
Citation: Al Lail, M.; Garcia, A.;

Olivo, S. Machine Learning for

Network Intrusion Detection—A

Comparative Study. Future Internet

2023, 15, 243. https://doi.org/

10.3390/fi15070243

Academic Editor: Mario Di Mauro

Received: 29 May 2023

Revised: 5 July 2023

Accepted: 13 July 2023

Published: 16 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Machine Learning for Network Intrusion Detection—A
Comparative Study
Mustafa Al Lail * , Alejandro Garcia and Saul Olivo

School of Engineering, Texas A&M International University, Laredo, TX 78041, USA;
alejandro_garciac1@dusty.tamiu.edu (A.G.); saulolivo@dusty.tamiu.edu (S.O.)
* Correspondence: mustafa.allail@tamiu.edu

Abstract: Modern society has quickly evolved to utilize communication and data-sharing media with
the advent of the internet and electronic technologies. However, these technologies have created
new opportunities for attackers to gain access to confidential electronic resources. As a result, data
breaches have significantly impacted our society in multiple ways. To mitigate this situation, re-
searchers have developed multiple security countermeasure techniques known as Network Intrusion
Detection Systems (NIDS). Despite these techniques, attackers have developed new strategies to
gain unauthorized access to resources. In this work, we propose using machine learning (ML) to
develop a NIDS system capable of detecting modern attack types with a very high detection rate. To
this end, we implement and evaluate several ML algorithms and compare their effectiveness using
a state-of-the-art dataset containing modern attack types. The results show that the random forest
model outperforms other models, with a detection rate of modern network attacks of 97 percent. This
study shows that not only is accurate prediction possible but also a high detection rate of attacks can
be achieved. These results indicate that ML has the potential to create very effective NIDS systems.

Keywords: machine learning; network intrusion detection; cybersecurity

1. Introduction

Modern network systems face a substantial cybersecurity problem in the form of
malicious intruders [1]. Intruders can be real users or software that break into the resources
of organizations. Intruders can gain access to resources via several strategies, such as
unauthorized logins or illegally obtaining access rights, while software intruders can exist
in the form of viruses, worms, or ransomware. Many other types of attacks also exist.
Undetected intrusion can have significant impacts on governments and businesses. As
such, malicious intrusion can jeopardize national security, cause financial losses and data
breaches, and damage businesses’ reputations. These consequences pose a significant
challenge to society.

A Network Intrusion Detection System (NIDS) is a software program or device that
monitors network traffic and categorizes it as normal or malicious [2]. It then alerts users
or invokes appropriate security measures. Cybersecurity researchers have proposed and
used many NIDS systems in the past couple of decades [2–4]. The two main types of
NIDSs that exist are anomaly detection and misuse detection [5]. Commercial IDSs use
misuse detection when an intruder gains access to resources but misuses their privileges.
Anomaly detection involves collecting data on the behavior of legitimate users over time.
Statistical tests are then applied to the observed behavior to determine, with a high level
of confidence, whether this behavior is illegitimate user behavior. Anomaly detection
approaches to intrusion detection have been subjected to extensive research but have not
gained popularity yet.

Despite the scientific advances in NIDS, attackers have developed more advanced
and sophisticated attack types to bypass NIDS countermeasures. The significant increase

Future Internet 2023, 15, 243. https://doi.org/10.3390/fi15070243 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15070243
https://doi.org/10.3390/fi15070243
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0000-0326-6363
https://doi.org/10.3390/fi15070243
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15070243?type=check_update&version=3


Future Internet 2023, 15, 243 2 of 17

in the number and variety of attacks has pushed security scientists to create better NIDS
systems. Recently, many researchers have investigated a new NIDS approach based on
machine learning (ML) (e.g., [6–12]). ML techniques use data and algorithms to simulate
human learning. Many ML approaches use datasets such as DARPA, KDD CUP ’99, and
NSL-KDD. However, these datasets are relatively old and do not represent modern attack
types. Consequently, the approaches that use such datasets cannot be relied on to detect
modern attack types.

This paper discusses the results of a research project that aims to develop a robust and
effective NIDS system capable of detecting modern types of attacks using ML techniques.
To achieve this goal, we take the following steps.

• We use the CICIDS-2017 dataset, which contains frequent attacks that resemble real-
world network traffic.

• We then implement four ML algorithms (random forest (RF), linear support vector
machine (LSVM), Gaussian Naive Bayes (GNB), and logistic regression (LG)) to classify
and predict abnormal activities.

• We perform a comparative study to evaluate the performance of these ML algorithms and
evaluate their models using state-of-the-art methods based on different evaluation criteria.

The CICIDS-2017 dataset suffers from the class imbalance problem, which causes ML
models to be biased towards majority classes [13]. To tackle the class imbalance problem
of the CICIDS-2017 dataset, we utilized an attack grouping technique and the Synthetic
Minority Oversampling Technique (SMOTE) [14]. The results showed that the RF model
with SMOTE outperformed other models in its ability to predict most types of modern
network attacks accurately and precisely, with a recall macro score of 97 percent. This
number indicates that the RF model is highly capable of accurately categorizing normal
traffic while also very rarely missing any actual intrusions. This is what NIDS systems
strive to achieve.

The paper is structured as follows. Section 3 discusses the related work and how it
differs from our work. Section 4 provides background information and an overview of the
ML techniques and the dataset used in this study. Section 5 describes the methodology
followed to implement and evaluate the different ML algorithms. Section 6 presents the
results of the study and compares the algorithms based on different evaluation criteria.
Finally, Section 7 concludes the paper and points out some future work.

2. The CICIDS-2017 Dataset

The Canadian Institute of Cybersecurity’s data are used in this research to train ML
models to detect different attacks, specifically the CICIDS-2017 dataset [15]. The dataset
consists of eight files that contain simulated network traffic captured over five days. Table 1
shows the different files and the types of traffic (benign or security attacks) captured
during this period. The dataset contains 3,119,345 samples with 78 features that belong to
15 classes.

Table 1. The CICIDS-2017 dataset files and their traffic content.

No. File Name Traffic Types

1 Monday-WorkingHours.pcap_ISCX.csv Benign

2 Tuesday-WorkingHours.pcap_ISCX.csv Benign, FTP-Patator, SSH-Patator

3 Wednesday-WorkingHours.pcap _ISCX.csv Benign, DoS GoldenEye, DoS Hulk, DoS Slowhttptest, DoS slowloris, Heartbleed

4 Thursday-WorkingHours-Morning-WebAttacks.pcap_ISCX.csv Benign, Web Attack—Brute Force, Web Attack—Sql Injection, Web Attack—XSS

5 Thursday-WorkingHours-Afternoon-Infilteration.pcap_ISCX.csv Benign, Infiltration

6 Friday-WorkingHours-Morning.pcap _ISCX.csv Benign, Bot

7 Friday-WorkingHours-Afternoon-PortScan.pcap_ISCX.csv Benign, PortScan

8 Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv Benign, DDoS



Future Internet 2023, 15, 243 3 of 17

The 15 different classes and the number of samples belonging to each are listed in
Table 2. This dataset was chosen because it contains information on up-to-date attacks that
are common in modern networks, unlike the outdated datasets used in other studies. The
attacks in this dataset are classified into brute force FTP, brute force SSH, DoS, heartbleed,
web, infiltration, botnet, and DDoS attacks based on the 2016 McAfee Report. These attacks
are not found in any of the previously published datasets [16]. Furthermore, the dataset
fulfills all the criteria of a true intrusion detection dataset [15,17], including a complete
network configuration, complete traffic, a labeled dataset, complete interaction, complete
capture, available protocols, attack diversity, heterogeneity, a feature set, and metadata.
Table 3 provides a complete list of features that meet these criteria.

Table 2. The classes of the CICIDS-2017 dataset and their distributions.

No. Class Number of Samples

1 Benign 2,359,087

2 DoS Hulk 231,072

3 PortScan 158,930

4 DDoS 41,835

5 DoS GoldenEye 10,293

6 FTP-Patator 7938

7 SSH-Patator 5897

8 DoS slowloris 5796

9 DoS Slowhttptest 5499

10 Botnet 1966

11 Web Attack—Brute Force 1507

12 Web Attack—XSS 652

13 Infiltration 36

14 Web Attack—Sql Injection 21

15 Heartbleed 11

The uneven distribution of classes in the CICIDS-2017 dataset shows the class imbal-
ance problem [13], which is common in many machine learning problems, such as network
intrusion detection, medical diagnosis, and fraud detection. In datasets with class imbal-
ance, most samples are classified as one class, while fewer samples are classified as other
classes whose accurate detection by machine learning is more significant. The training of
machine learning algorithms using datasets suffering from the class imbalance problem
creates models that are biased towards majority classes. This is because the classifiers
tend to place less emphasis on learning minority classes and become overwhelmed by
majority classes.

The class imbalance problem in the CICIDS-2017 dataset is one of the main problems
when using this dataset. There is a tendency for models to become biased towards benign
traffic, since there are significantly more benign traffic samples (over 2 million) compared
to attacks (e.g., Bot and Heartbleed attacks are only seen in 36 and 11 samples, respectively).
However, an IDS requires attack detection not to be biased towards detecting benign traffic.
Consequently, any machine learning approach using the CICIDS-2017 dataset should
address the class imbalance problem to detect attacks precisely.



Future Internet 2023, 15, 243 4 of 17

Table 3. The features and the network parameters of the CICIDS-2017 dataset.

No. Feature Name No. Feature Name No. Feature Name

1 Destination Port 28 Bwd IAT Std 54 AvgFwd Segment Size

2 Flow Duration 29 Bwd IAT Max 55 AvgBwd Segment Size

3 Total Fwd Packets 30 Bwd IAT Min 56 Fwd Header Length

4 Total Backward Packets 31 Fwd PSH Flags 57 FwdAvg Bytes/Bulk

5 Total Length of Fwd Packets 32 Bwd PSH Flags 58 FwdAvg Packets/Bulk

6 Total Length of Bwd Packets 33 Fwd URG Flags 59 FwdAvg Bulk Rate

7 Fwd Packet Length Max 34 Bwd URG Flags 60 BwdAvg Bytes/Bulk

8 Fwd Packet Length Min 35 Fwd Header Len 61 BwdAvg Packets/Bulk

9 Fwd Packet Length Mean 36 Bwd Header Length 62 BwdAvg Bulk Rate

10 Fwd Packet Length Std 37 Fwd Packets/s 63 SubflowFwd Packets

11 Bwd Packet Length Max 38 Bwd Packets/s 64 SubflowFwd Bytes

12 Bwd Packet Length Min 39 Min Packet Length 65 SubflowBwd Packets

13 Bwd Packet Length Mean 40 Max Packet Length 66 SubflowBwd Bytes

14 Bwd Packet Length Std 41 Packet Length Mean 67 Init_Win_bytes_forward

15 Flow Bytes/s 42 Packet Length Std 68 Init_Win_bytes_backward

16 Flow Packets/s 43 Packet Length Variance 69 act_datapktfwd

17 Flow IAT Mean 44 FIN Flag Count 70 min_seg_size_forward

18 Flow IAT Std 45 SYN Flag Count 71 Active Mean

19 Flow IAT Max 46 RST Flag Count 72 Active Std

20 Flow IAT Min 47 PSH Flag Count 73 Active Max

21 Fwd IAT Total 48 ACK Flag Count 74 Active Min

22 Fwd IAT Mean 49 URG Flag Count 75 Idle Mean

23 Fwd IAT Std 50 CWE Flag Count 76 Idle Std

24 Fwd IAT Max 51 ECE Flag Count 77 Idle Max

25 Fwd IAT Min 52 Down/Up Ratio 78 Idle Min

26 Bwd IAT Total 53 Average Packet Size 79 Label

27 Bwd IAT Mean

3. Related Work

Table 4 presents a list of similar studies and their key results. The studies are divided
into two categories. The first category includes studies that use old datasets such as DARPA,
KDD CUP ’99, and NSL-KDD. For example, Saranya et al., 2020 [9] used the KDD-Cup
dataset to study the performance of ML algorithms such as random forest, support vector
machine, and Gaussian Naive Bayes to identify attacks. Their research concluded that
the random forest model outperformed the other models by predicting each attack with
99.81% accuracy. As can be seen in Table 4, although many of these studies report very
good results, they use datasets that are not representative of modern attacks and do not
meet the criteria of a true intrusion detection dataset [15,17]. Therefore, the ability of these
approaches might be limited when detecting novel attacks as they have not been evaluated
and have not achieved similar results regarding modern attack types.



Future Internet 2023, 15, 243 5 of 17

Table 4. Related studies.

Non-CICIDS-2017-Based Studies
No. Study Dataset Used ML Techniques Key Results

1 Gogoi et al., 2013 [18] KDD CUP ’99, DDoS dataset,
NSL-KDD, TUIDS

Multi-level hybrid intrusion de-
tection

99.99% detection rate

2 Panwar et al., 2014 [19] NSL-KDD Naive Bayes, J48 99.88% accuracy, 99.83% speci-
ficity, 99.97% sensitivity

3 Ambusaidi et al., 2016 [20] KDD CUP ’99, NSL-KDD and
Kyoto 2006+

Least Square Support Vector Ma-
chine (LSSVM)

Accuracy of 99.79%, 99.91%, and
99.77% for KDD CUP ’99, NSL-
KDD, and Kyoto 2006+, respec-
tively

4 Zhao et al., 2017 [21] KDD CUP ’99 Deep Belief Network, Probabilis-
tic Neural Network

Accuracy of 99.14% and detec-
tion rate of 93.25%

5 Yin et al., 2017 [7] NSL-KDD J48, ANN, RF, SVM, RNN Accuracy of 81.29, detection rate
of 97.09%

6 Roy et al., 2017 [22] KDD CUP ’99 DNN, SVM Accuracy of 99.99%

7 Kamarudin et al., 2017 [23] NSL-KDD NB, SVM, MLP, DT 90% accuracy, 89.75% detection
rate

8 Al-Zewairi
et al., 2017 [24]

UNSW-NB15D ANN 98.99% accuracy

9 Xu et al., 2018 [25] KDD CUP ’99, NSL-KDD GRU and LSTM Detection rate of 99.42% using
KDD CUP ’99 and 99.31% using
NSL-KDD

10 Beluch et al., 2018 [26] UNSW-NB15 DT, SVM, RF, NB 97.49% accuracy

11 Jia et al., 2019 [27] KDD CUP ’99, NSL-KDD NDNN Accuracy of 99.9%

12 Halimaa et al., 2019 [28] NSL-KDD SVM, NB Accuracy of 97.29% and misclas-
sification of 2.7%

13 Saranya et al., 2020 [9] KDD CUP ’99 RF, SVM, GNB 99.81% accuracy
CICIDS-2017-Based Studies

No. Study Dataset Used ML Techniques Key Results

14 Faker et al., 2019 [29] UNSW-NB15, CICIDS-2017 DNN, RF, GBT 99.19 accuracy using UNSW-
NB15, 99.99% accuracy using
CICIDS-2017

15 Yang et al., 2019 [10] CICIDS-2017 Tree-based algorithms 98.37% accuracy

16 Vinayakumar
et al., 2019 [30]

KDD CUP ’99, NSL-KDD,
UNSW-NB15, WSNDS, CICIDS-
2017

Hybrid DNNs Binary classification accuracy of
93.1% using CICIDS-2017

17 Zhang et al., 2019 [31] CICIDS-2017, CTU CNN, LSTM 99.8% accuracy for CICIDS-2017

18 Stiawan et al., 2020 [32] CICIDS-2017 Random Forest (RF), Bayes Net
(BN), Random Tree (RT), Naive
Bayes (NB), J48, and Feature Se-
lection

Accuracy of 99.87%

19 Elmrabit et al., 2020 [12] CICIDS-2017, UNSW-NB15, ICS LR, GNB, KNN, DT, AdaB, RF,
CNN, CNN-LSTM, LSTM, GRU,
RNN, DNN

0.99% accuracy, precision, re-
call, and F-score using RF and
CICIDS-2017

20 Panwar et al., 2019 [33] CICIDS-2017 OneR, REPTree Accuracy, 99.83% specificity,
99.97% sensitivity

21 Maseer et al., 2021 [34] CICIDS-2017 ANN, DT, KNN, NB, RF, SVM,
EM, K-means, and SOM

Over 99% accuracy, precision, re-
call, and F1-score

The second category of studies includes those that have used the same dataset that
we use in our work (i.e., the CICIDS-2017 dataset). For instance, Stiawan et al., 2020 [32]
focused on evaluating the performance of different supervised machine learning algorithms
using a reduced CICIDS-2017 dataset. They reported the highest accuracy of 99.87% using
22 relevant selected features. Other similar studies (e.g., Faker et al., 2019 [29], Vinayakumar
et al., 2019 [30], Yang et al., 2019 [10], and Zhang et al., 2019 [31]) also reported high accuracy
using the CICIDS-2017 dataset. These studies used accuracy as the evaluation metric for this



Future Internet 2023, 15, 243 6 of 17

classification problem. However, accuracy is not the best metric for this intrusion detection
problem because we are usually interested not only in making accurate predictions but
also in ensuring that all types of attacks have a high detection rate, especially when using
imbalanced datasets such as CICIDS-2017. The high accuracy of these models might be due
to the correct prediction of benign traffic, which is the majority class in the CICIDS-2017
dataset. In contrast, our work uses different evaluation metrics that are appropriate for this
intrusion detection problem and the nature of the CICIDS-2017 dataset.

Table 4 lists studies 19, 20, and 21, which present interesting research and results, and
each one deserves a separate comparison to our work. Elmrabit et al. [12] concluded that
random forest was the best algorithm for intrusion detection and classification in terms of
precision and recall. Unlike our approach, they did not evaluate the per-class performance
of models trained on the CICIDS-2017 dataset. Moreover, they reduced the number of
attack classes by half by combining similar ones, which affected the model’s predictions.

Panwar et al., 2019 [35] applied different feature selection techniques to the CICIDS-
2017 dataset to reduce the dimensionality and improve the results of the machine learning
models. They used two decision tree variants, namely the OneR and REPTree algorithms.
Their study presents impressive results with 99% accuracy, specificity, and sensitivity.
However, unlike our work, the researchers did not consider or solve the bias problem of
the CICIDS-2017 dataset towards benign traffic.

Maseer et al., 2021 [34] trained different supervised and unsupervised machine learn-
ing algorithms on the CICIDS-2017 dataset and compared their performance and runtimes.
Despite the impressive results, the authors performed no feature selection, did not ad-
dress the class imbalance, and evaluated the model performance with only four different
classes. These shortcomings might have a significant impact on the ability to detect modern,
innovative attacks.

4. Background
4.1. Machine Learning

In traditional computer programming, the computer takes data and produces an
output. In machine learning (ML), this process is reversed. The computer learns from
already known input and output data to create a model (program) that can subsequently
predict the output based on new input. ML is a rapidly growing industry that has found
its way into everyday life. For example, ML is used when online websites personalize
advertisements or on social media sites such as Facebook to detect people in images. ML
algorithms work by generalizing known data in a process known as supervised learning.
There are two types of ML algorithms: supervised learning and unsupervised learning.
This paper focuses on the use of supervised learning.

4.2. Algorithms and Techniques

This section gives brief overviews of the four ML algorithms used in this work (see
Figure 1 for their graphical representations).



Future Internet 2023, 15, 243 7 of 17

(a) Random Forest (RF) (b) Support Vector Machine (SVM)

(c) Logistic Regression (LR) (d) Gaussian Naive Bayes (GNB)

Figure 1. Graphical representations of used ML algorithms.

4.2.1. Random Forest

The random forest (RF) algorithm consists of multiple decision trees. Each of these
trees generates a prediction. Then, the algorithm uses these predictions to develop a
decision based on the majority of the predicted values. The advantages of RF include its
ability to be used for both classification and regression problems, not requiring scaling, and
the ability to handle outliers. Disadvantages include that this algorithm requires a lot of
computational power because it deals with many decision trees, and subsequently, they
take longer to train models.

4.2.2. Linear Support Vector Machine

Linear support vector machine (LSVM) is one of the most used supervised ML algo-
rithms. It can be used for regression, binary classification, and multi-class classification
problems. An LSVM algorithm works by using the proximity between samples. In a high-
dimensional space, LSVM divides the samples by class and then creates a line between
them (hyperplane). The algorithm determines how far each sample is from the line; these
points are called support vectors. They help to create a model of the line, which is the
prediction. The distance between the samples and the hyperplane is called the margin. The
goal is to obtain the best hyperbola with the largest margin between the hyperplane and
the support vectors. LSVM is a good algorithm in terms of memory efficiency, but it has
some drawbacks. One of its disadvantages is that it does not perform well in large and
noisy datasets; only small and clean data frames benefit from this algorithm.

4.2.3. Gaussian Naive Bayes

Bayesian classifiers are statistical classifiers. They are able to forecast the probability
that the given model fits a particular class. Gaussian Naive Bayes (GNB) is a type of Naive
Bayes algorithm that is based on Bayes’s theorem. The hypothesis that these algorithms are



Future Internet 2023, 15, 243 8 of 17

based on is that, for a given class, the attribute value is independent of the values of the
attributes. This theory is called class-conditional independence.

It is mostly used for datasets with continuous data. This algorithm assumes that
classes follow a Gaussian distribution. A Gaussian distribution, or normal distribution, can
be analyzed by the following formula. Some of the advantages of using GNB are that it is a
quick algorithm to train, is suitable for datasets with many classes, and is primarily used
for categorical problems. The main disadvantage is that this algorithm treats every feature
independently, which does not always happen in real life. This makes the algorithm less
suitable for real-world cases.

4.2.4. Logistic Regression

Logistic regression (LR) is a binary classification method that uses a probability func-
tion to measure the probability of an event taking place. It uses the following formula to
calculate the probability. Some of the advantages include that can perform rapid classifica-
tion and is easy to extend to a multi-class problem. The main disadvantage is that nonlinear
problems cannot be solved using LR.

4.2.5. Synthetic Minority Oversampling

The Synthetic Minority Oversampling Technique (SMOTE) is a technique for over-
sampling [14]. For datasets with imbalance problems, oversampling is used to increase the
number of samples. SMOTE selects samples from a specific class and draws a line between
them. Then, by selecting a location along the line generated by the preceding samples, a
new sample is created.

4.2.6. Bayesian Optimization

The Bayesian Optimization with Tree-Structured Parzen Estimator is an algorithm
used to find the best hyperparameters of a model [36]. The algorithm builds a probability
model of the goal and uses it to obtain the parameters that would work best to achieve
this goal. It keeps track of all the probabilities to create a probability map that can then be
used to continue predicting recursively. The main idea of this algorithm is to spend more
time obtaining an educated answer, rather than using a grid search technique that makes
predictions from random searches.

5. Methodology

Figure 2 shows our methodology. The methodology includes three main phases:
(1) preprocessing, (2) training and cross-validation, and (3) testing. We give more details of
these phases in the following subsections.



Future Internet 2023, 15, 243 9 of 17

Figure 2. Methodology.

5.1. Preprocessing

The main goal of preprocessing in machine learning is to facilitate the training/testing
process by appropriately transforming and scaling the entire dataset. The preprocessing
of data before applying them to an ML algorithm is a crucial step in the ML workflow.
Preprocessing removes outliers and scales the features to an equivalent range. It helps to



Future Internet 2023, 15, 243 10 of 17

improve the accuracy, reduce the time and resources required to train the model, prevent
overfitting, and improve the interpretability of the model.

In the preprocessing phase, we first merge the eight files into one containing all sam-
ples. The process starts by loading the CICIDS-2017 merged file containing 3,119,345 rows
and 79 columns. An important step in preprocessing is cleaning the dataset. The cleaning of
the data involves finding incomplete, incorrect, inaccurate, or unnecessary data, followed
by replacing, modifying, or deleting these data from the dataset. Rows with null values,
duplicates, and empty cells, such as infinity (Inf) and not a number (NaN), are dropped.
The initial CICIDS-2017 dataset contains categorical features (e.g., labels) that need to be
converted into numerical values to prepare them for the ML algorithms.

Machine learning algorithms assume an even distribution among classes, and class
imbalance is a frequent problem, especially in datasets used for network intrusion detection.
Handling imbalance is important in real-world applications, where it is crucial to detect
minority classes reliably—in our case, attacks. Different solutions to tackle this problem
exist, including random undersampling and oversampling. As stated above, a major issue
with the CICIDS-2017 dataset is the class imbalance problem. To tackle this problem,
we implement a technique that combines different classes to minimize biasing towards
the majority classes [14]. This technique considers the characteristics of the attacks and
combines similar attacks. The implementation of this technique reduces the number of
classes from 15 to 7. We also apply the SMOTE technique to increase the number of samples
in the minority classes to 1000 samples each. After this, MinMaxScaler is used to scale the
data for the algorithms that are sensitive to the magnitudes of different features (i.e., SVM
and LR). Without scaling features, the algorithm may be biased towards the features with
values higher in magnitude. The scaling of the data therefore enables these models to learn
better and improves their performance. We use the MinMaxScaler technique to transform
all feature values in the cleaned CICIDS-2017 data to a range between zero and one.

The resulting models have to be tested against unseen data to produce reliable outputs.
To finalize the preprocessing section, therefore, the dataset is split into three sub-datasets:
training (80%), validation (10%), and testing (10%). The split is performed randomly and
stratified, meaning that the class distribution percentage of the initial dataset is retained
in the training, validation, and testing sets. The split is created in this way to ensure that
there are sufficient samples to train the models, while also ensuring sufficient samples
for the testing and validation of the results. The training and validation sub-datasets are
used for model training and cross-validation, while the testing dataset is used for the final
evaluation of the models.

5.2. Model Training and Cross-Validation

After the dataset has been processed and converted into an appropriate format to
fit the supervised machine learning models, the actual learning process starts. In this
study, the training and validation datasets were used to train the chosen algorithms. In
the beginning, the default parameters of the algorithms were used to create the models.
The model training and cross-validation phases were designed as parallel processes. The
reason for this is that these steps can be performed independently for each model. Different
machine learning algorithms allow the use of a set of varying parameters to maximize the
performance of the models. Once the models are created, the search for the best-performing
hyperparameters of the models needs to be carried out. To find the best parameters, we
employed randomization followed by a grid search combined with stratified k-fold cross-
validation (CV) and the Bayesian Optimization with Tree-Structured Parzen Estimator. Grid
search is an exhaustive method where multiple models are trained with different given
sets of parameters before it returns the best-performing ones. To reliably identify the best-
performing ones, we used stratified k-fold cross-validation (CV). K-fold CV ensures that
each data instance is used for training and testing. This technique allows the comparison of
the performance of models trained with different parameters as each one predicts every
data point. Moreover, we stratified the folds to ensure that every fold had the same class



Future Internet 2023, 15, 243 11 of 17

distribution as the entire dataset, so that every class was relatively as often represented as
in the whole dataset. The number of folds was set to 5, which meant that one fifth of the
data served as the validation set, while a total of five models were trained per parameter set.
The grid search method returns the best parameters based on the selected scoring methods.
As our research aimed to achieve high recall rate for attack classes while maintaining high
precision for benign traffic, we used the recall macro measure for this purpose, instead of
the default accuracy method. At the end of this phase, we found the best combination of
parameters for each model, which were then used to test them.

5.3. Model Testing and Evaluation

After finding the best parameters for each model, the models were refitted with
all of the training and validation data, since no validation was required. After this, the
performance was evaluated with adequate methods. All the models were evaluated using
the testing data. These testing data contained samples that had never been seen before, so
this served as a test to determine how the model predicted new attacks. Recall that the goal
of our research was to find a model that has a low false-positive rate while detecting attacks
reliably. In terms of performance evaluation metrics, this means that we need high recall
(i.e., a low false-negative rate) for every attack class, as well as high precision (i.e., a low false-
positive rate) for normal traffic. To obtain deeper insights into our model’s performance,
we utilized the following visualization techniques: a confusion matrix, classification report,
precision–recall curve, and receiver operating characteristic curve. The combination of
these methods and the use of the recall macro scoring measure enabled us to deeply analyze
the true-/false-positive as well as true-/false-negative performance.

6. Results and Discussion

We evaluated the performance of four machine learning algorithms: random forest
(RF), linear support vector machine (LSVM), Gaussian Naive Bayes (GNB), and logistic
regression (LG). The evaluation was conducted on two different computers. The RF and
LSVM algorithms were evaluated on a Dell Inspiron 3880 with an Intel Core i7 processor
and 12 GB RAM. The GNB and LG algorithms were evaluated on an HP Envy ×360 with
an AMD Ryzen 5 processor and 8 GB RAM. We used Jupyter Notebook, which is an IDE
included in Anaconda, Python, and the scikit-learn library, to implement and evaluate
these algorithms.

6.1. Confusion Matrix

A confusion matrix is a powerful tool for the investigation of incorrect classifications
(Figure 3). Unlike other evaluation techniques, the confusion matrix highlights the number
of correct and incorrect predictions. It reveals classes that the model considers similar
or distinguishes well. In the obtained figures, we can analyze the true values versus the
predicted values. An ideal model shows a confusion matrix with most of the predictions
in a diagonal line from top left to bottom right. This means that the prediction made by
the model correlates with the actual answer. Each number in the diagonal compared to the
numbers in the corresponding horizontal line is of interest. This allows the analysis of the
predictions per actual class. The number on the diagonal shows the correct classifications,
while the other numbers on the left and right denote the numbers of incorrect predictions
per class.

The confusion matrix of the random forest (RF) model shows its high accuracy as
most numbers are diagonal. This means that the RF model correctly predicted most of the
attacks. On the other hand, other models were only able to detect benign attacks or one
type of attack. The results of confusion matrices are critical because they highlight what
is predicted by each model for every given sample. By examining the confusion matrix
for Gaussian Naive Bayes (GNB), we were able to deduce that the model categorized each
attack as a benign attack. In some instances, a confusion matrix could also be helpful to
understand what influences a model’s decisions. For instance, if a model detects many



Future Internet 2023, 15, 243 12 of 17

Heartbleed attacks as infiltration attacks, it might mean that these two attacks have many
similarities.

(a) Random Forest (RF) (b) Support Vector Machine (SVM)

(c) Logistic Regression (LR) (d) Gaussian Naive Bayes (GNB)

Figure 3. Models’ performance as confusion matrices. The classes are denoted as follows: Benign→ 0,
DoS→ 1, Port Scan→ 2, Bot→ 3, Infiltration→ 4, Web Attack→ 5, Brute Force→ 6.

6.2. Classification Report

The evaluation results of the models in the form of classification reports are shown in
Figure 4. A classification report shows the precision, recall, and F-1 score for every class, as
well as the macro-average and weighted average of these metrics across the classes. The
overall accuracy of the predictions on the test data is also part of the report. These are
defined as follows.

• Accuracy = TP+TN
TP+TN+FP+FN , the percentage of the total number of correct classifications.

• Precision = TP
TP+FP , the proportion of positives that are correctly identified.

• Recall (sensitivity) = TP
TP+FN , the percentage of actual positives that are classified

as attacks.
• F1-score= 2 ∗ precision∗recall

precision+recall , the harmonic mean of the precision and recall.

Here, TP = true positives, TN = true negatives, FP = false positives, and FN = false
negatives. A high F1-score means that the precision and recall are both high, while a low
F1-score indicates that one or both of the precision and recall are low. A high precision
value means that the model can correctly identify most of the positive cases, while a high
recall value means that the model can correctly identify most of the actual positive cases.



Future Internet 2023, 15, 243 13 of 17

(a) Random Forest (RF) (b) Support Vector Machine (SVM)

(c) Logistic Regression (LR) (d) Gaussian Naive Bayes (GNB)

Figure 4. Results as classification reports. The classes are denoted as follows: Benign→ 1, DoS→ 2,
Port Scan→ 3, Bot→ 4, Infiltration→ 5, Web Attack→ 6, Brute Force→ 7.

Once again, using the classification reports, the RF model clearly emerges as the best-
performing model, with a macro-average F1-score of 97%. The macro-average is calculated by
taking the average of the F1-scores of each class. Therefore, it is a good measure to express
the model’s performance in a single number. As can be seen by examining the classification
reports, for the other models, the macro-average is significantly lower than that of the RF
model, indicating the superiority of the RF model in predicting different attacks.

6.3. Precision–Recall Curve (PRC)

Precision–recall curves (PRC) are visual indicators of which classes the model can
detect with high precision while the recall increases. Perfect performance for a class
(precision 100%; recall 100%) is shown as a horizontal line along Y-axis 1.0 connected with
a vertical line at X-axis 1.0. This means that an ideal PRC should pass from the top-left
corner to the top-right corner and then straight down. If a model has ideal or close to ideal
results, this means that the model has good precision and recall scores. As can be seen in
Figure 5, the PRC is different for each algorithm. The closest to an ideal PRC is Figure 5a
for the random forest model. This figure shows an overlap of six classes as an ideal curve,
but it has one class that has a lower rate, as seen in green (class 5). This means that the RF
model was able to correctly predict all types of traffic (benign or attacks) except for one
class, which has an 81 percent recall score, as seen in the classification report. Despite the
less impressive performance in class 5, the result for the overall precision–recall relation in
the total model is close to a perfect score.

The PRC figures for other models are unsatisfactory, as they are not close to the top in
most cases. This indicates the poor performance of these models. For example, the SVM
graph in Figure 5 is a representation of a poorly performing model (most of the classes in
this graph are below the diagonal line, which represents low recall and precision scores).



Future Internet 2023, 15, 243 14 of 17

(a) Random Forest (RF) (b) Support Vector Machine (SVM)

(c) Logistic Regression (LR) (d) Gaussian Naive Bayes (GNB)

Figure 5. Models’ performance as precision–recall curves (PRC). The classes are denoted as follows:
Benign→ 1, DoS→ 2, Port Scan→ 3, Bot→ 4, Infiltration→ 5, Web Attack→ 6, Brute Force→ 7.

6.4. Results Summary

After evaluating the different algorithms using various criteria, the results indicate
that the RF model has superiority over the other models. This finding was expected (and
consistent with other studies that evaluated ML models) when considering the advantages
and disadvantages of each of the evaluated ML algorithms. Specifically, the LR and LSVM
algorithms are more suitable for binary classification, while intrusion detection is a multi-
class classification problem. Additionally, based on theory, the GNB algorithm does not
perform well in real-world scenarios, which was confirmed by this research’s results.

Our findings demonstrate that RF, in combination with the Synthetic Minority Over-
sampling Technique (SMOTE) and grouping techniques, is a good solution when dealing
with the imbalance problem and subsequently predicting attacks. The precision, recall,
F1, and accuracy scores of all algorithms can be seen in the summarized results shown in
Figure 6. The figure shows that there is a large difference in all four categories between
the RF model and the other three models. This figure also shows that the LSVM model
has the worst results. It is also worth highlighting that the accuracy of all four models is
rather high, which is consistent with the results of the related studies that we surveyed in
Section 3. However, the high accuracy of some models does not guarantee their overall
good performance. Interestingly, our RF model performs very well in terms of all used
metrics over all classes.



Future Internet 2023, 15, 243 15 of 17

Figure 6. Summary of the results.

7. Conclusions

In this research, we studied the suitability of four different supervised machine learn-
ing algorithms to build an anomaly-based Network Intrusion Detection System (NIDS).
A NIDS checks network data for abnormal behavior; it provides a layer of protection
against security threats. Since attackers are continually developing new attack strategies,
NIDSs must continue to evolve. Companies are constantly seeking solutions to improve
NIDSs, because attacks can lead to consequences such as financial losses and a poor
business reputation.

To tackle this problem, we implemented four supervised machine learning algorithms
to create a model that can detect and categorize real-world and up-to-date attacks. These
supervised algorithms were random forest (RF), Gaussian Naive Bayes (GNB), linear
support vector machine (LSVM), and logistic regression (LR). We used a grouping technique
for the attacks and the Synthetic Minority Oversampling Technique (SMOTE) to address
the class imbalance problem. Additionally, the Bayesian Optimization with the Tree-
Structured Parzen Estimator technique was utilized to find the best possible parameters for
each algorithm.

The models were created and compared based on their accuracy, recall, precision,
F1-score, and precision–recall curve. One of the best methods to check the reliability of a
model created from a dataset with many classes is to use the recall macro-measure. Recall
indicates how frequently the model detects a harmful attack, while the macro ensures
that all classes are evaluated equally, independently of their size. The best-performing
algorithm was RF, with a 97 percent recall macro score. This means that our RF model can
detect harmful attacks 97 out of 100 times.

One limitation of the work presented in this paper is that we have not addressed the
class imbalance problem completely. We attempted to address the class imbalance problem
by using SMOTE and grouping similar attacks to improve the uneven distribution of classes.
Although we improved the distribution of the different classes to improve the detection
rates of significant and similar attacks, the distribution of the attacks was ultimately not
even. This limitation should be addressed using other techniques.

Future work will consider implementing a feature selection technique to find the
features that correlate the most with the target. Feature selection is useful to remove
redundant and irrelevant features. Additionally, new algorithms can be analyzed for
better performance with the CICIDS-2017 dataset. In this research, we worked with
some algorithms that performed poorly with our dataset; therefore, an investigation will
be needed to find other algorithms that best fit the dataset and that compete with RF
algorithms. Another potential future direction is to investigate the performance of deep



Future Internet 2023, 15, 243 16 of 17

learning algorithms. Lastly, it is necessary to consider creating a NIDS system using the
best model. This NIDS system can then be tested by applying it in a network and analyzing
its predictions.

Author Contributions: Conceptualization, M.A.L.; Methodology, M.A.L.; Project Administration,
M.A.L.; Software, M.A.L., A.G. and S.O.; Formal Analysis, M.A.L. and A.G.; Funding Aquisition,
M.A.L.; Investigation, M.A.L.; Data Curation, M.A.L.; Supervision, M.A.L.; Validation, M.A.L.;
Visualization, A.G. and S.O.; Writing—original draft, M.A.L.; Writing—review & editing, M.A.L.;
Resources, M.A.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the University Research Grant (URG) at Texas
A&M International University and the National Science Foundation under grant award HRD-1911375.

Data Availability Statement: Data in this research paper will be shared upon request made to the
corresponding author.

Acknowledgments: We express our sincere thanks to the anonymous reviewers for their suggestions,
which resulted in a substantially improved manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Scarfone, K.; Mell, P. Guide to intrusion detection and prevention systems (IDPS). NIST Spec. Publ. 2007, 800, 94.
2. Kemmerer, R.A.; Vigna, G. Intrusion detection: A brief history and overview. Computer 2002, 35, 1012428. [CrossRef]
3. Cardoso, L.S. Intrusion detection versus intrusion protection. In Network Security: Current Status and Future Directions; IEEE Press:

Hoboken, NJ, USA, 2007; pp. 99–115.
4. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.

Cybersecurity 2019, 2, 1–22. [CrossRef]
5. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009

IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
pp. 1–6.

6. Belavagi, M.C.; Muniyal, B. Performance evaluation of supervised machine learning algorithms for intrusion detection. Procedia
Comput. Sci. 2016, 89, 117–123. [CrossRef]

7. Yin, C.; Zhu, Y.; Fei, J.; He, X. A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access
2017, 5, 21954–21961. [CrossRef]

8. Javaid, A.; Niyaz, Q.; Sun, W.; Alam, M. A deep learning approach for network intrusion detection system. In Proceedings of
the 9th EAI International Conference on Bio-Inspired Information and Communications Technologies (formerly BIONETICS),
New York, NY, USA, 3–5 December 2016; pp. 21–26.

9. Saranya, T.; Sridevi, S.; Deisy, C.; Chung, T.D.; Khan, M.A. Performance analysis of machine learning algorithms in intrusion
detection system: A review. Procedia Comput. Sci. 2020, 171, 1251–1260. [CrossRef]

10. Yang, L.; Moubayed, A.; Hamieh, I.; Shami, A. Tree-based intelligent intrusion detection system in internet of vehicles. In Proceedings
of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6.

11. Bertoli, G.D.C.; Júnior, L.A.P.; Saotome, O.; Dos Santos, A.L.; Verri, F.A.N.; Marcondes, C.A.C.; Barbieri, S.; Rodrigues, M.S.;
De Oliveira, J.M.P. An end-to-end framework for machine learning-based network intrusion detection system. IEEE Access 2021,
9, 106790–106805. [CrossRef]

12. Elmrabit, N.; Zhou, F.; Li, F.; Zhou, H. Evaluation of machine learning algorithms for anomaly detection. In Proceedings of the
2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Dublin, Ireland, 15–19 June
2020; pp. 1–8.

13. Guo, X.; Yin, Y.; Dong, C.; Yang, G.; Zhou, G. On the class imbalance problem. In Proceedings of the 2008 Fourth international
conference on natural computation, Jinan, China, 18–20 October 2008; Volume 4, pp. 192–201.

14. Panigrahi, R.; Borah, S. A detailed analysis of CICIDS2017 dataset for designing Intrusion Detection Systems. Int. J. Eng. Technol.
2018, 7, 479–482.

15. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 2018, 1, 108–116.

16. Sharafaldin, I.; Habibi Lashkari, A.; Ghorbani, A.A. A detailed analysis of the cicids2017 data set. In Proceedings of the
Information Systems Security and Privacy: 4th International Conference, ICISSP 2018, Funchal-Madeira, Portugal, 22–24 January
2018; Revised Selected Papers 4; Springer: Berlin, Germany, 2019; pp. 172–188.

17. Gharib, A.; Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. An evaluation framework for intrusion detection dataset. In
Proceedings of the 2016 International Conference on Information Science and Security (ICISS), Pattaya, Thailand, 19–22 December
2016; pp. 1–6.

http://doi.org/10.1109/MC.2002.1012428
http://dx.doi.org/10.1186/s42400-019-0038-7
http://dx.doi.org/10.1016/j.procs.2016.06.016
http://dx.doi.org/10.1109/ACCESS.2017.2762418
http://dx.doi.org/10.1016/j.procs.2020.04.133
http://dx.doi.org/10.1109/ACCESS.2021.3101188


Future Internet 2023, 15, 243 17 of 17

18. Gogoi, P.; Bhattacharyya, D.; Borah, B.; Kalita, J.K. MLH-IDS: A multi-level hybrid intrusion detection method. Comput. J. 2014,
57, 602–623. [CrossRef]

19. Panwar, S.S.; Raiwani, Y. Data reduction techniques to analyze NSL-KDD Dataset. Int. J. Comput. Eng. Technol. 2014, 5, 21–31.
20. Ambusaidi, M.A.; He, X.; Nanda, P.; Tan, Z. Building an intrusion detection system using a filter-based feature selection algorithm.

IEEE Trans. Comput. 2016, 65, 2986–2998. [CrossRef]
21. Zhao, G.; Zhang, C.; Zheng, L. Intrusion detection using deep belief network and probabilistic neural network. In Proceedings of

the 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on
Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 21–24 July 2017; Volume 1, pp. 639–642.

22. Roy, S.S.; Mallik, A.; Gulati, R.; Obaidat, M.S.; Krishna, P.V. A deep learning based artificial neural network approach for intrusion
detection. In Proceedings of the Mathematics and Computing: Third International Conference, ICMC 2017, Haldia, India, 17–21
January 2017; Proceedings 3; Springer: Berlin, Germany, 2017; pp. 44–53.

23. Kamarudin, M.H.; Maple, C.; Watson, T.; Safa, N.S. A logitboost-based algorithm for detecting known and unknown web attacks.
IEEE Access 2017, 5, 26190–26200. [CrossRef]

24. Al-Zewairi, M.; Almajali, S.; Awajan, A. Experimental evaluation of a multi-layer feed-forward artificial neural network classifier
for network intrusion detection system. In Proceedings of the 2017 International Conference on New Trends in Computing
Sciences (ICTCS), Amman, Jordan, 11–13 October 2017; pp. 167–172.

25. Xu, C.; Shen, J.; Du, X.; Zhang, F. An Intrusion Detection System Using a Deep Neural Network With Gated Recurrent Units.
IEEE Access 2018, 6, 48697–48707. [CrossRef]

26. Belouch, M.; El Hadaj, S.; Idhammad, M. Performance evaluation of intrusion detection based on machine learning using Apache
Spark. Procedia Comput. Sci. 2018, 127, 1–6. [CrossRef]

27. Jia, Y.; Wang, M.; Wang, Y. Network intrusion detection algorithm based on deep neural network. IET Inf. Secur. 2019, 13, 48–53.
[CrossRef]

28. Halimaa, A.; Sundarakantham, K. Machine learning based intrusion detection system. In Proceedings of the 2019 3rd International
Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019; pp. 916–920.

29. Faker, O.; Dogdu, E. Intrusion detection using big data and deep learning techniques. In Proceedings of the 2019 ACM Southeast
Conference, Kennesaw, GA, USA, 18–20 April 2019; pp. 86–93.

30. Vinayakumar, R.; Alazab, M.; Soman, K.; Poornachandran, P.; Al-Nemrat, A.; Venkatraman, S. Deep learning approach for
intelligent intrusion detection system. IEEE Access 2019, 7, 41525–41550. [CrossRef]

31. Zhang, X.; Chen, J.; Zhou, Y.; Han, L.; Lin, J. A multiple-layer representation learning model for network-based attack detection.
IEEE Access 2019, 7, 91992–92008. [CrossRef]

32. Stiawan, D.; Idris, M.Y.B.; Bamhdi, A.M.; Budiarto, R. CICIDS-2017 dataset feature analysis with information gain for anomaly
detection. IEEE Access 2020, 8, 132911–132921.

33. Panwar, S.S.; Negi, P.S.; Panwar, L.S.; Raiwani, Y. Implementation of machine learning algorithms on CICIDS-2017 dataset for
intrusion detection using WEKA. Int. J. Recent Technol. Eng. Regul. Issue 2019, 8, 2195–2207. [CrossRef]

34. Maseer, Z.K.; Yusof, R.; Bahaman, N.; Mostafa, S.A.; Foozy, C.F.M. Benchmarking of machine learning for anomaly based
intrusion detection systems in the CICIDS2017 dataset. IEEE Access 2021, 9, 22351–22370. [CrossRef]

35. Singh Panwar, S.; Raiwani, Y.; Panwar, L.S. Evaluation of Network Intrusion Detection with Features Selection and Machine
Learning Algorithms on CICIDS-2017 Dataset. In Proceedings of the International Conference on Advances in Engineering
Science Management & Technology (ICAESMT)-2019, Uttaranchal University, Dehradun, India, 14–15 March 2019.

36. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. Adv. Neural Inf. Process. Syst. 2011, 24,
2546–2554.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1093/comjnl/bxt044
http://dx.doi.org/10.1109/TC.2016.2519914
http://dx.doi.org/10.1109/ACCESS.2017.2766844
http://dx.doi.org/10.1109/ACCESS.2018.2867564
http://dx.doi.org/10.1016/j.procs.2018.01.091
http://dx.doi.org/10.1049/iet-ifs.2018.5258
http://dx.doi.org/10.1109/ACCESS.2019.2895334
http://dx.doi.org/10.1109/ACCESS.2019.2927465
http://dx.doi.org/10.35940/ijrte.C4587.098319
http://dx.doi.org/10.1109/ACCESS.2021.3056614

	Introduction
	The CICIDS-2017 Dataset
	Related Work
	Background
	Machine Learning
	Algorithms and Techniques
	Random Forest
	Linear Support Vector Machine
	Gaussian Naive Bayes
	Logistic Regression
	Synthetic Minority Oversampling
	Bayesian Optimization


	Methodology
	Preprocessing
	Model Training and Cross-Validation
	Model Testing and Evaluation

	Results and Discussion
	Confusion Matrix
	Classification Report
	Precision–Recall Curve (PRC)
	Results Summary

	Conclusions
	References

