologies that can be used for
a bottom-up approach in a variety of pandemic-like situations. Here are a few examples:

(1) Oura Ring: The Oura Ring is a wearable device that tracks various biometric data,
including body temperature, heart rate, respiratory rate, and sleep patterns. It can
provide early indications of changes in health and help individuals monitor their
well-being [55].

(2) BioButton: The BioButton is a wearable biosensor that continuously monitors vital
signs, including temperature, heart rate, and respiratory rate. It provides real-time
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health data and can help individuals identify potential COVID-19 symptoms and take
appropriate actions [56].

Other vendor-specific technologies include: Garmin Vivosmart, Fitbit Sense, Apple
Watch, and Samsung Galaxy Watch.

These are just a few examples of recent vendor-specific technologies that can be
used for a bottom-up approach in a pandemic situation. It’s important to note that the
availability and specific features of these technologies may vary depending on the region
and the vendors’ offerings.

By focusing on the current state of gadgets, their future directions, and continuously
advancing technology-driven approaches, we can enhance our ability to detect and contain
pandemics effectively. By embracing digital technologies, real-time monitoring, data
sharing, pandemic-ready smart cities, and integrating top-down and bottom-up approaches,
we can build systems that can contribute to building resilient and proactive systems that
can save lives and minimize the impact of future outbreaks.

9. Conclusions

In this paper, we have introduced the Mobile Health (mHealth) Predictive Outbreak
COVID-19 (mPOC) system, which utilizes a cutting-edge wearable device that can be
utilized by individuals from all walks of life. The centerpiece of this system is a smartphone-
driven physiological watch called Bio-Watch, which captures and tracks users’ physiological
signals using both bottom-up (individuals first) and top-down—from public health and
the Outbreak Tracking Center (OTC)—approaches.

By merging the top-down and bottom-up approaches, we believe we have found a
way to effectively address fast evolving future pandemics and provide fast and efficient
support to affected individuals. The algorithm described in this paper, which operates
through three recursive stages, calculates the user’s likelihood of being infected based on
two formulas: the Predictive Exposure Index (PEI) and the Deterioration Risk Index (DRI).
Visual and auditory warnings are then issued to inform users of their risk of infection.

We have also discussed the feasibility of this approach, aiming to revolutionize pan-
demic outbreak management by utilizing existing systems and sensors with minor up-
grades to devices and communication protocols. The mPOC system makes optimal use of
Device-to-Device (D2D) communication, which is supported by current 4G/5G networks.
From a performance perspective, we simulated the behavior of the mPOC system using the
LabView Community Edition. The results demonstrate mean accuracy values in correctly
informing mobile users of risks, ranging from 92.8% for movements between Low-Risk
Locations (LRL), 87.08% for movements from LRL to High-Risk Locations (HRL), 84.84%
for movements within HRL, and 84.12% for movements from HRL to LRL. The decline in
accuracies for movements within HRL can be attributed to the increased utilization of the
algorithm to capture, transmit, and interpret parameters in high-risk environments.

The distinctive feature of the proposed method is its focus on the well-being of
affected individuals and the ability to monitor them with accuracies close to the gold
standard (>90%), which was previously unattainable. Our mPOC system has the potential
to revolutionize pandemic management by providing timely and accurate information
to individuals as well as public health agencies, thereby enabling early detection and
intervention.

Further research and development in this field will allow us to refine the mPOC system
and explore additional functionalities, such as contact tracing. By continually improving
and advancing wearable IoMT technology, we can enhance the efficiency and effectiveness
of outbreak prediction and monitoring, ultimately saving lives and mitigating the impact
of future pandemics.
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Abbreviations

3GPP 3rd Generation Partnership Project
4G/5G/6G 4th/5th/6th Generation Mobile Network
A Amber (color code)
AS Advanced Stage
Bio-Watch Biological Watch
BMI Body Mass Index
BVP Blood Volume Pulse
CPP Clinical and Physiological Presentation
CS Cytokine Storm
D2D Device-to-Device
DRI Deterioration Risk Index
ECG Electrocardiography
EEG Electroencephalography
EHR Electronic Health Record
EMG Electromyography
ES Early Stage
FDA Food and Drug Administration
G Green (color code)
H Height
HaaS Healthcare as a Service
HRA High-Risk Alert (audio Codes)
HRL High-Risk Location
IoMT Internet of Medical Things
IP Incubation Period
LRA Low-Risk Alert (audio Codes)
LRL Low-Risk Location
LTE Long Term Evolution
LTE-D LTE Direct
mDRS mHealth Disaster Recovery System
MERS Middle East Respiratory Syndrome
mHealth Mobile Health
mPOC mHealth Predictive Outbreak for COVID-19
MRA Medium-Risk Alert (audio Codes)
MRL Medium-Risk Location
NFC Near Field Communication
NIST National Institute of Standards and Technology
OTC Outbreak Tracking Center
PCR Polymerase Chain Reaction
PEI Predictive Exposure Index
PGS Polysomnography
PHBA Public Health Broadcast Agencies
PRaaS Pandemic Response As A Service
R Red (color code)
RAT Rapid Antigen Test
S Silent (audio codes)
SARS Severe Acute Respiratory Syndrome
SCL Skin Conductance Level
SpO2 Oxygen Saturation
SS Specificity and Sensitivity
THz Terahertz Technology
VHR Very High-Risk Alert (audio code)
W Weight
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WBAN Wireless Body Area Network
WHO World Health Organization
Y Yellow (color code)
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