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Abstract: The Internet of Things (IoT) compromises multiple devices connected via a network to
perform numerous activities. The large amounts of raw user data handled by IoT operations have
driven researchers and developers to provide guards against any malicious threats. Blockchain is
a technology that can give connected nodes means of security, transparency, and distribution. IoT
devices could guarantee data centralization and availability with shared ledger technology. Federated
learning (FL) is a new type of decentralized machine learning (DML) where clients collaborate to
train a model and share it privately with an aggregator node. The integration of Blockchain and FL
enabled researchers to apply numerous techniques to hide the shared training parameters and protect
their privacy. This study explores the application of this integration in different IoT environments,
collectively referred to as the Internet of X (IoX). In this paper, we present a state-of-the-art review
of federated learning and Blockchain and how they have been used in collaboration in the IoT
ecosystem. We also review the existing security and privacy challenges that face the integration of
federated learning and Blockchain in the distributed IoT environment. Furthermore, we discuss
existing solutions for security and privacy by categorizing them based on the nature of the privacy-
preservation mechanism. We believe that our paper will serve as a key reference for researchers
interested in improving solutions based on mixing Blockchain and federated learning in the IoT
environment while preserving privacy.

Keywords: Blockchain; federated learning; Internet of Things; privacy

1. Introduction

Modern life includes technology incorporated with everyday tasks in all shapes and
forms. Starting from industrial fields and ending up in smart homes, the Internet of Things
(IoT) has become an irreplaceable technology that greatly improves our daily life. One
example of an IoT application is Industrial IoT (IIoT), where the technologies of IoT are
applied to manage and automate the job of controlling industrial equipment [1]. Another
example is the application of health sensors and readers, which can be called the Internet
of Health Things (IoHT). All the different IoT environments follow the same concepts of
analyzing raw data flow and can be referred to as the Internet of X things (IoXT).

The number of connected devices that receive and send data in the IoT is unlim-
ited. According to statistics, the number of connected IoT devices may reach 19.1 billion
in 2025 [2]. This high number demonstrates the strong growth of IoT technologies, devices,
and systems in many application areas. IoT is a technology that comprises other technolo-
gies and devices that collect, transfer, and process data. Researchers have used several IoT
reference models. Table 1 shows the seven-layer model with each layer’s components [3].

As its first layer of communications, the IoT starts with sensors, radio frequency iden-
tification (RFID) readers, actuators, and other low-level devices that collect raw data and
forward them to the higher layers in the interrelated network. The next hop of communica-
tion is the more intelligent edge nodes [4], which are devices with higher computational
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capabilities responsible for the first phase of processing the IoT raw data. Later on, cloud-
computing layers are applied to provide the low-level IoT resource-constrained hardware
devices additional computation and storage capabilities [5]. Figure 1 presents a high-level
overview of the cloud IoT ecosystem [4]. However, more in-depth analysis layers can be
included to process the raw IoT data.

Table 1. CISCO’s IoT reference model [3].

# Layer Name Component

7 Collaboration and Processes People and Business Processes
6 Application Reporting, Analytics, Control
5 Data Abstraction Aggregation and Access
4 Data Accumulation Storage
3 Edge (Fog) Computing Data Element Analysis and Transformation
2 Connectivity Communication and Processing Units
1 Physical Devices and Controllers The “Things” in IoT
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Data flow from the IoT devices to the centralized cloud layer for analysis, and the
analysis results travel back to the IoT devices. This flow puts a heavy transmission cost on
the network, and to address this issue, edge computing, or the fog layer, was introduced; it
started as a content delivery network (CDN) component. CDN security issues have been
discussed in [5], and the “edge” addresses transmission and storage issues.

The distributed architecture of edge nodes and the need to analyze the large amounts
of raw data have led to a research direction which aims to develop approaches that integrate
machine learning (ML) into the IoT edge system [6]. Federated learning, which belongs
to the family of decentralized machine learning (DML), is a collaborative learning model
where nodes share and train a unified model with an aggregator node [7].

Federated learning addresses the need for computing the IoT data [8], but federated
learning alone cannot guarantee the integrity and privacy of raw data traveling among
clients and aggregated nodes. Blockchain is the technology of nodes that share a distributed
ledger of transactional information, which is designed to ensure means of integrity and
privacy [9]. The strong characteristics of Blockchain encouraged researchers to develop
ways to integrate it with federated learning to preserve data integrity and privacy.

Research contributions of this work
We summarize the main contributions of this work as follows:

1. We present a state-of-the-art review of federated learning and Blockchain and how
they have been used in collaboration in the IoT ecosystem.

2. We review the existing security and privacy challenges that face the integration of
federated learning and Blockchain in the distributed IoT environment.
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3. We discuss existing solutions for security and privacy by categorizing them based on
the nature of the privacy-preservation mechanism.

We organize the rest of this paper as follows. The next section reviews recent surveys
that covered the integration of federated learning and Blockchain for IoT security and
privacy. Section 3 presents a state-of-the-art review of Blockchain and federated learning.
In Section 4, we discuss the integration challenges these technologies would face in an IoT
environment. In Section 5, we categorize proposed solutions aimed at solving security
and privacy challenges. Finally, we discuss outstanding research challenges that must be
addressed in the future in the area of Blockchain and federated learning integration for the
IoT environment to preserve privacy and security.

2. Related Work

The trend of integrating federated learning and Blockchain is still fairly new. Conse-
quently, there are not many works in the literature that summarize the combination of both
technologies in IoT from a security perspective.

The authors of [10] presented a comprehensive survey that investigated the security
and privacy concerns of Blockchain and FL (BCFL) integrations. They studied the functions
of BCFL elements including verification mechanisms, model aggregation, and incentive
mechanisms. In addition, the authors analyzed current BCFL security and privacy challenges.

The authors of [11] presented a systematic survey that reviewed the Blockchain-based
federated learning approaches from a security and privacy perspective. The authors pre-
sented state-of-the-art results of combining federated learning and Blockchain while study-
ing relevant security and privacy concerns. Although the work of [10,11] were thorough,
they did not review works from an IoT perspective.

However, the authors of [12] presented a survey of Blockchain and federated learning
integration in IoT. They provided a review of the Blockchain, federated learning, and IoT
taxonomy while considering basic security and privacy concerns.

In [13], the authors proposed a comprehensive survey discussing the use of FL tech-
niques to secure IoT-based systems. They also outlined existing solutions and future trends
related to IoT data. In their paper, the authors discussed security and privacy issues in the
IoT ecosystem. The research works in [14–16] discussed the use of federated learning and
Blockchain in the Internet of Vehicles (IoV). The authors outlined existing solutions that
deal with applying FL and Blockchain for security and privacy-preserved methods in the
IoV ecosystem. In [14], the authors proposed a solution that used homomorphic encryption
in addition to FL and Blockchain. Their aim was to improve the privacy preservation of
user data. In [15], the authors presented a comprehensive survey that aimed to discuss
existing solutions in the field of IoV. In addition, they presented the challenges and future
trends for methods aimed at dealing with the privacy issues in the IoV.

Table 2 summarizes the discussed work with their limitations.

Table 2. Summary of related work.

Related Work Summary Limitation

[10] Studied the security and privacy issues of Blockchain
and federated learning integration.

Did not cover integrations related to IoT.
Furthermore, no consideration on poisoning

attack mitigations.

[11] Explained federated learning approaches with concern
to privacy and security issues.

The wide scope of the paper did not focus on
IoT-related integrations, with no mention of

poisoning attack mitigations.

[12]
Presented a survey that studied the integration

between Blockchain, federated learning,
and IoT with studying.

Did not provide analysis on the found literature
and how the poisoning attacks are mitigated.

[13] Propose a comprehensive survey discussing the use of
FL techniques to secure IoT-based systems.

Did not outline adversarial machine learning
attacks and how to tackle them.
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Table 2. Cont.

Related Work Summary Limitation

[14] The authors outlined existing solutions that deal with
applying FL and Blockchain for security and

privacy-preserved methods in the IoV ecosystem.

Focused only on IoV data and did not discuss
other types of IoT ecosystems.[15]

[16]

This paper

Provided a technology summary and reviewed
existing integrations of Blockchain, federated learning,

and IoT while performing a security and privacy
analysis of each reference found in the literature.

-

In [9], the authors discussed the Blockchain trends in a general way and did not give
high priority to privacy-preservation issues. The work of [10] lacked integrations related to
IoT. In addition, the authors did not discuss the poisoning attacks that could happen in
the learning phases. The main drawbacks of [11] are also discussing privacy and security
issues based on federated learning, but this work did not consider the IoT specificities.
Finally, in [12], the authors did not debate how the poisoning attacks are mitigated.

Although it is close to this paper’s scope, the work of [12] did not review existing
solutions that mitigate the poisoning attack threat. Furthermore, compared to [13–15], we
believe that this paper is the first to study and review Blockchain integration with federated
learning in IoT with a perspective on data and model poisoning attacks.

3. Federated Learning and Blockchain: Brief Review

In this paper, we study the integration of multiple powerful technologies that enhance
efficiency, security, and privacy. The rest of this section reviews the main concepts of feder-
ated learning and Blockchain and how they are integrated into an IoT-based environment.

3.1. Federated Learning

Federated learning is a new technology that orchestrates connected clients to gain knowl-
edge collaboratively. It was first introduced by Google in 2015 [17] to overcome three main
issues: the huge amount of data gathered from many devices is unbalanced, non-independent
and identically distributed (non-IID); the communication overhead of distant and massively
distributed devices; and the insecure centralized data-storing mechanisms [10].

In federated learning, the learning burden is shared among connected nodes, usually
referred to as clients, to train the ML model locally and upload the learning gradients to a
central aggregator that levels all the learning gradients to a shared global model.

Figure 2 shows the basic topology of the federated learning procedure. It includes the
list of clients selected to join the process by training the models locally. The aggregator is a
central trusted server that could provide the aggregation results. Many communications
can happen between different clients and the aggregator server. The process of FL is started
by selecting clients, and next choosing the model. After performing the local training, the
results will be sent to the aggregator server where they are aggregated. A global update
can be performed next from the server and sent to the different clients. Figure 2 can be
described by these five essential steps:

1. Clients selection: Participants’ devices are selected to join the training iterations. This
selection could depend on a number of factors, such as device processing capabilities
and storage capacity, and is determined by definitive selection protocols [10].

2. Model selection: The primary model is chosen, and its main parameters are determined
and shared with clients to start the federated learning [12].

3. Local model training: Clients independently train the model with the local device
data storage [7].

4. Local model gradients updates: After each iteration, clients push the training gradients
to the aggregator device [10].
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5. Global model update: The aggregator applies an aggregation technique to level the
trained model gradients and propagate the update to the clients to start the next
round [7].
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3.1.1. Categories of Federated Learning

In the literature, federated learning is categorized in two ways; one categorization
is based on how the data are distributed [18], and the other is based on the network
architecture [12]. The three data distribution categories are as follows:

• Horizontal federated learning: Where the datasets have the exact same features but
varying samples.

• Vertical federated learning: Where the sample space is the same, but the features
are different.

• Federated transfer learning: Starts from a pre-trained model where the overlap of the
samples space and features space is less.

Based on how the devices are connected in the FL environment, it can be further
classified as one of the following approaches:

• Centralized approach: Where a global central model is updated by aggregating
the clients’ training parameters. This approach applies protocols to avoid malicious
clien participation

• Decentralized approach: Where the clients’ complete reliance on their neighbours to
update the model removes the central authority. This approach requires absolute trust
among clients.

3.1.2. Aggregation Techniques

Multiple algorithms are used to level the results from multiple participants’ clients.
Table 3 summarizes three of the most used aggregation techniques. We discuss the most
relevant aggregation techniques, which are (1) FedAvg, which is based on calculating the
parameters’ average based on stochastic gradient descent (SGD); (2) SMC-Avg, which
is characterized by its good performance even with 33% non-participated clients; and
finally, (3) FedProx, which is derived from FedAvg, which can be applied in the case of
heterogonous devices.
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Table 3. Aggregation algorithms [13].

Algorithm Based on Centralized Remarks

Federated Average (FedAvg) Stochastic gradient descent (SGD)
√

-

Secure Multi-Party
Computation (SMC-Avg) -

√ Performs well even with
33% non-participating clients.

FedProx FedAvg
√

Addresses device heterogeneity.

3.2. Blockchain Technology

Blockchain began after the publication of Nakamoto’s white paper [19] on an elec-
tronic cash system. Although the term “Blockchain” was fairly new, the bundled technol-
ogy consisted of cryptography and hashing mechanisms that were explored long before
the Blockchain [20].

The definition of Blockchain is that it is a technology of peer-to-peer (P2P) networking
that uses block-type data structures as storage, consensus mechanisms to manage a shared
distributed ledger, and encryption to ensure security during data transmission [21].

Figure 3 illustrates an overview of Blockchain anatomy. Distributed ledger technology
(DLT) includes a validated record of transactions in the form of blocks that contain a
nonce value, transaction data, timestamp, and the previous block hash to form a chain,
a Blockchain. This figure gives an overview of Blockchain architecture as a peer-to-peer
(P2P) network. It is composed of a set of miners having each a copy of the Blockchain. A
new block is added after the mining process, which is validated by at least by 51% of the
miners. This makes Blockchain one of the most important systems in terms of protecting
data integrity as well as transparency and availability.
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3.2.1. Overview of Blockchain

Blockchain started with the first paper on Bitcoin in 2009 [19]. This era, the digital
currency era, focused on developing decentralized-authority monetary transactional sys-
tems [22]. Next, research efforts was more focused on developing distributed applications
(dApps) and the employment of smart contracts [21]. The use of artificial intelligence (AI)
became integrated with Blockchain in order to be applied in industry 4.0 [23].

The type of Blockchain application is categorized based on its permissions as per-
missioned, permissionless, and federated Blockchain. Below, Table 4 summarizes the
differences between these three types [24]. In fact, there are three type of Blockchain. The
type of the Blockchain can be defined based on four characteristics, which are whether
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the Blockchain is private or public and if it is controlled in a centralized or decentralized
way. Two other characteristics that define the type of Blockchain are the level of security in
addition to transaction speed and cost.

Table 4. Differences between permissionless, permissioned, and federated Blockchain [24].

Permissionless Permissioned Federated

Publicity Public Private Private

Authority Decentralized Centralized Decentralized

Security Less secure Most secure Secure

Transaction speed and cost High Less Less

3.2.2. Components of Blockchain

Blockchain consists of multiple technology components which enable it to deliver the
special characteristics of Blockchain, including security. There are six main Blockchain
components which can be explained as follows:

1. Cryptographic hash function: Blockchain employs hashing in two ways, in the crypto-
graphic challenge and in the Merkle tree. The cryptographic challenge, the nonce, is
the value that miner nodes compete to calculate. On the other hand, the Merkle tree is
the representation of the transactions as hashed values [24].

2. Asymmetric key encryption: Asymmetric encryption, or public-key encryption, is
applied in addresses and digital signatures. The transactions are signed by the sender’s
private key, while the public key is used in the node’s wallet address [24].

3. Transactions: A transaction is the exchange of transmits, processes, and storages of
digital assets to control the state among the Blockchain nodes. Several transactions
will create a block.

4. Consensus mechanisms: An agreement protocol to validate the new to-be-added block.
Many consensus mechanisms exist. Table 5 shows a brief review of the four most used
and well-known consensus algorithms.

Table 5. Summary of consensus algorithms.

Consensus
Algorithms Steps Blockchain Remarks

Proof of Work [21]

1. Transactions grouped into memory
pool (mempool).

2. Miners try to solve the cryptographic
challenge to validate.

3. The winner, the first to solve the
challenge, is rewarded.

4. Others verify the proof. A block
(mempool) is attached.

Public
First protocol in Blockchain [19].
High computational requirements.

Less efficiency [23].

Proof of Stake [25]

1. Nodes, validators invest an amount of
stake (monetary value) to participate.

2. Random validator is selected.
3. Validator approves the block,

gets rewarded.
4. If the block is malicious, validator is

deprived of their stake.

Public

More resource efficient [21].
The selection is not that
“random”. The higher a

validator invests, the higher
chance of being chosen [24].



Future Internet 2023, 15, 203 8 of 19

Table 5. Cont.

Consensus
Algorithms Steps Blockchain Remarks

Proof of Elapsed Time [21]

1. Nodes wait for a random time.
2. After waiting, nodes become idle for a

specific time.
3. The first to become active wins the

block validation.

Private System clock can
be compromised [24].

Practical Byzantine
Fault Tolerance

1. A generator is chosen to collect and
choose the block signors.

2. Signors use their digital signature to
validate block integrity.

3. If the fault is f, 2f + 1 of 3f + 1 must
reach a consensus.

Private Addresses the
scalability issues [21].

In the following table, we discuss four consensus algorithms, starting with proof of
work (PoW), which was first used with Bitcoin. The Proof of Stake (PoS) was proposed
to optimize the use of resources. The proof of elapsed time is a special type of consensus
algorithm based on time. The fourth one is called practical Byzantine fault tolerance and
addresses the scalability issues.

5. Smart contracts: It is a program that contains code and controls the state of the ledger
through logic execution; if the conditions are met, the logic is invoked [26].

6. Ledger: The ledger contains the validated blocks and group of transactions. Others
refer to it as the Blockchain memory [24].

3.2.3. Characteristics of Blockchain

In this subsection, we give essential characteristics of Blockchains. The properties are the
decentralization behavior, transparency, immutability and traceability, trusting, and anonymity.
The numerous Blockchain components enable it to possess the following features [21,26]:

• Decentralization: where the ledger is shared among all the P2P network nodes.
• Transparency: where the ledger records are retrievable by any Blockchain node.
• Immutability and traceability: Where each block points to its predecessor, meaning a

change to one block’s content will not go unnoticed. Furthermore, where each block is
timestamped to enhance the data traceability.

• De-Trusting: where no central authority or a third party is required to review the operations.
• Anonymity: where nodes are identified by their digital signature.
• Credibility: where internal calculations are automatically performed without human

intervention, making Blockchain credible to perform secure operations.

3.3. Taxonomy of Federated Learning, Blockchain, and IoT

The integration of these two powerful technologies has many applications. Deploying
Blockchain and federated learning integration in the IoT with all its different environments
has become the main direction of authors and researchers [12]. Figure 4 illustrates the basic
taxonomy of all layers of these technologies [10]. The Blockchain technology is foreseen to
create a revolution in both industry and commerce, making great global economic changes,
as it is immutable, transparent, and redefines trust, offering secure, fast, reliable, and
transparent solutions. The IoT can leverage the absence of intermediates in the Blockchain,
enabling users to communicate directly with IoT devices with no one intercepting them,
which could offer a huge application area [27]. The following four layers of architecture can
describe the general framework to develop application- and solution-merging between IoT,
FL, and Blockchain. The IoT is responsible for data collection. The AI process is applied
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through FL for privacy-preservation issues in case of sensitive data such as patient data.
The aggregation, finally, is performed in the Blockchain as a trusted and confident layer.
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This integration between federated learning and Blockchain in the IoT could be shaped
differently according to the type of application. Researchers of [18] provided a clear expla-
nation of this integration’s different architectures. However, it is out of this paper’s scope.

4. Privacy and Security Challenges

The literature of federated learning is focused on developing ways that protect the
privacy of data by only sharing the training gradients among nodes instead of the actual
dataset [18]. Although strong noise addition techniques prevent some privacy attacks, the
security of federated learning still lacks means of security. With its strong technologies,
Blockchain integration with federated learning addresses many security concerns [12].
Attacks of tampering with the model by altering its gradients or poisoning the training
dataset are still present in such integration.

4.1. Privacy Challenges

In the integration of Blockchain and federated learning in IoT, many privacy issues
should be considered. Such challenges can be briefly explained as follows:

1. Shared data (P1): Blockchain storage capacity is limited, which means it could be a
challenge to manage the storage of the massive shared raw data [10].

2. Model gradients leakage (P2): Can be referred to as message spoofing, which is
when an adversary manages to obtain shared model gradients and, in time, derive
information about the training data [28].

3. Linking attack (P3): The DLT enables connected nodes to have complete access to the
transaction logs. An adversary could apply linking algorithms and extract information
from the federated learning procedures [12].

4.2. Security Challenges

From a security perspective, it is a challenge to preserve trusted client participation.
We focus on two main types of poisoning attacks that could happen in this environment to
force the model to misclassify, which can be explained as follows [28]:
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1. Data poisoning (S1), or poisoning attacks: when the adversary adds specific noise to
the dataset or alters its labels, better known as label-flipping attacks.

2. Model poisoning (S2): similar to data poisoning, model poisoning is when the adver-
sary tries to actively alter the model updates to change the model decision outcome.

5. Existing Solutions

Several researchers have focused on developing and finding ways that protect against
poisoning attacks in a Blockchain, federated learning, and IoT-integrated ecosystem. Most
solutions focused on finding a way to control the addition of new learning parameters. In
the found research, solutions can be categorized into two main segments, reputation-based
and noise-based.

A reputation-based integration controls new additions by controlling learners’ par-
ticipation. This control is based on their previous activities by assigning scores based on
their participation quality. On the other hand, a noise-based integration controls additions
by adding specific data to the new data submissions. The rest of this section discusses
solutions existing in both categories.

5.1. Reputation-Based

Researchers in this area focused on finding a way to vouch for a learner node’s
legitimacy. One integration is in the work of [29], where the authors proposed a system of
federated learning that analyzes people’s readings of the late COVID-19 virus to classify
and detect infected persons. They relied on Blockchain to use smart contracts and consensus
mechanisms to calculate the scores and reputation for each participating edge device. In
addition, the system uses Blockchain and smart contracts as provenance providers to limit
the access to storage records. The proposed federated learning scheme achieved an accuracy
of 90% in training and 85% in testing. Performance-wise, the edge devices have high and
moderate energy consumption levels. This is because of the live model gradients sending
and applying heavy encryption algorithms.

Similarly, the work of [30] has also relied on the worker, or learner, node reputation.
Researchers proposed a reputation technique that identifies a malicious worker. This
technique aggregates reputation from the other workers to decide that worker’s legitimacy.
A malicious worker would train wrongful data to propagate false updates to the global
model, where these updates would affect that model’s performance. However, they follow
a framework of reputation that allows the task publisher to select a worker based on their
reputation. Their experiment was with a 10-node network, which included two malicious
workers. The lowest training accuracy was 76.12%, with two malicious workers and an
attack strength of 0.9 out of 1.0. Their proposed framework achieved slightly better results
than other trust-reputation-based frameworks.

Moreover, the work of [31] implemented federated learning into Blockchain to collab-
oratively train a traffic flow prediction (TFP) system of a neural network (NN) learning
model. The authors designed a system to preserve vehicle update privacy and protect
against poison attacks. This system relied on a consensus algorithm based on a delegated
Byzantine fault tolerance (dBFT) protocol to determine low-quality or negative model
updates. The proposed system performed well in poisoning attack prevention. The attack
success rate (ASR) stayed under 10% with integrated federated learning compared to over
25% in unintegrated federated learning with 10%, 20%, and 30% malicious vehicles.

Authors of [32] proposed yet another reputation-based framework called TrustFed.
The authors designed TrustFed to allow IoT devices to collaboratively train a global model
based on cross-device federated learning (CDFL) schemes and Blockchain. The federated
learning training was performed off-chain; data storage was also off-chain through Inter-
Planetary File System (IPFS). More importantly, TrustFed’s smart contract integration used
three smart contracts: incentive, aggregator, and reputation. The incentive is to reward
miners who contribute to validating the model updates. The aggregator is to choose the



Future Internet 2023, 15, 203 11 of 19

central server at each learning round. Lastly, the reputation smart contract measures the
reputation of participating nodes, thus avoiding malicious device participation.

TrustFed relied on off-chain and on-chain processes to determine the reputation scores
of each participating node. Off-chain procedures include statistical analysis to detect
outliers’ updates at each learning round. On-chain procedures include aggregating trust
scores where the device trust score is either incremented or decremented by 100 based on
the latest fair training performance.

Experimenting on actual sensors’ reading data showed that outlier detection (with
worker nodes’ reputation) achieved much better learning results. Malicious workers’ up-
dates were defined and removed from the next iteration, so aggregator loss was lower
each time. Adding more workers to the learning task meant more transactions, creating
communication overhead. However, the authors claim it was much less than transmitting
raw data.

Authors of [33] proposed a fine-grained Blockchain-based federated learning frame-
work for mobile edge computing systems. Their main contribution is to provide a reputation-
based learning procedure to ensure honest and fair training participants. The suggested
reputation system allows edge devices, fog nodes, and cloud servers to rate each other’s
effectiveness, activeness, and honesty through the use of dApps and reputation-based
consensus mechanisms applied by smart contracts.

Moreover, the authors of [34] proposed a framework to secure the IoT infrastructure
of federated learning with Blockchain. The trust-based flexible model used reinforcement
learning. The process of choosing the participants in the learning process will be based on
the trust score, and the evaluation process will be in a simulation using MATLAB.

The authors tested the model using a simulation compared to a direct trust model
in terms of accuracy and detection rates, energy consumption, and network throughput.
The proposed model showed high results with an accuracy value of approximately 0.93
and an approximately 0.96 detection rate. In terms of network, the proposed model has a
higher bandwidth than the direct trust model with an average difference of approximately
100 Mbps and 2 s less in network latency. The proposed model performs better in energy
consumption, with approximately 35% less energy consumed.

More recent work by [35] was also based on the Multi-Krum scheme. The authors
proposed a commercial model where customers can participate in training a shared conven-
tional neural network (CNN) model in a mobile edge computing (MEC) environment. The
differential privacy (DP) protected the model gradients, where IPFS acted as the primary
storage. They used the Algorand protocol as the consensus mechanism to promote a tem-
porary leader that is responsible for aggregating the global model. Before the aggregation,
the Multi-Krum scheme is applied.

The authors of [35] apply a reputation calculation to prevent malicious nodes’ partici-
pation. When the participating nodes’ updates prove legitimate, with using the Multi-Krum
scheme, the nodes’ reputation increases. Non-participating nodes that obtain a value of
0 reputation will not be allowed to be elected to train the model. Their experiment on the
MNIST dataset proved to achieve an accuracy of 97%.

5.2. Noise-Based

Instead of calculating trust scores based on the worker node’s contribution, other
works added well-defined noise on the model updates to detect malicious model updates.
For instance, authors of [36] proposed a framework to train an ML model using Blockchain-
based federated learning in 5G networks. The framework divides the process into three
main phases: initialization, aggregation, and updating. A task publisher node initiates a
training task by sending the testing dataset, initial model, evaluation criteria (accuracy),
and reward (monetary). Aggregation includes nodes training ML models locally, evaluating
them to meet training criteria, and adding well-defined noise to protect the ML gradient’s
privacy. The updating includes the central server evaluating the updates and aggregating
them to update the global model and send it to the publisher. A node is rewarded when it
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achieves the accuracy threshold or higher. During experiments, the more the threshold for
privacy increases, the more the accuracy decreases. However, adding more participants
(p = 300) achieved higher accuracy results.

In [37], the authors illustrated a use-case of a smart healthcare system that uses
federated learning and Blockchain in Medical IoT (mIoT) devices. In their paper, they
addressed the privacy of patients’ records by using an adaptive DF technique that adds
noise to training gradients. To defend against poisoning attacks, the authors proposed a
consensus protocol that identifies poisoned gradients through a verification committee.

The proposed mechanism acknowledged a slight performance accuracy loss despite
preserving higher privacy in the results. From a performance perspective, the proposed
system is slower than regular federated learning since it applies consensus algorithms.
Their proposed system of detecting poison attacks performed well, keeping the attack
success rate lower than 20% compared to over 50% in the regular FL.

Moreover, authors of [38] proposed Biscotti, a framework for Blockchain-based fed-
erated learning. The choice of peers at the learning round in Biscotti relied on the proof
of federation (PoF) consensus algorithm to coordinate collaborative learning among the
peers. Similar to the works of [35], to prevent poisoning attacks, they used a Byzantine
tolerance aggregation scheme called Multi-Krum, which validates the peer model update
by comparing it with other peers and measuring the noise difference. Noisier nodes are
responsible for adding noise to model updates to prevent privacy leakages and help detect
poisonous attacks.

With 30% of malicious nodes, the Biscotti test error was low compared to regular
federated learning. At training, and with 200 nodes, as the time increased, the training
error rates were kept low. However, if the malicious nodes were 50% of the participating
nodes or more, the attacker could easily alter the global model outcome.

Like Biscotti, The authors designed BAFL [39] as a novel Blockchain-based asyn-
chronous federated learning framework. BAFL controlled the updates of the global and
local models of devices by identifying entropy noise values. The design of BAFL was to
overcome regular synchronous federated learning, such as FLAvg, which usually could
cause significant performance delays. BAFL has two main layers, the device layers (D)
and the miners’ layer (M). At each learning epoch, a miner randomly connects to a device.
A device loads the global model and locally trains it. The device uploads the training
parameters, including the time duration of one training round. The miner verifies the
device update with the global model before adding it to the Blockchain. To detect poison-
ing attacks that could tamper with the model’s parameters, BAFL used entropy noise to
measure the authenticity of each device.

BAFL has achieved lower resource consumption and delay during experiments than
the original synchronous AvgFL framework. In addition, BAFL also improved learning
precision by 12.1%. To evaluate the poisoning attack detection, they assumed that 10 of
50 devices, or about 20% of participating nodes, were controlled by an attacker. BAFL
proved its resilience against such attacks. However, similar to Biscotti [38], if the attacker
had control of over 50% of the devices, that attacker could easily poison the global model.

5.3. Other Solutions

Some work to protect the IoT Blockchain-based federated learning adoption against
poisoned attacks followed slightly different approaches. For instance, the work of [40] relied
on the learning model accuracy to detect if there had been an attack attempt. The authors
developed a mechanism comparing a new parameter update with known good model
accuracy. If the parameter update degrades the model accuracy, the aggregator discards
the update from aggregation. Their algorithm performed very well against 10%, 20%, and
30% of adversaries with very low accuracy degradation in the first round. However, as the
number of rounds increases, the accuracy is not affected since malicious node updates are
easily verifiable with good updates.
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Other works relied on time to prove one update’s legitimacy. For instance, authors
of [41] provided the block-FL framework to enhance data privacy while maintaining
trustful collaborative learning with Blockchain and federated learning. Block-FL uses a
decentralized hash table (DHT) to only store the hash of the data source on-chain while
keeping the data off-chain. As usual, the federated learning process is an aggregation
process used to update the global model after verifying local model updates by miners. For
poisoning attack resilience analysis, they assumed that a malicious attacker would try to
replace the global model with their poisoned model. To prevent such an attack, Block-FL
follows a mechanism of evaluating the computation time proportionality with data size.

Block-FL proved that the hash rate for an adversary to make turbulence on the ledger
record is the lowest compared to federated learning and regular Blockchain. At the same
time, the successful attack hash-rate requirement increases as the number of added blocks
increases, which makes poisoning attacks even harder.

A similar work by [42] recently provided a data-driven cognitive computing (D2C)
framework based on Blockchain-enabled federated learning. The authors’ main drive was
to overcome the issues faced by industry 4.0 devices, such as privacy leakage. For the
data, they chose to store the hashes only, instead of the whole data, using the DHT. For
verification, the framework relied on consensus and intensive mechanisms using PoW and
two types of incentives, token reward and data reward. The token reward was for miners,
while the data reward was for end devices.

The authors used proof of elapsed time (PoET) to spot poisonous model updates to
verify the computation time with the data sample size. At each learning round, a temporary
central server was chosen, an aggregator. Choosing an aggregator was based on the
two-player game of the Markov decision process (MPC) between an aggregator and an
adversary. Similar to [36], the hash-rate requirement increased as the number of blocks
increased, making it harder for an adversary. However, there was still convergence latency
in block generation time.

Others used consensus mechanisms to protect data from leakage [42,43]. For instance,
authors of [42] applied federated learning on a permissioned Blockchain in an iIoT environ-
ment. In such a sensitive environment, data privacy and security matter the most. The authors
proposed a scheme that follows federated learning aggregation procedures while verifying
data provider nodes to prevent leakage. A data-sharing request goes through a proof of quality
(PoQ) consensus mechanism to verify the data from each data provider node. The proposed
scheme achieved good results with above 0.9 accuracies. However, increasing the number of
data providers meant a degradation in both time and accuracy performance.

Most federated learning with Blockchain integrations were with the iIoT infrastructure.
Works of [44–46] primarily focused on applying privacy measures, designing an auditable
record of transactions, and eliminating the central aggregation server of federated learn-
ing in their Blockchain integration. In [45], the authors designed a system that detects
iIoT device failure. They used the Merkle tree to anchor gathered devices’ data to the
Blockchain, and they used smart contracts to apply an incentive mechanism to reward
training participating nodes with tokens.

Moreover, ref. [45] proposed a similar use of federated learning and Blockchain in iIoT.
In that work, the authors focused on how to preserve communication costs. The proposed
mechanism applied CNN and used a k-top algorithm to limit the training gradients of one
trainee node before the local aggregation. This mechanism applies Gaussian noise to protect
the privacy of the model gradients that are stored on-chain. In [46], the authors applied
differential privacy on data by using homomorphic encryption. Using LaPlace and Pillar,
cryptosystems encrypted the data to train it with K-means, random forest, and AdaBoost.
Lastly, the global model gradients were stored on-chain after aggregation. However, the
works of [44–46] did not provide ways to prevent poisonous node additions.

Others had a somewhat separate deployment of federated learning with Blockchain [47–50].
Claiming to be the first application of federated learning with Blockchain in an intrusion
detection system (IDS), the authors of [47] used MultiChain permissioned Blockchain to
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ensure the training epoch data integrity. The usage of MultiChain gained the proposed
system the ability to store the data of the training round and organize the next round’s
leader. During experiments, the proposed system performed well. However, with 12 deep
learning servers, there was an executional delay compared with regular Blockchain, by 5–15%.

Authors of [48] proposed a framework that leverages federated learning and Blockchain
in the Internet of Battle Things (IoBT). The edge-computing-based system consists of four
layers: data, edge, fog, and cloud layers. Data is where the data collection happens, the
edge is where the model training and off-chain aggregation happens, fog follows a similar
pattern, while the cloud layer stores the final globally trained model.

An experiment to test the performance of [48]’s proposed system was conducted using
an imagery dataset of airplanes, birds, drones, and ships. With two learning rate criteria of
0.01 and 0.02, the first setting of fixed participants achieved 92% and 94% in edge nodes,
respectively, and 99% and 97% in fog nodes, respectively, over 50 rounds of learning. In
contrast, a second set of randomly selected participants achieved 89% and 92% in edge
nodes, respectively, and 97% and 96% in fog nodes, respectively. While it is lesser than fog
nodes, it is still regarded as having high accuracy with low loss.

The work of [50] is another example of another semi-separate application in anomaly
detection systems. The authors designed an asynchronous learning system to detect
anomalies in an IoT system. Using Blockchain to validate the model updates enhanced
privacy and security.

Works of [49,51] used Blockchain as an authentication authority to provide the required
access and participation. In [49], authors deployed a real-time data-processing and multi-
agent system in an Internet of Medical Things (IoMT) environment. The authors employed
three agents: learning agent, data management agent, and indirect agent. They used
separate cloud storage to store the datasets of patients and the classifier models. Similar, but
in a different flavor, [51] uses federated transfer learning (FTL) for each iIoT-device-trained
parameter’s transfer to a cloud server for aggregation. The consensus mechanism was
Ripple, where a device must be approved by 51% of connected nodes to be authenticated.

The paper of [52] proposed a multi-layer consensus system for the Internet of Vehicles,
yet another flavor of IoT. The Blockchain-enabled hierarchal mechanism relied on a proof
of knowledge (PoK) consensus mechanism at two layers with roadside units (RSU) and
vehicles. The first layer was the ground chains (GC) layer, where vehicles collected data
from surrounding areas that were considered as federated learning training sets. The
second layer was the top chain (TC). The RSUs will also participated in the federated
learning process by collecting data from their surrounding areas, merging their results with
the transaction results from GC nodes, and uploading them to the chain.

The PoK of [52] rewards higher accuracy workers with higher amounts, which will also
work as an incentive mechanism. Dishonest workers are identified through a validation
process of their achieved accuracy by the leader node. The proposed system achieved a
result that was 10% higher compared with regular consortium Blockchain.

Most of the found adoptions of federated learning with Blockchain did not address
poisoning attack prevention. The authors of [53] suggested a model for market trading
of resources in decentralized edge companies. In terms of privacy, they included feder-
ated learning that depends on requesting training models between companies instead of
requesting raw data to prevent any possible leakage while fulfilling the requester’s needs.

Table 6 below summarizes the found literature by highlighting the integration scope
and analyzing how they mitigate the previously mentioned privacy and security challenges.
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Table 6. Summary of existing solutions of federated learning and Blockchain in IoT.

Type Ref. Consensus Application
Integration Scope 1 Privacy and Security 2

Con. Incent. Prov. IPFS P1gol P2 P3 S1 S2

Reputation-Based

[29] - IoHT
√

-
√

-
√ √

- -
√

[30] BFTP Mobile network
√

- - - -
√

-
√ √

[31] dBFTP IoV
√

- - -
√ √ √ √

-

[32] - iIoT
√

- -
√ √

- -
√ √

[33] - Edge computing -
√ √ √

-
√

- -
√

[34] BFTP IoT infrastructure
√ √

- -
√ √

- -
√

[35] Algorand Edge computing
√

- -
√ √ √

- -
√

Noise-Based

[36] - Mobile network -
√

- - -
√ √

-
√

[37] Algorand mIoT
√

- - - -
√

- -
√

[38] PoF Edge computing
√

- - - -
√ √

-
√

[39] PoW Edge computing
√ √

- - -
√

-
√ √

Other

[40] - Edge computing
√

- - - -
√

- -
√

[41] PoW Fog computing
√

- - -
√ √

-
√ √

[54] PoW and PoET Industry network
√ √

- -
√ √ √

-
√

[42] - IoV - - -
√

-
√

- - -

[43] PoQ iIoT
√

-
√

-
√

- -
√

-

[44] PoW iIoT -
√

- -
√

- -
√

-

[45] - iIoT
√

- - - -
√

- - -

[46] RAFT iIoT
√

- - - -
√

-
√ √

[47] Round Robin IoT
√

- - - - - - -
√

[48] - IoBT - - - - -
√

- -
√

[49] - IoMT - - - -
√

- -
√

-

[50] - IoT infrastructure - - - - -
√

- - -

[51] Ripple iIoT
√

-
√

-
√

- - - -

[52] PoK IoV
√ √

- -
√

- -
√

-

[53] PoW Edge computing
√ √ √

-
√

- - -
√

1 A summary of the solution with regard to federated learning with Blockchain integration scope by consensus protocols, incentive protocols, Blockchain as provenance provider, and
usage of IPFS. 2 To measure if the proposed solution resolution considered security and privacy challenges.
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In this table, we compare relevant research works that used Blockchain and federated
learning in the IoT ecosystem aiming to protect the privacy of client data. We arrange the
table into six principles columns. The first column indicates the type of method which can
be based on reputation, noise, or other. The second column indicates the reference itself.
The third column refers to the applied consensus. The fourth column indicates the origin
of data, which can be health data, from a mobile network, IoV data, iIoT data, edge data,
or fog data. The column before the last summarizes the integration scope by consensus
protocols, incentive protocols, Blockchain as provenance provider, and usage of IPFS. The
last column focuses on privacy and security, aiming to measure if the proposed solution
resolution considered security and privacy challenges.

5.4. Lessons Learned

After the review of numerous works that included variations of federated learning
and Blockchain in the IoT environment, the following points summarize existing solutions:

• Most of the found work focuses on applying federated learning with Blockchain with
a disregard to applying methods to detect poisonous attacks.

• We found that most work is reputation-based rather than noise-based to prevent the
occurrence of poisonous attacks.

• The application scope of federated learning and Blockchain integration heavily focused
on industrial, medical, and communications area.

6. Conclusions and Future Directions

This paper presented a review of two leading technologies that are leveraged to
enhance security and privacy. IoT devices applications include the sharing of massive raw
data. Federated learning is integrated to provide intelligence to these low-level devices
while preserving the privacy of data by only sharing the trained model. Traditional
federated learning is centralized and suffers from security issues of untrusted clients. The
added layer of Blockchain integration resolved multiple issues of trust and security.

This paper reviewed the taxonomy of such integration while briefly describing the
elements of each technology. After that, this paper discussed five main security and privacy
concerns that the integration of federated learning, Blockchain, and IoT faces. By reviewing
the existing literature, this paper compared and measured the integration scope and security
and privacy considerations.

For future work, this survey concludes that the number of existing solutions that
address poisoning attacks threats in federated learning and Blockchain integration is still
scarce. Although federated learning is designed to protect the privacy of training data, there
is still a need to guarantee the security and privacy of the training data. More work needs to
be done to address issues of computational and resources limitation in edge devices. There
are few existing solutions to address protection against dishonest participants’ attempts to
poison and alter the shared training process. This paper aims to encourage future work to
enhance the security and privacy of both technologies in an IoT environment.

Our basic aim when preparing this paper was to propose a short and accurate survey
that focuses on the most relevant research work in IoT ecosystem data privacy preservation
based on joining Blockchain to federated learning. We were motivated by regulations
restricting data sharing and privacy concerns. The use of IT solutions in healthcare saves
lives but also leads to several problems related, in particular, to the security aspect. Indeed,
the poisoning of datasets as well as the falsification of decisions can cause false diagnoses
affecting human life. This makes the execution protection of learning models sometimes
more important than improving the techniques themselves. We believe that our paper will
serve as a key reference for researchers interested in improving solutions based on mixing
Blockchain and federated learning in IoT environments while preserving privacy. In the
future, the tradeoff between Blockchain cost and the index of privacy preservation may be
a hot topic of research. Certainly, a partial amount of data can be shared, and this will affect
positively the output of machine-learning-based applications. Another improvement can
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focus on the clustering of FL clients who can share their data before the final aggregation
with others.
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