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Abstract: There has been a great deal of research in the area of using graph engines and graph
databases to model network traffic and network attacks, but the novelty of this research lies in
visually or graphically representing the Reconnaissance Tactic (TA0043) of the MITRE ATT&CK
framework. Using the newly created dataset, UWF-Zeekdata22, based on the MITRE ATT&CK
framework, patterns involving network connectivity, connection duration, and data volume were
found and loaded into a graph environment. Patterns were also found in the graphed data that
matched the Reconnaissance as well as other tactics captured by UWF-Zeekdata22. The star motif
was particularly useful in mapping the Reconnaissance Tactic. The results of this paper show that
graph databases/graph engines can be essential tools for understanding network traffic and trying to
detect network intrusions before they happen. Finally, an analysis of the runtime performance of
the reduced dataset used to create the graph databases showed that the reduced datasets performed
better than the full dataset.

Keywords: graph databases; data visualization; MITRE ATT&CK tactics; star motif; clique motif;
reconnaissance tactic

1. Introduction

In the past decade, the number of IoT (internet of things) devices connected to the
internet has significantly increased. It is expected that 43 billion IoT devices will be
connected by the end of 2023 [1]. As the number of connected devices grows, so will
the network traffic and the amount of data transmitted. Because IoT devices are used in
industries that use sensitive data (for example, healthcare and the financial sector), not
only is it imperative that the data maintain their integrity and are uncompromised during
transit and at rest, but it is also important that we try to prevent network attacks before
they happen. To do this properly, not only do we need to possess the ability to distinguish
between regular network traffic and attack traffic, but we also need to possess the ability to
detect attacks before they happen.

Many studies have been performed on identifying attack network traffic after the
attacks have happened [2–5], but in this work we are trying to study the step before
that—that is, identifying who is trying to gather information about our system so that they
can perform an attack. Hence, our aim in this work is to analyze the Reconnaissance Tactic
(TA0043) of the MITRE ATT&CK framework. The Reconnaissance Tactic of the MITRE
ATT&CK framework is used to gather information about vulnerabilities in a system [6],
mostly by active scanning. Understanding the nature of reconnaissance being performed
in a system is very important to be able to prevent future attacks before they happen. In
this work, we use a graph engine or graph database to present visual representations of the
Reconnaissance Tactic. Although the focus is on the Reconnaissance Tactic, we also present
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visual representations of regular network traffic and other attack traffic labeled as per the
MITRE ATT&CK framework.

Graph databases, by definition, are no-SQL databases based on a network structure
and on mathematical graph theory. Graphs are composed of three different types of objects:
vertices, edges, and properties. Vertices, or points, are used to represent entities of data that
correspond to some object. Edges, or lines, represent relationships between various vertices;
these connections may be unidirectional or bidirectional [7]. Properties are attributes of the
objects. In this work, vertices correspond to different machine IPs that are communicating,
edges represent the connections between different machines, and properties are different
attributes that correspond to the edges, such as connection duration.

Graphs and graph databases can be utilized to generate graph models to represent
relationships. In addition to visualizations representing attack/non-attack data, graph data
models can be extremely useful, especially in cybersecurity, because these models can be
utilized for pattern recognition, machine learning, and other analysis. Graph databases can
be used to generate predictions to distinguish between regular network traffic patterns and
attack patterns [8].

Although there has been a great deal of research in the area of using graph engines
and graph databases to model network traffic and network attacks, the novelty of this
research lies in visually or graphically representing the Reconnaissance Tactic (TA0043) of
the MITRE ATT&CK framework. Using the newly created dataset, UWF-ZeekData22 [9,10],
labeled based on the MITRE ATT&CK framework, patterns involving network connectivity,
connection duration, and data volume were found from the Conn Log files of UWF-
ZeekData22 [9,10] and loaded into a graph environment. Hence, to elaborate on the novelty
of this research, the following can be stated:

• To date, tactics from the MITRE ATT&CK framework have not been visualized graphi-
cally. This work focuses on presenting graphical visualizations of the MITRE ATT&CK
Reconnaissance Tactic (TA0043) using graph representation.

• Essential feature selection was performed so that this work generated a graph data
model using only a very limited set of network connection features. Feature generation
was also performed using the limited set of network connection features.

Although this is beyond the scope of this work, the benefits of this graphical represen-
tation could be realized as follows in the future:

• The graph models could be effectively used to train machine learning models, espe-
cially in the big data environment, in order to accurately predict when network traffic
is nefarious.

• The reduction of the network data to only a few features (feature selection) that could
be used to identify the Reconnaissance Tactic would be computationally beneficial in
machine learning analysis, especially in the big data environment.

• Above all, these graph models can be used to develop a more robust threat intelligence
platform (TIP) that would be able to visually detect the attacks before they happen, by
recognizing the attack patterns in the data. A TIP is a technology solution that collects,
aggregates, and organizes threat intelligence.

Finally, in this work, we conducted an analysis of the runtime performance in creating
the graph representations with the reduced set of data.

The rest of this paper is organized as follows: Section 2 presents previous works
related to graph databases; Section 3 presents the dataset and the software used to process
the data; Section 4 presents the preprocessing that was used on this dataset; Section 5
presents the algorithmic approach to creating the graphs; Section 6 presents data visualiza-
tions using graph databases; Section 7 presents the runtime performance for creating the
graph databases; Section 8 presents the conclusions; and Section 9 presents prospects for
future works.
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2. Related Works

Although there are quite a few papers on graph databases, no papers have approached
graph databases from the angle of visualizing the Reconnaissance Tactic, labeled as per the
MITRE ATT&CK framework. The authors of [7,11–14] utilized graphs to represent network
connectivity for the purpose of identifying anomalies. Interpretation of the graph data to
detect anomalies has been a challenging task in relation to summarizing normal data while
retaining enough information to detect anomalies [11]. Identifying motifs and comparing
multiple graphs for similarity using various motifs becomes challenging as the graph size
increases [12].

A named-entity recognizer (NER) was proposed by one group of authors, allowing
for the training of an extractor to obtain useful information from the MITRE ATT&CK
framework. The multistep approach to building a knowledge base included collection and
analysis, construction of an ontology from the information gathered and, finally, generation
of a cybersecurity knowledge deduction engine [7].

Another group of researchers approached the problem through an abstracted graph
approach, where flexible attack profiles were created and used to detect simulated attacks.
Utilizing a graph database, the team proposed the possibility of not only identifying the
attacker but also detecting other impacted system components [13], but this group used
log data of a simulated computer network for graphical analysis to successfully detect
simulated attacks. Also, this group looked at advanced persistent threats.

Ref. [14] compared similarities between graphs using a novel neural network approach.
Important vertices would be identified by a specific similar metric, and a pairwise vertex
comparison would be utilized to identify similarity. The group concluded that the first steps
were made at bridging the gap between graph deep learning and the graph search problem.

Ref. [15] considered temporal aspects associated with vulnerabilities, such as the
availability of exploits and patches, and how these vulnerabilities are interconnected and
leveraged to comprise the system. They used a vulnerability lifecycle model to measure
the total vulnerability.

Ref. [16] presented a distributed algorithm for detecting cycles in large-scale directed
graphs. This algorithm also found strong components in directed graphs. Ref. [11] looked
at finding the most anomalous nodes from node-labeled directed weighted graphs.

Quite a few papers have looked at graph similarity measures [17–19], which could be
used to detect anomalous patterns, although these papers did not directly address the issue
of cybersecurity data.

From the related works, it is apparent that the work in this paper is unique. First,
this paper uses data from the MITRE ATT&CK framework, which has not previously been
used. Second, the idea in our work is to get away from solely using edges in creating the
graphs. That is, this paper presents network hops between the source and destination,
which result in detecting the MITRE ATT&CK technique. Our work also demonstrates the
successful utilization of motifs to visually identify behavior patterns representing an attack
tactic. Finally, an analysis is conducted of the runtime performance for creating the graph
representations and databases with the reduced set of data.

3. The Dataset: UWF-ZeekData22

Since graph data models depend on the connections between data points, the Conn Log
files of UWF-ZeekData22 [9,10] were used for generating the graphs. UWF-ZeekData22 [9,10]
was generated by the Cyberrange group associated with the University of West Florida,
and the full dataset is available at [10]. This dataset has 9,280,869 attack records and
9,281,599 benign records, for a total of 18,562,468 records.

The data schema of the Conn Log files is presented in Table 1. To generate the graphs,
only four fields from the Conn Log files were used in addition to count: id.orig_h (the
source IP, referred to as srcIP in this paper), id.resp_h (the destination IP, referred to as
dstIP in this paper), duration, and orig_bytes (referred to as bytes).
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Table 1. UWF-ZeekData22: schema of the Conn Log files [9,10].

Attribute Name Description of Attribute Used to Create Graph DB

ts Time of first packet
uid Unique identifier of connection

id.orig_h IP address of packet sender Yes
id.orig_p Outgoing port number
id.resp_h IP address of packet receiver Yes
id.resp_p Incoming port number

proto Transport layer protocol of connection
service Application protocol sent over connection

duration How long connection lasted Yes
orig_bytes Payload bytes originator sent Yes
resp_bytes Payload bytes responder sent
conn_state Possible connection states
local_orig If connection is originated locally
local_resp If connection is responded to locally

missed_bytes Representative of packet loss
history History of connections

orig_pkts Number of packets originator sent
orig_ip_bytes Number of IP level bytes originator sent

resp_pkts Number of packets responder sent
resp_ip_bytes Number of IP level bytes responder sent
community_id

id Connection’s 4-tuple of endpoint addresses/ports
tunnel_parents uid values for encapsulating parent(s) connections

3.1. Distribution of UWF-ZeekData22 by Tactics

Table 2 presents tactics available in UWF-ZeekData22. For this analysis, initially, the
data was divided into four categories by attack tactic: Reconnaissance, Discovery, No
Attack, and All Attack Tactics. Reconnaissance and Discovery were selected because they
had more data. No Attack was selected to visualize how normal network traffic would
appear without abnormal traffic included. The All Attack Tactics dataset was selected to
visualize how normal and abnormal network traffic would appear. Since the volume of
data for Discovery was eventually not considered to be enough for a robust analysis, this
category was also not further analyzed in this work. Hence, ultimately, a full analysis
is presented of only the Reconnaissance Tactic, non-attack data, and all data (which also
include the Reconnaissance and Discovery). The other categories were also not analyzed
individually, due to the minimal occurrences of the other tactics.

Table 2. UWF-ZeekData22 tactics [10].

Attack Tactic Count

None (Not an attack) 9,281,599
Reconnaissance 9,278,722

Discovery 2086
Credential Access 31

Privilege Escalation 13
Exfiltration 7

Lateral Movement 4
Resource Development 3

Defense Evasion 1
Initial Access 1
Persistence 1
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3.2. Software Utilized to Process Data

Python and PySpark were utilized, as GraphFrames is readily available in this envi-
ronment. In order to visualize the graph data, GraphStreams [20] was used, since it has a
feature-rich library. GraphStreams [20] was implemented in the Java environment.

4. Preprocessing

Using the Conn dataset from UWF-Zeekdata22 [9,10], a unique list of source and
destination IP addresses was generated using a simple hash map. A graph was created
using the unique list as graph vertices, naming the vertices based on whether they were a
source IP or destination IP. Once the graph vertices were created, edges were established
and weighted based on the following dominant attributes:

• Destination ip (id.resp_h) and originating bytes (orig_bytes), used as per [21].
• Total number of connections between the unique source and destination.
• Total duration of the connection(s) between the vertices.
• Total number of bytes of the connections between vertices.
• The attack tactic.

First, this information was used to generate a PySpark vertex and edge list. Then,
this information was used to create a GraphFrame in order to determine vertex and edge
relationships and graph shapes. The objective was to look for two primary structures in
the graphs: star motifs and clique motifs. Star motifs are where a single vertex connects to
multiple vertices, while clique motifs are where the largest set of interconnected vertices
is identified. Stars in a graph are defined as having n-1 vertices with a degree of 1 and a
single vertex having a degree of n − 1 [22]. The Bron–Kerbosch algorithm [23] was utilized
to find maximal cliques. This algorithm finds the largest connected vertices that produce
the unique clique.

Additional effort was taken to scan the vertices and edges to find and eliminate
intermediate vertices, revealing true endpoints in the graph. In order to do this, cycles had
to be identified and eliminated. The approach taken initially was to use depth-first search
(DFS), but due to the number of vertices in the graph a dynamic algorithmic approach
was taken to minimize recursive code. The dataset was reduced to tables of unique source
and destination addresses and accumulated connections, durations, and bytes transmitted.
These vertices were then used to construct a graph, eliminating any edges that would result
in a cycle. Eliminating cycles provided for a minimally connected graph that was easier and
faster to traverse when connecting the source of an attack to its destination. Elimination
of the cycles did not impact the underlying graph, as all vertices were still reachable by
other adjacent vertices [24]. Elimination of the cycles reduced the edges needed to create
the graph and thus produced a more concise graph. This allowed for identifying motifs of
interest, as they stood out from the background of random interconnections that were not
of interest [25].

Binning

Binning allowed for continuous data to be represented in various discrete categories or
bins. In order to best characterize the data, the following attributes of the edge connections
were binned: number of connections, average duration, and average bytes. In order to
bin the data, the methodology outlined by the authors of [21] was utilized; however, a
stationary mean was implemented instead of a moving mean. The standard deviation was
first calculated by using the following formula:

stddev =

√√√√ n

∑
i=1

(xi − x)2

n
(1)
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where x is the attribute that is being binned, x is the average of the attribute, and n is
the number of data points. Six bins were then constructed using the calculated standard
deviation, as follows:

bin1 = (−∞, x − (2 ∗ stddev)) (2)

bin2 = [ x − (2 ∗ stddev), x − stddev) (3)

bin3 = [x − stddev, x) (4)

bin4 = [x , x + stddev) (5)

bin5 = [x + stddev, x + (2 ∗ stddev)) (6)

bin6 = [x + (2 ∗ stddev), ∞) (7)

Each of the three edge attributes was assigned a bin, determined by which bin the
attribute’s value landed in. Because the data had a large variance, and thus a large deviation,
the first two bins were negative for some of the attributes.

After using Equation (1) to calculate the standard deviation for the count attribute for
the full Reconnaissance dataset, Equations (2)–(7) were used to calculate the bins for the
count attribute as follows:

stddev = 265, 048.551, x = 16, 963.973

bin1 = (−∞, x − (2 ∗ stddev)) = (−∞, 16, 963.973 − (2 ∗ 265, 048.551)) = (−∞,−513, 133.129)

bin2 = [ x − (2 ∗ stddev), x − stddev) = [16, 963.973 − (2 ∗ 265, 048.551), 16, 963.973 − 265, 048.551))
= [−513, 133.129,−248, 084.578)

bin3 = [ x − stddev, x) = [16, 963.973 − 265, 048.551) , 16, 963.973 ) = [−248, 084.578, 16, 963.973)

bin4 = [ x, x + stddev) = [16, 963.973 , 16, 963.973 + 265, 048.551) = [16, 963.973, 282, 012.524)

bin5 = [x + stddev, x + (2 ∗ stddev)) = [16, 963.973 + 265, 048.551, 16, 963.973 + (2 ∗ 265, 048.551))
= [282, 012.524, 547, 061.074)

bin6 = [x + (2 ∗ stddev), ∞ ) = [16, 963.973 + (2 ∗ 265, 048.551), ∞) = [547, 061.074, ∞)

To find which bin a value is in, the bin that overlaps the value is found. As an example,
the value 1280 is between the values −248,084.578 and 16,963.973; therefore, this value
resides in bin3.

5. Algorithmic Approach to Creating the Graphs
5.1. Overview of Approach

UWF-ZeekData22 [9,10] was reduced to the source and destination IPs only, by remov-
ing intermediary vertices and cycles in an effort to remove network noise. To remove the
intermediary vertices, a depth-first search (DFS) algorithm approach was taken, adding
only edges that did not result in a cyclic graph. Due to the number of vertices in the graph,
a dynamic algorithmic approach was taken to minimize recursive code. The dataset was
reduced to tables of unique source and destination addresses and accumulated connec-
tions, durations, and bytes transmitted. These vertices were then used to construct graphs,
eliminating any edges resulting in cycles. Graphical representations are presented of the
Reconnaissance Tactic, as well as all attack and non-attack traffic.
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5.2. Workflow

Figure 1 presents an overview of the process that was used in this work, from prepro-
cessing and reducing the data to generating the graph visualizations.
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5.2.1. Reducing the Data

Since UWF-ZeekData22 [9,10] is a large dataset, one of the first objectives was to see if
any kind of feature reduction could be applied. Hence, only the connection counts, bytes
transferred, and connection data were aggregated to reduce the number of data points
that would feed into the next graphing phase. Specifically, the duration and orig_bytes
features from the Conn Log files of UWF-ZeekData22 [9,10] were aggregated by the unique
source-to-destination key. These features were totaled and, additionally, new features
were generated using duration and orig_bytes. The additional new features were average
duration and average bytes.

5.2.2. Producing a Non-Cyclic Graph

Graphs were created using the IP addresses obtained in the previous phase, populating
the edges with the aggregated counts, bytes, and duration values. As each edge was added
to the graph, a check was performed to determine whether the new edge produced a cycle.
If a cycle was created, the edge was removed from the graph. The final graph data were
then written out as a CSV file for the next phase.

5.2.3. Binning

The CSV file from the previous phase was analyzed and binned as explained in the
preprocessing section. The resulting bins replaced the original graph data, and a new CSV
file was produced for the next phase.

5.2.4. Generating Visual Graph

The resulting graph data, now binned on count, bytes, and duration, were loaded into
the GraphStream application, and visualization of the graphs was produced and used in
this work.

5.3. Algorithmic Approach to Creating the Graphs

Each unique source-to-destination edge was identified and mapped. With each unique
edge between the source and destination, a summation of attributes that were to be tracked
was stored. A graph G of unique vertices was created. Iterating through all source vertices,
an edge was added to the graph from source to destination and tested for the creation
of a cycle in the graph. If a cycle was detected, then the last edge was removed. The
final resulting graph produced the longest path between a given source vertex and its
furthest destination vertex that did not result in a cycle. This allowed for the elimination of
intermediate vertices and the detection of the final destination of an attack from a source.

If calling isCyclic method (Algorithm 1) for the Graph results in true, then a cycle
has been encountered and the last vertex must be removed to remove the cycle. Analysis
was performed to determine whether any meaningful correlation could be attributed to
the attack tactic port numbers used by the source or destination. It was found that this
information did not add any value to the graph; therefore, port was eliminated as a possible
attribute of interest.
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Algorithm 1: isCyclic

Input: Graph G, vertex V to add
Output: Boolean true if after adding V, the graph is cyclic,

updated G, with vertex V added
Add V to G
Create and initialize visited array, recursionStack array
Mark all vertices as unvisited in both visited and recursionStack
forall vertex v in G

Return isCyclicUtil (v, visited, recursionStack)
isCyclicUtil (vertex, visited array, recurssionStack)

if vertex visited before return false
if vertex is in recursionStack return true
Mark vertex as visited for vertex
Mark recursionStack as visited for vertex
forall children of vertex

if isCyclic (childVertex, visited array, recursionStack)
Return true

Set recursionStack for vertex to false
Return false

6. Resulting Graph Visualizations

GraphStream [20] was utilized to generate graphical visuals for each of the subsets
of the edges. GraphStream is a Java library used for modeling, visualizing, and analyzing
dynamic networks of various sizes [20].

The data were fitted to different motif models to determine whether various attacks
could be characterized by specific shapes. In the motifs (Figures 2–8) that follow, the color
of each edge represents the intensity/bin of the corresponding attribute that the graph
represents. The colors—orange for bin 1, yellow for bin 2, green for bin 3, blue for bin 4,
purple for bin 5, and red for bin 6—were used in order from least to highest intensity to
represent the bin value ranges.
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6.1. Star Motif

As seen from Figures 2–4, the Reconnaissance Tactic resembles the star motif, in which
there is a central vertex from which the connections originate. All connections originate
from the central vertex of 143.88.2.10. This indicates active scanning [26], typical of a
Reconnaissance Tactic. In active scanning, an adversary probes a victim’s infrastructure
network traffic by mechanisms such as port scanning. Port scanning classifies each port
into a state of open, closed, filtered, unfiltered, open/filtered, or closed/filtered [27]. This
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helps an attacker determine which ports on a network are open and can be utilized to
receive and send data. Figures 2–4 represent the Reconnaissance motif by connection count,
average duration, and average bytes, respectively.

6.1.1. Visualizing the Reconnaissance Tactic by Connection Count

Figure 2 depicts the Reconnaissance Tactic radiating from a single vertex, 143.88.2.10,
to multiple other vertices in the graph. The number of connections from point to point was
generally in the average range of connections, with the exception of a few that were in the
extreme range of binning. Looking deeper into the data, it can be seen that each connection
generally involves a different port; therefore, this graph is representative of a port scan,
typical of a Reconnaissance Tactic. This graph has some areas of interest, represented by
the red connections (bin = 6), where considerably more connections occur than the normal
connection count (bin = 3), which was 1024 connections. Each of these bin 6 connections
was in excess of 1 million. One outlier in the data was a connection between 143.88.5.12
and 143.88.5.1 (bin = 5) with 1

2 million connections. Example data points by connection
count can be seen in Table 3. For the Reconnaissance Tactic, the maximum connection count
was 3,112,192, while the minimum connection count was zero, and the average connection
count was 33,927.946.

Table 3. Reconnaissance points of interest (connection count).

ID From To Total_Dur Avg_Dur Total_Bytes Avg_Bytes Count CountBin

edge_0 143.88.2.10 143.88.7.15 353,248.5154 0.2126 2,654,582,328,320 1,597,759.9722 1,661,440 6
edge_1 143.88.2.10 143.88.7.11 972,063.5371 0.3123 5,579,520 1.7928 3,112,192 6
edge_2 143.88.2.10 143.88.7.1 279,987.9888 0.1338 8,567,808 4.0934 2,093,056 6
edge_3 143.88.2.10 143.88.7.12 778,386.2988 0.6914 925,758,636,800 822,247.5387 1,125,888 6

edge_257 143.88.5.12 143.88.5.1 943,576.7243 1.8777 36,458,752 72.5507 502,528 5

It can also be noted from Figure 2 that 143.88.2.10 is mostly pointing to the 143.88.7.*
addresses. The graph is actually pointing to the entire range of the subnet from 143.88.7.0-
255. The red lines indicate where most of the bytes are being transmitted back and forth.
This is highly likely because the four IP addresses belonged to virtual machines running on
the victim’s network, and a reply from the victim’s network is indicative of an open port of
a victim’s host.

6.1.2. Visualizing the Reconnaissance Tactic by Average Duration

Figure 3 presents the visualization of the Reconnaissance Tactic by average duration.
The average duration of the connections in the star motif did not identify areas of interest, as
green (bin = 3) and blue (bin = 4) are average behaviors in this graph. The blue connections
in Figure 3 correspond to the high connections found in Figure 2, although the duration
per connection is considerably higher, ranging from 300 to 1700 times longer than the other
connections in green. The connections in green transferred 0 bytes, whereas the connections
in blue transferred data from between 2 bytes and 1.5 MB of data per connection. Sample
data points for Reconnaissance points of interest based on average duration are presented
in Table 4. The maximum duration was 972,063.54, the minimum duration was 0.04, and
the average duration was 12,947.3263.

Table 4. Reconnaissance points of interest (average duration).

ID From To Total_Dur Avg_Dur Total_Bytes Avg_Bytes Count CountBin

edge_3 143.88.2.10 143.88.7.12 778,386.2988 0.6913 925,758,636,800 822,247.5387 1,125,888 4
edge_4 143.88.2.10 143.88.7.10 1792.93927 1.4007 798,720 624 1280 4
edge_42 143.88.2.10 143.88.7.14 3080.24 3.0080 0 0 1024 4
edge_43 143.88.2.10 143.88.7.13 3080.264 3.0080 0 0 1024 4
edge_257 143.88.5.12 143.88.5.1 943,576.7 1.8776 36,458,752 72.55068772 502,528 4
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6.1.3. Visualizing the Reconnaissance Tactic by Average Bytes

Figure 4 presents the Reconnaissance Tactic by average bytes. As depicted in Figure 4,
only two areas of interest were identified. In both cases, the number of bytes transferred
per connection was 0.8 MB to 1.5 MB. It is possible that the attacker found that these IP
addresses had exposed ports that could be used to send and/or receive data to/from
the network. Example data points for the Reconnaissance points of interest based on
average bytes are presented in Table 5. The maximum number of bytes transferred was
2,654,582,328,320, the minimum number of bytes transferred was zero, and the average
number of bytes transferred was 13,877,478,833.

Table 5. Reconnaissance points of interest (average bytes).

ID From To Total_Dur Avg_Dur Total_Bytes Avg_Bytes Count CountBin

edge_0 143.88.2.10 143.88.7.15 353,248.5 0.212616 2,654,582,328,320 1,597,760 1,661,440 3
edge_3 143.88.2.10 143.88.7.12 778,386.3 0.691353 925,758,636,800 822,247.5 1,125,888 4
edge_257 143.88.5.12 143.88.5.1 943,576.7 1.87766 36,458,752 72.55069 502,528 4

6.2. Clique Motif

Figure 5 depicts the cliques found in UWF-ZeekData22. The bottom left set of IP
addresses are reverse shells coming back to the 143.88.2.10 address, which were attackers
on the Kali Linux machine used to scan and attack the victim’s network. The connections
in the red box are interesting because they are able to gain a connection to the University of
West Florida’s (UWF’s) IP address, which is the 143.88.0.* subnet. The group of connections
in the top right are IPv6 addresses. The IPv6 address is the successor of the regular IPv4
address [28]. With the limited number of IPv4 addresses, in order to accommodate for the
increasing number of devices on the internet, the Internet Engineering Task Force (IETF)
developed the Internet Protocol version 6 (IPv6) address. IPv6 uses a 128-bit address, unlike
IPv4, which uses a 32-bit address.

6.3. Visualizations of Non-Attacks by Count

Figure 6 depicts the counts of connections that were categorized as non-attacks and
shows a large cluster of different connections of IPv6 addresses. There are several areas of
interest identified by the colored boxes. The IP addresses within the red boxes are routers
or switches that are redirecting traffic to different subnets (ff02::fb and ff02::1:3), and these
subnets are possibly redirecting it to servers or load balancers.

As cycles were removed from the data, they appeared unidirectional. The yellow
boxed area (bottom right) represents servers that were behind a load balancer. The load
balancer evenly distributes traffic to the various servers.

Two data points for the non-attacks by connection count are presented in Table 6.
The maximum count was 6,724,017, the minimum count was 1, and the average count
was 4,273,817.

Table 6. Non-Attack points of interest (count).

ID From To Total_Dur Avg_Dur Total_Bytes Avg_Bytes Count CountBin

edge_21 143.88.11.14 143.88.11.1 1,267,576.92 2.6 40,376,997 82.73 488,029 5
edge_35 143.88.255.10 10.0.10.1 114.42 0 605,569,716 90.06 6,724,017 6

6.4. Visualizing Attacks by Count

Figure 7 depicts the full picture of the attack data binned with respect to the number
of occurrences (count). The star motif in the red box is the Reconnaissance port scan sample
shown in Figure 2. The top right of Figure 7 has more IPv6 addresses compared to Figure 6.
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Example data points for all attack tactics by count are presented in Table 7. The maxi-
mum count was 6,724,017, the minimum count was 1, and the average count
was 3,864,567.

Table 7. All Attack Tactics points of interest (count).

ID From To Total_Dur Avg_Dur Total_Bytes Avg_Bytes Count CountBin

edge_3 143.88.7.10 143.88.2.10 1216.984 0.002334 24,576 0.047128 521,472 5
edge_6 143.88.2.10 143.88.7.15 353,248.5 0.212616 2,654,582,328,320 1597760 1,661,440 6
edge_7 143.88.2.10 143.88.7.11 972,063.5 0.31234 5,579,520 1.792794 3,112,192 6
edge_8 143.88.2.10 143.88.7.1 279,988 0.13377 8,567,808 4.093444 2,093,056 6
edge_9 143.88.2.10 143.88.7.12 778,386.3 0.691353 925,758,636,800 822,247.5 1,125,888 6

edge_262 143.88.5.12 143.88.5.1 943,576.7 1.87766 36,458,752 72.55069 502,528 5
edge_267 143.88.11.10 8.8.8.8 588,871.3 1.293066 43,664,530 95.88023 455,407 5
edge_268 143.88.11.10 8.8.4.4 590,266.6 1.300276 43,591,546 96.02614 453,955 5
edge_284 143.88.11.14 143.88.11.1 1,267,577 2.597 40,376,997 82.73483 488,029 5
edge_298 143.88.255.10 10.0.10.1 114.4165 0.000 605,569,716 90.06071 6,724,017 6

6.5. Visualizations of the Noncyclic Counts

Figure 8 represents the final count of connections for all identified attacks, with all
cycles removed. All edges were added in this graph, except for any edges that returned to
a previously visited vertex. This allowed for the visualization of one-way traffic from the
source to the destination. Adding the return cycles would have produced additional noise
and could obscure the true target of the attack.

6.6. Summarizing the Graphical Visualizations

Figures 2–4 are star motifs that depict the Reconnaissance Tactic, but from different
angles—connection count, duration, and byte count, respectively. In this dataset, UWF-
ZeekData22, the star motif represents the Reconnaissance Tactic well. The Reconnaissance
Tactic essentially radiates from a single vertex, 143.88.2.10, to multiple other vertices in the
graph. The clique motif was not useful in graphing the Reconnaissance Tactic.

7. Runtime Performance

This section presents the runtime performance of the process of creating the graph
databases, starting from file processing to the visualization of the graphs. In every case, it
can be noted that the truncated data, i.e., our reduced dataset used to create the graphs,
performed better than the full data.

Table 8 presents the execution time for processing, including writing the resulting
output files, running on a quad-core i5 intel processor at 2.4 GHz with 16 GB of DDR4
3200 RAM. For both Phase 1 (file processing) and Phase 2 (graph processing), it can be
noted that the reduced data (with fewer attributes, used to create the graphs) performed
better than the full data, which had all of the attributes.

Table 8. Execution time for processing.

Phase 1—File Processing Phase 2—Graph Processing

Duration (milliseconds) Duration (milliseconds)

Full File/Tactic/Filter by IP
Reduced Data Full Data Reduced Data Full Data

(84.3 k Rows) (18.56 M Rows) (84.3 k Rows) (18.56 M Rows)

All rows 702 64,955 60 65
Reconnaissance 546 64,535 55 54
IP: 143.88.2.10 543 62,402 51 47

After file processing and graph processing, the resulting data file was reduced to
vertices and summed by connection count, connection duration, and bytes transmitted.
These summed amounts were then binned across the vertices and graphed. Table 9 presents
the execution time for binning and generating the resulting CSV files after data processing,
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executed on a 10-Core Intel Core i9 at 3.6 GHz with 32 GB of 2667 MHz DDR4 RAM. It can
once again be noted that the reduced data performed better than the full data.

Table 9. Execution time for binning and generating resulting CSV files.

Duration for Graph Streaming
Row Count

(milliseconds)

Full File/Tactic Reduced Data Full Data Reduced Data Full Data

All rows 39 41 374 480
Reconnaissance 39 40 255 258
IP: 143.88.2.10 38 38 254 256

Table 10 presents the execution time for generating GraphStream visuals after data
binning, running on a Quad-Core Intel Core i7 at 2.8 GHz with 16 GB of 2133 MHz LPDDR3
RAM. Here we can see that the reduced data performed better for the Reconnaissance and
the IP address 143.88.2.10.

Table 10. Execution time for generating visuals.

Duration
Row Count

(milliseconds)

Full File/Tactic Reduced Data Full Data Reduced Data Full Data

All rows 7904 6967 374 480
Reconnaissance 7510 7644 255 258
IP: 143.88.2.10 6834 7241 254 256

8. Conclusions

The objective of this research was to determine whether UWF-Zeekdata22 [9,10] could
be mapped into a graph that could then be analyzed to yield consistent and identifiable
patterns. Patterns involving network connectivity, connection duration, and data volume
were found when the Conn Log files of the UWF-Zeekdata22 dataset were extracted and
loaded into a graph environment. Patterns were also found in the graphed data that
matched the attack tactics captured by UWF-Zeekdata22. The Reconnaissance Tactic was
represented well by the star motif. This Reconnaissance Tactic, labeled as per the MITRE
ATT&CK framework, has not been visually graphed in any previous work.

There were some interesting discoveries when reviewing the resulting graphs. In
the non-attack data, it was possible to identify normally occurring interactions between
vertices in the graph. This could be used to teach a machine learner what behaviors to
ignore. This could help identify zero-day attacks, as they would not “look” like a learned
normal behavior of the network.

Finally, an analysis of the runtime performance of the reduced dataset, using only four
features from UWF-ZeekData22’s Conn Log files and two additionally generated features
plus count, showed that the reduced dataset performed better than the full dataset. Hence,
rather than using all 23 features of the Conn Log dataset, a set of four connection features
and two additionally generated features plus the count was enough for the graph engine to
generate the graphs.

9. Future Works

The results in this paper show that graph databases/graph engines can be essential
tools for understanding network traffic and detecting various network intrusions. The
amount of data available for use in the analysis of this paper was fairly limited, so one area
for future research will be to apply the principles of this paper to multiple datasets and
compare the results. Another area for further research would be to use the models generated
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from this analysis to train machine learners. The learners would then be run against various
simulated attack/non-attack data to determine the accuracy of the models.
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