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Abstract: Ontology alignment has become an important process for identifying similarities and
differences between ontologies, to facilitate their integration and reuse. To this end, fuzzy string-
matching algorithms have been developed for strings similarity detection and have been used in
ontology alignment. However, a significant limitation of existing fuzzy string-matching algorithms is
their reliance on lexical/syntactic contents of ontology only, which do not capture semantic features
of ontologies. To address this limitation, this paper proposed a novel method that hybridizes fuzzy
string-matching algorithms and the Deep Bidirectional Transformer (BERT) deep learning model
with three machine learning regression classifiers, namely, K-Nearest Neighbor Regression (kNN),
Decision Tree Regression (DTR), and Support Vector Regression (SVR), to perform the alignment of
ontologies. The use of the kNN, SVR, and DTR classifiers in the proposed method resulted in the
building of three similarity models (SM), encoded SM-kNN, SM-SVR, and SM-DTR, respectively.
The experiments were conducted on a dataset obtained from the anatomy track in the Ontology
Alignment and Evaluation Initiative 2022 (OAEI 2022). The performances of the SM-kNN, SM-SVR,
and SM-DTR models were evaluated using various metrics including precision, recall, F1-score, and
accuracy at thresholds 0.70, 0.80, and 0.90, as well as error rates and running times. The experimental
results revealed that the SM-SVR model achieved the best recall of 1.0, while the SM-DTR model
exhibited the best precision, accuracy, and F1-score of 0.98, 0.97, and 0.98, respectively. Furthermore,
the results showed that the SM-kNN, SM-SVR, and SM-DTR models outperformed state-of-the-art
alignment systems that participated in the OAEI 2022 challenge, indicating the superior capability of
the proposed method.

Keywords: ontology alignment; ontology matching; fuzzy string matching; machine learning; lexical
alignment; semantic alignment; natural language processing

1. Introduction

Ontologies are the fundamental building blocks of the semantic web, an emerging field
of Artificial Intelligence (AI) that seeks to integrate data and information in a formalized
manner [1], allowing for automated understanding and discovery of connections between
them. An ontology is an explicit specification of a shared conceptualization [2], serving as a
container for knowledge in a specific domain where the relationships between concepts
of the ontology are explicitly defined. By providing a standard vocabulary and formal
structure for data representation, ontologies enable the reuse and sharing of knowledge
across different applications and domains. As such, ontologies play a critical role in
advancing the state-of-the-art in real-world applications.

Many ontologies have been developed in diverse domains, including disease [3],
agriculture and the Internet of Things [4], smart home design [5], climate change [6], and
more [7–10]; these existing ontologies constitute a wealth of valuable assets available for
reuse. The practice of ontology reuse involves leveraging existing ontologies to construct
new ones within the same or related domains. To this end, researchers have defined
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a common framework for ontology reuse that involves ontology selection and ranking,
followed by ontology alignment, integration, and/or merging, and finally, evaluation of
the new constructed ontology [11,12].

Given the wide array of ontologies available in various domains of knowledge with
heterogeneous structures and vocabularies, reusing them is a daunting task that requires
meticulous and precise comparisons to identify overlapping and differences between
them. This is where ontology alignment, also known as ontology matching, plays a
crucial role. However, the challenges inherent in the reuse process are also reflected
in ontology alignment [13–16], given that ontologies are developed independently by
different knowledge engineers, each with their unique perspectives. Therefore, a holistic
approach must be taken when aligning ontologies, accounting for variations in vocabulary,
concept semantics, and structures. Despite numerous efforts to develop effective ontology
alignment methods, such as in the Ontology Alignment Evaluation Initiative (OAEI),
challenges persist, making it a fascinating and active area of research.

A range of metrics have been proposed for ontology alignment, including lexical,
structure-based, and semantic metrics [15,17]. Fuzzy string-matching algorithms and other
string matching techniques have been shown to be effective for lexical alignment in several
studies [18,19]. However, these methods may not be sufficient on their own, as they do not
consider the semantic features of ontologies, especially when concepts are linguistically
different but represent the same underlying knowledge, such as acronyms and synonyms.
Additionally, some machine learning-based methods used for ontology selection and
alignment such as Word2Vec and Skip-gram are not able to recognize previously unseen
vocabulary [20,21]. Some studies have proposed structure-based methods for ontology
alignment [22–24], but these are limited by the different goals and purposes of the design of
the target ontologies [23]. Many studies have also made use of external information (meta-
data) of the ontology in their methods and graphs for ontology matching to overcome the
issue of the complexity of semantic relationships between concepts [25–28]. Other authors
have proposed metrics that combine both semantic and syntactic measures [13,29,30].
However, they have limited performance compared to existing state-of-the-art alignment
systems such as the AML [31] and LogMap [32], which participated in the OAEI 2022
challenge.

To address the shortcomings of existing ontology alignment techniques, this study
proposed a novel method that hybridizes fuzzy string-matching algorithms with the BERT
deep learning model to achieve improved ontology alignment results. Unlike existing fuzzy
string-matching algorithms, the proposed method incorporates both the lexical/syntactic
and semantic features of ontologies in the alignment process. This was achieved by combin-
ing the similarity scores obtained from four fuzzy string-matching algorithms, including
the Longest Common Subsequence (LCS), Levenshtein, Jaccard, and Jaro–Winkler, and the
similarity scores of the BERT deep learning model with three machine learning regression
classifiers including kNN, SVR, and DTR. The aim of the method was to combine the lexical
contents of ontologies and the context and semantic properties of ontologies, processed by
the fuzzy string-matching algorithms and the BERT model, respectively, for comprehensive
and improved ontology alignment performance based on machine learning. The use of
the kNN, SVR, and DTR classifiers in the proposed method resulted in the building of
three hybrid models, namely, SM-kNN, SM-SVR, and SM-DTR. The experiments were
conducted on a dataset obtained from the anatomy track in the OAEI 2022 challenge. The
SM-kNN, SM-SVR, and SM-DTR models were trained using the similarity scores obtained
by the fuzzy string-matching algorithms and the BERT model for each pair of classes in the
input ontologies, as well as the similarity scores obtained by the AML reference alignment
system for the same input ontologies. The performances of the SM-kNN, SM-SVR, and
SM-DTR models were evaluated using various metrics including precision, recall, F1-score,
and accuracy at thresholds 0.70, 0.80, and 0.90, as well as error rates and running times.
The experimental results revealed that the SM-SVR model achieved the best recall of 1.0,
while the SM-DTR model exhibited the best precision, accuracy, and F1-score of 0.98, 0.97,
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and 0.98, respectively. Furthermore, the results showed that the SM-kNN, SM-SVR, and
SM-DTR models outperformed state-of-the-art alignment systems that participated in the
OAEI 2022 ontology alignment challenge, indicating the superior capability of the proposed
method.

The main contributions of this study are three-fold:

• The development of a novel method that considers both the lexical and semantic
features of ontologies in the alignment process to address the limitations of fuzzy
string-matching algorithms,

• The use of deep learning and machine learning regression models to improve ontol-
ogy alignment results, thereby demonstrating the potential of machine learning in
enhancing performance in the field of ontology alignment, and

• The accomplishment of a thorough and detailed performance analysis of the pro-
posed method against state-of-the-art alignment systems in the OAEI 2022 ontology
alignment challenge.

The remaining of this paper is structured as follows: In Section 2, we review the
relevant literature and discuss previous studies related to ontology alignment. Section 3
outlines the materials and methods used in this study, including algorithms, machine
learning techniques employed, and metrics used for the evaluation of the proposed method.
In Section 4, we provide a detailed description of our proposed method, which combines
fuzzy string-matching algorithms and deep learning and machine learning techniques.
Section 5 presents and discusses the experimental results obtained. Section 6 compares our
proposed method with state-of-the-art alignment systems. Finally, in Section 7, we draw
conclusions from our findings and suggest potential avenues for future research.

2. Related Work

In recent years, a considerable amount of research has been conducted on ontology
alignment methods [13,15,17,33–36]. The purpose of ontology alignment is to investigate
the differences and commonalities between ontologies, which were created by various or-
ganizations with distinct objectives and data sources. To aid in this process, various metrics
have been introduced, including lexical (also called string-based, syntactic, content-based),
structure-based, and semantic metrics. Other studies mentioned further metrics such as
hierarchy metric and heuristics [15]. Lexical metrics focus on linguistic matching showing
the degree of similarity between concepts’ labels (strings). This metric is particularly useful
when ontologies in the same or related domains describe similar knowledge with basic
linguistic terms, since they are likely to use the same globally recognized terms within a
given domain. However, lexical metrics alone are insufficient as they do not capture the
semantic features of ontologies’ elements. Furthermore, various challenging cases, such
as synonyms, word omissions, abbreviations, misspellings, and other factors, prevent this
metric from being considered for ontology alignment alone [37]. To address this limitation,
semantic metrics consider the underlying concepts’ semantics by examining their axioms in
both their direct and logical forms [15]. Structure-based metrics, on the other hand, focus on
the degree of structural similarity between aligned ontologies by identifying neighboring
classes, associated properties, and other structural characteristics [15]. Finally, hierarchy
metrics examine the ontology’s design hierarchy, such as the relationships between classes
and the hierarchy of classes (super- and sub-classes). Hence, both the structure-based and
hierarchy metrics are elements of the semantic metrics of ontologies [36,38].

Recent studies have introduced methods for ontology matching that incorporate more
than one metric at a time [13,17,30,34,39,40]. In a study [13], the authors proposed a novel
approach that combines word embedding with a random forest classifier to identify seman-
tic similarities among various concepts. They evaluated their approach using precision,
recall, and F1-score, demonstrating promising results compared to alignment systems in
OAEI 2016. Their results show that they achieved a precision of 0.90 and a recall of 0.71,
which are lower than the best precision of 0.98 and a recall of 1.0 achieved in this study.
Additionally, this study used other metrics such as the running time, Mean Squared Error,
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and Root Mean Squared Error, to evaluated the performance of the proposed ontology
alignment models, while the researchers in [13] did not.

A similar study by Bulygin [29] proposed an approach that performs ontology align-
ment by combining the lexical and semantic metrics of ontologies using machine learning
techniques. Three classifiers were used in the experiment, namely Naïve Bayesian, Gradi-
ent Tree Boosting, and Logistic Regression. Furthermore, the EditDistance and WordNet
were used as baseline for lexical and semantic similarity discovery, respectively. The re-
sults showed that the classifiers achieved high precision and recall, and the Gradient Tree
Boosting classifier outperformed other classifiers with 55.01% in terms of F-measure. The
difference between Bulygin [24] and this study is that we used a different approach that
combines fuzzy string-matching algorithms, the BERT deep learning model, and machine
learning regression models to perform both lexical and semantic alignments of ontolo-
gies. Another difference between our work and Bulygin’s study is that we evaluated the
performance of the lexical alignment by different fuzzy string-matching algorithms and
the performance of the semantic alignment with the BERT deep learning model, then we
combined both performances with machine learning regression models and compared the
final results of the method to that of recent state-of-the-art alignment systems in the OAEI
2022 challenge. This approach allowed us to identify the strengths and weaknesses of each
alignment metric and to determine which fuzzy string-matching algorithms may work best
in combination with machine learning to improve ontology alignment results.

In [30], the authors proposed an approach for ontology alignment that used a Con-
volutional Neural Network (CNN) to perform both lexical and structure alignments. The
results showed that the proposed approach outperformed many alignment systems in the
OAEI. However, the study performed lexical and structure alignments. The structures
of ontologies may differ according to the objectives of their design. The variation of the
ontologies’ structures may cause the alignment algorithm to obtain unreliable alignment re-
sults [38]. Therefore, although the method in [30] showed promising results, it is important
to combine both the lexical and semantic features of ontologies as it is done in this study to
achieve more comprehensive and reliable alignment results.

A group of studies harnessed BERT for ontology alignment. He et al. [40] proposed
an ontology matching system called BERTMap. Their system predicts semantic mapping
by obtaining the contextual embedding from a text extracted from the ontologies, then it
utilizes ontologies’ structures and logic to refine the overall alignment. In [41], the authors
used BERT to align two occupation ontologies. The authors arrived at the conclusion that
BERT can contribute to ontology alignment. By combining manual and automatic align-
ment techniques through hybridization, it is possible to enhance coverage and eliminate
errors. However, the use of manual alignment is unsuitable in real-world applications
where the ontologies being matched may have thousands of concepts and axioms. Further-
more, manual alignment may be costly in terms of time and efforts required to perform
the alignment. Therefore, in this study, BERT is combined with fuzzy string-matching
algorithms in a fully automated way for ontology alignment. In the study [42], the authors
utilized the BERTMap system introduced by He et al. [40] to perform the alignment of
biomedical ontologies and concluded that BERTMap is convenient for real-world applica-
tions. In another study by Bajaj et al. [43], the authors study the BERT biomedical variants
to see whether they outperform the Siamese Network and original BioBERT. Their results
showed that the Siamese Network and BioBERT largely outperformed other variants of
BERT biomedical. The authors emphasized the efficacy of BERT in ontology alignment
since it has high capability to understand the context and semantics of the matched labels.
This capability of BERT is what motivated its hybridization with fuzzy string-matching
algorithms in this study.

Many previous studies on ontology alignment have neglected to evaluate their pro-
posed methods in terms of the running time, which is a crucial performance metric required
in the OAEI [13,29,30]. In contrast, this study conducted a comprehensive evaluation of
the proposed method including the assessment of its processing time, in addition to the
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others evaluation metrics such as precision, recall, and F1-score, to provide a more complete
picture of the effectiveness and performance of the proposed ontology alignment approach.

3. Preliminaries

This section presents the fuzzy string-matching algorithms and the BERT deep learning
and machine learning regression techniques used in the proposed method for ontology
alignment in this study. In addition, the metrics employed to evaluate the performance of
our proposed method are presented.

3.1. Fuzzy String Matching

The fuzzy string-matching algorithms used in the proposed model in this study,
namely, Jaro–Winkler, Jaccard similarity, Longest Common Subsequence (LCS), and Leven-
shtein, are presented in this subsection.

3.1.1. Jaro–Winkler

Jaro–Winkler is a string-matching algorithm that is built upon the Jaro similarity
metric, as defined in Equation (1) [44].

Jaro(s1, s2) =

{
1
3 ×

(
m
|s1|

+ m
|s2|

+ m−t
m

)
: m > 0

0 : otherwise
(1)

The formula uses the length of the strings being compared, |s1| and |s2|, along with
the number of matching characters, m, and transpositions, t, to calculate a similarity score.
To further enhance the performance of the algorithm, Jaro–Winkler introduces a boost
factor for equal prefixes, as in Equation (2).

Jaro Winkler(s1, s2) =

{
Jaro(s1, s2) + lx px(1− Jaro(s1, s2)) : Jaro(s1, s2) > bt

Jaro(s1, s2) : otherwise
(2)

The boost is applied when the Jaro similarity score exceeds a threshold, bt. The length
of the common prefix up to a maximum value, lbound, is denoted by l, and p represents the
prefix scale. It is important to note that lbound p ≤ 1 must be satisfied.

3.1.2. Jaccard Similarity

Originally intended for set theory problems, the Jaccard similarity coefficient algorithm
has found application in the measurement of the similarity of strings. By comparing the
characters of two strings, the Jaccard algorithm identifies shared characters to determine
their similarity. The formula for Jaccard similarity is given in Equation (3) [39],

Jaccard(s1, s2) =
|s1 ∩ s2|
|s1 ∪ s2|

(3)

where, s1 and s2 denote the strings under comparison. The Jaccard algorithm computes the
similarity score, and a higher value indicates a stronger match between the two strings.

3.1.3. Levenshtein Distance

In contrast to the Jaccard similarity coefficient, the Levenshtein distance algorithm
computes the edit distance between two sequences. This distance corresponds to the
minimum number of basic editing operations required to transform the matched string
into a dictionary word, which is the first string being matched to. Specifically, given
two strings S and T with lengths m and n, respectively, the algorithm constructs a ma-
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trix LD of (n + 1) × (m + 1) dimension and computes the value of each cell LD(i,j) using
Equation (4) [45].

LD(i, j) =


0, i = 0, j = 0
j, i = 0, j > 1
i, i > 0, j = 0

Min, i > 0, j > 0

(4)

The matrix is populated based on a recursive formula, where each element in the
matrix indicates the edit distance between a prefix of string S and a prefix of string T.
Specifically, the edit distance between two prefixes is calculated using Equation (5).

Min = min{LD(i− 1, j) + 1, LD(i, j− 1) + 1, LD(i− 1, j− 1) + f(i, j)} (5)

The algorithm fills the Levenshtein distance matrix row by row, where each cell
represents the edit distance between a prefix of S and a prefix of T. Specifically, the function
f(i,j) takes the value of 1 if the ith word of S is different from the jth word of T, and 0
otherwise. The final edit distance between S and T is determined by the value in the
bottom-right corner LD(m,n)of the matrix.

3.1.4. Longest Common Subsequence

The Longest Common Subsequence (LCS) algorithm identifies the longest subsequence
shared between two sequences [46]. A subsequence refers to a sequence that can be derived
from another sequence by omitting some or no elements, while preserving the order of the
remaining elements. Specifically, the algorithm generates a matrix L based on the given
strings T and S, and calculates the elements of L using Equation (6) [45].

L[i, j] =


0, i = 0 or j = 0

L[i− 1, j− 1] + 1, i, j > 0, Si = Tj
max(L[i, j− 1], L[i− 1, j]), i, j > 0, Si! = Tj

(6)

The value of L [i, j] represents the minimum number of edits needed to transform
the substring of the first string up to index i into the substring of the second string up to
index j. The characters at indices i and j of the first and second strings are denoted as Si
and Tj, respectively. If either i or j is 0, it means that one of the substrings is empty, and
the minimum number of edits required to transform one substring into another is simply
the length of the other substring. If Si is equal to Tj, no edit is necessary to transform the
substrings up to indices i and j. Hence, the minimum number of edits required is equal to
the minimum number of edits required to transform the substrings up to indices i − 1 and
j − 1, plus 1. If Si is not equal to Tj, it implies that an edit operation (insertion, deletion, or
substitution) is necessary to transform the substrings up to indices i and j. In this scenario,
one takes the minimum number of edits required to transform the substrings up to indices
i and j − 1 (by inserting Tj) or i − 1 and j (by deleting Si), and take the maximum of these
two values. The LCS algorithm fills the matrix L row by row, and the final value at L [n, m]
gives the minimum number of edits required to transform the first string into the second
string, where n and m represent the lengths of the first and second strings, respectively.

3.2. Bidirectional Encoder Representations from Transformers

The Bidirectional Encoder Representations from Transformers (BERT) is a language
representation model introduced by Devlin et al. [47] at Google; it is a versatile tool
that can be applied to a wide range of tasks such as language inference and question
answering. Its architecture is founded on the original implementation described in [48].
Unlike the early versions of the Generative Pre-Training of Graph model (GPT) [49], BERT
utilizes bidirectional self-attention, allowing each token to attend to both its preceding and
subsequent context. Conversely, GPT utilizes unidirectional self-attention, enabling each
token to attend solely to the context preceding it.
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BERT employs a two-step process for executing a range of Natural Language Pro-
cessing (NLP) tasks, which are pre-training and fine-tuning, illustrated in Figure 1. In
the pre-training phase, the model is trained on an extensive text corpus to acquire a com-
prehensive understanding of language. The objective of pre-training is to create a model
that can be fine-tuned for various downstream tasks, including text classification, question
answering, and natural language generation. Fine-tuning refers to the process of training a
pre-trained BERT model for a specific downstream NLP task.
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During the pre-training phase, the BERT model is trained using a masked language
modeling (MLM) task and a next sentence prediction (NSP) task. In the MLM task, a
percentage of tokens in the input text are randomly masked, and the model is trained
to predict the original token based on the context of the surrounding words. The NSP
task involves providing two sentences as input and the model needs to predict whether
the second sentence follows the first sentence in the original text. By training on these
tasks, BERT learns to represent words and sentences in a way that captures their contextual
meaning and relationships, which is important for many downstream NLP tasks. Once pre-
trained, the BERT model can be fine-tuned on specific tasks with relatively small amounts
of task-specific labeled data to achieve state-of-the-art performance [47].

Fine-tuning involves substituting the final layer of the pre-trained model with a task-
specific layer, which is then trained on labeled data for the new task. This approach allows
the BERT model to leverage its pre-training to acquire general language understanding and
then use the fine-tuning step to adapt to the specificities of the new task [47]. For instance,
if we are using BERT for text classification, we would replace the pre-training task’s final
layer with a classification layer and fine-tune the model on the text classification task with
labeled data. Likewise, if we aimed to apply BERT for a question-answering task, we would
substitute the final layer with a question-answering layer and fine-tune the model with
labeled data specific to that task. The primary advantage of fine-tuning is that it enables the
BERT model to be utilized for a diverse range of NLP tasks without necessitating significant
modifications to the architecture or training methodology. By fine-tuning the pre-trained
model for a particular task, the model can attain state-of-the-art performance even with
limited amounts of task-specific labeled data.

3.3. K-Nearest Neighbour Regression (kNN)

The K-Nearest Neighbor algorithm is a well-established machine learning technique,
frequently employed for classification and regression tasks. Its primary objective is to
classify unmarked data points by assigning them to the category of the nearest labeled
data point [50]. The algorithm’s proficiency lies in its ability to leverage similarity metrics,
which measure the distance between data points to identify the most analogous labeled
data point. K-Nearest Neighbor Regression is a data-driven regression technique that does
not rely on predefined parametric relationships between predictor and predicted variables.
Instead, it utilizes information from observed data to make real-time predictions of the



Future Internet 2023, 15, 229 8 of 31

predicted variable. In regression tasks, K-Nearest Neighbor estimates the response of a
test point (xt) by taking a weighted average of the responses from the k closest training
points (x(1), x(2), . . . , x(k)) in the vicinity of xt. A kernel function is commonly employed
to determine the weight assigned to each neighbor based on its proximity to the test point.
Considering a training dataset X = {x1, x2, . . . , xM} comprising M training points, each
with N features, the weighted Euclidean distance can be utilized to measure the closeness
between each training point xi and the test point xt [51,52]. Euclidean distance is measured
according to Equation (7) [52].

D(xt, xi) =

√√√√ N

∑
n=1

wn(xt,n − xi,n)
2 (7)

where N represents the number of features, xt,n refers to the nth feature value of the testing
point xt, and xi,n represents the nth feature value of the training point xi. The weight
assigned to the nth feature is denoted as wn, and it ranges between 0 and 1.

Next, kernel regression is applied and the estimation of response xt is calculated
according to Equation (8).

f̂ (xt) =

k
∑

i=1
∅(xt, xi) f

(
x(i)
)

k
∑

i=1
∅(xt, xi)

(8)

where k represents the number of nearest neighbors employed for regression, φ(xt, x(i))
represents a kernel function centered at the ith training point x(i), and f(x(i)) represents the
known response of x(i).

3.4. Support Vector Regression

Support Vector Regression (SVR) is a machine learning technique that is based on
Vapnik–Chervonenkis (VC) theory, which has gained considerable attention due to its
robustness and high accuracy. This method utilizes a variety of unique features, including
the use of kernels, sparse solutions, and VC control of the margin, in addition to the number
of support vectors [53]. One of the key characteristics of SVR is the introduction of an
ε-insensitive region around the function, which is commonly referred to as the e-tube. The e-
tube reformulates the optimization problem by identifying the tube that best approximates
the continuous-valued function while balancing model complexity and prediction error.
The optimization problem for SVR is formulated by first defining a convex e-insensitive
loss function that needs to be minimized. The primary objective is to find the flattest tube
that contains most of the training instances. This method achieves a high level of accuracy
by striking a balance between the complexity of the model and the margin of error in the
prediction [53].

3.5. Decision Tree Regression

A Decision Tree is a data structure consisting of an arbitrary number of nodes and
branches at each node, which is widely used in machine learning. Decision Tree Regression
(DTR) employs a rapid divide-and-conquer greedy algorithm that recursively divides the
data into smaller sections. This algorithm repeatedly selects the feature that maximizes the
information gain and then partitions the data based on the selected feature, eventually cre-
ating a tree structure that provides a sequence of decision rules for prediction purposes [54].
The algorithmic process of the Decision Tree involves determining the predictive accuracy
criteria, which can be achieved through various methods such as test sample error, cross-
validation error, or re-substitution error. After defining the accuracy criteria, the next step
involves selecting the optimal split based on the chosen criteria. Finally, the algorithm
determines the stopping point for splitting and selects the optimal tree structure [55]. In
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the first step, the re-substitution error is computed using the same dataset that was utilized
to build the predictor p. This error is calculated as the Mean Squared Error between the
predicted values and the actual values of the dataset. To calculate the cross-validation
error in Decision Tree regression, the dataset is partitioned into k subsets, referred to as
“folds”. The model is then trained on k − 1 folds, while the remaining fold is used for
testing. This process is repeated k times, with each fold serving as the test set once. The
resulting k testing errors are averaged to compute the cross-validation error. By evaluating
the model’s performance on multiple test sets, the cross-validation error provides a more
reliable measure of the model’s ability to generalize to new data and prevent overfitting.
The sample error is calculated by dividing the total number of cases into two subsamples,
X1 and X2, with sizes of N1 and N2, respectively.

In the second step, the splits are selected, then evaluated based on the measure of
node impurity. The most commonly used method for this is the Least-Squared Deviation,
which is represented in Equation (9) [55].

R(t) =
1

Nw(t)
∑
i∈t

wi fi(ui −
−
v(t))

2
(9)

where Nw is the weighted number of cases in node t, wi is the value of weighting variable
for case i, fi represents the value of the frequency variable, ui is the value of the response

variable, and
−
v(t) is the weighted mean for node t.

In the last step, the determination of when to stop splitting takes place, and this relies
on the minimum number of nodes. The selection of the right-sized tree (called the optimum
tree) comes next, and it is obtained by using what is called tree pruning to reduce the risk
of overfitting and improve the model’s generalization performance. Tree pruning involves
removing branches or nodes from the tree that provide little or no additional information
gain in the prediction of the target variable [55].

3.6. Evaluation Metrics

In this subsection, we present the metrics used for the evaluation of the fuzzy string-
matching algorithms, BERT model, and the proposed hybrid method.

3.6.1. Confusion Matrix and Thresholds

The confusion matrix is a tool commonly used in machine learning to display statistical
information on the predictions of a model compared to the actual classifications [55], which
refers to the actual similarity score generated by benchmark. It reports four primary values:
true positive (TP), true negative (TN), false positive (FP), and false negative (FN). TP
represents the number of instances that the machine learning model correctly predicted as
belonging to a specific class, which aligns with the actual results of the reference alignment.
Conversely, TN indicates the number of instances that the model correctly predicted as not
belonging to a specific class, in agreement with the actual reference alignment results. FP
represents the number of instances that the model predicted as belonging to a particular
class, but the reference alignment results indicate otherwise. FN indicate the number of
instances that the model predicted as not belonging to a specific class, whereas the actual
results of the reference alignment indicate the opposite.

In this study, we created confusion matrices to examine the performance of the pro-
posed method at three thresholds of 0.70, 0.80, and 0.90. In the context of ontology alignment
evaluation, a threshold refers to the optimal similarity score value that enables us to assess
whether aligned ontologies are similar or not. A higher threshold value indicates a stricter
evaluation criterion, leading to more dependable final outcomes. Conversely, a lower
threshold value results in a more lenient evaluation criterion, leading to less trustworthy
results.
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3.6.2. Precision

Precision is a very popular method for evaluation of machine learning models. Its
calculation is based on the concepts of TP and FP explained in the preceding subsection. In
the context of ontology alignment, precision is defined as the ratio of the number of the
correct alignments predicted by the proposed model as true positives to the total number
of all correct alignments [56]. Precision is generally calculated according to Equation (10).

Precision =
TP

TP + FP
(10)

Given R as the reference alignment, and A as the prediction of the alignment system
(the proposed method), the precision of A is defined with Equation (11) [56]:

Precision(A) =
|R ∩ A|
|A| (11)

where |R ∩ A| is the number of predictions that are correct matches according to the
reference alignment, and |A| is to total number of all pairs of classes of ontologies that are
predicted as correct matches by the alignment system (proposed method).

3.6.3. Recall

Recall indicates how many instances are predicted positive out of all actually positive
values. Recall is calculated by Equation (12).

Recall =
TP

TP + FN
(12)

The same as with precision, given R as the reference alignment, and A as the predictions
of the alignment system (our proposed method), the recall is calculated by Equation (13) [56]:

Recall(A) =
|R ∩ A|
|R| (13)

where |R ∩ A| is the number of predictions correctly made by the alignment system (the
proposed method) that match the reference alignment, and |R| is the cardinality of matched
pairs of the aligned classes in the reference alignment.

3.6.4. F1-Score

F1-score, also called F-measure, is the harmonic mean between precision and recall [56].
It is given by Equation (14).

F1− score = 2 ∗ precision× recall
precision + recall

(14)

Specifically, the F1-score with reference to ontology alignment is given by Equation (15) [56].

f −measure(A) =
recall(A)x precision(A)

αx recall(A) + (1− α)x precision(A)
(15)

In this study, the relative weight of recall and precision, denoted by α, has been set to 0.5.
This default weight is usually set to 0.5 which gives the same value when the F-measure is
calculated using Equation (12). In some cases, weight can be higher for recall and lower for
precision. In such cases, one can determine the value of the weight for the recall by applying
Equation (13). The weight must be a decimal value in the range 0 and 1.

3.6.5. Accuracy

Accuracy is a critical performance metric in machine learning, which measures the
extent to which a model’s output matches the intended or desired outcome. In this context,
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accuracy is typically assessed by comparing the predicted outputs of a model to a set of
known or labeled data points. The effectiveness of a model’s accuracy is often evaluated
based on the level of user effort required to transform the machine-generated results into the
intended outputs [57]. Achieving high accuracy in machine learning is essential for ensuring
the model’s reliability and usability, as it directly impacts its ability to generalize and
make accurate predictions on new, unseen data. Accuracy is the percentage of the correct
predictions made by the machine learning model. It is simply calculated by summing TP
and TN divided by total number of rows in the dataset.

3.6.6. Mean Square Error (MSE) and Root Mean Square Error (RMSE)

The Mean Squared Error (MSE) is a widely used performance metric that quantifies
the average discrepancy between the observed values and the model’s predicted values.
MSE is calculated by taking the average of the squared differences between the predicted
and observed values, providing a measure of the model’s overall accuracy. This metric is
particularly useful for assessing the effectiveness of regression models, where the goal is to
minimize the error between the predicted and actual values.

The Root Mean Squared Error (RMSE) on the other hand is a widely used performance
metric in machine learning that measures the average magnitude of the errors between the
predicted and observed values. RMSE is a valuable tool for evaluating the accuracy of a
predictive model after the algorithm has converged. This metric is also especially useful in
regression tasks where the goal is to minimize the error between the predicted and actual
values, and it provides a measure of the model’s predictive ability [58]. RMSE is calculated
by Equation (16) [58].

RMSE =

√
1
m

m

∑
i=1

(
ei −

∼
e i

)2
(16)

where ei and
∼
e i represent the original and estimated attribute values, respectively, and m

is the total number of predictions. A larger RMSE value indicates a less accurate model,
whereas a smaller RMSE value indicates a higher degree of predictive accuracy.

4. Proposed Method

Our proposed method employs a suite of fuzzy string-matching algorithms to facilitate
the alignment of ontologies at the lexical level. Specifically, we utilized the Jaccard, Jaro–
Winkler, Levenshtein, and LCS algorithms, which have been extensively validated in the
literature for their effectiveness in this context. While the Word2Vec algorithm has shown
promise in some applications, we found it to be unsuitable due to its inability to handle
strings with multiple tokens, as attested by Rudwan et al. [20]. In addition to these lexical
matching algorithms, we incorporate BERT, a powerful language model that leverages
contextual information to tackle the semantic aspect of ontology alignment. To combine
the similarity scores obtained from these algorithms, we use three regression classifiers as
depicted in Figure 2. This enables us to fully leverage the strengths of each algorithm while
mitigating their weaknesses, resulting in a more accurate and comprehensive alignment of
ontologies.

Figure 2 displays the workflow of our proposed method for ontologies alignment
using a combination of lexical and semantic similarity metrics. The method begins by
extracting labels from the source and target ontologies (Os and Ot), resulting in two sets
of labels, Os Labels and Ot Labels, respectively. Next, we apply a suite of fuzzy string-
matching algorithms recursively to align each pair of labels in the two sets. For each fuzzy
string-matching algorithm, the similarity scores are computed and stored in a separate
text document. This produces a set of similarity scores for each pair of aligned labels, that
capture the lexical similarity between them. To incorporate semantic information into the
alignment process, we use BERT version 2.2.2 available in the “sentence-transformers”
Python library package to compute the semantic similarity scores between every pair of
aligned labels in Os Labels and Ot Labels. These scores are stored in a separate text document,
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SCBERT, which captures the semantic similarity between the aligned labels. Finally, we
combine the lexical and semantic similarity scores using three regression classifiers, namely,
kNN, SVR, and DTR. Each classifier produces a final similarity score for each pair of
aligned labels, which summarizes the overall similarity score considering both the lexical
and semantic features of the input ontologies Os and Ot. Algorithm 1 presents a detailed
breakdown of the implementation of the proposed method shown in Figure 2. Table 1
provides a summary of the variables used in Algorithm 1 and their respective descriptions.
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Table 1. Variables used in Algorithm 1.

Variable Name Description

Os Source ontology
Ot Target ontology

reference An xml document containing the similarity scores between each pair
of classes in Os and Ot

osLabels A document containing the labels of all classes in the source ontology
otLabels A document containing the labels of all classes in the target ontology

finalScores A csv document containing the similarity scores for both fuzzy
string-matching algorithms and BERT

refAMLFile
A csv documents containing three columns representing the URIs of

each pair of classes from Os and Ot and their similarity scores
generated by the baseline AML alignment system

smKNNScores A csv document containing the final similarity scores of the alignment
by the SM-kNN model

smSVRScores A csv document containing the final similarity scores of the alignment
by the SM-SVR model

smDTRScores A csv document containing the final similarity scores of the alignment
by the SM-DTR model

To evaluate the effectiveness of our proposed method, we compared it to the widely-
used AML system [31] version 3.2 as a baseline for aligning two ontologies. In this ex-
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periment, we set the AML threshold to 0.60 and used the mouse and human ontologies as
the source ontology (Os) and target ontology (Ot), respectively. These ontologies were
downloaded from the anatomy track in the OAEI 2022. To evaluate the performance of
our proposed method against the widely-used AML alignment system, we first fed AML
with the source ontology and target ontology to obtain the reference similarity scores in
line 3 of Algorithm 1. The GetURIsScores() function then takes the reference as a parameter
to extract the URIs of each pair of matched classes, as well as their similarity scores, and
store this information in the refAMLFile file in line 4. In lines 6–17 of Algorithm 1, the
classes’ URIs are read from the refAMLFile file and passed to a SPARQL query to extract
their labels; the extracted classes’ labels are then stored in osLabels and otLabels files for the
source and target ontologies, respectively. The fuzzy string-matching algorithms are then
applied for lexical alignment, followed by BERT for semantic alignment, in lines 19–25. The
similarity scores obtained by each algorithm are stored in the finalScores file in line 26. Next,
in lines 28–30 of Algorithm 1, the reference similarity scores obtained by the AML system
are appended to the finalScores file to prepare the data for the training of the models. The
dot product in line 29 of Algorithm 1 indicates that the resulting values will be stored in the
finalScore CSV file. This is followed by the training of the SM-kNN, SM-SVR, and SM-DTR
models in lines 32–34 of the algorithm. Finally, the trained SMKnnModel, SMSvrModel, and
SMDtrModel models are used to predict the similarity scores for each pair of classes in the
input ontologies Os and Ot in lines 36–38. The predicted similarity scores for each model
are then stored in a CSV file with three columns for the source class, the target class, and
the predicted similarity score (lines 36–38). The next section presents and discusses the
experimental results of the study.

Algorithm 1: Hybridizing fuzzy string matching and BERT using regression classifiers

1. Inputs: Os, Ot, reference
2. Outputs: smKNNScores, smSVRScores, smDTRScores, finalScores
3. reference← AML_alignment(Os, Ot)
4. refAMLFile← GetURIsScores(reference)
5.
6. For each row in refAMLfile Do
7. uriSource← ReadUri(row(1))
8. uriTarget← ReadUri(row(2))
9. osLabels← SPARQL(
10. “SELECT DISTINCT? label
11. WHERE { <“+uriSource+”> rdfs:label? label}”
12. )
13. otLables← SPARQL(
14. “SELECT DISTINCT ?label
15. WHERE { <“+uriTarget+”> rdfs:label ?label }”
16. )
17. EndFor
18.
19. For each sourceElem, targetElem in oslabels, otlabels Do
20. scLev← Levenshtein(sourceElem, targetElem)
21. scLcs← LCS(sourceElem, targetElem)
22. scJaccard← Jaccard(sourceElem, targetElem)
23. scJaro← JaroWinkler(sourceElem, targetElem)
24. scBert← BERT(sourceElem, targetElem)
25. EndFor
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26. finalScores.AddRow(scBert, scJaro, scLev, scLcs, scJaccard)
27.
28. For each score, row in refAMLFile, finalScores Do
29. finalScores.AddColumn(row, score)
30. EndFor
31.
32. SMKnnModel← SM-KNNTraining(finalScores)
33. SMSvrModel← SM-SVRTraining(finalScores)
34. SMDtrModel← SM-DTRTraining(finalScores)
35.
36. smKNNScores← getScorePredictions(SMKnnModel, finalScores)
37. smSVRScores← getScorePredictions(SMSvrModel, finalScores)
38. smDTRScores← getScorePredictions(SMDtrModel, finalScores)

5. Experimental Results and Discussion

As explained in Algorithm 1, the AML alignment system was used as the baseline for
generating the reference similarity scores, for training the classifiers in the proposed method.
Furthermore, the reference alignment provided in OAEI 2022 prescribed a similarity score
of 1.0 for each pair of aligned classes. By setting the threshold to 0.60 in the AML system,
we were able to obtain 1400 pairs of similar classes from the mouse and human ontologies.
Three different thresholds, 0.70, 0.80, and 0.90, were used to evaluate the performance of the
algorithms in the proposed method. In the following subsections, we present the similarity
scores obtained by the fuzzy string-matching algorithms and BERT. This is followed by
an analysis of the performance of these algorithms, in terms of precision, recall, F1-score,
and accuracy. Finally, the performance of the proposed method is evaluated by analyzing
the performance of the three hybrid models of the proposed method, namely, SM-kNN,
SM-SVR, and SM-DTR, using the precision, recall, F1-score, and accuracy, as well as the
running time, MSE, and RMSE.

5.1. Performancee Evaluation of Fuzzy String-Matching Algorithms and BERT

Table 2 provides the top 10 best similarity scores for the fuzzy string-matching algo-
rithm, the BERT deep learning model, as well as the similarity scores obtained by the AML
reference system. The scores are ranked from the highest (Sc1) to the lowest (Sc10). It can
be seen that the Jaro–Winkler algorithm achieved the highest similarity score compared
to the other fuzzy algorithms. In contrast, BERT recorded the best similarity score of 1.0,
indicating close semantic relations between the input ontologies.

Table 2. Top similarity scores obtained by the algorithms.

Algorithm Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10

Levenshtein 0.941176471 0.9375 0.933333333 0.933333333 0.933333333 0.928571429 0.928571429 0.928571429 0.928571429 0.928571429
LCS 0.941176471 0.9375 0.933333333 0.933333333 0.933333333 0.928571429 0.928571429 0.928571429 0.928571429 0.928571429

Jaccard 0.94 0.94 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
Jaro–Winkler 0.960784314 0.955555556 0.955555556 0.955555556 0.952380952 0.952380952 0.952380952 0.948717949 0.948717949 0.944444444

BERT 1.0000004 1.0000002 1.0000002 1.0000002 1.0000002 1.0000002 1.0000002 1.0000002 1.0000002 1.0000002
AML System 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

Table 2 further indicates that the Jaccard, Levenshtein, and LCS fuzzy string-matching
algorithms yielded equivalent similarity scores to the baseline’s performance of 0.94 for
some pair of classes in the input ontologies. However, the Jaro–Winkler algorithm per-
formed better than the baseline score, achieving a higher similarity score of 0.96 for some
pair of classes in the input ontologies. Furthermore, although the remaining scores for Lev-
enshtein, LCS, and Jaccard algorithms are slightly lower than the baseline’s performance of
0.94, the Jaro–Winkler algorithm achieved better similarity scores than the baseline for the
remaining scores in Table 2. In contrast, BERT demonstrated consistent and superior per-
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formance across all similarity scores, outperforming the fuzzy string-matching algorithms.
The top similarity score obtained by BERT was the same for the remaining scores, but
with higher scores than the other algorithms, including the baseline AML system. These
results highlight the effectiveness of BERT in achieving high similarity scores, indicating its
potential for improving ontology alignment.

The performance of the fuzzy string-matching algorithms and BERT was further
evaluated in terms of precision, recall, and F1-score. The confusion matrices for all the
algorithms are given in Figure 3 for a threshold of 0.70. From the confusion matrices, it is
evident that BERT outperformed the fuzzy string-matching algorithms with the highest
number of true positives at 1247. Among the fuzzy string-matching algorithms, Jaro–
Winkler had the best performance in terms of true positives. Once again, the confusion
matrices indicate the potential of BERT in ontology alignment.
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Table 3 presents the performance of each algorithm at threshold 0.70, in terms of
precision, recall, F1-score, and accuracy. It is shown that the Jaccard algorithm achieved
the highest precision of 1.0, followed by Levenshtein, LCS, Jaro–Winkler, and BERT, with
precision scores of 0.987, 0.970, 0.965, and 0.928, respectively. On the other hand, BERT
achieved the highest recall score of 0.962, outperforming the other algorithms. BERT also
recorded the highest F1-score compared to the fuzzy string-matching algorithms. In terms
of accuracy, BERT obtained the highest accuracy of 89.6%, outperforming all fuzzy string-
matching algorithms, and followed by the Jaro–Winkler algorithm as the second-best with
81.5% accuracy. Jaccard had the lowest accuracy score of 69.8%. Overall, at the threshold
of 0.70, BERT outperformed the fuzzy string-matching algorithms in ontology alignment.
Among the fuzzy string-matching algorithms, Jaro–Winkler consistently performed better
than LCS, Levenshtein, and Jaccard. The threshold was increased to 0.80 to obtain the
confusion matrixes in Figure 4 for the fuzzy string-matching algorithms and BERT deep
learning model.
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Table 3. Performance of fuzzy string-matching algorithms and BERT at threshold 0.70.

Variable Name LCS Levenshtein Jaccard Jaro–Winkler BERT

Precision 0.969756098 0.986942329 1 0.965022422 0.927827381
Recall 0.766975309 0.699845679 0.697857143 0.830246914 0.96219
F1-score 0.856527359 0.818961625 0.822044594 0.892575695 0.94469697
Accuracy 76.2142857 71.3571429 69.7857143 81.5 89.5714286
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Table 4 displays the performance of the fuzzy string-matching algorithms and BERT
deep learning model at threshold 0.80. The increasing of threshold to 0.80 resulted in
a significant drop in recall for all fuzzy string-matching algorithms, with only slight
improvements in precision. As shown in Table 4, the Jaro–Winkler algorithm remained
the best-performing algorithm, achieving an F1-score of 0.744 and an accuracy of 62.8%.
Despite underperforming in precision compared to the fuzzy string-matching algorithms,
BERT outperformed the algorithms in terms of recall and F1-score, with values of 0.883 and
0.900, respectively. BERT also achieved the highest accuracy of 82.21%, compared to the
fuzzy string-matching algorithms, followed by the Jaro–Winkler algorithm with 62.78%
accuracy which outperformed the rest of fuzzy string-matching algorithms. To further
challenge the algorithms, we raised the threshold to 0.90. Figure 5 displays the confusion
matrices for the fuzzy string-matching algorithms and BERT at this threshold 0.90.

Table 4. Performance of fuzzy string-matching algorithms and BERT at threshold 0.80.

Variable Name LCS Levenshtein Jaccard Jaro–Winkler BERT

Precision 0.975425331 1 1 0.988250653 0.917348609
Recall 0.406619385 0.365642238 0.337142857 0.596532703 0.88337
F1-score 0.573971079 0.535487594 0.504273504 0.743980344 0.90004014
Accuracy 45.2857143% 42.5% 33.7142857% 62.7857143% 82.2142857%
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It can be observed in Figure 5 that the fuzzy string-matching algorithms detected very
few true positives, while false negatives were more prevalent. Among the fuzzy string-
matching algorithms, Jaro–Winkler performed the best in terms of true positives, detecting
87 cases, whereas Levenshtein performed the worst, detecting only 38 true positives. False
positive cases were also relatively low and could be treated as true positives since the
reference alignment provided by OAEI 2022 indicates that the similarity scores for all
aligned pairs of classes should be 1.0.

In contrast, BERT outperformed all the fuzzy string-matching algorithms, detecting
over 50% of the total alignments (i.e., 728 true positive cases). Table 5 summarizes the
performance of the fuzzy string-matching algorithms and BERT in terms of precision,
recall, F1-score, and accuracy at threshold 0.90. It is shown in Table 5 that the Jaccard
algorithm achieved the highest precision, while the other fuzzy string-matching algorithms
obtained lower precision scores compared to the previous thresholds of 0.70 and 0.80.
However, in terms of recall, all fuzzy string-matching algorithms recorded lowest values,
while BERT outperformed them, not only in terms of recall, but also in terms of precision,
F1-score, and accuracy. Among the fuzzy string-matching algorithms, Jaro–Winkler had
the highest accuracy score of 36.7%, while Jaccard achieved the lowest accuracy of 3.07%.
The low accuracies indicate that fuzzy string-matching algorithms are not reliable at higher
thresholds.

Table 5. Performance of fuzzy string-matching algorithms and BERT at threshold 0.90.

Variable Name LCS Levenshtein Jaccard Jaro–Winkler BERT

Precision 0.872340426 0.88372093 1 0.769911504 0.832
Recall 0.043248945 0.040084388 0.030714286 0.091772152 0.76793
F1-score 0.08241206 0.076690212 0.05959806 0.16399623 0.79868349
Accuracy 34.7857143% 34.6428571% 3.0714286% 36.6428571% 73.7857143%

On the other hand, BERT was generally stable and reliable despite the decrease in its
accuracy to 73.8% at threshold 0.90 compared to 82.2% and 89.6% at thresholds 0.80 and 0.70,
respectively. This demonstrates that BERT outperforms fuzzy string-matching algorithms at
different threshold due to its ability to handle the semantic features of the input ontologies.
Therefore, it can be concluded that while fuzzy string-matching algorithms can be useful
for lexical alignment at low thresholds, they are not reliable for comprehensive ontology
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alignment. BERT, on the other hand, has proven to be a more powerful tool for ontology
alignment. The following subsection presents the results of our proposed method for
hybridizing the similarity scores of fuzzy string-matching algorithms and the BERT deep
learning model by the kNN, SVR, and DTR classifiers for improved ontology alignment.
As indicated earlier, the use of the three classifiers to hybridize the fuzzy string-matching
algorithms and the BERT model in the proposed method resulted into three hybrid models,
namely, SM-kNN, SM-SVR, and SM-DTR. Therefore, here and after, the performance of
the proposed method (Figure 2) is discussed in terms of its three hybrid models, SM-kNN,
SM-SVR, and SM-DTR.

5.2. Performance of SM-kNN, SM-SVR, and SM-DTR Models

Let us recall that the aim of this study was to hybridize/combine the strengths of
fuzzy string-matching algorithms and the BERT deep learning model to develop a method
that considers both the lexical and semantic features of ontologies in the alignment process.
By combining the strengths of both fuzzy string-matching algorithms and BERT, we sought
to improve the accuracy and comprehensiveness of the alignment process. To this end, the
similarity scores of the fuzzy string-matching algorithms and the BERT model (see part in
Table 2) were further combined with three machine learning regression classifiers, namely,
kNN, SVR, and DTR. To evaluate the performance of our proposed method, its three hybrid
models, named SM-kNN, SM-SVR, and SM-DTR, were trained using the similarity scores
obtained by the fuzzy string-matching algorithms and BERT for each pair of classes in
the dataset, as well as the reference similarity scores obtained by the AML system. The
following subsections discuss the performance of the three hybrid models (SM-kNN, SM-
SVR, and SM-DTR) of the proposed method, in terms of precision, recall, F1-score, and
accuracy at thresholds 0.70, 0.80, and 0.90, as well as error rates and running times.

5.2.1. Confusion Matrices and Visual Presentation of the Proposed Model’s Performance

Figures 6–8 present the confusion matrices for the SM-kNN, SM-SVR, and SM-DTR
models at thresholds 0.70, 0.80, and 0.90, respectively. It can be seen in Figure 6 that the
three models performed almost the same in terms of the number of true positive cases
they predicted. However, the SM-SVR model outperformed the others by predicting 1293
true positive cases, while the SM-DTR model detected the least number of true positives
with 1269. Comparing the number of true positive cases predicted by the three models to
those of fuzzy string-matching algorithms and BERT (Figures 3–5), one can see that the
three hybrid models (SM-kNN, SM-SVR, and SM-DTR) of the proposed method based on
kNN, SVR, and DTR classifiers outperformed the fuzzy string-matching algorithms and
BERT. This indicates the effectiveness of the proposed method that harnesses the strengths
of both the fuzzy string-matching algorithms and the BERT model for improved ontology
alignment.

Future Internet 2023, 15, 229 19 of 33 
 

 

can be useful for lexical alignment at low thresholds, they are not reliable for comprehen-
sive ontology alignment. BERT, on the other hand, has proven to be a more powerful tool 
for ontology alignment. The following subsection presents the results of our proposed 
method for hybridizing the similarity scores of fuzzy string-matching algorithms and the 
BERT deep learning model by the kNN, SVR, and DTR classifiers for improved ontology 
alignment. As indicated earlier, the use of the three classifiers to hybridize the fuzzy 
string-matching algorithms and the BERT model in the proposed method resulted into 
three hybrid models, namely, SM-kNN, SM-SVR, and SM-DTR. Therefore, here and after, 
the performance of the proposed method (Figure 2) is discussed in terms of its three hy-
brid models, SM-kNN, SM-SVR, and SM-DTR. 

5.2. Performance of SM-kNN, SM-SVR, and SM-DTR Models 
Let us recall that the aim of this study was to hybridize/combine the strengths of 

fuzzy string-matching algorithms and the BERT deep learning model to develop a method 
that considers both the lexical and semantic features of ontologies in the alignment pro-
cess. By combining the strengths of both fuzzy string-matching algorithms and BERT, we 
sought to improve the accuracy and comprehensiveness of the alignment process. To this 
end, the similarity scores of the fuzzy string-matching algorithms and the BERT model 
(see part in Table 2) were further combined with three machine learning regression clas-
sifiers, namely, kNN, SVR, and DTR. To evaluate the performance of our proposed 
method, its three hybrid models, named SM-kNN, SM-SVR, and SM-DTR, were trained 
using the similarity scores obtained by the fuzzy string-matching algorithms and BERT 
for each pair of classes in the dataset, as well as the reference similarity scores obtained by 
the AML system. The following subsections discuss the performance of the three hybrid 
models (SM-kNN, SM-SVR, and SM-DTR) of the proposed method, in terms of precision, 
recall, F1-score, and accuracy at thresholds 0.70, 0.80, and 0.90, as well as error rates and 
running times. 

5.2.1. Confusion Matrices and Visual Presentation of the Proposed Model’s Performance 
Figures 6–8 present the confusion matrices for the SM-kNN, SM-SVR, and SM-DTR 

models at thresholds 0.70, 0.80, and 0.90, respectively. It can be seen in Figure 6 that the 
three models performed almost the same in terms of the number of true positive cases 
they predicted. However, the SM-SVR model outperformed the others by predicting 1293 
true positive cases, while the SM-DTR model detected the least number of true positives 
with 1269. Comparing the number of true positive cases predicted by the three models to 
those of fuzzy string-matching algorithms and BERT (Figures 3–5), one can see that the 
three hybrid models (SM-kNN, SM-SVR, and SM-DTR) of the proposed method based on 
kNN, SVR, and DTR classifiers outperformed the fuzzy string-matching algorithms and 
BERT. This indicates the effectiveness of the proposed method that harnesses the strengths 
of both the fuzzy string-matching algorithms and the BERT model for improved ontology 
alignment. 

 Actual 

Predicted 
1284 76 

12 28 
 

 Actual 

Predicted 
1293 96 

3 8 
 

(a) (b) 

 Actual 

Predicted 
1269 21 

27 83 
 

(c) 

Figure 6. Confusion matrix for SM-kNN, SM-SVR, and SM-DTR models at threshold 0.70. (a) SM-
kNN, (b) SM-SVR, (c) SM-DTR.
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Figures 7 and 8a–c presents the confusion matrixes for the SM-kNN, SM-SVR, and SM-
DTR models at threshold 0.80 and 0.90. At threshold 0.80, the SM-DTR model outperformed
the SM-kNN and SM-SVR models, with a higher number of true positives of 1243 cases
predicated, followed by the SM-kNN model with 1213 true positives, and SM-SVR with
1206 true positives. The SM-DTR model also achieved a better performance at threshold 0.90
compared to other models with 893 true positives, followed by the SM-kNN model with
847 true positives. The SM-SVR model achieved the worst performance at threshold 0.90
with 0 true positives. These results further indicate that the combination of the strengths of
fuzzy string-matching algorithms and the BERT model with machine learning regression
classifiers led to better performance compared to using them individually (see Figures 3–5).
Figures 9–11 present the scatterplot diagrams for the three models. These diagrams provide
a visual representation of the distribution of similarity scores obtained by each model
versus the reference scores obtained by the AML baseline system.

It is shown in Figure 9 that the majority of the plots are located in the top right
corner, indicating that most of the similarity scores are higher. The few plots located in
the right bottom area represent the false negatives. However, the left area of the diagram
shows a mix of false positives and false negatives, as well as a limited number of true
negatives. Nevertheless, the rate of false negatives located at the bottom area of the diagram
is relatively less than the false positives that are located at the upper left area.
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In the scatterplot diagram for the SM-SVR model in Figure 10 the majority of plots
are clustered around the center-right of the diagram, with similarity scores ranging from
0.77 to 0.86. However, a few plots appear beyond 0.90, indicating performance close to that
of the AML reference scores. Figure 11 displays the scatterplot diagram for the SM-DTR
model. It appears that a large number of plots form a line with a 45-degree inclination angle,
indicating that the majority of predictions made by the SM-DTR model are true positives.
Furthermore, a significant number of plots are situated in the upper right corner of the
diagram, demonstrating the ability of the SM-DTR model to accurately predict similarity
scores with highest values between classes.

Future Internet 2023, 15, 229 21 of 33 
 

 

 
Figure 9. Scatterplot diagram of similarity cores predicted by SM-kNN vs. AML reference scores. 

 
Figure 10. Scatterplot diagram of similarity cores predicted by SM-SVR vs. AML reference scores. 

Figure 9. Scatterplot diagram of similarity cores predicted by SM-kNN vs. AML reference scores.

Future Internet 2023, 15, 229 21 of 33 
 

 

 
Figure 9. Scatterplot diagram of similarity cores predicted by SM-kNN vs. AML reference scores. 

 
Figure 10. Scatterplot diagram of similarity cores predicted by SM-SVR vs. AML reference scores. Figure 10. Scatterplot diagram of similarity cores predicted by SM-SVR vs. AML reference scores.



Future Internet 2023, 15, 229 21 of 31
Future Internet 2023, 15, 229 22 of 33 
 

 

 
Figure 11. Scatterplot diagram of similarity cores predicted by SM-DTR vs. AML reference scores. 

It is shown in Figure 9 that the majority of the plots are located in the top right corner, 
indicating that most of the similarity scores are higher. The few plots located in the right 
bottom area represent the false negatives. However, the left area of the diagram shows a 
mix of false positives and false negatives, as well as a limited number of true negatives. 
Nevertheless, the rate of false negatives located at the bottom area of the diagram is rela-
tively less than the false positives that are located at the upper left area. 

In the scatterplot diagram for the SM-SVR model in Figure 10 the majority of plots 
are clustered around the center-right of the diagram, with similarity scores ranging from 
0.77 to 0.86. However, a few plots appear beyond 0.90, indicating performance close to 
that of the AML reference scores. Figure 11 displays the scatterplot diagram for the SM-
DTR model. It appears that a large number of plots form a line with a 45-degree inclination 
angle, indicating that the majority of predictions made by the SM-DTR model are true 
positives. Furthermore, a significant number of plots are situated in the upper right corner 
of the diagram, demonstrating the ability of the SM-DTR model to accurately predict sim-
ilarity scores with highest values between classes. 

5.2.2. Performance of the SM-kNN, SM-SVR, and SM-DTR models at threshold 0.70 
The performances of the SM-kNN, SM-SVR, and SM-DTR models were further dis-

cussed in terms of precision, recall, and F1-score, at thresholds 0.70, 0.80, and 0.90. The 
evaluations of the proposed hybrid method at threshold 0.70 are presented in Table 6 and 
Figure 12. Table 6 presents the precision, recall, F1-score, and accuracy values of the clas-
sifiers at a threshold of 0.70. It is shown that the SM-DTR model achieved the highest 
precision of 0.98, while the SM-SVR model had the lowest precision of 0.93. On the other 
hand, the SM-SVR model achieved the highest recall of 1.00, followed by the SM-kNN and 
SM-DTR models. However, the SM-DTR model outperformed the other methods with the 
best F1-score of 0.98, indicating the ability of the DTR classifier to strike a good balance 
between precision and recall. Moreover, the SM-DTR model had the highest accuracy of 
97%, while the SM-kNN and SM-SVR models achieved the accuracies of 94% and 93%, 
respectively. These metrics are also depicted in Figure 12, which corroborates the results 

Figure 11. Scatterplot diagram of similarity cores predicted by SM-DTR vs. AML reference scores.

5.2.2. Performance of the SM-kNN, SM-SVR, and SM-DTR Models at Threshold 0.70

The performances of the SM-kNN, SM-SVR, and SM-DTR models were further dis-
cussed in terms of precision, recall, and F1-score, at thresholds 0.70, 0.80, and 0.90. The
evaluations of the proposed hybrid method at threshold 0.70 are presented in Table 6
and Figure 12. Table 6 presents the precision, recall, F1-score, and accuracy values of
the classifiers at a threshold of 0.70. It is shown that the SM-DTR model achieved the
highest precision of 0.98, while the SM-SVR model had the lowest precision of 0.93. On
the other hand, the SM-SVR model achieved the highest recall of 1.00, followed by the
SM-kNN and SM-DTR models. However, the SM-DTR model outperformed the other
methods with the best F1-score of 0.98, indicating the ability of the DTR classifier to strike a
good balance between precision and recall. Moreover, the SM-DTR model had the highest
accuracy of 97%, while the SM-kNN and SM-SVR models achieved the accuracies of 94%
and 93%, respectively. These metrics are also depicted in Figure 12, which corroborates the
results presented in Table 6, highlighting that the DTR is the most accurate classifier for the
proposed method, achieving the best precision, F1-score, and accuracy.

Table 6. Performance of SM-kNN, SM-DTR, and SM-SVR models at threshold 0.70.

Variable Name SM-kNN SM-DTR SM-SVR

Precision 0.94 0.98 0.93
Recall 0.99 0.98 1.0

F1-score 0.97 0.98 0.96
Accuracy 94% 97% 93%

The findings discussed above for the SM-kNN, SM-SVR, and SM-DTR models at
threshold 0.70 were further validated through the use of Receiver Operating Characteristic
(ROC) curves, which provide an accurate measure of the classifiers’ performance. Figure 13
displays the ROC curves for the three classifiers at threshold 0.70. The results depicted in
Figure 13 show that the SM-DTR model achieved the highest Area Under the Curve (AUC)
ROC of 89%, indicating its superior performance in minimizing the rates of false positives
and false negatives. Conversely, the SM-SVR model covers only 54% of the AUC ROC,
implying a higher likelihood of erroneous predictions. This observation is consistent with
the accuracy results presented in Table 6, where the SM-SVR model recorded the lowest
precision compared to the other classifiers. Therefore, it can be concluded that DTR is the
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most reliable classifier for the proposed method for ontology alignment, while caution
should be exercised when employing SVR due to the comparatively lower accuracy and
higher possibility of producing false predictions.
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5.2.3. Performance of the SM-kNN, SM-SVR, and SM-DTR Models at Threshold 0.80

The performance of the SM-kNN, SM-SVR, and SM-DTR models at threshold 0.80 is
illustrated in Table 7 and Figures 14 and 15. It is shown in Figure 14 that the SM-DTR model
outperformed the SM-kNN and SM-SVR models in terms of precision, recall, F1-score,
and accuracy. Both precision and recall values achieved by the SM-DTR model were 0.98.
The accuracy of the SM-DTR model was 96%, compared to 93% and 92% for the SM-kNN
and SM-SVR models, respectively. The F1-score for the SM-kNN and SM-SVR models
were the same at 0.96 compared to 0.98 for the SM-DTR model. The ROC curves for the
three variants of the proposed method were also drawn at threshold 0.80 as shown in
Figure 15. It can be observed that the SM-DTR model outperformed the SM-kNN and
SM-DTR models, achieving 89% of AUC ROC, thus indicating its superior capability and
accuracy. A noteworthy finding is the improved performance of the SM-SVR model that
achieved 81% of AUC ROC. The SM-kNN model, on the other hand, ranked third with 80%
of AUC ROC with a slight difference from the SM-SVR model’s performance. The results
of the ROC curves in Figure 15 are in line with the precision and accuracy values presented
in Table 7 and Figure 14. These results further validate the performance of the kNN, SVR,
and DTR classifiers and their suitability for the ontology alignment task.

Table 7. Performance of SM-kNN, SM-SVR, and SM-DTR models at threshold 0.80.

Variable Name SM-kNN SM-DTR SM-SVR

Precision 0.96 0.98 0.96
Recall 0.96 0.98 0.95

F1-score 0.96 0.98 0.96
Accuracy 93% 96% 92%
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5.2.4. Performance of SM-kNN, SM-SVR, and SM-DTR Models at Threshold 0.90

The threshold was increased to 0.90 to further assess the performance of the three
models. Table 8, Figures 16 and 17 displays various performance measures of the SM-kNN,
SM-SVR, and SM-DTR models at threshold 0.90.

Table 8. Performance of SM-kNN, SM-SVR, and SM-DTR models at threshold 0.90.

Variable Name SM-kNN SM-DTR SM-SVR

Precision 0.85 0.89 0
Recall 0.89 0.94 0

F1-score 0.87 0.91 0
Accuracy 82% 88% 32%
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It is shown in Figure 16 that the SM-SVR model underperformed relative to the
other models, exhibiting a low accuracy of 32%, and zero precision, recall, and F1-score.
Conversely, the SM-DTR model continued to demonstrate superior performance relative to
the others. Notably, the F1-score of SM-DTR was higher than that of SM-kNN model, with
a score of 0.91. Additionally, the SM-DTR model exhibited the best accuracy of 88%, while
SM-kNN was slightly behind with an accuracy of 82%.

The ROC curves of the SM-kNN, SM-SVR, and SM-DTR models at threshold 0.90 are
presented in Figure 17. It is shown in Figure 17 that the SM-DTR model kept its superior
performance compared to SM-kNN and SM-SVR with 84% predictions of true positives and
true negatives. The performance of the SM-SVR classifier at threshold 0.90 was the worst
compared to that at previous thresholds 0.70 and 0.80, while the SM-kNN performance
was promising with a slight decrease from its performance at threshold 0.80.

Overall, the results presented above portrayed the SM-DTR as the best model for
hybridizing the fuzzy string-matching algorithms and the BERT deep learning model for
improved ontology alignment. These results also demonstrated the potential of the kNN
classifier as the second-best classifier for combining the strengths of fuzzy string-matching
algorithms and the BERT deep learning model to achieve better ontology alignment perfor-
mance. With regard to the SM-SVR model, the results indicated that it could be used with
caution as it may display poor performance at certain threshold levels.

5.3. Analysis of Error Rates of SM-kNN, SM-SVR, and SM-DTR Models

To further evaluate the performance of the three models, we calculated the Mean
Squared Error (MSE) and the Root Mean Squared Error (RMSE) for each classifier. Table 9
presents the MSE and RMSE for each classifier.

Table 9. MSE and RMSE for the SM-kNN, SM-SVR, and SM-DTR models.

SM-kNN SM-DTR SM-SVR

MSE 0.003 0.003 0.008
RMSE 0.054 0.050 0.091

It is shown in Table 9 that the MSE and RMSE for the three models are very low.
The best model was SM-DTR with MSE and RMSE of 0.003 and 0.050, respectively. The
SM-SVR model recorded the highest MSE and RMSE of 0.008 and 0.091, respectively. These
results are consistent with the above-mentioned findings regarding the performance of the
classifiers in terms of precision, recall, F1-score, and accuracy. These results further confirm
the SM-DTR as the best model among the three as it exhibited superior performance in
terms of error rates and other key metrics.

5.4. Analysis of Processing Time of the SM-kNN, SM-SVR, and SM-DTR Models

Table 10 shows the running time of SM-kNN, SM-SVR, and SM-DTR models for
performing the 1400 alignments, in seconds.

Table 10. Running time of SM-kNN, SM-SVR, and SM-DTR models in seconds.

SM-kNN SM-DTR SM-SVR

0.0045 0.0011 0.0147

Table 10 shows that the SM-DTR model achieved the lowest processing time among
the three classifiers, aligning the entire dataset in the least amount of time. Conversely,
the SM-SVR model obtained the highest processing time of 0.0147 s. The SM-kNN model
recorded a processing time that felt between the other two models. Overall, the results
indicate that all three models achieved relatively low processing times. However, the
SM-DTR model emerged as the most computationally efficient classifier for the proposed
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method in this study, as it has performed the alignment of the dataset in the least amount
of time while also exhibiting superior performance in terms of accuracy and error rates. It
was also found that the processing times of all classifiers are relatively low than those of
the state-of-the-art systems in OAEI-2022; this is going to be discussed further in the next
section. Therefore, in terms of computational efficiency, specifically the running time, our
proposed method performs better than some state-of-the-art alignment systems in OAEI
2022. The comparison of our proposed method with the state-of-the-art alignment systems
in the OAEI 2022 is presented next.

6. Comparison of the Proposed Method with State-of-the-Art Alignment Systems

In this section, we provide a comparison between our proposed alignment method
and state-of-the-art alignment systems that participated in the OAEI 2022. We compare our
results to the alignment systems in the Anatomy track of the OAEI 2022 challenge, which
involved aligning the mouse and human ontologies, the same used in the experiments in
this study to enable an accurate comparison. The web link for accessing information on the
Anatomy Track of the OAEI 2022 challenge is given in the Supplementary Materials section
of this article. The performances of the participating alignment systems at the OAEI 2022
challenge are presented in Table 11. Let us recall that the performance of our proposed
model, for the metrics reported in Table 11, are provided in Tables 6–8 at threshold 0.70, 0.80,
and 0.90, respectively, and could not be repeated in Table 11. Therefore, the discussions in
this section compare the results in Table 11 to those of this study in Tables 6–8.

Table 11. Results for OAEI 2022—Anatomy track [59].

Matcher Runtime Precision F-Measure Recall

ALIN 374 0.984 0.852 0.752
ATMatcher 156 0.978 0.794 0.669

LogMap 9 0.917 0.881 0.848
LogMapBio 1183 0.873 0.895 0.919
LogMapLite 3 0.962 0.828 0.728

LSMatch 20 0.952 0.761 0.634
Matcha 37 0.951 0.941 0.93
ALIOn 26134 0.364 0.407 0.46

SEBMatcher 35602 0.945 0.908 0.874
AMD 160 0.953 0.88 0.817

StringEquiv - 0.997 0.766 0.622

Table 11 provides the performance of the ontology alignment systems that participated
in the OAEI 2022 challenge. The table presents the runtime, precision, F-measure, and
recall for each system. It is important to note that the alignment process in OAEI 2022
does not solely rely on lexical alignment but also considers semantic aspects, such as
structures, siblings, super- and sub-classes, when generating reference similarity scores
between classes. Our proposed method utilized a hybrid approach of the BERT model
and fuzzy string-matching algorithms with machine learning regression models to achieve
better alignment performance. By taking this approach, we were able to reduce the time
for the alignment significantly as evidenced by the low running times of our models
in Table 10 compared to the second column of Table 11 for the various state-of-the-art
alignment systems. The classifiers used in our approach exhibited faster processing times,
demonstrating the efficiency and effectiveness of our method in aligning ontologies. This is
a significant advantage, as reducing processing time is crucial in this era of big data where
ontologies may include thousands of concepts to process.

In our proposed method, the SM-DTR model demonstrated superior precision per-
formance of 0.98 at both thresholds 0.70 and 0.80 (Tables 6 and 7). Among the OAEI 2022
matchers, only StringEquiv and ALIN matchers achieved the same precision score. Our
SM-kNN and SM-SVR models also performed well in our proposed method, achieving
their best precision scores of 0.96. In comparison to the OAEI 2022 matchers in Table 11,
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our method outperformed the majority, with SM-kNN and SM-SVR coming in fourth place.
In terms of recall, our proposed method outperformed the majority of the OAEI 2022
matchers. Specifically, SM-SVR model achieved a perfect recall score of 1.0 at threshold 0.70
(Table 6), surpassing all other matchers in the OAEI 2022 challenge. Our SM-kNN model
followed closely with a recall score of 0.99 at the same threshold, which also outperformed
the OAEI 2022 matchers. Meanwhile, our SM-DTR model achieved a recall score of 0.98 at
thresholds 0.70 and 0.80 (Tables 6 and 7), which is still superior to most of the OAEI 2022
matchers in Table 11. Notably, even at the most stringent threshold of 0.90, our SM-DTR
still outperformed all OAEI 2022 matchers with a record performance of 0.94 in terms of
recall. Our SM-kNN model’s recall of 0.89 (Table 8) placed it at the third position behind
the Matcha and LogMapBio systems (Table 11), which achieved a recall of 0.93 and 0.919,
respectively. Although our SM-SVR model did not perform as well at threshold 0.90, it
still demonstrated impressive performance at thresholds 0.80 and 0.70 (Tables 6 and 7)
compared to the alignment systems in Table 11. Regarding the F-measure, our proposed
method achieved superior results compared to the OAEI 2022 systems. Our SM-DTR model
recorded the best F-measure score of 0.98 at both thresholds 0.70 and 0.80 (Tables 6 and 7),
outperforming the best OAEI 2022 system, namely, Matcha, which achieved an F-measure
score of 0.94 (Table 11). These results demonstrate the effectiveness of our proposed method
in accurately aligning ontologies, outperforming the state-of-the-art alignment systems in
terms of recall and F-measure.

In addition to the above-mentioned metrics used in the OAEI 2022 challenge, our
proposed method was also evaluated based on the accuracy (Tables 6–8) as an important
measure of alignment systems’ performance. Additionally, error rates (MSE and RMSE)
were also measured for all three proposed models. These additional metrics provides a more
comprehensive evaluation of alignment systems’ performance compared to the OAEI 2022
challenge. Based on the discussions above, this study has proposed a novel method that
successfully hybridized fuzzy string-matching algorithms and BERT deep learning model
with machine learning regression classifiers for improved ontology alignment performances
and the proposed method has outperformed the state-of-the-art alignment systems. In
particular, our SM-DTR model based on DTR achieved the best overall performance at
different thresholds. Our SM-kNN model came in second place, also demonstrating strong
performance at different thresholds, whereas our SM-SVR model struggled at a stricter
threshold like 0.90 but performed very well at lower thresholds. Overall, our method
offers significant improvements in ontology alignment performance compared to existing
systems.

7. Conclusions and Future Work

In this study, we examined the benefits of fuzzy string-matching algorithms in the
ontology alignment process and demonstrated how their effectiveness can be enhanced
by incorporating semantic information using BERT. We evaluated the performance of four
fuzzy string-matching algorithms on their own and found that they perform less accurately
at higher thresholds. However, our proposed method that combined similarity scores
obtained from fuzzy string-matching algorithms and BERT achieved very promising results,
outperforming fuzzy string-matching algorithms and some of the state-of-the-art alignment
systems in the OAEI 2022 ontology alignment challenge. To evaluate the effectiveness of the
proposed method, we conducted experiments at three different thresholds and compared
the performance of three hybrid models, namely, SM-kNN, SM-SVR, and SM-DTR. Various
metrics including precision, recall, F1-score, Mean Square Error (MSE), and Root Mean
Square Error (RMSE), and running time were used to evaluate the performance of the
hybrid models. The experimental results showed that SM-DTR was the most effective
model for ontology alignment that considers both lexical and semantic characteristics of
ontologies. With best-of precision, recall, and F1-scores of 0.98, SM-DTR outperformed the
other models, followed by SM-kNN, which achieved a best F1-score of 0.97. Moreover,
SM-DTR showed the highest accuracy of 96% compared to the other models.
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The results of the proposed method can be used in many applications. One application
is the integration and reuse of ontologies into custom software applications. Another
possible application includes facilitating ontologies merging in which alignment process is
crucial to build upon.

In terms of future work, several avenues can be explored to enhance the versatility and
adaptability of our approach. One direction involves investigating the integration of our
proposed model with complementary techniques, which would offer increased flexibility to
support languages other than English. Additionally, leveraging the fine-tuning capabilities
of BERT, a re-trained model tailored for specific purposes, such as aligning individuals or
logical axioms, holds promise for custom applications. By pursuing these potential research
directions, our model can be further optimized and refined to address a wider array of
language-related challenges and requirements.
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