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Abstract: Information-centric networking (ICN) has gained significant attention due to its in-network
caching and named-based routing capabilities. Caching plays a crucial role in managing the increasing
network traffic and improving the content delivery efficiency. However, caching faces challenges
as routers have limited cache space while the network hosts tens of thousands of items. This paper
focuses on enhancing the cache performance by maximizing the cache hit ratio in the context of
software-defined networking–ICN (SDN-ICN). We propose a statistical model that generates users’
content preferences, incorporating key elements observed in real-world scenarios. Furthermore, we
introduce a graph neural network–double deep Q-network (GNN-DDQN) agent to make caching
decisions for each node based on the user request history. Simulation results demonstrate that our
caching strategy achieves a cache hit ratio 34.42% higher than the state-of-the-art policy. We also
establish the robustness of our approach, consistently outperforming various benchmark strategies.

Keywords: information-centric networking; software-defined networking; graph neural network;
deep reinforcement learning; intelligent caching

1. Introduction

Information-centric networking (ICN) has received significant interest and attention in
recent years as a promising paradigm for network communication. ICN introduces a shift in
focus from the traditional host-centric model to a content-centric approach. Named-based
routing and in-network caching are two key features of ICN that have contributed to its
growing popularity and adoption in various domains.

Researchers have explored the potential applications of ICN in diverse areas such
as the Internet of Things (IoTs), where the efficient dissemination and retrieval of data
is crucial for IoT devices to interact and exchange information [1]. In the context of the
Internet of Vehicles (IoVs), ICN can enable efficient content delivery, facilitate real-time
communication, and support intelligent transportation systems [2]. Furthermore, in the
realm of 5G networks, ICN has been investigated for its potential to enhance content
delivery, reduce latency, and improve overall network performance [3]. ICN has also
been explored in software-defined networking (SDN) environments, offering flexibility,
scalability, and efficient resource management [4].

One of the fundamental challenges in ICN is the effective caching of content across the
network. Caching reduces latency, minimizes network congestion, and improves content
delivery efficiency. However, it is a complex task due to the limited cache space available at
each router and the potentially vast number of items distributed throughout the network.
Researchers have been actively investigating caching strategies and policies to optimize
cache performance.

In recent years, deep reinforcement learning (DRL) has allowed significant advance-
ments in decision making, particularly in caching decisions. Numerous studies (see [5,6])
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have demonstrated the exceptional performance of DRL in solving caching problems.
Researchers have adopted deep Q-learning network architectures, such as multi-layer per-
ceptron (MLP) and convolutional neural networks (CNNs), to replace traditional Q-tables.
However, MLP and CNN architectures struggle to effectively utilize the neighbourhood
information in arbitrary graph data, such as network topologies and knowledge graphs.
While CNNs have been extensively optimized for the processing of Euclidean space data
such as images and grids, they face challenges when dealing with graph-structured data.
This limitation hampers their ability to capture the relational information necessary for
efficient caching decision making.

Graph neural networks (GNNs) offer distinct advantages over traditional MLP and
CNN architectures, as they are purpose-built to handle graph-structured data and excel in
non-Euclidean spaces. This unique capability has made GNNs a popular choice in a wide
range of domains that involve data represented as arbitrary graphs [7]. Notably, GNNs
have demonstrated remarkable success in network routing optimization [8], where the
underlying graph structure captures the intricate relationships between network nodes
and facilitates efficient path planning. Additionally, in the domain of traffic prediction [9],
GNNs leverage the graph structures of road intersections and their connectivity to forecast
traffic flow patterns accurately.

Moreover, recent research has highlighted the remarkable generalization capabilities
of GNNs [10]. GNNs can generalize effectively over different network topologies, allowing
them to adapt to various environments and scenarios. This has been substantiated by
studies such as [11–13], which have showcased the impressive generalization performance
of GNNs across diverse network architectures.

The inherent suitability of GNNs for graph-structured data and their exceptional
generalization capabilities make them an ideal choice in tackling complex problems in
network-related domains. In the context of our research, leveraging the power of GNNs
allows us to capture the intricate relationships and dependencies present in network caching
scenarios, ultimately enhancing the network caching performance.

This paper aims to enhance the caching performance in the SDN-ICN scenario by
leveraging DRL and GNN. Specifically, we introduce a GNN–double deep Q-network [14]
(GNN-DDQN) caching agent within the SDN controller. The SDN controller provides a
real-time and comprehensive view of the traffic situation in the SDN-ICN environment,
while the network nodes are equipped with caching capabilities. The GNN-DDQN agent
determines optimal caching decisions for individual nodes by considering the traffic condi-
tions at each time step. The controller then communicates these decisions to the respective
nodes, enabling them to update their cache stores accordingly.

The contributions of this paper are as follows.

• We develop a statistical model to generate users’ preferences. Initially, we employ
matrix factorization based on the Neural Collaborative Filtering Model [15] to learn
content and user embeddings using the real-world dataset MovieLens100K [16]. Next,
we employ a Gaussian mixture model to cluster users and content based on their
embeddings. Subsequently, we employ a statistical model to generate the request
behaviour of each user group.

• We introduce a GNN-DDQN agent within the SDN-ICN scenario. Incorporating a
GNN in DRL is advantageous as GNNs excel in modelling graph-structured data,
enabling nodes to engage in cooperative caching and enhancing the overall caching
performance. Additionally, with only a single forward pass through the neural net-
work, the GNN-DDQN agent can make caching decisions for all nodes in the network
at each time step.

• We extensively evaluate the proposed caching scheme through simulations across
various scenarios. These scenarios include different numbers of items, cache sizes,
and network topologies, such as GEANT [17], ROCKETFUEL [18], TISCALI [19], and
GARR [19]. Notably, our proposed caching scheme outperforms the state-of-the-art
DRL-based caching strategy. Furthermore, it exhibits a significant performance advan-
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tage over several benchmark caching schemes (Leave Copy Down (LCD), Probabilistic
Caching (PROB_CACHE), Cache Less for More (CL4M), and Leave Copy Everywhere
(LCE) [20–23]). The evaluations demonstrate the robustness of our proposed strategy
to simulation parameters and variations in network topology.

It is worth noting that GNN-DDQN has several advantages.

• Computational Efficiency: GNN-DDQN is computationally efficient, requiring only
one DRL agent to make caching decisions for all network nodes in a single for-
ward pass.

• Multi-Action Capability: GNN-DDQN enables the agent to take multiple actions for
each network node at each time step, demonstrating strong performance even with
the incorporation of multi-actions.

• Applicability: GNN-DDQN can be applied in various real-world scenarios.

– Content Delivery Networks (CDNs): Our proposed caching scheme can be em-
ployed within CDNs to improve caching decisions at edge nodes.

– Mobile Edge Computing (MEC): Our caching scheme can benefit MEC environ-
ments by strategically caching frequently accessed content at edge servers.

– Internet Service Providers (ISPs): By deploying our scheme, ISPs can enhance
their caching infrastructure, effectively reducing the bandwidth requirements
for popular content and providing faster access to frequently accessed data for
their subscribers.

– Video Streaming Platforms: By caching popular videos at appropriate network
nodes, our algorithm can reduce buffering times and enhance the overall stream-
ing experience for users.

However, there are also limitations to consider.

• Scalability: GNN-DDQN may face challenges in terms of scalability when dealing with
a large number of network nodes. With only one SDN controller monitoring the entire
network traffic, it may experience high latency, impacting the overall performance of
the caching algorithm.

• Overfitting and Underfitting: GNN-DDQN, as with other deep learning algorithms,
may suffer from overfitting or underfitting, depending on various factors.

The rest of this paper is organized as follows. Section 2 overviews related work.
Sections 3 and 4 present our system model and proposed methodology. Section 5 shows
the experimental results. Section 6 concludes the paper.

2. Related Work

Classical caching placement algorithms commonly used in the literature include LCE,
LCD, PROB_CACHE, and CL4M [20–23]. LCE involves copying content at any cache
between the serving and receiving nodes, while LCD caches content in the immediate
neighbourhood of the serving node in the receiver’s direction. PROB_CACHE probabilisti-
cally caches content on a path, considering various factors. CL4M aims to place content in
nodes with high graph-based centrality. In addition to placement algorithms, traditional
caching replacement algorithms such as Least Recently Used (LRU), Least Frequently Used
(LFU), and First-In-First-Out (FIFO) are commonly employed [24,25]. LRU discards the
least recently accessed content, LFU replaces the least frequently used content first, and
FIFO evicts the first item inserted in the cache. However, these traditional algorithms
are often considered inefficient, yielding poorer performance than deep learning-based
caching algorithms.

DRL-based caching algorithms have demonstrated remarkable achievements in recent
years [26,27]. In [5], the authors developed a deep Q-network (DQN)-based caching
algorithm designed explicitly for mobile edge networks. The application of DRL in the
Internet of Vehicles (IoV) field has also gained substantial attention. As the demand for
computation and entertainment in autonomous driving and vehicular scenarios increases,
researchers have been actively advancing caching strategies to enhance the user experience.



Future Internet 2023, 15, 251 4 of 20

In [28], the authors propose CoCaRL, a caching strategy leveraging DRL and a multi-
level federated learning framework. They utilize a DDQN [14] to optimize the cache hit
ratio of local roadside units (RSUs), neighbour RSUs, and cloud data centers in vehicular
networks. Their approach also incorporates federated learning to enable decentralized
model training. Another study [29] introduces a quality of experience (QoE)-driven RSU
caching model based on DRL. Their caching algorithm addresses the growing demand for
time-sensitive short videos in a 5G-based IoV scenario. The reward in their DRL model is
defined as the ratio of the number of videos interesting to each user to the total number of
videos stored in the RSU. Furthermore, in [6], the authors design a DQN-based strategy
to optimize joint computing and edge caching in a three-layer IoV-ICN network archi-
tecture, encompassing vehicles, edges, and cloud layers. In [30], the authors proposed a
social-aware vehicular edge computing architecture to efficiently deliver popular content
to end-users in vehicular social networks. They introduce a social-aware graph pruning
search algorithm to assign content consumer vehicles to the shortest path with the most
relevant content providers. Additionally, they utilize a DRL method to optimize content
distribution across the network. In [31], the authors develop an IoV-specific edge caching
model that enables collaborative content caching among mobile vehicles and considers
varying content popularity and channel conditions. Additionally, the framework empow-
ers each vehicle agent to make caching decisions based on environmental observations
autonomously. In [32], the authors proposed a spatial–temporal correlation approach to
predict content popularity in the IoV. They introduce a DRL-based multi-agent caching
strategy, where each RSU is an independent agent, to optimize caching decisions. In [33],
the authors investigate joint computation offloading, data caching, transmission path se-
lection, subchannel assignment, and caching management in the IoV-based environment.
Dynamic online algorithms such as the Simulated Annealing Genetic Algorithm (SAGA)
and DQN are adopted to minimize the content access latency.

In addition to DRL, GNNs have emerged as another effective approach in addressing
caching problems. One notable application of GNNs in caching is presented in [34]. The
authors introduce a GNN-based caching algorithm to optimize the cache hit ratio in a
named data networking (NDN) context. Their approach involves two key steps. First,
they utilize a 1D-CNN to predict the popularity of content in each node. Subsequently, a
GNN is employed to propagate the content popularity predictions among neighbouring
nodes. Finally, each node makes caching decisions based on node-level caching probability
ranking. Leveraging the message-passing capabilities of GNNs, their caching approach
outperforms the CNN-based caching algorithm, leading to improved caching performance
in the NDN scenario. Moreover, in [35], the authors propose GNN-GM to enhance the
caching performance in NDN. In this work, a GNN is utilized to predict users’ ratings of
unviewed movies within a bipartite graph representation. Leveraging the accurate rating
predictions achieved by GNN, the proposed approach achieves a higher cache hit ratio
compared to state-of-the-art caching schemes. The successful application of GNNs in these
studies highlights their efficacy in addressing caching challenges. By leveraging the GNN’s
ability to capture complex dependencies and propagate information across nodes, these
approaches demonstrate improved caching performance and provide valuable insights for
the optimization of cache hit ratios in various network scenarios.

The integration of DRL and GNN has additionally emerged as a growing trend, de-
livering numerous benefits. The authors in [36] employ dynamic graph convolutional
networks (GCNs) and RL for long-term traffic flow prediction. They represent traffic flow
as a graph, where each station is a node and directed weighted edges are used to indicate
traffic flow occurrence. A graph convolutional policy network (GCPN) model generates dy-
namic graphs at each time step, and the RL agent receives a reward if the generated graph
closely resembles the target graph. The paper further utilizes a GCN and long short-term
memory (LSTM) to extract spatial and temporal features from the generated dynamic graph
sequences, enabling traffic flow prediction in future time steps. Another study [37] intro-
duces the Inductive Heterogeneous Graph Multi-Agent Actor–Critic (IHG-MA) algorithm
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for traffic signal control. The traffic network is modelled as a heterogeneous graph, with
each traffic signal controller considered an agent. An inductive GNN algorithm is applied
to learn the embeddings of the agents and their neighbours. The learned representations are
then fed into an actor–critic network to optimize traffic control. Additionally, [38] proposes
an innovative approach using a GCN and DQN for the multi-agent cooperative control of
connected autonomous vehicles (CAVs). Each CAV is treated as an agent, and a GCN is
utilized to extract embeddings for each agent. These representations are then fed into a
Q-network to determine the actions of each agent, facilitating effective cooperative control
among the CAVs. Furthermore, in an SDN-based scenario, [13] presents a centralized agent
that leverages DRL and GNNs to optimize routing strategies. They utilize a GNN to model
the network and DRL to calculate the Q-value of an action. By embedding routing paths
into node representations and feeding them into the Q-network, they evaluate various
routing strategies and select the optimal one when a traffic demand is issued. In [39], the
authors propose a method that combines prediction, caching, and offloading techniques
to optimize computation in 6G-enabled IoV. The prediction method is based on a spatial–
temporal graph neural network (STGNN), the caching decision method is realized using
the simplex algorithm, and the offloading method is based on Twin Delayed Deterministic
Policy Gradient (TD3).

These studies demonstrate the efficacy of combining DRL and GNNs in tackling var-
ious issues, including traffic prediction, traffic signal control, the cooperative control of
autonomous vehicles, routing optimization in SDN scenarios, and caching in IoV environ-
ments. By leveraging the respective strengths of DRL and GNNs, these approaches enable
intelligent decision making and enhance performance in intricate systems. We are confident
that the amalgamation of DRL and GNNs can similarly bring advantages to caching in the
SDN-ICN context.

3. System Model

In this section, we present the system architecture of our proposed caching scheme and
provide a comprehensive overview of the key components. We also define the concept of
content popularity. Furthermore, we develop a user preference model based on real-world
data from the MovieLens100K dataset [16]. Important notations used throughout the paper
are listed in Table 1.

Table 1. Important notations.

Notation Definition

N Number of network nodes
C Number of content items
T Number of time slots
N = {n1, . . . , nN} Set of network nodes
C = {c1, . . . , cC} Set of content
U = {u1, . . . , uU} Set of users
T = {t0, t1, . . . , tT} Set of time steps

bci ,nk
tl

“Cache” or “not cache” content ci at node nk at time step tl (i.e.,
availability of content ci at node nk’s cache store during the time
interval between tl and tl+1)

Stl = {s
n1
tl

, . . . , snN
tl
} Set of all nodes’ states at time step tl

Atl = {a
n1
tl

, . . . , anN
tl
} Set of all nodes’ caching actions at time step tl

ank
tl

= {bc1,nk
tl

, . . . , bcC ,nk
tl
} Set of node nk’s caching action at time step tl

Rtl = {r
n1
tl

, . . . , rnN
tl
} Set of all nodes’ rewards (i.e., cache hits) at time step tl

rnk
tl

= {rc1,nk
tl

, . . . , rcC ,nk
tl
} Set of node nk’s reward for each content item at time step tl

z Router’s cache size
xci Content ci’s embedding
yuj User uj’s embedding
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3.1. System Architecture

We propose an intelligent caching strategy in an SDN-based ICN (SDN-ICN) architec-
ture, as depicted in Figure 1. The SDN-ICN architecture separates the control plane from
the data plane, and the OpenFlow protocol facilitates the data transfer between them. We
introduce the GNN-DDQN [14,40] agent responsible for making caching decisions in the
control plane. The data plane comprises network nodes that perform caching actions.

Figure 1 illustrates the control plane, consisting of two modules: (i) the GNN-DDQN
agent module, which plays a crucial role in caching decisions for ICN nodes in the data
plane; and (ii) the content caching management module, which handles the content caching
of each ICN node. We assume that the data plane’s network topology consists of N ICN
nodes, denoted as N = {n1, n2, . . . , nN}.

The data plane encompasses ICN nodes, each fulfilling specific roles: (i) source nodes
responsible for content publication without caching capabilities, (ii) receiver nodes account-
able for sending requests to source nodes, also without caching capabilities, and (iii) router
nodes responsible for forwarding requests and data packets across the network. Instead of
assuming that all router nodes have the caching capability, we consider only some of them
to have this. These router nodes equipped with caching capabilities have a cache capacity
of z, defined as the number of content items.

The network contains C distinct content items, represented by the set C = {c1, . . . , cC}.
We assume that an experimental time round can be divided into T slots of equal duration,
denoted by T = {t0, t1, . . . , tT}. To indicate whether a node nk caches content ci at time
step tl , we employ a binary variable {bci ,nk

tl
}, where tl ∈ T , ci ∈ C, and nk ∈ N . Specifically,

bci ,nk
tl

= 1 if and only if node nk caches content ci at time step tl , implying that content ci is
available at node nk during the time interval between tl and tl+1.

GNN-DDQN Agent

Content Caching Management

Control Plane

Data Plane

Action Atl :
Caching
decisions
for each
nodeNetwork State Stl

Reward Rtl

Source Nodes Router Nodes Receiver Nodes

Figure 1. The SDN-ICN architecture. In the controller, the GNN-DDQN agent receives a network
state Stl and generates an action Atl at each time step tl . Subsequently, it receives a reward Rtl at the
next time step tl+1.

In the SDN-ICN architecture, the controller can see the network’s traffic. Therefore,
at each time step tl , the GNN-DDQN agent observes the network state Stl , which en-
compasses information about the network’s status during the time interval between tl−1
and tl . Subsequently, the GNN-DDQN agent performs content caching predictions at the
node level, denoted as Atl , and communicates the recommended content to be cached to
each router node with caching capabilities. When a router node with caching capabilities
receives a request packet for content ci within this period, it can fulfill the request directly
if the requested content is cached or forward the request to the source node. At the sub-
sequent time step tl+1, a set of rewardsRtl is sent to the GNN-DDQN agent. Specifically,
Rtl = rn1

tl
, rn2

tl
, . . . , rnN

tl
represents the rewards of all nodes at time step tl . Furthermore,

rnk
tl

= rc1,nk
tl

, rc2,nk
tl

, . . . , rcC ,nk
tl

represents the set of rewards for each content item received by
node nk at time step tl .
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3.2. Content Popularity and User Preference

In a realistic computer network, users exhibit preferences for specific types of content,
leading to varying request frequencies. We develop a statistical model that incorporates
content popularity and user preferences to simulate this network traffic. In our network,
receiver nodes correspond to users, and we denote the users as U = {u1, . . . , uU}. Our ob-
jective is to determine the probability distribution P(ci, uj), which represents the likelihood
of a request for the ith content by the jth user.

Content popularity refers to the probability distribution of requesting the ith content
within the network, represented by P(ci). Research studies [41] have shown that the content
popularity in a network can be modelled using a Zipfian distribution,

P(ci) =
1

(i)α ∑C
k=1(k)−α

(1)

where α is a skewness factor with a value of 0.8.
User preference refers to the relationship between users and content items. In our

study, we employ collaborative filtering [15,42] to capture user preferences. Collaborative
filtering is a popular recommendation system technique that predicts a user’s preference
by identifying users with similar tastes based on their historical behaviours. Collaborative
filtering has two primary approaches: the neighbourhood-based method and the latent
factor method. The neighbourhood-based method identifies similar users or items based on
their historical preferences and recommends items that similar users or items have liked. On
the other hand, the latent factor method discovers latent factors that represent underlying
characteristics of users and items and uses these factors to predict user preferences. In our
case, we utilize matrix factorization, a latent factor method, to extract the latent factors
of users and content items. By decomposing the user–item interaction matrix into lower-
dimensional matrices, we can represent users and items in terms of these latent factors.
Subsequently, we calculate user preferences by analyzing the relationships between users
and content items derived from matrix factorization.

To capture the user–content relation, we construct a matrix M with dimensions C×U,
where C represents the number of content items and U represents the number of users. Each
element mi,j in the matrix corresponds to the relationship between content ci and user uj.
This relationship can be based on various factors, such as ratings given by the user, the time
spent on the content, or any other relevant metric. We utilize trainable embedding layers to
process the user–content matrix further to generate embedding vectors for each content
item and user. Specifically, for each content item ci, we apply an embedding layer that
maps it to a continuous vector representation xci ∈ Re, where e denotes the dimensionality
of the embedding. Similarly, for each user uj, we employ an embedding layer to obtain the
embedding vector yuj ∈ Re.

Our research uses the well-known MovieLens100K dataset [16] as a real-world dataset
for our experiments. This dataset consists of user ratings for movies and is widely used
in evaluating recommendation systems. We focus on learning embedding vectors for
943 users and 1682 content items within this dataset.

To obtain user and content embeddings, we employ a matrix factorization technique
combined with a neural network architecture inspired by the works [15,42]. Our model
consists of two trainable embedding layers, one for users and another for content items.
These layers enable the learning of dense and low-dimensional representations that capture
users’ and content’s underlying characteristics and preferences. The next step in our model
involves computing the element-wise product of the content and user embedding vectors.
This element-wise product represents the interaction between a specific content item and
a user. Subsequently, the resulting products are fed into a linear layer with an activation
function. For a given content embedding xci and a user embedding yuj , the output is
computed as follows:

m̂i,j = σ(wT(xci � yuj)) (2)



Future Internet 2023, 15, 251 8 of 20

in this equation, σ denotes the sigmoid activation function, w represents a trainable matrix,
and � signifies the element-wise product. To train the matrix factorization model, we
minimize the binary cross-entropy (BCE) loss between the ground truth values mi,j and
the predicted values m̂i,j. It is worth mentioning that we label mi,j as 1 if the jth user has
provided a rating for the ith content item, and 0 otherwise. The key training parameters for
the Neural Collaborative Filtering (NCF) model are summarized in Table 2.

Table 2. Key NCF model training parameters.

Parameters Values

Epoch 100
Learning rate 0.001

Batch size 256
Embedding dimension e 8

Optimizer Adam

In order to fit the number of content items and users in our network, all users and
content items in the dataset are divided into groups. If the content embeddings are close to
each other, we cluster them into groups, and users are grouped in the same way. We utilize
a Gaussian mixture model (GMM) to cluster the embedding vectors, and then compute a
representative embedding for each group by taking the element-wise mean.

Since the inner product xci
Tyuj captures the correlation between content ci and a user

uj, we apply the softmax function on the inner products to obtain the probability P(uj|ci)
for given content ci. This probability represents the preference of user uj for content ci.
Inspired by the works [43,44], we calculate the joint probability P(ci, uj) of content ci being
requested by user uj as follows:

P(ci, uj) = P(ci)P(uj|ci)

= P(ci)
exp(xci

Tyuj)

∑U
j=1 exp(xci

Tyuj)

(3)

where P(ci) represents the content popularity, while P(uj|ci) reflects the preference of
user uj for content ci. Combining these probabilities establishes a link between the user
preference and content popularity.

It is important to note that our approach differs from the methods proposed in [43,44],
as we obtain user and content embeddings from a real-world dataset. Furthermore, we
consider the inner products of the learned user embeddings and content embeddings to
measure their associations, enabling us to capture the relationships between users and
content meaningfully.

4. Proposed Methodology

This section presents our GNN-DDQN agent, which incorporates a GNN as the Q-
network within the DDQN framework [14]. DDQN improves upon the original DQN algo-
rithm [40] by mitigating Q-value overestimation and enhancing the overall performance.

The GNN-DDQN agent predicts Q-values based on the observed state Stl and the
chosen action Atl at each time step tl . The predicted Q-value is denoted as Q(Stl ,Atl ). The
objective of the agent is to learn an optimized policy that maximizes the expected Q-value
Q∗(Stl ,Atl ). This section describes the state space, action space, and reward function used
in our DDQN. Additionally, we explain the GNN architecture employed to map network
states to action rewards for each node. Finally, we provide an overview of the GNN-DDQN
agent, including its key components and functionality.



Future Internet 2023, 15, 251 9 of 20

4.1. State Space

The network state Stl = {s
n1
tl

, . . . , snN
tl
} captures the state of each network node at time

step tl . Each node’s state feature vector snk
tl

at time step tl is represented by snk
tl
∈ RC×3,

where C is the total number of items in the network.
The state snk

tl
of a network node nk at time step tl consists of three components:

• 1st component: The number of requests for each content item ci that have traversed
the node during the previous time interval (tl−1 to tl). This count is stored only for the
requested content in receiver nodes, cached content in router nodes, and published
content in source nodes.

• 2nd component: The cache storage of the node, represented by a binary variable for
each content item ci. A value of 1 indicates that the node caches the content during
the previous time interval, while a value of 0 is used otherwise.

• 3rd component: The content publication of the node is also represented by a binary
variable for each content item ci. A value of 1 indicates that the node has published
the content during the previous time interval, while a value of 0 is used otherwise.

4.2. Action Space

At a time step tl , each node nk can choose z out of C content items to cache. We record
its cache scheme in a binary tuple,

ank
tl

= {bc1,nk
tl

, . . . , bcC ,nk
tl
}, (4)

where 1 means to ‘cache’ and 0 means to ‘not cache’, and the sum of all entries cannot
exceed the assumed router’s cache size z. We also use Atl to denote the cache scheme of all
nodes such that,

Atl = {a
n1
tl

, . . . , anN
tl
} (5)

and refer to it as the agent’s action at the time step tl . When the agent takes action Atl at
time step tl , the node nk caches content according to ank

tl
, which can be used to satisfy the

request in the future.

4.3. Reward Function

Our objective is to maximize the cache hit ratio. Thus, we use cache hits as the agent’s
reward, denoted as Rtl = {r

n1
tl

, . . . , rnN
tl
}, which includes the cache hits of each node. For

a node nk at time step tl, its cache hits for each content item are rnk
tl

= {rc1,nk
tl

, . . . , rcC ,nk
tl
}.

Let us assume that a node nk’s reward sum for all content at time step tl is
cacheHitsnk

tl
= rc1,nk

tl
+ rc2,nk

tl
+ · · ·+ rcC ,nk

tl
; then, the objective function can be formulated

as follows:

max ∑
nk∈N

∑
tl∈T

cacheHitsnk
tl

s.t.

∑
ci∈C

bci ,nk
tl
≤
{

z, node nk has the caching capability
0, otherwise

, ∀tl ∈ T , ∀nk ∈ N

(6)

this objective aims to maximize the cache hit ratio for the stored content while ensuring
that the number of content items stored in a node does not exceed z if it is a router node
with caching capability and zero otherwise. We apply this constraint because only router
nodes with caching capability can cache content, while other nodes, such as source and
receiver nodes, can only distribute or receive content.
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4.4. GNN Architecture

Our methodology utilizes a GNN for node-level Q-value predictions. The model archi-
tecture, depicted in Figure 2, operates on a network graph consisting of node embeddings
and an adjacency matrix.

The GNN takes as input the graph structure data G = (N , E ,S), where N represents
the set of nodes, E denotes the set of edges, and S represents the network state. With
this input, the GNN model generates Q-value predictions for each action of every node,
allowing us to estimate the outcome of each action through a single forward propagation
of the GNN model.

n1

· · · · · ·

· · ·

nN

...

Node embeddings

Adjacency Matrix
1 0 · · · 1
0 1 · · · 0
...

...
. . .

...
1 0 · · · 1



Network
n1

nN

BatchNorm

· · · · · ·

· · ·

GraphSage
ReLU

· · · · · ·

· · ·

Output
Q1

.

.

.
QC




Q1

.

.

.
QC



BatchNorm + GraphSage + ReLU (can be multiple layers)

Figure 2. Model architecture.

For the GNN architecture, our approach utilizes four GraphSage layers [45]. Each layer
has different hidden embedding dimensions, specifically 1024, 512, 256, and C. GraphSage is
an inductive framework that leverages sampling and aggregation techniques to generate node
embeddings. It allows for efficient embedding generation even for previously unseen data.
By incorporating four GraphSage layers, we can aggregate information from up to four-hop
neighbouring nodes at each step. This enables the GNN to capture the network structure and
traffic patterns, resulting in more informative node embeddings for Q-value prediction.

The aggregation process in GraphSage is described by the equation

hk
N(v) = AGGk(hk−1

u , ∀u ∈ N(v)), (7)

where N(v) represents the one-hop neighbours of node v, and hk−1
u is the embedding of

node u at the previous (k− 1)th step. In each step, the GNN aggregates the embeddings of
the one-hop neighbours of a node v from the previous step to obtain hk

N(v). The aggregation
function AGG is typically permutation-invariant, meaning that it is not affected by the
ordering of the aggregated embeddings. In our approach, we use a mean aggregator, which
calculates the element-wise mean of the vectors hk−1

u , ∀u ∈ N(v).
After the aggregation step, the GNN performs concatenation by combining the em-

beddings of each central node from the previous (k− 1)th step with the embeddings of its
neighbouring nodes from the current kth step. The concatenated embeddings are then fed
into a fully connected layer with a nonlinear activation function:

hk
v = σ

[
Wk ·CONCAT

(
hk−1

v , hk
N(v)

)]
, (8)

where Wk represents a learned matrix specific to the kth step, σ denotes the rectified linear
activation function (ReLU), and hk

v corresponds to the embedding of the central node v at
the kth step. The CONCAT operation refers to the concatenation of the embeddings hk−1

v
and hk

N(v).
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4.5. The GNN-DDQN Agent

The GNN-DDQN agent operates based on the procedure described in Algorithm 1.
In the beginning, we initialize a replay buffer P, a Q-network (Q) implemented as a GNN
with randomly generated parameters θ, and a target Q-network (Q̂) with the same network
architecture and parameters as Q. Each episode corresponds to a complete round of
experimentation, and the time is divided into T slots. The GNN-DDQN agent takes actions
at each time step, denoted as tl (starting from t1, as t0 represents the initial point of the
experimentation).

To balance exploration and exploitation, we utilize an ε-greedy exploration
strategy [40]. This strategy involves randomly selecting actions with a probability of
ε and selecting the action with the highest expected Q-value with a probability of 1− ε. The
purpose is to encourage initial exploration and gradually decrease exploration over time.
We employ an exponential decay strategy for ε, starting with an initial value of εs = 0.9 and
decaying to a minimum value of εe = 0.01 with a decay rate of 0.01, denoted as εd = 100.

Since each router with caching capability has a cache size of z, the GNN-DDQN agent
selects z actions for each node at each time step. It chooses the top z actions with the highest
Q-values for each node during greedy action selection. For random actions, it randomly
selects z actions for each node. It is crucial to emphasize that the agent precisely chooses z
actions for each node at every time step. However, it only executes these actions for router
nodes with caching capabilities, excluding others.

Algorithm 1 GNN-DDQN Agent Operation

Input: number of episodes E, batch size B, target network update step K, replay buffer
capacity R, epsilon start εs, epsilon end εe, epsilon decay εd, number of steps k, discount
factor γ

1: Initialize replay buffer P with capacity R
2: Initialize Q-network with random weights θ
3: Initialize target Q̂-network with weights θ̂ = θ
4: for episode ∈ {1, . . . , E} do
5: for tl ∈ {t1, . . . , tT} do
6: Randomly pick ε′ ∈ [0, 1]
7: εt = εe · (εs − εe) · exp

(−k
εd

)
8: k = k + 1
9: for nk ∈ {n1, . . . , nN} do

10: if ε′ < εt then
11: Randomly select z actions
12: else
13: Select z actions with the highest Q(Stl ,Atl |θ)
14: end if
15: end for
16: Take action Atl , get rewardRtl and next state Stl+1
17: Store transition (Stl ,Atl ,Rtl ,Stl+1) into P
18: Randomly sample B transitions (Sbj

, Abj
,Rbj

, Sbj+1
) from P

19: Use Equation (10) to compute Ybj

20: Perform a gradient descent step on L(θ) with respect to the network parameters θ,
where L(θ) is computed in Equation (9)

21: Update θ̂ = θ every K steps
22: end for
23: end for

At time step tl , the GNN-DDQN agent interacts with the environment by taking action
Atl and receiving a reward Rtl and the subsequent state Stl+1 at time step tl+1. The rewards,
denoted byRtl , are node-level rewards, where each node has C rewards corresponding to
different actions. The newly generated transition (Stl ,Atl ,Rtl ,Stl+1) is then stored in the
replay buffer P.
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We train the Q-network by randomly sampling a batch of transitions (Sbj
,Abj

,Rbj
,Sbj+1

)

from the replay buffer P. The Q-network is trained using gradient descent on a loss func-
tion L(θ), which measures the discrepancy between the predicted Q-values and the target
Q-values. For the sampled transitions bj, the loss function is defined as follows:

L(θ) =

√√√√√E

∑
bj

((Ybj
−Q(Sbj

,Abj
|θ))2 ·mask)

 (9)

where Ybj
is defined as follows:

Ybj
=


Rbj

, if episode terminates at bj+1

Rbj
+ 1

z γ ∑r∈Q̂(Sbj+1
,arg maxA′bj+1

,|A′bj+1
|=z Q(Sbj+1

,A′bj+1
|θ)|θ̂) r, otherwise (10)

and mask is defined as follows:

mask =

{
1, if nk is a router with the caching capability
0, otherwise

(11)

where Ybj
represents the ground truth Q-values. If the episode terminates at transition

bj+1, Ybj
is equal toRbj

. Otherwise, it is computed as the sum ofRbj
and the discounted

expected reward of the next state. To estimate the expected future reward, the Q-network
selects the top z greedy actions based on state Sbj+1

, and the corresponding Q-values are

computed using the target Q-network Q̂. The discount factor γ determines the importance
of long-term rewards and is typically between 0 and 1. To ensure that each action taken
at the next time step contributes equally, the sum of the expected long-term rewards is
divided by z. To focus the loss contribution on routers with caching capabilities, a mask is
applied in Equation (9). Nodes without caching capabilities are assigned a mask value of 0,
while routers with caching capabilities have a mask value of 1.

To maintain the training stability, the parameters of the Q-network Q are periodically
copied to the target Q-network Q̂ every K steps. This helps to reduce the potential for the
overestimation of the Q-values during training.

The key training parameters for the GNN-DDQN model are summarized in Table 3.

Table 3. Key GNN-DDQN model training parameters.

Parameters Value

Number of episodes E 1000
Learning rate 0.001
Batch size B 32

Target network update step K 10
Replay buffer capacity R 1000

Epsilon start εs 0.9
Epsilon end εe 0.01

Epsilon decay εd 100
Discount factor γ 1

Optimizer Adam

5. Experimentation and Results

In this section, we present simulation results to demonstrate the effectiveness of the
proposed caching strategy in various network scenarios. To conduct these experiments, we
utilized Icarus[46], a Python-based ICN caching simulator that comprehensively evaluates
different caching strategies. Not bound to any specific architecture, such as content-centric



Future Internet 2023, 15, 251 13 of 20

networking (CCN) or named data networking (NDN), Icarus provides functionalities for
more generalized ICN.

We employed the LRU strategy as the caching replacement policy for all our experi-
ments. Moreover, the content popularity and user preference distributions mentioned in
Section 3.2 were considered. Table 4 lists the key simulation parameters used. We followed
the recommendations from a previous study [47] and set the internal and external link
delays to 2 milliseconds (ms) and 34 ms, respectively, for all network topologies.

The experiments involved a set of distinct content, ranging from 600 to 1000, uniformly
distributed among all source nodes in the network. The router’s cache size varied from 1
to 4, denoting the number of content items that it could store. Each experiment consisted
of a warm-up phase with 2000 requests, followed by 4000 requests that were measured to
evaluate the performance of different caching schemes. User requests followed a Poisson
distribution with a mean of 100 requests per second.

We divided each experiment into T segments, each representing 10 s. We conducted
600 experiments for each caching scenario and calculated the average evaluation metrics
based on the results of the last 200 experiments.

Table 4. Key simulation parameters.

Parameters Values

Network topology GEANT [17], ROCKETFUEL [18],
TISCALI [19], and GARR [19]

Internal link delay (all networks) 2 ms
External link delay (all networks) 34 ms
Number of distinct content items Range: 600–1000 items

Content size 1500 bytes
Request size 150 bytes
Cache size Range: 1–4 items

Number of warm-up requests 2000
Number of measured requests 4000

Request distribution Poisson distribution with a mean of
100 requests per second

Time slot 10 s
Number of experimentations 600

The evaluation of different caching strategies relied on four key metrics.

• Cache Hit Ratio (CHR): The cache hit ratio represents the percentage of requests that
can be fulfilled by retrieving data packets from the cache in the router nodes,

CHR =
cacheHits

cacheHits + cacheMiss
, (12)

where cacheHits refers to the count of Interest packets that are successfully satisfied by
retrieving the corresponding Data packet from the router’s cache. On the other hand,
cacheMiss represents the count of Interest packets that cannot be fulfilled by the cache
and require fetching from external sources. An Interest packet carries the name of
the requested content and is transmitted from the receiver node, while a Data packet
contains the requested content itself and can serve as a response to the corresponding
Interest packet.

• Average Latency Time (ALT): The average latency time represents the average delay
between the moment that a user sends an Interest packet and the moment that it
receives the corresponding Data packet,

ALT =
∑I

i=1(it + ir)
I

, (13)
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where I denotes the total number of user requests. it represents the travel time of the
Interest packet from the receiver node to the node that fulfills the request, while ir
denotes the travel time of the responding Data packet.

• Average Path Stretch (APS): The average path stretch measures the average increase
in path length for each user request,

APS =
I

∑
i=1

pathi,nu ,nr

Pathi,nu ,ns

, (14)

where I represents the total number of user requests. nu denotes the receiver node that
sends the request, nr refers to the node that responds to the request, and ns represents
the source node that publishes the requested content. pathi,nu ,nr denotes the number
of hops travelled by the ith request, while Pathi,nu ,ns represents the shortest path from
the receiver to the source.

• Average Link Load (ALL): The average link load represents the average ratio of the
total link load to the total number of links in the network,

ALL =
∑L

l=1 Ll

L
, (15)

where L denotes the total number of links in the network, and Ll represents the link
load of the specific link l.

The caching performance of our proposed GNN-DDQN scheme was evaluated and
compared with the state-of-the-art caching scheme MLP-DDQN. MLP-DDQN, which
has been extensively studied in various research works [5,6], was used as a baseline for
comparison. We adapted the MLP-DQN framework to incorporate the DDQN technique
to ensure a fair comparison. The MLP-DDQN agent consisted of four linear layers with
dimensions of 1024, 512, 256, and C.

There are some differences between the state representations of the MLP-DDQN
agent and our proposed GNN-DDQN approach. In the MLP-DDQN agent, the first
component of the state representation includes the number of requests for each content
item ci passed through each node, covering all types of nodes (receivers, routers, and
sources). This provides more general traffic-related information to assist the MLP agent
in making predictions, as it lacks the ability to gather neighbouring information as in the
GNN approach.

Additionally, we compared our caching strategy with classical caching algorithms,
including LCD, PROB_CACHE, LCE, and CL4M. These algorithms served as additional
baselines to assess the performance of our proposed approach.

5.1. Effect of Content Item Number

This section examines the impact of the number of content items on caching perfor-
mance. The number of content items ranged from 600 to 1000. Figure 3 illustrates how
the caching performance varied with the number of items in the GEANT [17] network,
where routers with caching capability had a uniform cache size of one item. The GEANT
network is a well-known real-world topology comprising 53 nodes and 74 edges. Within
the network are 13 source nodes responsible for content production, 32 router nodes, and
8 receiver nodes that initiate requests. However, it is worth noting that only router nodes
with a degree higher than 2 have cache capabilities, which amounts to 19 nodes in this case.

Figure 3 demonstrates that GNN-DDQN consistently outperformed all other caching
strategies across different numbers of distinct content items. GNN-DDQN achieved a
maximum improvement of 34.42% in CHR, 4.76% in ALT, 3.77% in APS, and 5.21% in ALL
compared to MLP-DDQN. On average, GNN-DDQN surpassed LCD and PROB_CACHE
by 41.33% and 103.92% in CHR, respectively. It also achieved significantly lower ALT, APS,
and ALL than LCD and PROB_CACHE. Furthermore, the performance gap
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between GNN-DDQN and LCE and CL4M was even more pronounced regarding all
evaluation metrics.

Overall, GNN-DDQN consistently exhibited exceptional caching performance regard-
less of the number of content items. Its superiority over MLP-DDQN stemmed from its
ability to facilitate cooperative caching among neighbouring router nodes. By efficiently
utilizing the caching space of all router nodes, GNN-DDQN enhanced the network perfor-
mance. Additionally, GNN-DDQN outperformed traditional caching algorithms by quickly
capturing user preferences and proactively placing popular content on appropriate router
nodes. Consequently, the cache hit ratio improved, alleviating network traffic congestion.
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Figure 3. The cache performance of GNN-DDQN, MLP-DDQN, LCD, PROB_CACHE, LCE, and
CL4M varied with the number of content items in the GEANT network.

5.2. Effect of Cache Size

This section investigates the performance of different caching schemes across various
router cache sizes, defined as the number of content items. Figure 4 presents the caching
performance of GNN-DDQN, MLP-DDQN, LCD, PROB_CACHE, LCE, and CL4M under
different caching scenarios. The router cache sizes ranged from 1 to 4, while the number of
content items was fixed at 1000.

GNN-DDQN exhibited a substantial performance advantage over MLP-DDQN when
the cache size was limited to one item. For cache sizes of two and four, GNN-DDQN and
MLP-DDQN performed similarly. However, when the cache size was set to three items,
GNN-DDQN outperformed MLP-DDQN by achieving an 11.87% higher CHR, 3.57% lower
ALT, 1.54% APS, and 2.20% lower ALL.

Significantly, regardless of the router cache size, GNN-DDQN consistently reduced the
latency time by at least 14.96%, 29.88%, 92.20%, and 76.37% compared to LCD, PROB_CACHE,
LCE, and CL4M, respectively. The advantages of GNN-DDQN stem from its ability to predict
popular content in advance and proactively cache them.

5.3. Effect of Network Topology

To further evaluate the effectiveness of the proposed caching scheme, we conducted
experiments on different network topologies, namely ROCKETFUEL [18], TISCALI [19],
and GARR [19]. The aim was to assess the robustness of the caching scheme in diverse
network environments.
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Figure 4. The cache performance of GNN-DDQN, MLP-DDQN, LCD, PROB_CACHE, LCE, and
CL4M varied with the router’s cache size in the GEANT network.

Table 5 presents the distribution of each network topology’s source, router, and receiver
nodes. It is important to note that, in the TISCALI network, only router nodes with a degree
higher than 6 possess caching capabilities, resulting in 36 router nodes equipped with cache
functionality.

Table 5. The number of source, router, and receiver nodes for different network topologies.

Topologies Source Nodes Router Nodes Receiver Nodes

ROCKETFUEL [18] 10 104 104

TISCALI [19] 44 160 36

GARR [19] 13 27 21

This section evaluates the caching performance of different strategies in the ROCKET-
FUEL, TISCALI, and GARR network topologies. The experiments were conducted with an
item number of 1000, and all routers with caching capabilities had a uniform cache size of
one item. The results are summarized in Table 6.

Across all network topologies, GNN-DDQN consistently outperformed the other
strategies. Specifically, in ROCKETFUEL, GNN-DDQN achieved a 2.89% higher CHR than
MLP-DDQN. In TISCALI, the margin became even more significant, with GNN-DDQN
achieving a 25.72% higher CHR than MLP-DDQN. These results highlight the superior
caching performance of GNN-DDQN, particularly in large networks such as ROCKETFUEL
and TISCALI.

Furthermore, GNN-DDQN demonstrated a significant margin over MLP-DDQN and
other traditional caching schemes in the GARR network. This further emphasizes the
robustness and effectiveness of GNN-DDQN across various network topologies.
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Table 6. The caching performance of GNN-DDQN, MLP-DDQN, LCD, PROB_CACHE, LCE and
CL4M in ROCKETFUEL, TISCALI, and GARR.

Strategy

Topology ROCKETFUEL

CHR ALT APS ALL
GNN-DDQN 18.41% 75.05 ms 73.78% 4081.90 bytes

MLP-DDQN 17.89% 75.27 ms 74.00% 4104.82 bytes

LCD 13.00% 80.12 ms 78.61% 4410.05 bytes

PROB_CACHE 9.32% 82.67 ms 78.78% 4425.06 bytes

LCE 8.35% 83.16 ms 79.36% 4598.08 bytes

CL4M 10.20% 82.13 ms 79.31% 4530.41 bytes

Strategy

Topology TISCALI

CHR ALT APS ALL
GNN-DDQN 15.57% 82.19 ms 82.76% 2498.73 bytes

MLP-DDQN 12.38% 84.41 ms 83.49% 2525.98 bytes

LCD 12.07% 85.14 ms 84.75% 2626.72 bytes

PROB_CACHE 7.90% 88.11 ms 85.55% 2656.99 bytes

LCE 7.22% 88.71 ms 86.03% 2692.65 bytes

CL4M 3.67% 91.22 ms 86.61% 2727.35 bytes

Strategy

Topology GARR

CHR ALT APS ALL
GNN-DDQN 12.18% 71.96 ms 74.48% 5559.79 bytes

MLP-DDQN 5.65% 76.31 ms 76.38% 5762.81 bytes

LCD 8.12% 74.77 ms 76.26% 5665.82 bytes

PROB_CACHE 4.02% 77.73 ms 77.48% 5749.57 bytes

LCE 3.67% 77.91 ms 77.76% 5832.152 bytes

CL4M 4.32% 77.42 ms 77.34% 5801.03 bytes

6. Conclusions

In this paper, we introduced GNN-DDQN, an intelligent caching scheme designed
for the SDN-ICN scenario. GNNs have gained significant attention recently for their
ability to handle graph-structured data. Leveraging this capability, we applied GNNs to
process network topologies, enabling cooperative caching among nodes and promoting a
wider variety of cached content. By integrating GNNs into DRL, our proposed approach
empowered the DRL agent to make caching decisions for all nodes in the network with
only one forward pass through the neural network. This integration not only streamlined
the caching decision-making process but also harnessed the power of GNN-DRL synergy
in optimizing the caching strategies.

Firstly, we generated user preferences for content based on a real-world dataset. This
step ensured that the evaluation reflected realistic user behaviour and content demand
patterns. Next, we developed a GNN-DDQN agent within the SDN controller, enabling
the agent to make intelligent caching decisions for all router nodes equipped with caching
capabilities in the ICN network. Finally, we compared the performance of our proposed
GNN-DDQN caching scheme with the state-of-the-art MLP-DDQN strategy and several
classical benchmark caching schemes, including LCD, PROB_CACHE, CL4M, and LCE. The
extensive evaluation revealed that GNN-DDQN consistently outperformed MLP-DDQN
in most scenarios. Notably, in the best-case scenario, GNN-DDQN achieved a remarkable
34.42% higher CHR, a 4.76% lower ALT, a 3.77% lower APS, and a 5.21% lower ALL com-
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pared to MLP-DDQN. Furthermore, GNN-DDQN demonstrated superior performance
compared to classical caching schemes. To assess the robustness of our proposed scheme,
we conducted experiments on benchmark network topologies, including GEANT, ROCKET-
FUEL, TISCALI, and GARR. GNN-DDQN consistently delivered outstanding performance
across these diverse network topologies, reinforcing its reliability and applicability in
real-world scenarios.

Some potential directions for future research include the following.

• Latency Consideration: Investigating the latency of the SDN controller and explor-
ing techniques to mitigate the latency issue when dealing with a large number of
network nodes.

• IoV-Based Environment: Integrating the proposed caching strategy in an IoV envi-
ronment. This may involve studying the unique characteristics of vehicular networks
and exploring how the methodology can be adapted to optimize content caching and
delivery in such dynamic and mobile scenarios.
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