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Abstract: The rapid advancement of networking, computing, sensing, and control systems has
introduced a wide range of cyber threats, including those from new devices deployed during the de-
velopment of scenarios. With recent advancements in automobiles, medical devices, smart industrial
systems, and other technologies, system failures resulting from external attacks or internal process
malfunctions are increasingly common. Restoring the system’s stable state requires autonomous
intervention through the self-healing process to maintain service quality. This paper, therefore, aims
to analyse state of the art and identify where self-healing using machine learning can be applied
to cyber–physical systems to enhance security and prevent failures within the system. The paper
describes three key components of self-healing functionality in computer systems: anomaly detection,
fault alert, and fault auto-remediation. The significance of these components is that self-healing func-
tionality cannot be practical without considering all three. Understanding the self-healing theories
that form the guiding principles for implementing these functionalities with real-life implications is
crucial. There are strong indications that self-healing functionality in the cyber–physical system is an
emerging area of research that holds great promise for the future of computing technology. It has
the potential to provide seamless self-organising and self-restoration functionality to cyber–physical
systems, leading to increased security of systems and improved user experience. For instance, a
functional self-healing system implemented on a power grid will react autonomously when a threat
or fault occurs, without requiring human intervention to restore power to communities and preserve
critical services after power outages or defects. This paper presents the existing vulnerabilities,
threats, and challenges and critically analyses the current self-healing theories and methods that use
machine learning for cyber–physical systems.

Keywords: cyber–physical system; cybersecurity; threat tolerance; self-healing; intrusion detection;
machine-learning algorithms

1. Introduction

This narrative review paper presents a descriptive review of manuscripts on cyber–
physical self-healing systems using machine learning. Cyber–physical systems (CPSs) are
integrated systems that bridge the physical and cyber domains, enabling the seamless
integration of biological processes and computing systems [1]. Self-healing in CPSs refers
to the ability of these systems to automatically detect and respond to faults or failures with-
out human intervention, enhancing their resilience and reliability [2]. While self-healing
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capabilities can improve the performance and robustness of CPSs, they also face several
vulnerabilities, threats, and challenges that need to be addressed [3]. These include hard-
ware and software component vulnerabilities that may be susceptible to cyber-attacks and
other threats, compromising the self-healing process [4]. The lack of standardisation in
self-healing mechanisms and technologies creates system interoperability issues, leading
to vulnerabilities and integration challenges [2]. The complexity of CPSs, with multiple
interconnected components, poses difficulties in identifying and diagnosing faults, making
it challenging to implement effective self-healing mechanisms [5]. Human error during sys-
tem design, implementation, and maintenance can create vulnerabilities and compromise
the self-healing capabilities of the system [2]. The lack of visibility into CPS self-healing
systems can also hinder fault identification and compromise system operations [6]. CPS
self-healing systems are also vulnerable to malicious attacks, including denial-of-service
attacks, malware, and hacking, which can compromise the system’s integrity and avail-
ability [7]. Considering that CPS self-healing systems are vital for critical infrastructure,
such as transportation systems and power grids, failures or vulnerabilities in these systems
can have severe safety implications [8]. Addressing these vulnerabilities, threats, and
challenges is essential to ensure the security, reliability, and safety of critical infrastructure
supported by self-healing capabilities in CPSs [2].

The increased adoption of digital systems in conducting human socioeconomic devel-
opment affairs concerning business, manufacturing, healthcare provisions, and government
services comes with the attendant risk of increased threats to computer systems and net-
works. These threats could be in the form of cyber-attacks on the individual level or at
the organisational level. For example, they targeted those isolated at home during the
COVID-19 pandemic lockdowns, schools, businesses, hospitals, manufacturing plants, and
social infrastructures. Through the widespread adoption of digital systems, communities
have become more susceptible to malicious cyber-attacks; hence, the importance of research
around computer systems self-healing has increased over the recent years. A review of
existing approaches and methodologies has been conducted to address the need for robust
self-healing and self-configuring systems to secure cyber–physical systems against security
threats. The selection of methods for this review paper was based on a systematic literature
search conducted in major scientific databases such as IEEE Xplore, ACM Digital Library,
and Google Scholar. Keywords such as “computer systems self-healing”, “cyber–physical
systems security”, and “self-configuring systems” were used to identify relevant articles
published in peer-reviewed journals and conference proceedings. A total of 40 articles were
included in this review, covering a wide range of topics related to self-healing and self-
configuring systems in the context of cyber–physical systems. The selected articles provide
insights into the current state-of-the-art challenges and future directions in this field. By
examining these approaches, this review aims to contribute to the development of robust
self-healing and self-configuring systems for securing current and future cyber–physical
systems. Safety within cyber–physical systems cannot be overemphasised as it is not only
an economic imperative but, in some cases, such as in a healthcare setting, can become a
matter of life or death. There is, therefore, the broad scope for finding solutions that can
aid the development of robust self-healing or self-configuring systems capable of securing
current and future cyber–physical systems against security threats.

Cyber–physical systems are part of the Industry 4.0 devices that utilise the power of
the Internet to convert the existing Industry 3.0 devices into smart industry devices. These
include cyber–physical systems deployed in smart manufacturing, smart grid, smart city,
and innovative automobiles. The cyber–physical system is highlighted in Figure 1 as part of
Industry 4.0, and the figure focuses on the physical components of Industry 4.0, including
cyber–physical systems and IoT, while underscoring the self-healing capability of CPSs in
modern manufacturing systems using digital technologies such as cloud computing. An
example of such development in transitioning the existing state-of-the-art systems protec-
tion from manual interventions to a self-healing approach through automation is noted
in [9]. The study argues that as providers migrate from 4G to more robust 5G networks,
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the operational costs associated with network failures, predicted to increase exponentially,
account for approximately 23% to 26% of revenue from the mobile network. A shift to-
wards automating the system’s protection process through self-healing is occurring to
control expenses as mobile network providers migrate to 5G. Self-healing systems are being
deployed in electricity distribution plants worldwide, with most deployments burdened
with latency, bandwidth, and scalability problems, as highlighted in [10]. Standardised
architecture for distributed power control using self-healing functionality to solve systems
faults is presented. The system proposal increases reliability during normal operations and
resilience during threat events. The result of the self-healing experiment in [10] is currently
undergoing field implementation by Duke Energy. Deploying machine learning to build
self-healing functionality into the power grid is very important in a world where population
growth is rising, and according to [11], frequent power outages constitute a considerable
cost to the economy and adversely affect people’s quality of life. A proposal for using
a fault-solving library coupled with a machine-learning algorithm to create self-healing
functionality in computer systems was put forth by [11].
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This paper briefly discusses the proposal, particularly the twin model approach. Self-
healing functionality is vital for providing excellent quality of service (QoS) in cloud com-
puting. With QoS increasingly critical to services offered by vendors of cloud computing,
such services as software as service (SaaS), platform as service (PaaS), and infrastructure as
service (IaaS), self-healing functions allow the network environment the ability to recover
from failure situations that may occur within a software, network, or hardware part of the
system, in such cases described in [12]. A technique was developed called self-configuring
and self-healing of cloud-based resources RADAR. The principal issue that affects the
optimal performance of the smart grid network is multifaceted failures in multiple areas
of the network, such as network overload, systems intrusion, systems misconfiguration,
etc. These failures can potentially cause severe setbacks to the economy and the quality of
human life, which can be mitigated by applying self-healing functionality to the system,
as demonstrated in recent research studies. Part of the myriad of solutions that have been
proposed is using a fault-solving strategy library on a twin model system and a machine-
learning (ML) algorithm to implement a self-healing mechanism in a smart grid. The ML
algorithm compiles with the dataset derived from the fault-solving library and is then
deployed to detect the anomalies within the cyber–physical system. The anomaly detection
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process is the first step towards implementing self-healing functionality and detecting such
that the self-healing functionality is triggered after the fault classification process gas is
completed and a viable mitigation solution is found within the fault-solving library.

This paper adopts a narrative research method within the qualitative methodology,
using existing literature to highlight theories, machine-learning algorithms, and network
architectures for implementing self-healing functionality, which can then be deployed to
protect the security of cyber–physical systems. The paper surveys existing literature and
shows the research areas where similar systems have been implemented and gaps still
exist, intending to aid future studies. The goal and objectives of this paper encompass
the following four points, which aim to contribute to enhancing knowledge in the field
of study:

• This paper aims to enhance knowledge by highlighting current trends in the area
of study;

• The main objective of this paper is to identify the latest machine-learning tools, methods,
and algorithms for integrating self-healing functionality into cyber–physical systems;

• The self-healing capability of cyber-physical systems will be evaluated concerning
state-of-the-art techniques, and machine-learning tools and methods in implementing
self-healing functions will be explored;

• The existing literature will be critically reviewed to identify current tools, methods,
algorithms, classification models, frameworks, networks, and architectures currently
deployed for a self-healing approach.

The implications of the existing approaches for future research are discussed, em-
phasising how the literature review and findings can contribute to advancing future ex-
periments. This paper’s structure includes sections on self-healing theories, self-healing
for cyber-physical systems, self-healing methods, an analytical comparison of promising
approaches, and a critical discussion of presented theories and techniques. The taxonomy
of the literature is summarised in Table 1.

Table 1. Taxonomy of the literature.

Principal Topic Authors

1. Resilience and Risk Assessment

n Cai et al. [11]
n Degeler et al. [13]
n Samir et al. [14]
n Wyers et al. [15]
n Gill et al. [12]
n Mehmet [16]

2. Self-Healing Approaches and Techniques

n Chen and Bahsoon [17]
n Singh et al. [18]
n Stojanovic and Stojanovic [19]
n Berry and Chollot [20]
n Schneider et al. [10]
n Khalil et al. [21]
n Hsieh [14]
n El Fallah Seghrouchni et al. [2]

3. Intrusion Detection and Security

n Degeler et al. [13]
n Joseph and Mukesh [9]
n Ahmad et al. [22]
n Berry and Chollot [20]
n Zhang et al. [6]
n Subashini and Kavitha [4]
n Colabianchi et al. [23]
n Mohammadi et al. [24]
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Table 1. Cont.

Principal Topic Authors

4. Machine Learning and Artificial Intelligence

n Bodrog et al. [2]
n Ali-Tolppa et al. [25]
n Karim et al. [26]
n Ahmad et al. [27]
n Tiwari et al. [28]
n Yang et al. [29]
n Al-juaifari et al. [30]
n Bothe et al. [Bothe]

5. Fault Diagnosis and Detection

n Singh et al. [18]
n Li and Li [1]
n Sejdić et al. [5]
n Mohammadi et al. [24]

6. Resilience and Robustness
n Idio et al. [31]
n Hahsler et al. [3]
n Breiman [32]

7. Survey and Overview of
Cyber-physical Systems

n Chen and Bahsoon [17]
n Subashini and Kavitha [4]
n Mahdavinejad et al. [8]
n Samuel and Madria [7]
n Zhang et al. [6]

2. Self-Healing Theories

Self-healing theories are areas of research that seek to formulate arguments that
explain the fundamental principles to be considered when implementing self-healing
functionality and the pattern between self-healing and other areas of science. The self-
healing cyber–physical system section describes what it means to have the self-healing
functionality implemented into the cyber–physical system, and self-healing methods detail
the models, frameworks, and network architectures that underpin the implementation of
self-healing functionality.

Hence, different self-healing theories are presented and discussed in the following
subsections.

2.1. Negative and Positive Selection

Negative and positive selection are two processes in the immune system to ensure
that only healthy cells are present in the body. A self-healing system refers to a system that
can repair itself when damaged or infected. Hence in the context of a self-healing system,
the immune system uses both negative and positive selection to ensure that only healthy
cells are present. If a cell is found to be harmful, the immune system eliminates it and
then begins to repair and regenerate healthy cells. From the biological science viewpoint,
negative selection is the process in which the immune system removes cells that recognise
self-antigens, and the immune system uses negative selection to ensure that immune cells
do not attack healthy cells. Likewise, positive is a process in which the immune system
selects cells that recognise foreign antigens and prime the immune system to identify and
eliminate harmful cells or pathogens. The CPS self-healing theory of negative and positive
selection is the replication of the biological immune response in computer science. An
example of such is using a genetic algorithm to detect system intrusions and then deploying
the self-healing functionality of the algorithm to remediate the threat.

The characterisation of anomaly is essential in ascertaining where the potential threats
or faults are located within a system, and the theory that is relied upon to achieve this is
the negative and positive selection theory. Identifying threats before deploying practical
self-healing functionality is a vital aspect of its implementation for appropriate remediation.
Negative selection of anomaly detection is called “non-self” detection and positive selection
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of anomaly detection is called “self” detection [13]. The central concept of negative selection,
as shown in (Figure 2) is to construct a set of “non-self” entities that do not pass a similarity
test with any pre-existing “self” entities. If a new entity is detected that matches the
“non-self” entities, it is rejected as foreign.

1 
 

 

 

Figure 2. Negative and positive selection in self-healing systems.

Similarly, the positive selection principle reduces the algorithm by one step, and in-
stead of matching a new entity with a constructed “non-self” entity set, it matches the entity
with pre-existing “self” set and rejects the entity if no matches are found. D’haeseleer in [13]
posits that negative selection has the properties of a thriving immune system, requiring no
prior knowledge of intrusions. This is due to being, at its core, a general anomaly detection
method. Negative selection is self-learning because it naturally evolves as a set of detectors;
when obsolete detectors die, new detectors are obtained from the current event traffic.
Dasgupta, cited in [13], argued that negative and positive selection produce comparable
results despite their fundamental approach differences. Both approaches raise the alarm
when an unknown entity infiltrates the system.

2.2. Danger Theory

Danger theory is the approach where immune responses are triggered by danger
signals rather than just by the presence of any “self” or “non-self” objects. Negative or
positive selection entities are allowed until signs indicate that they pose a threat. For
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example, as shown in (Figure 3) within the immune system (which this theory is modelled
against), if a harmful activity is detected, the immune response is triggered, attacking
either all the foreign entities or entities locally, depending on the severity of the danger
signal as noted in [13] that Burges et al. (1998) was among the first study that proposed
the use of biologically inspired danger theory to detect and react to harmful activity in
computer systems. Danger theory establishes the link between artificial immune systems
and intrusion detection systems. Mazinger in [5] argued that danger theory is based on the
concept that the immune system does not entirely differentiate between self and non-self
but differentiates between events that possess the potential to cause damage and or the
events that will not. Once the system understands itself, it can extend its pattern recognition
capabilities and respond to dangerous circumstances.

1 
 

 

 
Figure 3. Harnessing the power of danger theory to optimise self-healing systems.

The creation of an intrusion detection self-healing system based on danger theory
in which anomaly score is calculated for every event in the system was proposed by [13].
Each event has three computed values: event type (ET), anomaly value (AV), and danger
value (DV). The ET is based on predefined types or automated events clustering. The AV
defines how the abnormal event is based on “non-self” computations. The DV increases
when any strange or potentially dangerous signal is associated with an event. All these
three central event values are combined to calculate the threat total value (TV). TV is the
perceived potential of a particular event to cause damage or to be a constitutional part of
events that can cause a system’s failure. Three main system flow originates from dangerous
events [13]:

1. New event analysis: When a new event is detected, it should be added to the timeline,
and the dangerous pattern should be checked;

2. Danger signal procession: When a danger signal is detected, the system must decide
if any pattern can be related to the danger signal and then act accordingly;

3. Warning signal processing: When a warning arrives from other hosts that carry
information about a danger signal and related dangerous sequence of events, a host’s
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timeline should be checked to verify that it does not have a similar dangerous sequence
of events.

2.3. Holistic Self-Healing Theory

The holistic self-healing theory is a holism principle that reinforces complex systems’
resilience. Improving the resilience of one part of the system can potentially introduce
fragility in another. This occurs because when one aspect of the system’s resilience is
enhanced, it may inadvertently compromise the stability of another element. In mobile
network management, for instance, Ref. [10] argued that this approach, as depicted in
(Figure 4) means that different management domains and levels are not considered in
isolation. Though the other management domains may be operating on different time
scales and different managed objects, the domains need to be aware of the threat events
that occur in each segment of the whole to react to the danger and trigger appropriate
remedial action. Effective communication between the various subdomains of the system
allows for the application of danger theory to protect the overall design as a singularity.
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3. Self-Healing for Cyber-Physical Systems

Alhomoud described a self-healing system in [13] as a resilient system that can carry
on its normal functions even when under attack. A self-healing system is equipped with
measures to identify and prevent attacks from internal or external events and to facilitate
the system’s recovery autonomously. A system equipped with self-healing functionality
monitors the system’s environment by constructing a pattern of the sequence of the events
and using the pattern to detect anomalies in the circumstances before the remedial functions
that correct or eliminate the events anomaly can be successfully deployed. Only when
this autonomous remediation of attacks has been successfully achieved can the system
be described as having demonstrated self-healing functionality. The main characteristic
of a self-healing or self-organising system is the ability to react to problems through self-
adaptive principles, which is shown in [19] using a platform they termed PREMiuM. The
system must be able to classify the attack from everyday activities and take remedial actions
to mitigate the impact. The proposed PREMiuM platform in [19] is designed to realise self-
healing functionality in manufacturing systems, focusing on increasing efficiency during
manufacturing processes. The PREMiuM platform consists of a top-level architecture of
several services, i.e., interactive, self-healing, proactive, communication, modelling, and
security services. These services, which are independent of each other, are deployed to
achieve predictive maintenance of manufacturing systems. The self-healing service can
detect or predict failures in the system in furtherance of the self-healing and self-adaptive
functionality. A proposed intrusion detection system (IDS) by [13] is based on anomaly
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attack detection in which the IDS monitors the system’s environment, constructs a pattern
of events and then uses the pattern to detect anomalies in the system, sometimes called
outliers. The intrusion detection system detecting outliers triggers the system’s defence
mechanisms. Then, it notifies the other parts of the system and or system administrators of
the anomalies that have been detected. In a similar self-healing approach, Ref. [1] proposed
using machine-learning (ML) algorithms to implement IDS in smart grid construction by
integrating traditional power grid strategy with the computer network. It then established
the distribution fault-solving strategy library, which caused the grid to become self-adaptive.
The method abstracted the power grid into an integrated domain with the cyber–physical
system through data sharing, and the grid state in each of the system’s nodes corresponds to
a twin matrix, making the grid fully modelled and digitised. The grid, therefore, in the event
of failure, utilises the fault-solving strategy library to self-correct itself using the functions
of the distribution network. The critical characteristics of self-healing are reliability, fault
tolerance, and flexibility. These characteristics are demonstrated in [27] principles of self-
adaptation systems research, in which self-healing forms part of the fundamental principle
encompassing self-protection, self-configuration, and self-optimisation.

RADAR, a self-healing resource, was evaluated by [12] using a toolkit called CloudSim,
and the experiment results show a promising outcome, with an improvement in the fault
detection rate of 16.88% more than the state-of-the-art management techniques. Resource
utilisations increase of 8.79% is shown, and throughput increased by 14.50%; availability
increased by 5.96%; reliability increased by 11.23%; resource contention decreased by
6.64%; SLA breaches of QoS decreased by 14.50%; energy consumption decreased by
9.73%; waiting time decreased by 19.75%; turnaround time decreased by 17.45%; and lastly,
execution time reduced by 5.83%. The critical contributions of RADAR are listed in [12]:

1. Provision of self-configuration resources by reinstalling newer versions of obsolete
dependencies of the system’s software and offers management of errors through
self-healing;

2. Automatically schedules resource provisioning and optimises QoS without the need
for human intervention;

3. Provides algorithms for four-phased approaches of monitoring, analysis, planning,
and execution of the QoS values. These four phases are triggered through correspond-
ing alerts to aid the preservation of the system’s efficiency;

4. Reduces the breach of service level agreement (SLA) and increases the QoS expectation
of the user by improving the availability and reliability of services.

A prominent issue in current research is the ability of systems to identify “zero-day”
or never-before-seen anomaly events intelligently. The proposal presented by [33] suggests
utilising a knowledge-based algorithm to construct an intrusion detection system (IDS)
that effectively prevents power grid fault line intrusion. Experiments were conducted
within a testbed of a six-bus mesh network modelled to identify fault events within the
system and concurrently perform mitigating actions initiated by [33] and proposed as a
novel protocol. The proposed protocol is referred to as autonomous isolation strategies.
The strategies involve rerouting power flow displacements within the power grid once
a threat intrusion is detected. Simulations during the experiment were conducted using
Power World Simulator, MATLAB, and SimAuto (a fault detection platform). As noted
in [33], the experiment result shows that MATLAB extracts network parameters. Then, self-
healing strategies are triggered by rerouting network processes to other distribution areas,
providing stability to the system. The self-healing approach, started by the knowledge-
based algorithm, continues concurrently until all the overloading lines on the grid are
cleared and all effects of the system’s threat eradicated. The guidelines of supervised
learning for the knowledge-based algorithm as related to the electric power network are
listed as having the following characteristics in [33]:

1. Detection of overloaded transmission lines in the power network;
2. Identify buses that have overloaded transmission lines connected to them;
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3. Identification of the busbar that has the highest reserve capacity and that can then
serve as a viable option for a power restoration strategy;

4. Identification of the nearest distribution generator to the overloaded transmission line;
5. Identification of the termination point of the overloaded lines;
6. Establishment of line connection using the references of the reserve busbar index.

Other anomaly detection systems for network diagnosis are proposed in previous
studies, such as ARCD by [34], which uses data logs collected from large-scale monitoring
systems to identify root causes of problems in a cellular network. An experiment by [34]
identified that ARCD systems achieved rate levels above 90% in terms of anomaly detection
accuracy rate and detection rate. The drive towards an automatic diagnosis of computer
systems failures in mobile cellular networks is propelled by the industry’s need for efficient
means of identifying problems within the network. Interestingly, Ref. [35] noted that mobile
network operators spend a quarter of their revenues on network maintenance, and a drive
towards maintenance automation will drive down costs. A solution that relies on random
tree forest (RF), convolutional neural network (CNN), and neuromorphic deep-learning
module to perform fault diagnostics were proposed by [35]. The proposal uses an RSRP
map of fault-generated images to provide an AI-based fault diagnostic solution. The
impact of fault diagnostic solutions is noticeable in reducing costs and improving the end
user’s overall quality of service (QoS). Experiments during research by [35] show that the
proposed system could identify all the faults fed through the image datasets.

Similarly, a system that is resilient to system intrusions and built using Python-based
libraries, software-defined networks, and virtual machine composition was proposed
by [3]. The system is called Shar-Net and was tested in a smart grid environment. The
experiment results show demonstrably viable IDS that can prevent cyber-attacks and, at
the same time, can mitigate the effects of attacks through the system network’s automatic
reconfiguration. The principal areas covered in the proposed system are intrusion detection
system (IDS), intrusion mitigation system (IMS), and alert management system (AMS).
Zolli and Healy describe the resilience of a system in [10] as the ability of the system to
recover from failure or attack. The above description is quite different from a robust system.
A robust system is a system that is built to withstand unforeseen threats. Although the
two terms describing the core functionality of a self-healing-capable system might be used
interchangeably, it is essential to note the difference between them. A robust system relies
on threats that have been previously seen and thus has allowed the designers of the system
to build countermeasures to such threats proactively. On the other hand, a resilient system
retroactively reacts to unforeseen or “zero-day attacks” and applies countermeasures
accordingly. The authors of [10] listed the following principles of a resilient system:

1. Monitoring and adaptation: It must be responsive to unforeseen attacks;
2. Redundancy, decoupling, and modularity: It must have a decentralised structure to

prevent the threats from spreading to the other constituent parts of the network or the
system’s host;

3. Focusing: The system must be able to focus resources where they are most needed to
prevent the overuse of resources, which may be counterintuitive to the task of shoring
up the system’s resilience;

4. Diverse at the edge and simple at the core: The system should be able to utilise shared
protocols through simply defined processes. Still, it should also retain an element of
diversity to circumvent widespread attack threats.

Self-healing functions can be implemented in four stages (Figure 5). These include
profiling the system’s normal states, detecting the system’s deviation from its normal state,
diagnosing the system’s failures, and taking corrective actions to mitigate the impact of the
system’s failure. The choice of profiling algorithm for a self-healing system is dependent
on the scope of the design requirements and based on further considerations such as:

1. The system’s architecture;
2. The available datasets;
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3. Profile scope;
4. Profile features;
5. Feature distribution or subset;
6. Understandability.
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The illustration of anomaly detection and diagnosis for radio access networks (RANs)
(Figure 6) shows the profiling, detection, and diagnosis of anomaly events related to RANs.
The self-healing function is implemented according to a selected event context, like when a
threat event occurs. The key performance indicators (KPIs) are calculated when a profile is
created within a time-series format. The anomaly events that are unique in characteristics
are detected based on their anomaly level. The diagnosis function then analyses the
detected anomaly occurrences. The diagnosis function then identifies the root causes of
the anomaly events to ascertain whether corrective measures are required or not to lessen
the potential threats, and the corrective workflow is then triggered if indeed needed [10].
The major problem that affects the optimal performance of the smart grid network today
is the occurrence of system failures caused by multifaceted fault areas, such as system
overload, system intrusion, and system misconfiguration, among others [1]. Such failures
within the smart grid can cause significant economic setbacks, with consequences that
sometimes negatively impact human livelihoods or quality of life. To mitigate the problem
of the system’s inability to self-heal after failures, Ref. [1] proposed using a fault-solving
strategy library based on a twin model system and machine learning (ML) algorithm to
implement a self-healing mechanism in a smart grid. The algorithm will be fed into the
dataset derived from the fault-solving library to detect anomalies within the system. Then,
the self-healing function is trigged once the classification process is completed and a viable
mitigation solution is found. Self-healing methods can be helpful in a variety of contexts
where uptime, reliability, and performance are critical, such as:

• Manufacturing: In a manufacturing environment, production lines and equipment
must always be operational and available to ensure maximum output. Self-healing
mechanisms can detect and respond to faults or failures automatically, thereby min-
imising downtime and reducing the need for manual intervention;

• Transportation: Transportation systems, such as trains, planes, and automobiles, rely
on sensors and other technology to monitor and control their operations. Self-healing
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mechanisms can detect faults or failures and take corrective action to ensure the
system’s safety;

• Power grids: Power grids are critical infrastructure that must always be operational to
ensure reliable access to electricity. Self-healing mechanisms can detect and respond
to faults or failures, preventing cascading failures and reducing the impact of outages;

• Healthcare: Healthcare systems rely on technology to monitor and provide critical
care. Self-healing mechanisms can ensure that these systems are always operational,
minimising the risk of disruption that could compromise patient safety;

• Internet of Things (IoT): IoT devices are becoming increasingly common in homes,
businesses, and public spaces. Self-healing mechanisms can detect and respond
to faults or failures, ensuring these devices remain operational and connected to
the Internet. 

2 

 Figure 6. Anomaly detection for radio access.

4. Self-Healing Approaches

Self-healing approaches are the strategies and techniques to detect, diagnose, and
resolve CPS problems automatically without human intervention. These approaches
are commonly used in complex systems such as software applications, networks, and
hardware systems to ensure that they recover from failures and continue to operate without
disruption. Table 2 lists the most common machine-learning tools for cyber–physical
self-healing systems.

The approaches involve:

• Redundancy: Redundancy involves having duplicate components or systems that can
take over if the primary system fails. For example, if one node fails in a computer
cluster, another node can take over and continue processing the request;

• Automated recovery: Automated recovery involves setting up automated processes to
detect and resolve problems. For example, a computerised process can restart a server
or move its workload to another server if it goes down;

• Predictive maintenance: Predictive maintenance involves using sensors and data
analytics to predict when a system is likely to fail and proactively take action to
prevent the failure from occurring. For example, an aircraft engine can be monitored
for signs of wear and tear, and maintenance can be scheduled before failure occurs;

• Machine learning: Machine learning involves using algorithms to analyse data and
learn patterns that can be used to detect and resolve problems. For example, ma-
chine algorithms can analyse network traffic and detect anomalies that may indicate
security breaches;

• Fault tolerance: Fault tolerance involves designing systems that can continue to operate
even if one or more components fail. For example, a database cluster can be designed
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to replicate data across multiple nodes. If one node fails, then other nodes can continue
providing data access.

Table 2. List of machine-learning tools for cyber–physical self-healing systems.

Self-Healing
Machine-Learning Tools

Model and Framework

Twin Model

QoS Model

Auto-Regressive Moving Average
with Exogenous Input Model

Network Architecture

Strategy Network

Valuation Network

Fast Decision Network

Intrusion Detection System

Phasor Measurement Unit

Agent Architecture

Host Intrusion Detection System

Multi-Area Microgrid

Algorithms

Monte Carlo Tree Search

Artificial Neural Network

Supervised Knowledge Base
Algorithm

Genetic Algorithm

Dynamic Detection Algorithm

Support Vector Machine

Naive Bayes

Random Forest

DBSCAN Algorithm

Long Short-Term Memory (LSTM)

Auto-Regressive Moving Average
(ARMA)

It is important to consider training datasets, which are the bedrock of implementing
ML self-healing functions in cyber–physical systems. The self-healing algorithms use data
to identify errors, analyse their causes, and take remedial actions. Self-healing algorithms
utilise the system’s derived data to improve the reliability of the system and fulfil the
self-healing functionality, data such as the following:

• Log data: This contains information about the system events, such as error messages
and other data that can be used to diagnose problems;

• Performance metrics: This includes data derived from CPU utilisation, memory usage,
network latency, and input/output disk;

• Configuration data: Includes data related to the system’s configuration changes
and parameters;

• Environment data: Identifies the issues relating to environmental conditions, such as
overheating and excessive humidity.

• User behaviour data: These data identify patterns in the system’s user behaviours,
such as the response times or the frequency of errors.
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4.1. Self-Healing Models and Frameworks

A self-organising network was presented by [10], called the self-organised network
(SON) experiment framework, with which self-healing functionality is implemented and
demonstrated using data from actual network instances and live integrations. The SON
experiment framework is a tool developed by Bodrog [10]. It is implemented in R language
and has a user interface to visualise anomaly detection and its diagnosis process. Further
research includes using the transfer-learning method to investigate the remediation aspect
of the self-healing system. A reoccurring theme is addressed in the literature relating
to self-healing methods, and [36], in describing self-healing software techniques, noted
that the techniques are modelled after the observer orient decide act (OODA) feedback
loop. The OODA model identifies where to apply protection by observing the system’s
behaviour. The system is monitored to detect the fault and determine fault parameters,
such as the type of fault, the input or the sequence of events that led to the input, the
approximate areas of the system that is affected by the defect, and the information that
may be useful in mitigating the fault. The self-healing mechanism in terms of OODA is
more appealing than the traditional defence mechanism, which prioritises the termination
of attack processes and restarting the system in the event of an attack. The self-healing tool
succeeds by preventing code injection or the misused of legitimate code, rather than the
traditional defence method, which may cause systems fault to persist even after the attack
process has been terminated and the system restarted.

Self-healing functionality implementation has at its core anomaly detection, and once
an anomaly is detected using the various methods that are presently available, such as
network intrusion detection system (NIDS) and or host-based intrusion detection sys-
tems (HIDS), then performing remediation through triggered actions becomes necessary
to protect the system and realise the self-healing function. A self-healing system must
encompass resilience through its ability to take corrective measures that return the system
to its routine or default state after system failure or attack. Systems that are capable of
remedial actions against losses and or attacks from outside sources were proposed by Lui
in [37]. However, the proposal cannot trigger automatic remediation to mitigate attack
events in real time but still requires human intervention to perform the remediation process.
Therefore, a self-healing framework that is automatic and uses collaborative host-based
learning to incorporate a self-healing mechanism into the Internet of Things (IoT) devices
was proposed by Golomb in [37] in a study where a lightweight HIDS designed for IoT
was deployed. The authors of [33] described the conventional self-restoration within the
electrical systems concept as a system that can automatically reconfigure itself to achieve
repossession during an unexpected power disruption event. Automation within the power
grid is the concept of autonomously restoring proceedings that are impacted by power
failures and restoration of power supply through redirecting power flow from stable lines
to the fault-affected areas instantaneously.

The automation principle facilitates reforming the existing power grid to dynamically
respond to fault detection, applying deterministic isolation techniques and executing
reroute operations in real-time. An example is shown in a framework demonstrated
by [37] in the form of a tool for detecting anomaly events on cyber–physical systems. The
system sends alerts through the HIDS and triggers the best possible remediation action,
neutralising the attack effects and returning the IoT devices to their normal state. An
auto-remediation model is deployed, which uses an evolutionary-computation algorithm
built to imitate the functions of the natural process of evolution and in which the fittest are
likely to survive through a process like natural selection. The principle of the evolutionary
algorithm dictates that multiple practical solutions are created, and the best among the
solutions is then selected during the evolutionary process. Consequently, various solutions
for the different ML models implemented on IoT devices connected to local area networks
(LAN) are defined.

The best model, which becomes more adept at selecting the correct remediation
process, is chosen more often than the rest. The evolutionary algorithm uses fitness criteria,
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which enables the selection of models based on the health score provided by the algorithm.
In addition to selecting the models based on the health score, the algorithm generates new
ML models based on the individual model’s current attributes and supported by mutation.
To initialise the automatic remediation models, Ref. [37] proposed the implementation of a
lab setup in which multiple versions of auto-remediation models are trained to provide
corrective countermeasures by classifying system attacks that can be deployed on IoT
devices. The approach expedites the collaborative training process and improves the ability
of the auto-remediation agents to trigger corrective countermeasures against actual attacks
within a real system environment.

A physical platform comprising 35 Raspberry Pi devices, with similar hardware and
software on each device, was used in experimentation. All the Raspberry Pi devices
were connected to a network switch on a LAN. The long short-term memory (LSTM)
model was initialised on each IoT device with random weight to evaluate the experiment.
Then, an attack is triggered on the devices using attack stimulators based on the Red
Hat Ansible engine, an IT automation tool. After each episode, the genetic algorithm is
executed to update the LSTM model through learning iteration. The learning iterations
are measured on all the devices connected to a testbed against the response of the attack,
and a countermeasure action is undertaken to return the devices to their normal states.
One of the critical discoveries during the experiment is that increasing the number of
devices connected to the testbed (i.e., training sets) decreases the learning process time
exponentially, as shown in (Figure 7).
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In presenting their work, Goasduff [37] noted that Gartner Inc. predicted that there
would be 5.8 billion IoT devices by the end of 2020, and the prediction represents a 21%
increase from the previous year. The number is then expected to reach 64 billion devices
by 2025. Theoretical studies show that ML models, learning autonomously by experience
and collaboration, can serve as the basis for new cyber systems security defence. Future
studies could see the automatic remediation algorithms built into IoT devices that could
provide self-healing system safeguards and reduce maintenance costs, which can ordinarily
occur from system failure or attack. Future work to further explore the theory would
be centred around adding more classification of attacks to the ML models to bolster the
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learning capacity of the models, as well as explore the feasibility of transferring a trained
automatic remediation model between multiple IoT devices.

Similarly, a self-healing function within the microgrid electricity network was de-
scribed by Shahnia in [26] as part of a control and operation mechanism aimed at intro-
ducing a level of automation in the network system. The self-healing mechanism involves
many decision-making processes and can be presented in a three-tier hierarchical structure.
The bottom part of the structure consists in deploying a well-established control scheme
strategy to solve fault problems locally without requiring interventions from any central
command. The goal of the strategy is to reduce costs and increase the speed of operation.
According to Wang and Wang [26], the goal prompted many researchers to explore local
decision-making models.

Consequently, Wang and Wang [26] proposed a novel sectionalised self-healing ap-
proach in decentralised systems to resolve electrical energy distribution problems. The
objective set by the authors is to guarantee power supply by balancing loads in the subsec-
tion of the decentralised system by either adjusting the power outputs of the distribution
network or through the implementation of load shedding. A suitable self-healing network
deployment case study is a platform by [20] called fault location isolation and supply
restoration (FLISR), deployed and tested on a network simulator. The test result indicates
that the solution reduces the cost of commissioning on grid networks, and the platform
has been deployed in grid networks in several countries, such as the Netherlands, France,
Vietnam, and Cuba. A method for an automatic prediction model for systems failure,
recovery, and self-healing in virtual machine (VM) networks using intelligent hypervisors
was presented by [9]. The self-healing functionality implementation on the transmission
network of a smart grid is achieved through optimal voltage control with a genetic al-
gorithm, unified power flow controller (UPFC), and islanding process. The distribution
network approach involves the design based on the propulsion system, ant colony algo-
rithm, multi-stakeholder control system (MACS) for the intelligent distribution network,
fault location, isolation, and service restoration (FLISR). The self-healing functionality is
achieved using a predictive model that recovers failed VM instances in a physical machine
through a self-healing algorithm that utilises the VM’s memory snapshots. The self-healing
algorithms include decision tree, Gaussian normal basis (GNB), and support vector ma-
chine (SVM). A database’s self-healing functionality, extracting helpful information that
identifies the type and subtype of events from the database’s events report (text fields) data,
was presented by [38]. The extracted information was analysed using Python version 3.6.3,
Natural Language Toolkit (NLTK), Scikit-learn, Regular Expression (RE), and Pandas mod-
ules. Several self-healing methods have been proposed, such as those described in [16] and
relating to a smart grid with corresponding characteristics, which has the elements and is
representative of all self-healing known features. The smart grid self-healing systems, to be
considered adequate, must be able to meet the following criteria:

1. Quick detection of system faults;
2. Redistribution of network resources to protect the system;
3. Reconfiguration of the system to maintain service, irrespective of the situation;
4. Minimal interruption of service during reconfiguration or self-healing period.

4.1.1. Twin Model

The twin model is a statistical model commonly used in the behavioural genetics
study of the heritability of various traits and behaviours. It assumes that genetic and
environmental factors contribute to the variation in each trait or behaviour. Researchers
may use the twin model as a statistical model and ML algorithms to analyse data from
sensors and other sources to detect and diagnose anomalies in a cyber–physical system.
The concept of the twin model to this effect was proposed by [1], and it integrates a strategy
network, valuation network, and fast decision network into the twin matrix of the power
grid. It facilitates the analysis of the smart grid by operating the actual power grid but does
so virtually (on a computer). The model is a utility used to simulate the operation of an



Future Internet 2023, 15, 244 17 of 42

existing grid on a computer, with a use case that analyses the functionalities of a smart
grid. As merging energy flow and information become vital for the optimal operation
of the smart grid, failure in these aspects can cause successive losses in the transmission
between data and the physical network of the power grid. There may also be a resultant
effect from such failures that precipitated the collapse of the computing system and the
entire smart grid. To better describe the grid state, Ref. [1] introduced a virtual network
called the twin model, which represents the physical system state and the corresponding
data in precise information in the smart grid. The relationship of which is defined in the
following equation.

A1 B1 C1 — N1
A2 B2 C2 — N2

A = −−−−−−−−−−−−−−−−−−
An Bn Cn — Nn

The data of each node in the grid are compared to the matrix, and each node in the
grid is regarded as the first column of the matrix, which is noted as A2 A3 the different
types of faults (voltage, frequency, etc.) may appear in the subsequent corresponding node,
which is noted as B1 C1 etcetera. Through the above representation in the actual grid, if a
node has a fault, the failed node can easily be identified by analysing the data changes in
the twin matrix.

4.1.2. QoS Model

The quality of service (QoS) model is described by [17] as the expression of the
correlation between QoS changes and its environment primitives (EPs) or control primitives
(CPs). The QoS models can be a powerful tool to automatically assist cloud providers
in adapting cloud-based services and applications. They help determine the extent to
which services and applications can sufficiently exploit CPs to support QoS objectives and
consider the QoS sensitivity of both EPs and CPs, as noted by [37]. A self-healing QoS
model can automatically detect and correct errors in a system without human intervention.
It is a model designed to maintain high accuracy and reliability despite unexpected events
or changes. One approach to building a self-healing ML QoS model combines supervised
and unsupervised learning techniques. Supervised learning is used to train the model on a
set of labelled data, while unsupervised learning is used to identify patterns and anomalies
in the data.

4.1.3. Auto-Regressive Moving Average with Exogenous Input Model

The auto-regressive moving average with exogenous input (ARMAX) model is a
statistical model that combines both auto-regressive (AR) and moving average (MA) com-
ponents with exogenous input. Ref. [2] explored combining artificial neural network (ANN)
and auto-regressive moving average with an exogenous input model (ARMAX) to show
how primitives correspond to the quality of service adaptively (QoS) based on the re-
lated primitive matrix. Ref. [2] through experiment demonstrate the implementation of
a middleware that incorporates a self-adaptive approach based on the feedback control
mechanism. The experiment’s outcome, when tested using the RuBis benchmark and FIFA
1998 dataset, proves that the models (ANN and ARMAX) produce a more accurate result
when compared to the state-of-the-art models. The resulting model from combining the
two models in an experiment is S-ANN and S-ARMAX. The former handles the dynamic
QOS sensitivity better and produces higher accuracy in events where QOS fluctuations
occur, whereas the latter makes fewer errors when QOS fluctuations decrease. The ARMAX
model is commonly used in time-series analysis to predict future values tina time series
based on past values and exogenous inputs. The model can be estimated using various
methods, such as maximum likelihood estimation or least square estimation, and evaluated
using measures such as the Akaike information criterion (AIC) or Bayesian information
criterion (BIC).
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4.2. Network Architecture

The principal challenge of research into self-healing functionality on computer net-
works is the ability to achieve reliability, one of the three core characteristics of a self-healing
system described [27,29]. A method was proposed based on utilising shared operation and
spare nodes in each neural network layer to compensate for any faulty node and resolve
the self-healing reliability challenge. The proposed method is implemented using VHSIC
hardware description language (VHDL), and the simulation result is obtained through
Altira 10 GX FPGA. The experiment by [21] looked at overcoming the area overhead caused
using redundancy over time, and the result demonstrates overhead reduction by 27% for
four nodes within a layer and a 15% reduction in overhead for ten nodes within a layer.
When designing self-healing systems, several network architecture issues need to be taken
into consideration:

• Redundancy: The network should be designed with redundant components to min-
imise the impact of failures by providing fail-safe functionality to the system;

• Automation: The network should be automated to reduce the need for manual inter-
vention and speed up the recovery process;

• Monitoring: The network should have robust monitoring capabilities to detect and
diagnose issues as soon as they occur;

• Resiliency: The network should be designed to be resilient to common failures, such
as power outages, hardware failures, and software bugs;

• Security: The network should be designed with safety in mind to mitigate attacks that
could cause outages

The above will ensure that the three main self-healing characteristics (Figure 8), as
defined by [16], can be realised.
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Having evaluated self-healing approaches within the cluster platform architecture,
Ref. [14] proposed a self-adaptive method that identifies and recovers from abnormal events
in cluster platforms such as Kubernetes or Docker. The proposed method is designed to
introduce different anomalies into the cluster architecture of an edge computing platform.
An experiment was conducted using generated workloads data to measure the effects of
the abnormalities on the edge computing nodes at varying system settings, which allowed
for identifying relationships between the system components and aided the system’s
adaptation towards fulfilling its overall self-healing goals. The experiment result shows that
the proposed approach detects anomalous events with accuracy ratings of 98% and recovery
ratings of 99%. In evaluating self-healing in virtual networks (VN), Ref. [29] presented a
multi-commodity flow problem (MFP) network called MFP-VNMH, which can enhance
the VN mapping of overall VNs. The proposed approach enables self-healing capabilities
on network virtualisation. Self-healing functionality was achieved using sessions between
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the service pack (SP) and inhibit presentation (InP), supervised by a collection of control
protocols. Experiments conducted on the proposed approach demonstrate efficiency and
effectiveness for service restoration after network failures.

4.2.1. Strategy Network

A network comprising tens of thousands of faults solving strategy libraries was
proposed by [1]. They argued that the essence of the strategic network in their study is
to proffer a combination of solutions when dealing with risks of power grid failures. The
global strategy network in a power grid scenario is not accurate in solving power failure
problems; hence, the sub-strategy of each node is combined to solve a global fault based on
the general direction of the global strategy. The combined sub-strategy then constitutes a
strategy network. The framework for the network consists of several layers and each with
its strategy:

• Perception layer: This layer monitors the network to detect failures and anomalies.
Strategies in this layer include using sensors to monitor network traffic, analysing
system logs, and applying ML techniques to identify abnormal patterns;

• Analysis layer: This layer is responsible for analysing the data collected by the percep-
tion layer to identify the root cause of failures. Strategies in this layer include using
ML algorithms to analyse the data and identify patterns that indicate the cause of
a failure;

• Planning layer: This layer is responsible for developing a plan to address the identified
failures. Strategies in this layer include using ML algorithms to determine the optimal
recovery strategy and selecting the appropriate recovery mechanism;

• Execution layer: This layer is responsible for executing the recovery plan. Strategies
in this layer include using automation to execute the recovery plan and providing
feedback to the other layers to optimise the recovery process;

• Knowledge layer: This layer stores and manages knowledge about the network and the
recovery process. Strategies in this layer include using databases to store information
about the network topology and previous failures and using algorithms to learn from
previous failures and improve the self-healing process.

4.2.2. Valuation Network

In artificial intelligence and deep learning, a valuation network refers to a neural
network model designed to estimate or assign a value to a particular input or set of
information [1]. The purpose of a valuation network is to evaluate the quality, significance,
or relevance of the input data based on a specific criterion or objective. Valuation networks
are commonly used in various applications, such as reinforcement learning, where the
network is trained to estimate the value or expected return of different actions or states
in an environment. They can also be used in recommendation systems to assess the
preference or utility of items for a user or in natural language processing tasks to assign
a score or sentiment to text inputs. The architecture of a valuation network can vary
depending on the specific task and requirements. It typically involves multiple layers
of neurons that process and transform the input data, and the final output represents
the estimated value or score assigned to the input. The valuation network solves the
problem of configuring the local strategy by judging the sub-strategy effective solution
rate under specific power grid scenarios. At its core are machine and data learning. The
practical solution rate means the combination of sub-strategy configuration, considering
the global impact. The valuation network, Ref. [1] argued, is not predisposed to guess what
sub-strategy to take but relies on an optimal global angle to predict the effective-solution
rate of being resolved under different local strategy configurations or effective probability.
The valuation network is a vital component of the continuous improvement of the fault-
solving strategy library. By analysing the network’s usage patterns, the valuation network
can identify areas where resources are underutilised or over utilised and recommend
adjustments to improve and reduce costs. Valuation networks can help improve the
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system’s reliability, scalability, and cost-effectiveness by continuously monitoring the
performance and optimising resource utilisation.

4.2.3. Fast Decision Network

In the context of self-healing, a fast decision network architecture can make quick,
accurate decisions to enable rapid failure recovery. Speedy decision-making is critical
to minimise downtime and maintain system availability in a self-healing system. A fast
decision network can be implemented using ML algorithms to quickly analyse network
data and make decisions based on real-time information. The algorithms can be trained
to recognise network traffic patterns and behaviours and identify potential issues before
they result in a system failure. For example, if a fast decision network detects that the CPU
usage is high or that any other performance issues, it can quickly take action to mitigate
the problem. This could involve diverting traffic to other devices, scaling up resources to
handle the increased loads, or automatically triggering a self-healing mechanism to recover
from the failure. A fast decision network is described by [1] as a representation of the
amount of decision-making speed. It starts from the judging position and then quickly
takes the local strategy to solve the grid risks for each node. The decision-making network
will have a good or bad result after the configuration sub-strategy until the final node,
and calculate the statistical probability of each corresponding node to obtain the overall
probability. The process of a fast decision network does not consider the effect of local
strategy configuration on global strategy. Fast decision network plays a significant role in
enhancing the speed of fault resolution when an actual online operation is running. A fast
decision network works more effectively when combined with a valuation network in a
strategic configuration.

4.2.4. Virtual Machine

A virtual machine (VM) is a software emulation of a computer system that can run an
operating system and application like a physical computer. In a self-healing system, VM
can implement a self-healing mechanism in several ways. For example:

• Isolation: A VM can isolate applications and services from each other. If one applica-
tion or service experiences a failure, it can be restarted within the VM without affecting
the other applications or services running on the same physical machine;

• Redundancy: Multiple VMs can be deployed to provide redundancy for critical
applications or services. If one VM fails, another can take over its workload to ensure
continuity of service;

• Rapid provisioning: VMs can quickly be configured to meet changing workload
demands. The proposed method enables the network to scale up or down as needed
by utilising shared operation and spare nodes in each neural network layer, ensuring
performance and availability are maintained;

• Testing and validation: VMs can test and validate self-healing mechanisms before they
are deployed in a production environment. Implementing these approaches can help
ensure the effectiveness of the tools without causing unintended consequences.

In their study, Ref. [17] investigated heterogeneous events in which different software
stacks run on virtual machines (VMs) and physical machines (PMs) within a cloud en-
vironment, each operating at varying levels of primitives and capacity. The primitives
tend to correspond to similar heterogeneous QoS for different service instances. Adaptive
QoS models concerning each service instance were created to overcome the heterogene-
ity problem. As such, the service instance on VM (virtual machine) utilises the same
computational resources as other service instances running on different VMs. Network
virtualisation has been adjudged a novel approach for implementing promising hetero-
geneous services and building the next-generation network architecture [29]. Network
virtualisation through VMs promises better utilisation of resources and increased net-
work service delivery. Network virtualisation’s possibilities prompted [29] to propose a
novel VN restoration approach called MFP-VNMH, which enhances VN mapping and
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service restoration. By isolating applications and services, providing redundancy, enabling
rapid provisioning, and facilitating testing and validation, VMs can play a critical role in
implementing effective self-healing mechanisms.

4.2.5. Phasor Measurement Unit

Phasor measurement unit (PMU) can be used in the context of self-healing to monitor
and analyse the state of the power grid in real time. PMUs measure electrical quantities’
magnitude and phase angle, such as voltage and current, at high speed and accuracy. PMUs
can be used to implement self-healing mechanisms in several ways, such as:

• Real-time monitoring: PMUs can be used to monitor the state of the power grid in
real-time, providing high-resolution data on voltage, current, and frequency. This data
can be used to detect and diagnose faults and other anomalies in the grid;

• Fault detection and isolation: PMUs can detect faults in the power grid, such as short
circuits or equipment failures, by analysing electrical quantities’ magnitude and phase
angle. PMUs can identify the location and the extent of the fault;

• Restoration: PMUs can be used to facilitate the repair of power after a fault has
occurred. By providing real-time data on the state of the grid, PMUs can help operators
quickly identify the source of the fault and take steps to restore power;

• Protection: PMUs can be used to protect critical equipment and infrastructure. By
monitoring the state of the power grid in real-time, PMUs can detect abnormal condi-
tions and trigger protective measures, such as tripping circuit breakers or isolating
faulty equipment.

PMU for a self-healing feature on the power grid was implemented by [18] and created
real-time monitoring and load balancing using three components that facilitate the self-
adaptation and self-healing functionality of the network. The following list describes the
three components of the PMU:

1. Intrusion detection system (IDS): Relies on the PMU network logs and phasor mea-
surements to detect different classes of abnormal events within the network;

2. Intrusion mitigation system (IMS): Once the IDS detects an anomaly, the generated
alerts from AMS are delivered through a publisher–subscriber interface; for appropri-
ate remedial action to be taken;

3. Alert management system (AMS): Generates alerts based on anomaly rules defined
in IDS and forwards the alert to the IMS if abnormal events are detected for onward
remedial actions by the IMS.

AMS comprises three sub-components: the alert manager subscriber1, subscriber2,
and subscriber3. The alert subscriber1 collects alert logs from anomalies detected and for-
wards them to the IMS. The subscriber2 sends the received alert messages to the namespace
orchestrator, which triggers the orchestration process on a given substation namespace.
The alert manager subscriber3 sends the received alert messages to the application pro-
gramming interface (API) of the central management application [18].

4.2.6. Mesh-Type Configuration Network

Mesh-type configuration network refers to a network topology in which each device
in a network is connected to multiple other devices, forming a mesh-like structure. This
type of network is often used in self-healing because it provides redundancy and resilience
against network failures. In a mesh-type configuration network, if one device fails, the
network can automatically reroute traffic through an alternate path, maintaining connectiv-
ity and availability. This approach allows the network to operate seamlessly, even when
specific devices or links are unavailable. A proposal by [33] uses a mesh-type configuration
to achieve the full potential of a power restoration scheme. The proposal’s aim is achieved
by deploying the autonomous self-healing technique. However, despite the concerns of
the critics of the proposal, who argue that a mesh-type configuration network introduces
complications, is costly, and has a higher probability of bi-directional fault current flow,
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recent studies have shown that a mesh-type configuration network provides flexibility and
security and performs independently. Mesh-type configuration network, by its design,
establishes multiple points of failure, making the system resilient and making coupling or
decoupling processes easily accessible. Using a mesh-type configuration network ensures
the decentralisation of systems management and paves the way for the independent control
of multi-level architecture. Mesh-type configuration was demonstrated in [30] implemen-
tation of wireless mesh networks (WMNs), which are multi-hop wireless networks with
instant deployment, self-healing, self-organisation, and self-configuration features. WMNs
offer multiple redundant communication paths throughout the network, and the network
automatically reroutes packets through alternative pathways in situations where failure
occurs in one section of the network or any threat that interferes with a particular path.

4.2.7. Agent Architecture

Agent architecture is the design and implementation of intelligent software agents
that can autonomously detect and respond to faults or errors in a system. These agents are
designed to operate in a distributed system, with each agent responsible for monitoring a
specific aspect of the system and taking action to resolve issues when they arise.

Agent architecture is described in [31] as a rule-based architecture that uses an “if-
then” rationalising scheme, in which the consequent result relies on prior experience.
Then, appropriate agent architecture influences how well the system’s agents handle their
operating environment through inference reasoning. The scope for simultaneous internal
and external monitoring of the system is limited due to what is referred to as a threading
obstacle with JADE/JESS integration, as noted in Cardoso [31]. The alternative and viable
option is to structure agent communication from JADE agents to the JESS inference by
granting JESS access privileges to the agent communication language (ACL) message or
allowing JESS to add ACL message objects to the JESS working memory. Agent architecture
in a self-healing system typically consists of the following components:

• Sensing: Agents can monitor the system and gather data about its current state. The data
may include system performance metrics, error logs, and other relevant information;

• Diagnosis: Agents use data gathered during the sensing phase to analyse the system’s
current state and identify any faults or errors. Various techniques can be employed to
achieve this, such as comparing current data to historical trends or utilising machine-
learning algorithms to detect and pinpoint abnormal behaviours;

• Decision-making: Once a fault or error has been detected, agents must decide how to
respond. In such scenarios, the process may involve selecting from a predetermined set
of response options, such as restarting a process or diverting traffic to a backup system;

• Action: Agents take action to resolve the fault or error using pre-define or adaptive
responses. This process may involve coordinating with other agents to initiate a syn-
chronised response or adjusting the system configuration to prevent future occurrences;

• Learning: Agents continually learn from their experiences and adapt their behaviour
over time to improve effectiveness. To adapt effectively, agents may need to adjust
their response strategies based on the outcomes of past responses and update their
system models using new data.

4.2.8. Host Intrusion Detection System on IoT

The host intrusion detection system (HIDS) is an approach for protecting IoT devices
against threats. As noted by [37], each device performs this by installing detection agents.
The alternative to HIDS is the network detection system (NIDS), which is the most common
approach and more scalable because it does not require software installation on the IoT
device. However, NIDS has limitations when compared with HIDS, such as the limited
capability in its detection functionality, especially in situations where traffic on the IoT
network is encrypted. A framework proposed by [37] can detect systems attacks in real-
time and react to remediate the effects of such attacks. The framework is an automatic
and collaborative host-based self-healing mechanism for IoT devices. The framework
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description involves using HIDS to protect a collective instance of IoT devices built into an
IoT environment, such as a smart city. In a research study by [37], multiple IoT devices col-
laborate to train a deep-learning model. The best possible remediation is triggered once the
HIDS issues an alert to the model, fulfilling the framework’s self-healing functionality. The
self-healing architecture proposed consists of three modules: HIDS, health monitoring, and
auto-remediation. The HIDS module collects information from the IoT devices, analyses it,
and determines if a threat could compromise the IoT device. The health-monitoring module
is responsible for assessing the health state of the IoT device by collecting multiple data
sources, such as memory usage, disk space, network metrics, etc. The auto-remediation
module acts to remedy the effects of malfunction or intrusion of the IoT device.

4.2.9. Multi-Area Microgrid

Multi-area microgrid refers to a distributed energy system consisting of multiple
interconnected microgrids that can operate independently or in coordination. This type
of microgrid is often used to provide energy to various buildings or communities, and
it can be designed with self-healing capabilities to improve its resiliency and reliability.
A two-area microgrid was proposed by [26] with modes that stand independently. The
multi-area microgrid is used to analyse a multi-machine system. A multi-area microgrid
was selected to separate the core system into sections, in a fault event simulation, in a
manner that allows the application to adopt distributed control. Each area of the multi-area
microgrid is equipped with dispatchable and non-dispatchable distributed generators,
respectively. The multi-area microgrid implementation separates the system into sections,
making asserting control in a system fault event easier. In an experiment, Ref. [26] deployed
three diesel power plants and one hydropower plant, all based on synchronous generators.
Two types of power load implementation on power plants were deployed: controlled and
uncontrolled. The proposed approach utilises machine-learning techniques to detect event
signatures in the power system features. A multiclass classification algorithm was then
applied to the generated feature data and facilitated self-healing functionality through
postfault decision-making that restored the standalone microgrid system without the need
for intervention by the central power station.

4.3. Machine-Learning Algorithms

Machine-learning (ML) algorithms can be used individually or in combination with
each other to create more accurate and comprehensive models of system behaviours. By
analysing system data in real-time, ML algorithms can enable self-healing functionality in
cyber–physical systems to detect, diagnose, and potentially correct faults or failures before
they cause significant damage or downtime. Table 3 lists the state-of-the-art algorithms
used in self-healing systems, utilising sensing, mining, and prediction.

Table 3. Classification of the existing self-healing algorithms.

Usage Algorithms

Sensing
• Support Vector Machine (SVM)
• Genetic Algorithm
• Dynamic Detection Algorithm

Mining • Supervised Knowledge-Based Algorithm
• DBSCAN Algorithm

Prediction

• Auto-Regressive Moving Average (ARMA)
• Long Short-Term Memory (LSTM)
•Multi-Layer Perceptron (MLP)
• Naïve Bayes

Decision •Monte Carlo Tree Search
• Random Forest
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4.3.1. Monte Carlo Tree Search

Monte Carlo tree search (MCTS) is an algorithm used in decision-making processes,
especially in situations where the outcome of an action is uncertain. It works by constructing
a tree of possible future game states and then simulating many random games from those
states to determine which actions will most likely lead to successful outcomes.

MCTS can be used to decide how to recover from failures in a complex system. For
example, suppose that an extensive computer network experiences a loss in one of its nodes.
The self-healing system would need to determine the best course of action to recover from
this failure, considering factors such as the system’s current state, the possible causes of the
loss, and the likely effectiveness of different recovery strategies. MCTS is described by [1]
as a method for making optimal decisions when resolving artificial intelligence problems. It
combines stochastic simulation and the accuracy of a tree search. The algorithm builds the
search tree of the node through a substantial number of random samples, then formulates
greater insight into the system and extracts the datasets to calculate the optimal strategy. For
example, when faced with unexpected risks in the power grid scenario, MCTS choose the
optimal strategy configuration through sampling and estimation results. As the number of
samples increases, the obtained strategy will be closer to the optimal approach. MCTS can
be used in the context of self-healing by constructing a tree of possible recovery strategies,
simulating the effects of each strategy on the system, and then selecting the strategy that is
most likely to result in successful recovery. The simulation process can consider factors such
as the likelihood of further failures, the time required for each strategy to take effect, and
the potential impact on other system parts. MCTS, a powerful tool for self-healing systems,
enables the system to make informed decisions in complex and uncertain environments.
However, it is essential to note that MCTS is only effective as the quality of the models used
to construct the tree may require significant computational resources to run effectively in
large-scale systems.

4.3.2. Deep Learning

Deep learning (DL) is a subfield of ML that uses neural networks with multiple
layers to extract high-level features from raw data. It can be used to develop models that
automatically detect and diagnose failures in complex systems and then take appropriate
actions to recover from them. One application of DL in self-healing systems is in predictive
maintenance, where ML models are trained to detect anomalies in the system data that
may indicate potential failure. The models can be trained on historical data to learn the
system’s expected behaviour and then use that knowledge to detect deviations from normal
behaviour that may indicate a failure. Once a failure is detected, the self-healing system can
take appropriate actions to prevent or mitigate the effects of the failure. A study by Zhiyuan
in [1] demonstrated that DL is an efficient feature extraction method in machine learning.
The feature of deep learning aims to establish a deep structure model by integrating the
more non-representational feature of data and achieving more detailed characteristics of
the data. The three main aspects of DL are unsupervised training, data sample alignment,
and data sample testing. The authors of [1] noted that the essence of DL is to find out more
valuable features of the dataset by constructing an ML model within many hidden layers
and an extensive training dataset to improve the accuracy of classification and prediction.
The predictive nature of DL can be deployed to perform systems fault diagnosis, where ML
models can be used to identify the root cause of a failure. These models can be trained to
analyse sensor data or other system inputs to identify patterns associated with specific types
of failures. Once the root cause is identified, the self-healing system can take appropriate
actions to address the underlying issue and prevent future failures.

4.3.3. Intensive Learning

The purpose of intensive learning, Ref. [1] noted, is to arrive at a perfect to the
maximum decision. In the scenario discussed and relating to a power grid, according to the
prevailing risks, optimal strategy can be achieved using the Monte Carlo tree search, and
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the best solution can be derived from it, producing a new state of the power generating grid.
Through comparing the two conditions in an intensive learning process, the evaluation
function is updated through the completion of the learning process and repeat iteration,
which allows the strategy to meet the expected self-healing functionality of the system.
The idea behind intensive learning is to use ML algorithms to learn from large amounts of
network data to detect anomalies and predict failures. This approach involves collecting
a wide range of data from the network, such as performance metrics, configuration data,
and log files, and using these data to train ML models. Once models are trained, they can
be used to detect anomalies in the network, such as unusual traffic patterns or unusual
changes in configuration settings. The models can also be used to predict when failures are
likely to occur, allowing the system to take proactive measures to prevent those failures
from happening. Zhough, in [11], suggests that this approach is well-suited for self-healing
systems, as it allows the system to learn and adapt to changes in the network environment
over time. By continuously collecting and analysing network data, the system can improve
its accuracy and effectiveness in detecting and responding to anomalies and failures. The
use of intensive learning in developing self-healing systems represents a promising new
approach to autonomous network management, which is more data-driven and adaptable
than the traditional rule-based systems.

4.3.4. Multi-Layer Perceptron (MLP)

Multi-layer perceptron (MLP) is an artificial neural network (ANN) inspired by the
structure and function of biological neural networks. MLP consists of interconnected
nodes, or “neurons”, organised into layers. Data are fed into the input layer and pass
through one or more hidden layers before reaching the output layer, where the network
makes predictions and has been chosen as one of the models in [17]’s experiment due to its
capability of modelling complex nonlinear correlations. Their experiment utilised a single-
output MLP with a feed-forward and a fully connected three-layer network. The primitive
selector determined the inputs and relevant primitives, and the output corresponded
to the quality of service (QoS). MLP can be trained with an arbitrary quality dataset,
indicating the potential accuracy of model predictions. It excels in detecting and diagnosing
faults or anomalies in a system and can take corrective actions to address them. By
continuously training with new data, MLP can adapt to changing conditions and improve
its accuracy and effectiveness in detecting and responding to faults. This adaptability
makes MLP particularly suitable for self-healing systems. The main limitation of MLP is its
computational expense, especially when dealing with large and complex systems. Training
MLPs can be resource-intensive, but advancements in hardware and software, such as
parallel processing and cloud computing, have made training more efficient and practical
for self-healing systems.

4.3.5. Supervised Knowledge-Based Algorithm

A supervised knowledge-based algorithm (SKBA) is an ML algorithm that combines
expert knowledge with data-driven methods to perform classification or prediction tasks.
SKBAs are typically used in situations where the amount of available training data is
limited, and expert knowledge can be used to guide the learning process. SKBA is described
by [33] as a learning tool that stores the previous fault and restoration data and compiles
coincidental solutions. The algorithm is tuned to recognise the cause of fault, develop an
imperative plan for restoration and execute restoration operations. The authors of [33]
adopted a methodology that uses SKBA to formulate a restoration strategy in an active
power grid. SKBAs can be used to detect and diagnose faults in a system and then take
action to correct them. The algorithm typically involves a three-step process:

• Knowledge acquisition: Expert knowledge is collected and formalised in a knowledge
base, which typically includes rules or heuristics for diagnosing faults;

• Data acquisition: Data are collected from the system, including sensor data, perfor-
mance metrics, and other relevant information;
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• Model training: The SKBA is trained using the knowledge base and the available
data. The model is then used to detect and diagnose faults in the system based on the
input data.

The execution of SKBA on an automated restoration scheme, as noted in [33], requires
a suitable understanding of resources that can be deployed to prevent fault events and
deterioration of QoS. Automated restoration strategies are widely deployed in active power
grid networks, ensuring the serviceability of electricity and constant power supply to
consumers. Implementing self-healing functionality using a knowledge-based algorithm in
guided sequential strategies provides the power grid operators with reliable knowledge
of the network parameters from MATLAB to be able to visualise the origin of network
overloading on the network, according to [33]. The proposed restoration algorithm is
deployed with suggested strategies, rerouting proceedings, and distributed generator
deployment. The proposed approach creates the possibility of network stability and
transmission continuity. The SKBA in [33] is illustrated in (Figure 9) and conceptualised
based on the following guidelines:

1. Detect the overloaded transmission lines in the power network;
2. Identify the affected buses that have overloaded transmission lines connected;
3. Identify the busbar with the highest reserve capacity factor to serve as a candidate for

the restoration strategy;
4. Identify the nearest distributed generator located near the overloaded transmis-

sion line;
5. Identify the overloaded line termination;
6. Establish line connectivity using the highest reserve capacity busbar index.
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4.3.6. Artificial Immune System

Artificial immune system (AIS) is a class of computational models inspired by the
biological immune system. In AIS, the immune system is modelled to perform specific
tasks such as pattern recognition, anomaly detection, and fault diagnosis. AIS can detect
and respond to faults or anomalies in a system. The AIS consists of two main components:
the detector and the effector. The detector component of the AIS works by comparing the
system’s current state to a reference model. If the current state deviates from the reference
model, the detector identifies it as an anomaly. This process is like how the biological
immune system detects foreign agents such as viruses or bacteria. According to Rufus
and Esterline, AIS mimics how biological mechanisms fight unknown threats, like how
an organism resists a new virus and mimics the process in a computer system [31]. The
effector component of the AIS then takes action to correct the anomaly. Depending on
the monitored system, the effector can take various forms, including triggering a backup
system, adjusting settings, or rerouting traffic. The effector can also learn from previous
actions to improve its effectiveness in responding to future anomalies. An advantage of AIS
is its ability to adapt and learn from new information, like the biological immune system.
AIS can learn from past experiences to improve its accuracy in detecting and responding
to faults.

Additionally, AIS can be designed to be fault tolerant, allowing the system to continue
to function even if some components fail. However, a potential limitation of AIS is its
complexity, which can make it challenging to implement and optimise. Additionally, the
effectiveness of AIS depends on the availability of a suitable reference model and the ability
to tune the system’s parameters.

Existing research in this area of developing AIS proposes several approaches, but the
most common are:

• Negative selection: When an anomaly is detected based on the classifying entities
being part of the “non-self” originating system;

• Positive selection: When an anomaly is detected based on the classification of the “self”
originating system;

• Danger theory: This approach raises the alarm if a harmful signal is detected, regard-
less of whether the entity is of “self” or of “non-self” of the originating system.

4.3.7. Behavioural Modelling Intrusion Detection System

The behavioural modelling intrusion detection system (BMIDS) algorithm analyses
familiar simulations within a friendly environment to detect anomaly activities. It is an
intrusion detection system that uses ML techniques to monitor system behaviours and
detect anomalous activity. BMIDS works by analysing behaviour patterns in the system logs
and network traffic and comparing them to expected behaviour based on a model of normal
system behaviour. BMIDS can detect and respond to attacks or intrusions in a system.
Once an anomaly is detected, the system can mitigate the threat by blocking the offending
traffic or alerting security personnel. The functionality is explained in Arrington in [31],
where BMIDS is shown to use a computing process to detect intrusion within a smart house
environment. A three-stage method for connecting real-world scripted events schemes
called behavioural script event scheme (BSES) was presented. BMIDS is a subsect of IDS
and AIS, which includes in functionality the mechanisms for a subset of IoT intrusions
detection systems. BMIDS executes its processes effectively because it creates behavioural
models from the BSES dataset, in which use-case IoT devices capture the behaviour of a
given anomaly situation, thereby allowing the system to correctly associate the anomaly
event with a scripted behaviour and recreate the instance of BSES. The main advantage of
BMIDS is its ability to detect previously unknown attacks, also known as “zero-day attacks”,
that may not be detectable using traditional signature-based approaches. BMIDS can also
adapt to changes in system behaviour over time, improving its accuracy and effectiveness
in detecting and responding to attacks. However, one limitation of BMDIS is its reliance on
accurate models of expected system behaviour. If the model is not comprehensive enough
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or the system undergoes significant changes over time, the BMIDS may produce false
positives or miss essential threats. Additionally, BMIDS can be computationally expensive
to train and maintain and may require significant expertise to configure or optimise. BMIDS
can be used with other self-healing techniques, such as automatic system configuration or
network rerouting, to help restore the system to a healthy state after an attack.

4.3.8. Genetic Algorithm

Genetic algorithm (GA) is an evolutionary algorithm that uses natural selection and
genetic operators, such as mutation and crossover, to search for optimal solutions to a
problem. GA can be used to optimise system configuration or find the best recovery
strategy for fault or failure. GA creates a population of candidate solutions and evaluates
their fitness based on a fitness function that measures how well the solution meets the
desired criteria. The fitness solutions are then selected to produce offspring through genetic
operators, and the process is repeated until a satisfactory solution is found. A genetic
algorithm was utilised by [37] to train long short-term memory (LSTM) models in their
study. To apply the GA, the set weight matrix that represents the LSTM model of each
device was extracted and transformed into a vectorial representation by concatenating all
the columns of the weight matrix together into one vector. The devices share their health
scores and neural network weights using the blockchain framework so that each device
can use it.

For the fitness score, the health score provided by the health-monitoring module was
used, and the selection procedure in the GA was performed by selecting just the weight
vectors that belonged to the devices with the highest health scores. The combination
procedure in the GA was accomplished by taking the weighted means of a small random
group from the selected weight vectors. Taking the weighted mean of random groups
will ensure that the population of the LSTM model’s weight vectors will be diverse and
not converge into a single-weight vector. The mutation procedure added random noise
drawn from a normal distribution. The GA implementation utilises the same blockchain
infrastructure as the CIOTA framework. The utilisation of the same blockchain infras-
tructure as the CIOTA framework in the GA implementation signifies that the algorithm
operates decentralised, eliminating the requirement for a central server for distribution. In
simpler terms, the algorithm is executed locally on IoT devices within the network, with
each device generating its distinctive model. The IoT devices share their health score and
neural network to make the genetic algorithm distributed.GA can be used to improve
system resilience and reduce the likelihood of faults or failures, with one advantage being
GA’s ability to search an ample space of possible solutions and find optimal solutions
quickly. GA can also adapt to changes in the system over time, allowing it to optimise
system performance continuously. However, a potential limitation of GA is its reliance on a
well-defined fitness function, which can be difficult to specify in some situations. GA may
also require significant computational resources, especially for complex or large systems.

4.3.9. Hybrid Calibration Algorithm

A hybrid calibration algorithm (HCA) is an optimisation algorithm that combines
different optimisation techniques to find optimal solutions. HCA can calibrate system
parameters or identify the best configuration for a system based on performance criteria.
It combines different optimisation algorithms, such as genetic algorithms, particle swarm
optimisation, and simulated annealing, into a hybrid approach that exploits the strength of
each algorithm. The different algorithms are typically used sequentially or parallel, with
the output of one algorithm serving as an input to the following algorithm. HCA was first
proposed by [15], combining two direct search algorithms of the Nelder–Mead simplex
and Hooke–Jeeves pattern search methods. Nelder–Mead is a popular algorithm for its
ability to vary the search directions in the response space at each iteration, while Hooke–
Jeeves maintains a well-conditioned search. The hybrid calibration algorithm leverages the
advantages of Nelder–Mead and Hooke–Jeeves algorithms to provide robust calibration
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performance for the upward dimensional self-healing radio frequency-integrated circuit
(RFIC) calibration problems encountered in their experiment. The HCA leverages the
advantages of both methods to provide robust calibration performance for the relatively
high-dimensional self-healing RFIC calibration problems often overlooked in the real
world. HCA can calibrate system parameters, such as tuning the control parameters
for a feedback control system, to improve system performance and resilience. HCA can
also identify the best configuration for a plan based on performance criteria, such as
selecting the best combination of hardware or software settings. An advantage of HCA is
its ability to combine different optimisation techniques to find optimal solutions quickly
and efficiently. HCA can also adapt to changes in the system over time. The potential
limitation is its complexity, making it challenging to implement and optimise. It may also
require significant computational resources, especially in complex or large search spaces,
coupled with its reliance on well-defined functions, which can be difficult to specify in
some situations.

4.3.10. Dynamic Event Detection Algorithm

The dynamic event detection algorithm (DEDA) is an algorithm that uses ML tech-
niques to detect and classify events in real-time. DEDA can identify abnormal behaviour
or circumstances that may indicate a fault or failure in the system. It works by analysing
system data, such as logs or sensor readings, and using an ML algorithm to identify patterns
and trends in the data. The algorithm can then classify events as normal or abnormal based
on identified patterns. DEDA and a modified ensemble of bagged decision trees with an
added boosting mechanism based on a machine-learning algorithm were proposed by [26].
The algorithm interprets the dynamic events and decomposes such events into user-specific
field regions to facilitate decision-making in restoring unstable power stations. The novel
algorithm, as proposed, can detect patterns in the dynamic data and distinguish the data
based on the underlying events. Once the underlying event is detected, the algorithm
decides locally on each power generating station and restores the system after a major
fault event. The algorithms are independent of each other, as they are installed separately
on each power generating station. DEDA can detect events that may indicate fault or
failure in the system, such as a sudden increase in CPU usage or a spike in network traffic.
Once an abnormal event is detected, the system can mitigate the threat, such as shutting
down a component or alerting security personnel. An advantage of DEDA is its ability to
adapt to changes in the system over time, allowing it to monitor and detect new events
continuously. It can also be used with other self-healing techniques, such as automatic
system reconfiguration or network rerouting, to help restore the system to a healthy state
after the event. A potential limitation is its reliance on accurate and timely data. DEDA
may produce false positives or miss essential events if the data are incomplete or delayed.
DEDA can be computationally expensive, especially for large-scale systems or high-volume
data streams, and may require significant expertise to configure or optimise.

4.3.11. Support Vector Machine

Support vector machine (SVM) is a supervised ML algorithm that can classify and
predict system behaviour, identifying potential faults or failures before they occur. This
approach can be especially beneficial in systems that demand high availability and reliabil-
ity [24]. SVM’s primary feature lies in its classification and regression analysis ability. It
achieves this by identifying the hyperplane in a high-dimensional space that maximises
the margin between two classes of data points. SVM can be trained on historical data
to identify patterns and predict future behaviour. SVM was described by [39] as a set of
supervised prediction-learning methods that are used for classification and regression.
The technique uses machine-learning theory to maximise the predicting accuracy of an
anomaly on cyber–physical systems. The algorithm supports empirical performance and
the structure risk minimisation (SRM) principle. SRM is argued by [39] to be superior to
the traditional empirical risk minimisation (ERM) principle. SVM uses statistical-learning
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theories to study the problems of knowledge gain, predictions, and decision-making for
a given dataset. To build the self-healing functionality whereby virtual machines protect
themselves against malware attacks, anomaly patterns of the malware attacks are fed into
SVM, a supervised-learning algorithm. Three classifiers, including SVM, RF, and ELM,
were applied by [22] to prove that intrusion detection can be achieved and extends the
possibility of realising the self-healing functionality goal of their research. SVM is noted
to have initially been proposed by Vapnik in [22]. The SVM algorithm is designed to
apply to both linear and nonlinear dataset classification tasks. In addition to developing
self-healing functionality, SVM has been proven through further research as an effective
tool for creating image processing and pattern recognition applications. SVM is a capable
tool for creating multiple hyperplanes in high-dimensional space. Then the best hyperplane
in the space is then selected to optimally divide data into different classes, with the most
significant separation between the classes. SVM finds the optimal line for partitioning class
datasets [34–36]. Margins in SVM, Ref. [28] noted, is the distance between the data points of
the class. The hyperplane should be chosen, and the margin should be the maximum. The
data points on the two classes close to the hyperplane are vectors. The pedicular distance
between the hyperplane and the training observations is always calculated, and the shortest
of such distances is known as the margin. In other words, the margin is the measurement
between the hyperplane and the observation. As such, the maximum margin hyperplane
has the highest margin and the most significant distance between itself and the training
observation. Testing datasets in SVM are classified using the hyperplane with the most
considerable distance.

SVM could be used to monitor the performance of a network and predict when a
device is likely to fail. Automated responses triggered by the SVM can be based on various
factors, including packet loss, latency, or CPU utilisation. In response to these factors,
the SVM can initiate actions such as rerouting traffic to bypass the failing component
or restarting the affected service. SVM can also be used to detect and classify security
threats. Training SVM on historical data about known security incidents can identify new
attacks and predict their likely impact. SVM can serve as a valuable tool for self-healing
by enabling the detection of and swift response to issues. These automated responses
include blocking traffic from suspicious IP addresses or isolating compromised systems.
The result is enhanced self-healing capabilities, allowing for quick and accurate issue
detection and response.

4.3.12. Naïve Bayes

The naïve Bayes machine-learning algorithm is described by [39] as a classification
algorithm based on Bayes theorems. It is also described in Rani in [28] as a classifier
that applies the Bayes theorem to solve various classification problems such as detecting
systems vulnerability, disease diagnosis, spam prevention, document filtering, etcetera.
It is a simple but effective ML algorithm that is particularly useful when dealing with
high-dimensional data. The participation features involved in naïve Bayes classification are
usually independent as a fundamental principle that guides the algorithm. The naïve Bayes
algorithm applies to self-healing systems functionality because it applies to classifying
datasets into models that can aid the detection of system vulnerability, providing the first
step towards realising a self-healing functionality. The algorithm utilises conditional, and
class probability, and the class probability can be the probability of a random dataset
belonging to a particular class, which is calculated as:

P(C) =
Number of Samples in the Class

Total Number of Samples
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The conditional probability, on the other hand, as [39] noted, is the probability of a
feature value of a class and is calculated as:

P(F|C) =
Number of Frequencies of each Attributes

Number of Frequencies of Samples

All the samples belonging to the classes are compared with each other from the
calculated probabilities, and the classes with the most significant probabilities are chosen
as the output [39] further argued that the naïve Bayes algorithm performs well on datasets
with trivial features because of the probability of the trivial features contributing less to
the output. It performs well when making predictions, as it involves only probabilities of
features and classes.

Naïve Bayes assumes that each feature is independent of all other features. The algo-
rithm can effectively scale to large datasets by simplifying the computation of probabilities.
It can be trained on historical data to identify patterns and accurately predict future be-
haviour. For example, a naïve Bayes classifier could be used to predict the likelihood of
a particular system component failing based on the factors such as CPU usage, memory
usage, network traffic, and disk I/O. The classifier could be trained on historical data to
learn the relationship between these variables and their impact on the system performance.
Once a classifier has been trained, it can diagnose faults or failures in real time. For example,
if CPU usage suddenly spikes, the naïve Bayes classifier could predict that a particular
component will soon fail. In response to anomalies, this can trigger an automated response,
such as workload migration to another server or service restart, facilitating effective self-
healing. Naïve Bayes is a valuable tool for self-healing systems, enabling them to detect and
respond to faults or failures quickly and accurately. However, it is essential to note that the
“naïve” assumption of independence may not always hold in practice; more sophisticated
models may be required for complex systems.

4.3.13. Random Forest

Random forest (RF) is an ensemble-learning algorithm used in self-healing systems to
classify and diagnose system faults or failures. It is a robust ML algorithm that combines
multiple decision trees to achieve better accuracy and generalisation. RF is described by [39]
as a set of decision trees that tend to produce accurate decisions based on growing multiple
trees of different subsets of a dataset. RF is an ensemble classifier used for the regression
analysis of intrusion detection in datasets [22,24]. It functions by creating various decision
trees in the training phase of the classification process, then produces an output of class
labels with a majority vote. The decision trees are independent of each other, but they
operate in an ensemble manner, as noted by Sharma [28]. Each decision tree produces
an output and a class, and the majority class amongst them becomes the random forest.
The RF classifier algorithm applies to self-healing functionality because it can detect the
anomaly in the system’s critical datasets and trigger its self-healing functions. RF relies on
the need to remove trivial features because they do not affect the outcome of the results.
The information gain of RF split on a dataset is calculated as:

G(T, X) = entropy(X)− entropy(T, X)

The above equation is explained in [39] as a calculation where “G” is the gain, and
the attribute with the highest gain value is chosen as the split/decision node. If the value
of the entropy of the selected node is 0, then it becomes the leaf node. The algorithm
runs recursively until no more splits are present on the nodes, whereby if the entropy
value of the selected node is 0, it becomes the leaf node. RF could be used to predict the
likelihood of a particular system component failing based on multiple features such as CPU
usage, memory usage, network traffic, and disk I/O. It is a critical self-healing tool, and
its ability to handle large datasets and high-dimensional feature space makes it useful for
implementing complex self-healing systems.
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4.3.14. DBSCAN

Density-based spatial clustering of application with noise (DBSCAN) is described
by [10] as an algorithm used in detecting anomaly events. An unsupervised clustering
algorithm assigns data points to clusters based on their spatial density. The algorithm
defines a neighbourhood around each data point and grouping points based on their
proximity or density. The purpose of the algorithm is to detect distinct anomalies that
belong to the same underlying event based on the anomaly level time-series value of the
profile features. For example, it could cluster together data points representing normal
system behaviour while leaving outlying data points as noise. The resulting clusters
can predict future system behaviour and diagnose faults or failures. The self-healing
functionality is achieved using each profiled feature or KPI (key performance indicators)
to detect anomalies in timespan using DBSCAN. Observation for a time t is considered
abnormal if the anomalous value density cap goes above a given threshold. DBSACN can
also identify anomalies in network traffic or security data. By clustering together network
traffic data, it could identify unusual patterns of activity that could indicate a potential
security breach, which could trigger an automated remedial response.

5. Analytical Comparison of MLP, SVM, and RF in Classifying Error in Simulated CPSs

These machine-learning approaches, namely multi-layer perceptron (MLP), support
vector machines (SVMs), and random forest (RF), have been identified as the best per-
forming through experimental evaluation. They offer valuable capabilities for self-healing
systems by analysing data, detecting anomalies, and making informed decisions for prob-
lem resolution [24]. In the context of classifying errors in simulated cyber–physical systems
(CPSs), multi-layer perceptron (MLP), support vector machines (SVMs), and random forest
(RF) have emerged as main machine-learning approaches. These algorithms have demon-
strated superior performance through rigorous experimental evaluations compared to other
methods. As a result, they offer valuable capabilities for self-healing systems, where their
ability to analyse data, detect anomalies, and make informed decisions becomes crucial
for practical problem resolution [24]. MLP, SVM, and RF offer valuable contributions in
the context of self-healing systems. By analysing the data collected from the CPS, these
algorithms can identify anomalies or errors, allowing for early detection of system failures
or deviations from normal behaviour. This proactive approach helps mitigate potential
risks and enables timely problem-solving interventions.

Multi-layer perceptron (MLP) accuracy is shown in Figure 10. The model is an artificial
neural network (ANN) that plays a crucial role in self-healing applications. In self-healing
systems, MLPs analyse various data sources, such as system logs or performance metrics,
to detect anomalies and make informed decisions to resolve issues automatically. The MLP
model consists of multiple layers of interconnected nodes (neurons). Each neuron applies
a weighted sum of inputs, followed by an activation function. The output of the MLP is
obtained by propagating the inputs through the network. The overall prediction of the
MLP is obtained by combining the results of all neurons in the final layer. The equation for
a neuron’s output is:

output = activation_ f unction
(

weightedsum(inputs)

)
Figure 11 illustrates the support vector machine’s (SVM) accuracy chart. The SVM

is a supervised-learning model commonly employed for data classification. In intrusion
detection systems [24], SVMs significantly distinguish between normal and malicious
network behaviours. This capability contributes to the self-healing approach by facilitating
proactive security measures. The SVM algorithm seeks to identify a hyperplane that
effectively separates the data into distinct classes. This hyperplane is determined by a
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subset of training samples known as support vectors. The sign of the decision function
determines the predicted class. The equation for the decision function of SVM is:

decision_ f unction = sign(dot_product(weights, inputs) + bias)

Figure 12 displays the accuracy chart of the random forest algorithm. Random forest
is an ensemble-learning technique that leverages multiple decision trees to generate pre-
dictions [32]. This algorithm is renowned for its resilience and effectiveness in handling
extensive datasets. In the context of self-healing systems, random forests can analyse
diverse data sources and detect patterns indicative of system failures or anomalies. Each
decision tree within the random forest is trained on a random subset of the data and
features. The final random forest prediction is derived by aggregating the predictions of
individual trees [32]. The prediction equation in a random forest combines the predictions
made by all the trees.
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5.1. Breakdown of What the Models Chart Plots Represent

The scatter points in a specific colour (e.g., red, green, or blue) represent the actual
data points from the dataset. Each point’s position on the chart is determined by its “Error”
value on the x-axis and its “Warning” value on the y-axis. This visualisation helps you see
the distribution and patterns in the original dataset. Predicted labels: the scatter points
marked with an “x” symbol and a different colour (e.g., blue) represent the predicted labels
for the corresponding data points. These labels are obtained by applying the trained model
to the input data. The position of each predicted label point on the chart is determined
by the same “Error” and “Warning” values as the actual data points. By comparing the
positions of the fundamental data points and the predicted label points, you can visually
assess how well the model performs in classifying the data. The model makes accurate
predictions if the predicted labels align closely with the actual data points.

On the other hand, if the predicted labels are scattered or do not align well with
the actual data, the model might not perform well in classification. The specific colour
mappings used in the code (cmap = “Reds”, cmap = “Greens”, cmap = “Blues”)indicate
different colour gradients that help distinguish the other classes or labels in the dataset.
The colour intensity can provide additional insights into the distribution and separation of
the data points.
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5.2. Experiment Method

The provided code demonstrates an experiment comparing the performance of three
machine-learning models (multi-layer perceptron (MLP), support vector machine (SVM),
and random forest) on a classification task using a given dataset. The experiment compares
models using the provided dataset, assesses their accuracy, and visualises the results. It also
employs the PyCaret library for further model evaluation and selection. The experiment
includes the following steps:

1. Sample Data:

1.1 A random seed for reproducibility was set.
1.2 The number of samples as “num_samples” is defined.
1.3 Random data were generated using “np.random.randn” with dimensions

“num_samples” by 2.
1.4 Random labels ranging from 0 to 2 using “np.random.randint” for “num_samples”

times were generated.

2. Saving the Data to a CSV File:

2.1 A pandas DataFrame called “df” with columns named “Error”, “Warning”,
and “Label” was created.

2.2 The DataFrame was saved to a CSV file and specified by “csv_file” using the
“to_csv” function.

3. Loading the Data from the CSV File:

3.1 The CSV file was read into a pandas DataFrame called “df_loaded”.
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3.2 The “Error” and “Warning” columns were extracted from “df_loaded” and
assigned to “data_loaded”.

3.3 The “Label” column was extracted from “df_loaded” and set to “labels_loaded”.

4. Multi-Layer Perceptron (MLP) Example:

4.1 The function “mlp_self_healing” was defined to train an MLPClassifier model
on the “data” and “labels”.

4.2 Prediction using the trained MLP model and calculating the accuracy was performed.
4.3 The “real” data were randomly generated, and predicted labels were plotted

into a scatter chart.

5. Support Vector Machine (SVM) Example:

5.1 The function “svm_self_healing” was defined to train an SVC model with a
linear kernel on the “data” and “labels”.

5.2 Prediction using the trained SVM model and calculating the accuracy was performed.
5.3 The “real” data were randomly generated, and predicted labels were plotted

into a scatter chart.

6. Random Forest Example:

6.1 The function “random_forest_self_healing” was defined to train a Random-
ForestClassifier model with 100 estimators on the “data” and “labels”.

6.2 Perform prediction using the trained random forest model and calculate the
accuracy was performed.

6.3 The “real” data were randomly generated, and predicted labels were plotted
into a scatter chart.

7. Calling the Self-Healing Approaches Using the Loaded Data:

7.1 The “mlp_self_healing” function with “data_loaded” and “labels_loaded”
was invoked.

7.2 The “svm_self_healing” function with “data_loaded” and “labels_loaded”
was invoked.

7.3 The “random_forest_self_healing” function with “data_loaded” and “labels_loaded”
was invoked.

8. Preparing the Data for PyCaret:

8.1 Pandas DataFrame called “df_pycaret” was created by concatenating “data_loaded”
and “labels_loaded” along the columns.

8.2 The column names (“Error”, “Warning”, “Label”) were set.

9. Initialising PyCaret Classification Setup:

9.1 PyCaret “setup” function to initialise the classification task with “df_pycaret”
as the dataset and “Label” as the target variable was used.

10. Comparing Models and Select the Best One:

10.1 PyCaret’s “compare_models” function was used to compare the performance
of the available models (MLP, SVM, RF).

10.2 The best-performing model based on the comparison was selected.

11. Evaluation of the Performance of the Best Model:

11.1 PyCaret’s “evaluate_model” function was used to evaluate the performance of
the best model selected in the previous step.

The experimental results of the PyCarat analysis for different models are shown in Ta-
ble 4. PyCarat is a performance analysis tool that provides insights into model performance
using various evaluation metrics. The figure presents the comparative analysis of different
models based on their performance measures such as accuracy, AUC, recall, precision, F1
score, Kappa, MCC, and time taken for predictions. It helps assess and compare the models’
effectiveness in the given context. The table represents the performance metrics of different
models. Here’s an explanation of the metrics:
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• Model: The name or identifier of the model.
• Accuracy: The proportion of correctly classified instances by the model.
• AUC: The Area Under the Receiver Operating Characteristic (ROC) curve measures

the model’s ability to distinguish between classes.
• Recall: Also known as sensitivity or true positive rate, it represents the proportion of

true positive predictions out of all actual positive instances.
• Prec.: Short for precision, it indicates the proportion of true positive predictions out of

all predicted positive instances.
• F1: The harmonic mean of precision and recall provides a balanced model perfor-

mance measure.
• Kappa: Cohen’s kappa coefficient assesses the agreement between the model’s predic-

tions and the actual classes, considering the agreement by chance.
• MCC: Matthews Correlation Coefficient, a measure of the quality of binary classifications.
• TT (Sec): The time taken by the model to make predictions (in seconds).

Table 4. Models PyCarat analysis experiment result.

Model Accuracy AUC Recall Prec. F1 Kappa Mcc TT (S)

mlp MLP classifier 0.3493 0.5215 0.3493 0.3498 0.3327 0.0201 0.0210 0.1620
svm SVM-Linear Kernel 0.3357 0.0000 0.3357 0.3007 0.2735 0.0052 0.0047 0.0670
rf Random Forest Classifier 0.3336 0.4965 0.3336 0.3349 0.3334 −0.0002 −0.0002 0.1950

Based on the table, it can be observed that the MLP Classifier (mlp) has the highest
accuracy (0.3493) and AUC (0.5215), while the Random Forest Classifier (rf) has the highest
MCC (0.1950). The SVM with a linear kernel (svm) performs less across multiple metrics.

6. Discussion

For the self-healing of cyber–physical systems to be effective, resilience must be at its
core, just as defined in [25], where it is noted to include system monitoring, adaptation,
redundancy, decoupling, and focus at the edges but simple at its core. ML is a notable
toolset widely accepted in various research as a critical aspect of implementing self-healing
functionality in computer systems. For example, as recent research has shown when
combined with a fault-solving strategy network, an ML algorithm can o implement self-
healing functionality in cyber–physical systems. The primary language for implementing
ML algorithms is the R language, as presented by Bodrog in [25], and libraries such as Keras
or Tensorflow are readily available to transform R language into other languages such
as Python or C++. To overcome the problem of real-time systems self-healing and attack
remediation issues, a framework for automated remediation triggers is possible, just as
proposed by [37], and it details how self-healing can be built into the Internet of Things (IoT)
devices. IoT has become popular in homes, offices, and schools, making it very important
to construct self-healing devices to provide effective and uninterrupted services. The
first factor to consider when developing a self-healing cyber–physical system is detecting
anomalies and fault events. Naïve Bayes, artificial neural networks, convolutional neural
networks, deep learning, etc., are some of the algorithms available to researchers to utilise
in training anomaly datasets and to create a classified pattern of threat events. The dilemma
in making this consideration is how to prevent the algorithm chosen from flagging up
business-as-usual events wrongly as anomaly events; hence, the ML algorithm must be able
to differentiate between these events. Danger theory is one approach that can be deployed
to resolve the false-negative issues, in the sense that a threat alarm can only be raised when
there exists the presence of potentially harmful events that the system is not familiar with
and thereby eliminate “zero-day” attacks or in other words, attacks that the system had not
seen previously.

The next step after detecting anomaly events when implementing a self-healing cyber–
physical system is to be able to trigger warnings to other parts of systems and or other



Future Internet 2023, 15, 244 38 of 42

processes within the system components or the network. An alert trigger can be acti-
vated similarly as described in [18] using alert management that relays system status to
the intrusion mitigation system and then takes actions to stop the presence of potential
threats through a programmed remediation process. In this instance, intrusion mitigation
encompasses removing the identified threat event and restoring the system to its stable
state. The system’s data module profiles the normal state of the system and creates datasets
for ML training derived from the system logs. There are options for creating a dictionary
of possible attack vectors, which the ML algorithm that is primed for detecting anomalies
can rely on to ascertain if events fall within a suspicious category class of threats. This
approach is the most widely available and studied, as described by [33] in a proposal that
uses a knowledge-based algorithm to identify attack vectors. The approach, though, has
increasingly become problematic as cyber–physical systems attacks have become more
sophisticated. For example, state actors and multinational corporations are increasingly
involved in cyber–physical systems breaches. The increasingly sophisticated nature and
scope of threats make it challenging to predict or create a practical threat dictionary that
covers all possible threats. A more robust approach that is a viable alternative to using
an attack dictionary or relying on previously seen threat events to safeguard against new
unseen threats is the proposal closely related to it by [37], in which the evolutionary al-
gorithm principle which mimics the natural evolution process where multiple solutions
are presented and the most effective selected to advanced and likely to be picked by the
algorithm to protect the system based on past effectiveness.

Self-healing functionality is currently being deployed in many countries to automate
power infrastructures, such as in the Netherlands, France, Vietnam, and Cuba, to shore
up the resilience of their power generation networks. In particular, the FLISR platform
for achieving this functionality was proposed by [20] and deployed in these countries.
Resilience refers to the ability of a system to withstand and recover from disruptive events,
such as cyber-attacks or physical failures, and to continue functioning at an acceptable level.
Silvia [23] contributed to the discussion on resilience in cyber–physical systems, mainly fo-
cusing on the power grid. Their work sheds light on the challenges and strategies involved
in ensuring the power grid’s resilience. They emphasise that the power grid plays a critical
role in modern society, and its disruption can have far-reaching consequences, affecting
not only the provision of electricity but also numerous sectors that rely on its stability.
However, the increasing integration of information and communication technologies in
power systems introduces new vulnerabilities and potential points of failure.

Therefore, building resilient power grids that can withstand and rapidly recover from
disruptions is paramount. The authors outline several critical aspects related to resilience in
the power grid. First, they highlight the importance of system monitoring and situational
awareness. Operators can detect anomalies or potential threats by continuously monitoring
the grid’s performance and responding proactively. To accomplish this, advanced sensing
technologies, data analytics, and real-time monitoring tools are utilised to gather and anal-
yse relevant information regarding the grid’s condition. Another crucial aspect discussed
by [23] is the need for practical risk assessment and management. Understanding the
vulnerabilities and potential impacts of different disruptions allows for developing appro-
priate risk mitigation strategies. This process entails identifying critical components of the
power grid, analysing their dependencies, and implementing measures to enhance their
resilience. These measures can include redundancy, alternative routing, and diversification
of energy sources to minimise the impact of failures. The role of advanced technologies
in enhancing resilience was discussed in [23]. The discussion highlights the potential of
artificial intelligence, machine learning, and blockchain technologies to strengthen the
power grid’s resilience. These technologies can facilitate rapid decision-making, improve
system automation, enhance security, and enable efficient energy management.

Proactive rolling-horizon-based scheduling of hydrogen systems for resilient power
grids is a method that focuses on enhancing the resilience of power grids by integrating
hydrogen energy systems [40]. Resilience is crucial to power grids, ensuring they can
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withstand and recover from natural disasters, cyber-attacks, or equipment failures. The
proactive rolling-horizon-based scheduling approach involves making real-time decisions
for scheduling the operation of hydrogen systems within a power grid. Hydrogen systems,
including electrolysers, hydrogen storage tanks, and fuel cells, play a vital role in integrating
renewable energy sources, optimising power generation, and providing backup power
during emergencies. This method employs a rolling-horizon-based approach, meaning
that the scheduling decisions are made in short intervals, often referred to as time steps,
and updated periodically as new information becomes available. This dynamic approach
allows flexibility in adapting to changing conditions, which is essential for maintaining
resilience in power grids. When combined with [40]’s proactive rolling-horizon-based
scheduling of hydrogen systems for resilient power grids, machine-learning techniques
can further strengthen the overall resilience of the grid infrastructure. Integrating machine
learning with the scheduling method allows for enhanced self-healing capabilities in power
grids. Machine-learning algorithms can analyse real-time data from sensors and smart
metres to detect anomalies or potential faults in the grid.

These algorithms can identify abnormal behaviour and trigger proactive actions by
continuously monitoring grid parameters, such as voltage levels, frequency deviations, or
load variations. The machine-learning models, trained using historical data, can predict
potential faults or disturbances in the power grid before they occur. The models can
generate early warnings or alerts for system degradation or vulnerability by analysing
patterns and trends. The scheduling algorithm can then use this information to initiate
appropriate responses, such as reconfiguring the grid or activating backup systems, to
mitigate the impact of potential disruptions.

Resilience methods are vital in dealing with uncertainties due to the failure of cyber–
physical systems. Ref. [41] argues that a proper modelling tool must be used to develop
such methods. The modelling tool described by Murata in [41] should be able to capture
the characteristics of asynchronous, synchronous, and current events in cyber–physical
systems. Petri nets are another class of modelling tool for this purpose, of which many
variants have been proposed over the past decades and are widely used in developing
different system applications. A nominal model of a class of cyber–physical system and an
uncertainty model to test the system’s robustness and resilience was proposed [14]. For
the nominal model, Ref. [31] used discrete timed Petri nets as the cyber world models
to describe the production process of a class of the cyber–physical system with different
types of tasks and sets of distinct types of resources. Constructing the cyber world model
of the cyber–physical system was easily performed using a bottom-up approach. The
bottom-up approach starts with creating the cyber world model of each resource type and
task subnet. Discrete timed Petri nets describe each resource and task subnet. Each task
subnet describes the production process workflow, and each resource subnet describes
the activities or operations the specific type of resources could perform. Self-healing
functionality is increasingly improving the critical infrastructure resilience of countries at
this very moment despite it being a very recent technological development. The research
direction in this area indicates further acceleration of the functionality in private areas,
especially in deploying the 5G networks. The cyber–physical self-healing technology no
doubt has the potential to revolutionise systems security. All of which would not have
been possible without the opportunities presented by machine-learning algorithms. ML
algorithms are advancing speedily because of the collaborative nature of modern software
development through the wide industry acceptance and adoption of open-source libraries
and packages. This phenomenon aids the seamless translation of the core ML language
to other languages that provide a variety of choices for developers. Open-source libraries
such as TensorFlow, Keras, PyTorch, and OpenCV are some examples of the collaborative
efforts of developers in the ML open-source space.
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7. Conclusions

This paper has reviewed existing self-healing theories and methods, highlighting
machine learning as a promising tool for implementing self-healing functionality in cyber–
physical systems. Self-healing has significant potential in computing, offering improved
uptime, reliability, and performance in critical systems. By automating fault detection and
response, self-healing reduces downtime, minimises manual interventions, and enhances
the safety and efficiency of critical infrastructure. Self-healing mechanisms can be used
in any system where uptime, reliability, and performance are crucial. However, there
are still gaps that future research needs to address to accelerate the real-world adoption
of self-healing technology. These gaps include expanding the classification of attacks in
machine-learning models to improve their effectiveness and exploring the transferability of
trained automatic remediation models between multiple IoT devices.

This research has identified several exciting directions and issues for future studies in
self-healing technology. These include expanding the classification of attacks in machine-
learning models to improve their effectiveness and exploring the transferability of trained
automatic remediation models between multiple IoT devices. Adopting IoT, 5G networks,
collaborative software development, and knowledge transfers within the field will advance
self-healing theories. As novel technologies emerge, self-healing functionality implemented
using machine-learning algorithms will enhance cyber–physical systems’ security, reli-
ability, and intuitive nature, enabling self-organisation and self-restoration. This paper
anticipates a future where self-healing functionality, implemented using machine-learning
algorithms, will exponentially make cyber–physical systems more secure, reliable, and
intuitive, leading to self-organisation and self-restoration. While there are gaps to be ad-
dressed for real-world adoption, the prospects for self-healing technology are promising,
and further research and innovation in this area will continue to propel its development
and practical application.
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