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Abstract: The primary user emulation (PUE) attack is one of the strongest attacks in mobile cognitive
radio networks (MCRN) because the primary users (PU) and secondary users (SU) are unable to
communicate if a malicious user (MU) is present. In the literature, some techniques are used to detect
the attack. However, those techniques do not explore the cooperative detection of PUE attacks using
deep neural networks (DNN) in one MCRN network and with experimental results on software-
defined radio (SDR). In this paper, we design and implement a PUE attack in an MCRN, including a
countermeasure based on the entropy of the signals, DNN, and cooperative spectrum sensing (CSS)
to detect the attacks. A blacklist is included in the fusion center (FC) to record the data of the MU.
The scenarios are simulated and implemented on the SDR testbed. Results show that this solution
increases the probability of detection (PD) by 20% for lower signal noise ratio (SNR) values, allowing
the detection of the PUE attack and recording the data for future reference by the attacker, sharing the
data for all the SU.

Keywords: cognitive radio networks; cooperative spectrum sensing; deep learning; multiple PUE
attack; primary user emulation

1. Introduction

In the era of Industry 4.0, applications, data management, and data analysis are
needed. Technologies such as the Internet of Things (IoT), augmented or virtual reality,
big data, and artificial intelligence need wireless technology that efficiently improves
throughput, security, and spectrum access. Entities such as the Federal Communication
Commission (FCC) recognize that part of the assigned radio-electric spectrum is not being
used; its utilization can be under 15%. Cognitive radio networks (CRN) are a possibility
for increasing the use of this spectrum by allowing a SU to use the spectrum if a PU is not
using it, which requires continuous monitoring of the spectrum’s use in a specific frequency
range. If a PU starts to use a frequency, the SU must move to another frequency if there is
another spectral hole in the assigned space. The spectral hole is a frequency channel not
used at a specific time and can be used for the PU or SU. For example, if there are four free
frequency channels to assign, a SU can use one of them, but if a PU wants to use it, the SU
changes to any free channel of the three that remain or waits for one of them to be released
to use it [1].

One possible solution to spectrum scarcity is the implementation of a CRN. In mobile
networks, for example, there are time slots where the spectrum frequencies are unused,
partly because their assignment is fixed by the regulatory entities in a traditional spectrum
management system, giving the operators flexibility in their usage. However, if we were
to implement the CRN, it would be crucial to acknowledge the accompanying security
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threats, including both traditional risks and those arising from the SU’s random access to
free channels for its own purposes [2].

The users in this environment are the PU and the SU, and then another user might
appear, the MU, which uses radio signals to emulate the PU signal. The SU releases the
occupied channel because they detect a PU, and the MU obtains access by cheating the SU.
In the CRN environment, this process of searching the spectrum holes is called spectrum
sensing and is one of the most affected processes in the network. However, all parts of the
process are affected by this PUE attack. We must ensure that the SU uses empty spectrum
bands without affecting the PU. To secure this, the CRN needs to check if the channel is
occupied, coordinate with other users to access the spectrum, and release the channel if a
PU starts transmitting its data [3].

One SU that detects the PUE attack is affected by signal characteristics such as shadow-
ing and multipath fading. Then, we can improve the detection system by including the
CSS, which has a better probability of detecting the attack using several SU in a centralized
or distributed architecture [4]. In CSS, each SU identifies the radio environment and looks
for a PU signal; this local sensing information is sent to the FC, which centralizes all the
SU information. The single detection of each one takes a global decision based on an
established rule. For this scenario, the SU can send a simple bit with the decision about the
PU presence or the averaged energy to the FC; this is called a hard or soft combination rule,
respectively [1].

Recently, artificial intelligence (AI), which includes machine and deep learning, has
been used for PUE detection; it shows an increase in detection performance compared
with conventional schemes. It is close to the optimal strategy for classifying the attack
data learned from many sample data sets. These algorithms can be applied in wireless
communication systems for classifying communication, and they are more adaptive than
conventional CSS schemes. Convolutional neural networks (CNNs) have been used for SU
spectrum sensing, and CSS schemes based on machine learning (ML) models, such as the
support vector machine (SVM), have been studied in [5].

The DNN has been used in PUE attacks to decrease the probability that a MU affects
the CRN system. The algorithm is trained with the data rate, distance, and power and
compared with the K-nearest neighbor (KNN) classifier, making a classification process.
The trained classifier detects the PUE with high performance; simulation results show
better accuracy than conventional PUEA classification techniques, including the KNN [6].

In our previous work, we used entropy detection for spectrum sensing [7], and in [8],
we explored the CSS for spectrum sensing but not for detecting the PUE attack. In [9]
and [10], we use the SVM and KNN to detect PUE attacks with a PUE detector implemented
in a single SU. In this paper, we propose a novel DNN algorithm that takes the entropy of
the energy detector in a cooperative scenario with CSS, which gives the cognitive system
a better sense of the entire network environment and results in lower SNR values. After
a learning process, the DNN can detect the PUE in a MCRN, which includes the PUs,
three SU, and a PUE attacker. The algorithms are implemented in an SDR device, and the
attack is generated in an MCRN network with a frequency hopping protocol in GNU Radio.
The DNN algorithm has not been used in the literature to detect PUE attacks in a MCRN
environment with a CSS and with SDR implementation; we evaluated the results with
other detection techniques in a realistic environment.

The paper is organized into six sections. Section 2 analyzes the previous work and
contributions. In Section 3, the DNN and CSS detection schemes are illustrated. Section 4
focuses on the model and scenarios. Section 5 shows the experiment results and discussion,
and Section 6 shows the conclusions.

2. Previous Work

The PUE attack is caused when the PUE attacker tries to mimic the honest PU signal
and emulates it, corrupting the data transmitted to the FC. PUE attacks are classified as
always on and smart. Always on does not know the status of the PU; it sends the PUE
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signals in the PU frequency band. Smart PUEs know the PU signal status and attack the
network depending on the PU’s presence. The SUs report wrong decisions to the FC,
leading to a bad global decision. The PUE uses a free frequency for its signal or causes
interference, which is called selfish or malicious PUE, respectively [11].

For PUE detection, there have been some schemes; some of them are individual
detection, and other works explore the CSS. In [7], we propose a method that uses the
entropy calculation of the received signal for spectrum sensing; the results increase the
performance for low SNR values, and it works in a simple SU. The basis of this detection
is the spectrum sensing system. There are several problems, such as multipath fading,
shadowing, and receiver uncertainty, and in an MCRN, there are also different modulation
types, and it is difficult to distinguish between them. A possible solution for some of
these problems is to share the information of all the users of the CRN; this means sharing
the spectrum sensing data, the detected signal, frequency, and bands of use since these
data increase detection performance, providing a solution that can be implemented for
an MCRN [6]. We implemented this solution only for spectrum sensing and not for PUE
detection [8].

The CSS model has been used to improve the probability of detection by including
cooperation in the SUs, which share the particular sensing data and make a combined
decision using an AND, OR, or MAJORITY rule, obtaining better results than the individual
decisions of each CR and giving the MCRN a better knowledge of the radio environment.
Energy-based detection is the faster and simpler method for spectrum sensing in the
proposed CSS schemes. This method uses an energy threshold value to detect the presence
of the PU/PUE in the radio environment, or with a test statistic and two thresholds, which
obtain better results for sense. This is helpful to detect the signal, but it is not able to detect
PUE attacks by itself [7].

In the CSS models, some authors have designed strategies to use the hard or soft
fusion methods using MATLAB algorithms in additive white Gaussian noise (AWGN) or
Rayleigh channels. The results show that the best method is a soft combination. Another
platform used for implementing it on a device due to the costs and keeping high computa-
tional performance is the Raspberry Pi. Additionally, the SDR is another choice for CRN
implementation [12].

The CSS model can be centralized using the FC; the cooperating SUs send their signal
measurements or decisions about a sensing process to an FC or a base station BS. Then,
the FC takes a general decision and transmits it to all the SUs. Another model uses a
decentralized CSS, which is based on the sharing of data or decisions by the SUs to make a
final decision. Still, it needs a radio frequency for the communication of each SU, requiring
more radio resources. The authors use a centralized CSS to improve performance in deep
fading environments with low SNR values. The PUE is a MU that reconfigures its air
interfaces and transmits fake signals, leading the CSS system to make a wrong decision
due to the SU report to the FC due to the openness of the lower layers [11].

Furthermore, apart from CSS, there are other techniques worth considering in the
implementation of CRN. These techniques include the implementation of optimal joining
techniques to detect PUEAs, detecting the MU, and bridging the gap between single
equilibrium and social strategies through the imposition of a selected fee on SUs [13]. The
time difference of arrival (TDOA) is another method used to find the PUE attacker position,
but in an MCRN, this technique will not work because users are in motion. SUs in the CRN
cooperate based on position estimation using the TDOA. Another author uses a proficient
TDOA localization algorithm using the Differential Evolution (DE) method to detect the
PUEA in CRNs, showing fast convergence of the detection [2].

Particle swarm optimization (PSO) has been used for PUE detection. The author
in [14] uses a three-phase detection system: the state of the spectrum is calculated, the SVM
algorithm is used to estimate if a frequency is occupied, and a PSO makes the selection of
kernel and bias values. The technique is evaluated in MATLAB. In [15], the authors detect
the PUE using the TDOA localization technique combined with a PSO algorithm to solve
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the cost function based on the TDOA results. It changes the parameters such as inertia,
weight, and acceleration, but if a PUE, a SU, or a PU is in motion, these techniques will not
work because they are based on the fixed position of the users.

The AI has been used for the detection of PUE. In [16], the authors introduce a classi-
fication method called Online Adaptive Memory-Based Genetically Optimized Artificial
Neural Network (OAM-GANN), based on online learning, that uses the network parame-
ters to identify the PUE. It optimally tunes the hyperparameters of the developed DNN. It
improves the security of the CRN. It is evaluated by several metrics, such as error rate and
detection probability [16].

Other solutions are based on ML algorithms, such as the Knearest neighbor classifier
(KNN) algorithm, which can identify the PUE attack and group the malicious nodes to-
gether [17]. In another work, we compare KNN, random forest, and SVM, showing that for
this problem, the best results are achieved with the SVM in an MCRN with a single SU [9].
Extreme machine learning (EML) and time–distance with signal strength evaluation (TDSE)
methods have been used to detect or prevent PUE attacks. The TDSE implementation
allows for identifying the malicious PUE attacker, and the EML compares it with the MU,
but its computational requirements are high for a mobile network [18].

Another author uses the logistic regression concept to estimate the maximum likeli-
hood of detecting the attack. The algorithm is divided into two parts: the training and
testing processes, based on a dataset generated with an active PUE attack. Results show a
high PD of about 99.5% with a PFA of less than 0.6% [5].

In another work, the authors implemented a classification problem and solved it with
an artificial neural network (ANN). ANN increases its performance by using the immune
plasma optimization (IPO) method. The results of this work show that the algorithm using
the ANN has better results in terms of accuracy and other network variables. This method
has an accuracy rate improvement of 32% and a 16% energy savings compared to the
existing methods [19].

Other authors have proposed the DNN algorithm by combining energy detection,
cyclostationary calculation, and the DNN algorithm. The PU/PUE in the frequency band
is localized by using energy detection. Then, the cyclostationary technique identifies the
features of the signal, and the results are used as input for the neural network to detect the
PUE attack. Other work shows that radio-frequency fingerprinting can be used to detect
the PUE attack. In the training step, the transmitter profiles are elaborated for each one,
and a classifier with three layers of the ANN is created. The final part of the process is to
compare the user signal to the established profiles to determine the PUE presence [5].

Most of the related previous work uses energy detection as the base for signal detection;
we propose entropy detection for the PUE attack because it is able to work at lower SNR
values with a high probability of detection. The CSS has been worked on in simulations,
but there have been no results with a realistic SDR environment as we implemented it in
our work. Finally, in the literature, there are no implementations of the DNN algorithms to
detect the PUE attack. In this work, we include the algorithms of the DNN in the SU and
test them in an SDR environment with mobile phones.

3. Deep Neural Network and Entropy to Multiple PUE Detection in
Cooperative MCRN

The following subsections describe the CSS scheme, the entropy detector, the DNN
algorithm, and the general proposal for PUE attack detection.

3.1. Cooperative Spectrum Sensing Model

The designed model has a malicious PUE attack, some SUs and PUs in the network,
and an FC for the centralized CSS. There is one radio frequency channel of the PU detected
by the SU, another one of the PUE attacks detected by the SU, and one common channel
where the SUs communicate with the FC; these signals can be seen in Figure 1.
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Figure 1. System model for cooperative spectrum sensing.

For cooperative spectrum sensing, each SU detects the PUE attack based on the entropy
and DNN techniques described in the following subsections and informs the FC of the
results. The FC takes an OR decision that helps the system detect any attack within the
network coverage and the assigned frequencies. The FC manages the frequencies for
detection and the state of each frequency in the MCRN.

3.2. Detector Based on Entropy

An entropy-based detector is used for the detection; the energy detection results are
the inputs for the system. The MCRN has n SUs, which transmit the individual results to
the FC with the calculated entropy in one frequency channel. These entropy results are
the input for the DNN learning algorithm, which detects if there is a PUE attack in the
frequency and communicates it to the FC, which decides for everyone under an established
rule and in the presence of a PUE attack. If a PUE attack is detected, SU continues using the
frequency, but if there is a PU, it must release the channel and use another one, and if there
are no more available frequency channels in the range, service cannot be provided.

Energy detection is used for the spectrum sensing scheme in the SUs, but it is combined
with the entropy detector for better results, as we worked out in [7]. N is the number of
samples; then the test statistic is given in Equation (1) [20], where p(n) is the power of the
signal received at the SU:

T(p) =
1
N

N

∑
n=1
| p(n)| 2 (1)

In the traditional energy detector, a hypothesis test is used, a threshold is defined,
and it is analyzed if it is above or below the threshold to detect if a PU/PUE is present.
Our proposal uses the averaged energy as an input for the entropy detector. The PU/PUE
signal is described in Equation (2) [7].

p(t) =
{

n(t) noise
h(t) ∗ o(t) + n(t) PU/PUE

(2)

where n(t) is the noise and h(t) is the channel impulse response of the system, which is the
response of the communication channel when an impulse is applied to the system. It can
be seen as the correlation of the received signal against the transmitted signal, where o(t) is
the measured data from a PU/PUE signal and p(t) is the received signal. To detect a PU
or PUE attack signal, it is necessary to protect the authentic PU by changing the frequency
channel to another one. In contrast, the PUE attack is detected or discarded. For this
purpose, a binary hypothesis test is used: H0 is noise, and H1 indicates a PU/PUE signal
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and noise; this is defined in Equation (3) [7]. The entropy is calculated using a discrete
Fourier transform (DFT), obtaining Equation (3) [7].

P(k) =
{

J(k) H0
L(k) + J(k) H1

(3)

where P(k) is the complex spectrum of the received signal, L(k) is the PU/PUE signal, J(k)
is the noise, and the size for the DFT is k = N, where N is the sample size. H0 implies the
presence of a PU/PUE signal, and H1 its absence [21].

The results of the entropy calculation on each SU of the CSS using Equation (4) are
used as an input for the DNN algorithm in the learning and detecting processes; the binary
results of the detection are sent to the FC as we worked it out in [8]. For a given number of
bins X, using the histogram method, the statistic test is calculated in Equation (4).

T(P) =
1

1− α
× log

(
X

∑
i=1

ki
N

α
){
≤ λ : H1
> λ : H0

}
(4)

where N is the number of samples and λ is the entropy threshold calculated with the
entropy HX for X bins and described in Equation (5). The probability of a false alarm is PFA
and σe is the standard deviation [8].

λ = HX + Q−1(1− PFA)× σe (5)

The cooperative results are measured for the probability of detection (Qd)
and the probability of false alarm (Qfa) measured at FC and are calculated by
Equations (6) and (7) [20].

Qd = 1−
Z

∏
i=1

(1− Pd,i) (6)

Q f a = 1−
Z

∏
i=1

(1− Pf a,i) (7)

where Z is the number of SUs in the CSS. In the experiments, measurements are taken
based on the results of putting the devices in different positions and distances.

3.3. Deep Learning Techniques for the Decision of PUE Presence

Deep learning is one of the most effective tools for making accurate forecasts using
large and complex data sets. Deep learning includes technologies with multiple data
types, including numbers, text, audio, images, video, or combinations [22]. We propose
to use one of the deep learning techniques to help the SU detect the PUE attack; it must
be implemented on each SU to improve the decision in a CSS scheme. In this section, an
explanation of the context and deep learning techniques is given, and after this, we propose
a deep learning scheme for detecting the PUE attack.

The central concept of deep learning is the use of neural networks, and even though
their applications are widely used today, this technology is familiar, having emerged in the
1950s. However, its development was limited after the 1970s due to a lack of hardware and
algorithms necessary to achieve the great expectations generated around neural networks.
AI has been used in many fields, such as robots, mobile communications, autonomous cars,
smart cities, financial analysis, and engineering problems such as decision support [23]. In
2012, there was a significant advance in the field of artificial intelligence, which allowed
the creation of neural networks capable of identifying images with greater precision than
humans. Later AI examples include Deep Blue, a chess-playing system that defeated Gary
Kasparov, or Google’s AlphaGo, which defeated the world’s No. 1 ranked player Jie Ke in a
Go match. In 2022, OpenAI launched Chat Generative Pre-trained Transformer (ChatGPT),
a next-generation model that generates human-like responses based on text input [23].
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In this case, we will use the neural networks for decision-making in an MCRN under
a PUE attack.

To decide which neural network is needed, the ANN concept is analyzed. The funda-
mental components of the nervous system in biological systems are neurons; the complexity
of this system derives from the millions of neuron connections when they communicate
with each other through axons and dendrites. When a living organism learns, connections
between neurons are established through a process called synapses [22]. Artificial neural
networks are inspired by biological behavior through artificial neurons that communicate
with each other and can learn from data. A neuron performs a linear regression from a set
of weighted inputs and a bias [23].

There are different types of neural networks, each with its own architecture [24].

• Deep or fully connected networks (DNN): These are networks in which each neuron
of a layer is connected with all the neurons of the subsequent layer; they have been
used mainly in regression problems and the classification of supervised learning [25].

• Convolutional Networks (CNN): These networks, in which a set of filters is imple-
mented in each layer, are very efficient in image processing.

• Recurrent Networks (RNN): In these models, the output depends on the current input
and the information processed in the last moments. This characteristic, called short-
and long-term memory, allows them to work with data series such as text, audio, or
video. They are often used in natural language processing tasks, voice recognition,
and time series analysis, among other applications [24].

• Generative Adversarial Networks (GAN): They are a system comprising two neural
networks: generative and discriminative. The generative network creates new data
from the training data set. In contrast, the discriminative network judges whether
the data it receives is training data or data created by the generative network. As
this competition process between the two networks progresses, each performs its task
more efficiently. Thanks to this architecture, GANs have proven capable of generating
high-quality images, music, and videos [26].

Deep neural networks are an effective tool for classification or regression tasks. These
networks can identify complex patterns that relate input data to output values. In deep
neural networks, three types of layers can be distinguished: the input layer, which has as
many neurons as variables present in the training data; the deep hidden layer or layers;
and the output layer, as shown in Figure 2 [27].
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In this paper, we propose to use a DNN; the input layers are the SNR and entropy of the
measured signals, and with this data, each SU can detect the PUE attack using supervised
learning and an adequately labeled dataset. This data set is divided into training and test
or validation data. The network training stage follows an iterative process that includes
several phases:

Initialization of parameters: Initially, the weights and biases of each neuron in the
network are adjusted. These values can be chosen randomly or they can be assigned
according to a probability distribution.

Forward propagation: In forward propagation of an L-layer neural network, a
Z-weighted sum of the X inputs and the b biases of each neuron in the layer is performed,
where the weights w represent the contribution of each input in the layer in the weighted
sum, as can be seen in Equation (8). In this case, the inputs are the SNR and the entropy of
the averaged energy of the received signal.

ZL = wLX + bL (8)

Subsequently, a nonlinear activation function a is applied to the weighted sum Z to
obtain the response ŷ, as seen in Equation (9).

ŷ = a(ZL) (9)

Error calculation: The error is obtained by calculating the cost function C, which
measures the discrepancy between the predicted output ŷ, and the desired output or label
y. The cost function C can be the root mean square error (RMSE) in cases of regression or
cross-entropy in classification problems; the error can be seen in Equation (10) [28].

Error = y− ŷ = C(a(Z[L])) (10)

Backpropagation: After the error calculation, the backpropagation phase begins, in
which the weights and biases of each neuron are adjusted to achieve the desired output.
The cost function is optimized using algorithms, such as gradient descent, to minimize the
error. In this way, it seeks to achieve a solution that allows a better network generalization
to make accurate predictions on new data, reducing the error in the last layer, as seen in
Equation (11) [29].

δL =
∂C
∂aL

∂aL

∂zL (11)

The backpropagation for the error can be seen in Equation (12).

δL−1 = WLδL ∂aL−1

∂zL−1 (12)

Then, the derivatives of the biases are calculated in Equation (13).

∂C
∂bL−1 = δL−1 (13)

Finally, the derivatives of the weights are also calculated in Equation (14).

∂C
∂wL−1 = δL−1aL−2 (14)

Optimizing the weights and biases of the neural network based on their derivatives,
known as backpropagation, is carried out by the backpropagation of the error from the
output layer to the previous layers. This process is repeated with all the training data in
one epoch and is executed multiple times until the network can capture the patterns in the
data. Then, the validation of the network is carried out using the test data to measure its
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efficiency. If the performance is unsatisfactory, the hyperparameters are adjusted, and the
entire procedure is repeated [29].

After all the DNN processes are achieved (training, testing, and validation), each SU
can detect the PUE attack by taking some samples, as will be explained in the next section.

3.4. General Proposal for PUE Attack Detection

Our proposal starts with the entropy calculation of the energy detector results, which
achieves better results for low SNR values and energy by itself on each SU. After that, a
DNN is used and divided into two parts. In the first one, the PUE attacker is placed at
different points of a mesh around the SU of the network; the collected data is used for the
learning process of the DNN algorithm, which will be explained in the following subsection.
Each SU has the results of the learning stage in its programming. In the second part, the
PUE is positioned anywhere, and the decision results of each SU are sent to the FC, which
makes the global decision if there is a PUE attack presence based on an OR rule. There are
other rules, such as the AND or MAJORITY rule, but depending on the position of the SU
and the PUE attacker, there is a high probability that only one SU will be able to detect
the attack. The rule that allows better detection is the OR rule; if any of the SU detects the
PUE attack, it will be transmitted to the entire network. An example will be shown in
Section 5.2. The global decision is sent in a broadcast message to all the SU in the CSS
scheme. The general model for the proposed PUE detection can be seen in Figure 3.
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Figure 3. Proposed CSS using entropy and DNN for multiple PUE detection.

The model consists of a malicious PUE attack generated in the MCRN environment
and some SUs that use energy and entropy methods to detect it, distributed on the MCRN.
Depending on the position of a SU, it can detect or not the PUE attack; that is why the CSS
needs to have a vision of the MCRN within its coverage limits. The malicious PUE attack
does not send signals in uplink frequency (UL), only in downlink (DL) in the MCRN.

The first stage of the detection system is to analyze if a PU, a SU, or a MU is detected
in the radio environment to protect the PU. However, to detect if there is a PU or a MU,
the UL and DL signals are estimated. If there is a PU phone call, the two signals must be
active, but if there is a MU, only a DL/UL signal will be detected. For the test, we use the
absolute radio frequency channel number (ARFCN) and record the combination of UL/DL
frequency pairs available for the phone call. If a DL signal is detected, the system detects
the UL signal. If only the DL is detected by the system, it will be marked as a MU.

4. Experiments

A testbed based on SDR is used for the experiments; the Ettus N210 device is the
SDR selected. It has been implemented for similar purposes and can work in the MCRN
frequencies; it can be configured to work with Linux or Windows, and it has the libraries or
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drivers to achieve several communication scenarios [30]. Each SU uses an RTL-SDR as a
spectrum analyzer [12]. The N210 device generates the PUE attack; another SDR is used for
the FC and each SU. The MCRN consists of some SU trying to make a phone call; this is
achieved by using the OpenBTS software and GNURadio [31,32], as we work in [10]. The
testbed for the experiments is shown in Figure 4.
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Figure 4. Testbed for experiments based on SDR, GNURadio, and OpenBTS.

The devices were positioned in a grid, and energy, entropy, and the DNN were
calculated at that time and positioned with one PUE attacker to be able to measure the
practical threshold. Then, the PUE attacker was moved to every place in that grid. That
information is recorded and is the input for DNN algorithms. Once the measurements are
taken and the algorithm learns how the attack works, the attacker takes a random position,
and the SUs measure the results. With the energy and entropy results measured in each
SU, the DNN predicts the PUE attack presence; this value is binary and transmitted to the
FC. Notice that if any SU detects a signal, it changes its frequency immediately to prevent
interference with a genuine PU while it detects the PUE’s presence. The FC takes a global
decision and transmits a broadcast message to any SU in the network; the whole system
learns and records the attackers’ information, creating a database with a blacklist of the
attackers’ data. For example, the grid of the device’s position is shown in Figure 5.
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If the PUE is out of the grid, it can detect it or not, depending on the SU position. The
system needs at least one SU to detect it; if not, the PUE attacker is out of the system’s
coverage and will not be detected.
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There are two parts to the process. The first part is where the algorithms learn how the
attack is achieved and the threshold is measured. In this part, some samples are taken at
each position, and with one PUE attacker, the frequency changes to detect some frequencies
in the range. This learning process can be seen in Figure 6.
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The second part is the detection once the system has learned how to detect the
PUE attack. This flowchart shows the steps that each SU takes. The PUE attack starts
with a random position; this process can be seen in Figure 7.
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5. Results

The results are analyzed in this section, and a discussion about them is made.

5.1. Entropy Detection of PUE Attack

The first part of the model is the energy detector, which is implemented in GNURadio.
The 100 positions of the grid are defined to measure the energy of one PUE attack when it
is active or not. As shown in Figure 8, there is a difference in the power when it is in the
two states.
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Figure 8. Example of Power Received in GNURadio.

The energy is detected by averaging 100 samples of the measured energy each time.
Results are taken when the PUE attack is in a fixed position. In Figure 9, an example of the
received power is shown when there is a PUE active or not in two different positions near
and far from a SU.
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Figure 9. Power in UL when there is an active/inactive PUE attack.

The entropy is calculated with 100 samples of the energy. Figure 10 shows an example
of the measured entropy when there is a PUE active or not close to the SU.
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Figure 10. Measured entropy example with PUE attack signal and noise.

Now that the entropy values have been calculated, we can run the learning algorithm
for the DNN. According to Table 1, the SNR is estimated for GNURadio.

Table 1. Parameters for the Learning Process.

Parameter Value

Samples 20,000 samples

Averaged Values 100 samples for each point of the grid with
an on/off value

Noise Signal AWGN
Service Phone Call-PUEA

Frequency 831.8 MHz
Confidence Level 95%
Margin of error 5%

Users 3 SU, 1 FC, 1 PUE

For the experiments, we use GSM-850 MHz, which is assigned to an operator in the
laboratory’s coverage zone. A site survey was made, and we found that ARFCN 166 is not
used. This corresponds to a DL frequency of 876.8 MHz and a UL frequency of 831.8 MHz.
However, during all the experiments, the MCRN was configured to release the channel if a
PU was detected.

5.2. DNN Algorithm Results

Once the entropy and SNR results are taken, the DNN algorithm is trained with this
data. For this purpose, the scikit-learn and Keras libraries of Python are used.

A classifier was built using a DNN (fully connected) in a sequential model imple-
mented in Keras. Two deep layers were simulated with 16 and 32 neurons, and using the
ReLu activation function, the output layer contains two neurons and a Softmax activation
function. The final model had 642 parameters, optimized through a training process that
covered 50 epochs and a batch size of 32, as shown in Figure 11. The input is the SNR and
calculated entropy.
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The algorithm is tested with 20% of the dataset when the training is performed. In
this case, 20,000 samples are taken, so 4000 data points are used for the test, as shown in
Figure 12 Values are measured for each SNR value from −25 dB to 0 dB. For example, for
−12 dB, the algorithm’s probability of detection and accuracy are 99%; the blue boxes are
the right detection values.
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After the training algorithm is executed, the results are shared and recorded on each
SU in the system. Then, the second part of the DNN is executed with each value of entropy;
the algorithm predicts if there is an active PUE, and depending on the estimated SNR, a
probability of detection is calculated.

In the SDR experiments, the PUE position is random and fixed, the SNR is estimated,
100 entropy values are averaged on each sample, and then each value is processed by
the SUs. A CSS with an OR logic is implemented; if any of the three SUs detect the PUE
presence, the FC broadcasts a message of the PUE presence to any SU in the network. With
the obtained data, the device records it on the blacklist of PUE attackers.

The receiver operating characteristic (ROC) curves are similar to the practical re-
sults; the experiments are conducted in laboratory conditions. An example of the imple-
mented algorithm can be seen in Figure 13. The PUE is active, and the FC indicates that a
PUE attack is present when any of the SUs detect it and send a “1” binary value. It can be
seen that one SU detects the attack in some samples, which is why an OR rule is used.
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The probability of detection of the PUE is estimated as the number of positive de-
tections when the PUE is active. In the experimental SDR testbed, the measurements are
taken with steps of 1 dB each time, as seen in Figure 14 The results are compared with our
previous results on entropy and the SVM PUE attack detection system [9].

Future Internet 2023, 15, x FOR PEER REVIEW 16 of 18 
 

 

 
Figure 14. Probability of detection in comparison with SVM and entropy. 

5.3. Discussion 
The designed algorithms are an efficient combination of energy, entropy, DNN, and 

CSS models, which allow the detection system to obtain a PD of above 90% at −21 dB of 
SNR in an actual SDR environment. Compared to our previous works, such as [9], our 
proposal demonstrates improved outcomes regarding noise, SNR, and PD while main-
taining a fast method to release the channel and prevent interference with the PU. 

In the implemented model, there is no need to know previous information such as 
the modulation schemes, the threshold, or some earlier data similar to other solutions. The 
DNN is a high-speed method that, after a learning process, can detect PUE attacks. In 
combination with the CSS schemes, it increases the probability of detection by using the 
SUs as sensors and transmitting the individual detections to the FC. The use of entropy 
allows us to work with lower SNR values. 

As a future work, the attack and detection methods could be implemented in a 5G 
scenario using, for example, a 5G testbed, as mentioned in [33]. There can be experiments 
with some mobile technologies, CRN, attacks, and detection methods that can be com-
pared with the results of our proposal. Another detection method could be to use the 
Boltzmann concept in a game strategy, as demonstrated in [34]. 

6. Conclusions 
The experimental results obtained in the SDR environment show that a cognitive 

protocol can be implemented to protect the primary user in MCRN by combining GNURa-
dio, Python, and the DNN libraries. The CSS is used to detect the PUE attack, and accord-
ing to the results, it works better with low SNR values. In combination with an entropy 
detector, it shows a higher probability of detection than all the systems, including the 
SVM. The implemented PUE detection solution increases the PD by about 10% for an SNR 
value of −18 dB and more than 20% at −21 dB, using the three SUs as detectors in the CSS 
scheme. If more than 90% PD is needed, this can be achieved with the DNN algorithm for 
an SNR value of −21 dB or higher. 

The learning process takes several minutes to measure the variables at several dis-
tances and SNR values. Still, once it is performed, the detection system can be conducted 
significantly faster, which prevents the interference of the PU, which is one of the objec-
tives of the MCRN. The system can release the channel in milliseconds, using the energy 
detector as the first step. At the same time, it is analyzed to determine if there is a PUE 

Figure 14. Probability of detection in comparison with SVM and entropy.

5.3. Discussion

The designed algorithms are an efficient combination of energy, entropy, DNN, and
CSS models, which allow the detection system to obtain a PD of above 90% at−21 dB of SNR
in an actual SDR environment. Compared to our previous works, such as [9], our proposal
demonstrates improved outcomes regarding noise, SNR, and PD while maintaining a fast
method to release the channel and prevent interference with the PU.

In the implemented model, there is no need to know previous information such as the
modulation schemes, the threshold, or some earlier data similar to other solutions. The
DNN is a high-speed method that, after a learning process, can detect PUE attacks. In
combination with the CSS schemes, it increases the probability of detection by using the
SUs as sensors and transmitting the individual detections to the FC. The use of entropy
allows us to work with lower SNR values.
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As a future work, the attack and detection methods could be implemented in a 5G
scenario using, for example, a 5G testbed, as mentioned in [33]. There can be experiments
with some mobile technologies, CRN, attacks, and detection methods that can be compared
with the results of our proposal. Another detection method could be to use the Boltzmann
concept in a game strategy, as demonstrated in [34].

6. Conclusions

The experimental results obtained in the SDR environment show that a cognitive pro-
tocol can be implemented to protect the primary user in MCRN by combining GNURadio,
Python, and the DNN libraries. The CSS is used to detect the PUE attack, and according to
the results, it works better with low SNR values. In combination with an entropy detector,
it shows a higher probability of detection than all the systems, including the SVM. The
implemented PUE detection solution increases the PD by about 10% for an SNR value of
−18 dB and more than 20% at −21 dB, using the three SUs as detectors in the CSS scheme.
If more than 90% PD is needed, this can be achieved with the DNN algorithm for an SNR
value of −21 dB or higher.

The learning process takes several minutes to measure the variables at several dis-
tances and SNR values. Still, once it is performed, the detection system can be conducted
significantly faster, which prevents the interference of the PU, which is one of the objectives
of the MCRN. The system can release the channel in milliseconds, using the energy detector
as the first step. At the same time, it is analyzed to determine if there is a PUE present
in the radio environment. The use of the DNN to detect the PUE works better than other
methods found in the literature [9].

Using the CSS gives us more coverage in the MCRN and allows us to obtain higher
probability values for detection. Thanks to the DNN algorithm, high detection results
are achieved even with slow SNR values. These results are similar to the values found
in the literature. The system successfully detects the PUE attack signals individually and
in a CSS scheme. In this case, the OR rule is better to have a better knowledge of the
radio environment, separating the PUE attack signal and the MU efficiently because the
FC has more data from the attacks detected on each SU, avoiding PUE attacks and errors
in the network. A blacklist helps the system detect a previous PUE attacker without all
the processes.

Author Contributions: The methodology, algorithms, and testbed proposed in this paper have been
conceived by E.C.M.; the experiment scenarios by E.C.M., G.C.P. and R.C.-S.; testing by E.C.M., G.C.P.,
R.C.-S., A.A.-M. and M.E.B.; results and conclusion, review, and edition by E.C.M. and R.C.-S. and
A.A.-M. All authors participated in the discussion and proofreading work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Universidad Santo Tomas, Proyecto 2253501-AI, 2022.

Data Availability Statement: Not applicable.

Acknowledgments: We express our gratitude to Universidad Santo Tomas for the founding of
this project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khan, M.S.; Faisal, M.; Kim, S.M.; Ahmed, S.; St-Hilaire, M.; Kim, J. A correlation-based sensing scheme for outlier detection in

cognitive radio networks. Appl. Sci. 2021, 11, 2362. [CrossRef]
2. Batool, R.; Bibi, N.; Muhammad, N.; Alhazmi, S. Detection of Primary User Emulation Attack Using the Differential Evolution

Algorithm in Cognitive Radio Networks. Appl. Sci. 2022, 13, 571. [CrossRef]
3. Furqan, H.M.; Aygül, M.A.; Nazzal, M.; Arslan, H. Primary user emulation and jamming attack detection in cognitive radio via

sparse coding. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 141. [CrossRef]
4. Balogun, V.; Sarumi, O.A. A Cooperative Spectrum Sensing Architecture and Algorithm for Cloud-and Big Data-based Cognitive

Radio Networks. In Proceedings of the 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE),
London, ON, Canada, 30 August–2 September 2020; pp. 1–5.

https://doi.org/10.3390/app11052362
https://doi.org/10.3390/app13010571
https://doi.org/10.1186/s13638-020-01736-y


Future Internet 2023, 15, 202 17 of 18

5. Bliss Consultants, B. Detecting the Primary User Emulation Attack Using the Logistic Regression and MLE. 2018. Available
online: https://ukdiss.com/examples/primary-user-emulation-attack.php?vref=1 (accessed on 26 May 2023).

6. Inamdar, M.A.; Kumaraswamy, H. Accurate primary user emulation attack (PUEA) detection in cognitive radio network using
KNN and ANN classifier. In Proceedings of the 2020 4th International Conference on Trends in Electronics and Informatics
(ICOEI)(48184), Tirunelveli, India, 15–17 June 2020; pp. 490–495.

7. Cadena Muñoz, E.; Pedraza Martínez, L.F.; Hernandez, C.A. Rényi Entropy-Based Spectrum Sensing in Mobile Cognitive Radio
Networks Using Software Defined Radio. Entropy 2020, 22, 626. [CrossRef]

8. Ernesto, C.M.; Martínez, J.A.R.; Martínez, L.F.P.; Parra, I.P.P. Cooperative Spectrum Sensing with Entropy for Mobile Cognitive
Radio Networks. In Proceedings of the 2020 IEEE ANDESCON, Quito, Ecuador, 13–16 October 2020; pp. 1–5.

9. Muñoz, E.C.; Pedraza, L.F.; Hernández, C.A. Machine Learning Techniques Based on Primary User Emulation Detection in
Mobile Cognitive Radio Networks. Sensors 2022, 22, 4659. [CrossRef]

10. Cadena Muñoz, E.; Pedraza Martínez, L.F.; Ortiz Triviño, J.E. Detection of Malicious Primary User Emulation Based on a Support
Vector Machine for a Mobile Cognitive Radio Network Using Software-Defined Radio. Electronics 2020, 9, 1282. [CrossRef]

11. Shrivastava, S.; Rajesh, A.; Bora, P.K.; Chen, B.; Dai, M.; Lin, X.; Wang, H. A survey on security issues in cognitive radio based
cooperative sensing. IET Commun. 2021, 15, 875–905. [CrossRef]

12. Villalonga, D.A.U.; Cotrina, E.G.; Salgado, A.A.V.; Gómez, J.T.; García, D.L. Cooperative Spectrum Sensing Application Using
RTL-Dongle Technology. Rev. Telemática 2019, 18, 139–150.

13. Li, K.; Wang, J. Optimal Joining Strategies in Cognitive Radio Networks Under Primary User Emulation Attacks. IEEE Access
2019, 7, 183812–183822. [CrossRef]

14. Rajagopala, M.; Lingareddy, S. Spectrum occupancy-based PUEA detection using SVM-PSO in cognitive networks. Int. J. Commun.
Netw. Distrib. Syst. 2021, 26, 30–49. [CrossRef]

15. Ghanem, W.R.; Mohamed, R.E.; Shokair, M.; Dessouky, M.I. Particle swarm optimization approaches for primary user emulation
attack detection and localization in cognitive radio networks. arXiv 2019, arXiv190201944.

16. Robert, V.N.J.; Vidya, K. OAM-GANN: Online Adaptive Memory Based Genetically Optimized Artificial Neural Network for
PUEA Detection in CRN Applications, 12 August 2022, PREPRINT (Version 1). Available online: https://doi.org/10.21203/rs.3.
rs-1952113/v1 (accessed on 26 May 2023).

17. Camana, M.R.; Garcia, C.E.; Koo, I.; Shakhov, V. Machine Learning Based Primary User Emulation Attack Detection. In
Proceedings of the 2022 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Sofia,
Bulgaria, 6–9 June 2022; pp. 244–248.

18. Sureka, N.; Gunaseelan, K. Investigations on detection and prevention of primary user emulation attack in cognitive radio
networks using extreme machine learning algorithm. J. Ambient Intell. Humaniz. Comput. 2021, 1–10. [CrossRef]

19. Ajay, V.; Nesasudha, M. Detection of Attackers in Cognitive Radio Network Using Optimized Neural Networks. Intell. Autom.
Soft Comput. 2022, 34, 193–204. [CrossRef]

20. Charan, C. Double Threshold Based Cooperative Spectrum Sensing with Consideration of History of Sensing Nodes in Cognitive
Radio Networks. In Proceedings of the 2018 2nd International Conference on Power, Energy and Environment: Towards Smart
Technology (ICEPE), Shillong, Inida, 1–2 June 2018; pp. 1–9.

21. So, J. Entropy-based Spectrum Sensing for Cognitive Radio Networks in the Presence of an Unauthorized Signal. KSII Trans.
Internet Inf. Syst. 2015, 9, 20–33.

22. Aggarwal, C.C. Neural Networks and Deep Learning; Springer: Cham, Switzerland, 2018; ISBN 978-3-319-94462-3.
23. Ding, H.; Wu, J.; Zhao, W.; Matinlinna, J.P.; Burrow, M.F.; Tsoi, J.K.-H. Artificial intelligence in dentistry—A review. Front. Dent.

Med. 2023, 4, 1085251. [CrossRef]
24. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput.

2019, 31, 1235–1270. [CrossRef]
25. Bharti, R.; Khamparia, A.; Shabaz, M.; Dhiman, G.; Pande, S.; Singh, P. Prediction of heart disease using a combination of machine

learning and deep learning. Comput. Intell. Neurosci. 2021, 2021, 8387680. [CrossRef] [PubMed]
26. Aggarwal, A.; Mittal, M.; Battineni, G. Generative adversarial network: An overview of theory and applications. Int. J. Inf. Manag.

Data Insights 2021, 1, 100004. [CrossRef]
27. Montesinos López, O.A.; Montesinos López, A.; Crossa, J. Multivariate Statistical Machine Learning Methods for Genomic Prediction;

Springer Nature: Berlin/Heidelberg, Germany, 2022.
28. Bengio, Y.; Lecun, Y.; Hinton, G. Deep learning for AI. Commun. ACM 2021, 64, 58–65. [CrossRef]
29. Higham, C.F.; Higham, D.J. Deep learning: An introduction for applied mathematicians. Siam Rev. 2019, 61, 860–891. [CrossRef]
30. Molla, D.M.; Badis, H.; George, L.; Berbineau, M. Software defined radio platforms for wireless technologies. IEEE Access 2022,

10, 26203–26229. [CrossRef]
31. Ettus, C. Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux. 2019. Available

online: https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux
(accessed on 20 May 2023).

https://ukdiss.com/examples/primary-user-emulation-attack.php?vref=1
https://doi.org/10.3390/e22060626
https://doi.org/10.3390/s22134659
https://doi.org/10.3390/electronics9081282
https://doi.org/10.1049/cmu2.12131
https://doi.org/10.1109/ACCESS.2019.2957435
https://doi.org/10.1504/IJCNDS.2021.111626
https://doi.org/10.21203/rs.3.rs-1952113/v1
https://doi.org/10.21203/rs.3.rs-1952113/v1
https://doi.org/10.1007/s12652-021-03080-5
https://doi.org/10.32604/iasc.2022.024839
https://doi.org/10.3389/fdmed.2023.1085251
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1155/2021/8387680
https://www.ncbi.nlm.nih.gov/pubmed/34306056
https://doi.org/10.1016/j.jjimei.2020.100004
https://doi.org/10.1145/3448250
https://doi.org/10.1137/18M1165748
https://doi.org/10.1109/ACCESS.2022.3154364
https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux


Future Internet 2023, 15, 202 18 of 18

32. Partiansyah, F.H.; Kusmaryanto, S.; Ambarwati, R.; Pramono, S.H. Experimental Study of USRP N210 as Simple GSM OpenBTS
5.0 for Remote Areas. In Proceedings of the 2022 11th Electrical Power, Electronics, Communications, Controls and Informatics
Seminar (EECCIS), Malang, Indonesia, 23–25 August 2022; pp. 185–190.

33. Esmaeily, A.; Kralevska, K. Small-scale 5g testbeds for network slicing deployment: A systematic review. Wirel. Commun. Mob.
Comput. 2021, 2021, 6655216. [CrossRef]

34. Chica-Pedraza, G.; Mojica-Nava, E.; Cadena-Muñoz, E. Boltzmann distributed replicator dynamics: Population games in a
microgrid context. Games 2021, 12, 8. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1155/2021/6655216
https://doi.org/10.3390/g12010008

	Introduction 
	Previous Work 
	Deep Neural Network and Entropy to Multiple PUE Detection inCooperative MCRN 
	Cooperative Spectrum Sensing Model 
	Detector Based on Entropy 
	Deep Learning Techniques for the Decision of PUE Presence 
	General Proposal for PUE Attack Detection 

	Experiments 
	Results 
	Entropy Detection of PUE Attack 
	DNN Algorithm Results 
	Discussion 

	Conclusions 
	References

