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Abstract: As an Internet of Things (IoT) technological key enabler, Wireless Sensor Networks (WSNs)
are prone to different kinds of cyberattacks. WSNs have unique characteristics, and have several
limitations which complicate the design of effective attack prevention and detection techniques. This
paper aims to provide a comprehensive understanding of the fundamental principles underlying
cybersecurity in WSNs. In addition to current and envisioned solutions that have been studied in
detail, this review primarily focuses on state-of-the-art Machine Learning (ML) and Blockchain (BC)
security techniques by studying and analyzing 164 up-to-date publications highlighting security
aspect in WSNs. Then, the paper discusses integrating BC and ML towards developing a lightweight
security framework that consists of two lines of defence, i.e, cyberattack detection and cyberattack pre-
vention in WSNs, emphasizing the relevant design insights and challenges. The paper concludes by
presenting a proposed integrated BC and ML solution highlighting potential BC and ML algorithms
underpinning a less computationally demanding solution.

Keywords: Internet of Things; wireless sensor networks; security; machine learning; blockchain;
detection; prevention; cyberattacks; integration; review

1. Introduction

Wireless Sensor Networks are the backbone that enables Internet of Things (IoT) at low
cost and low power [1]. These networks have been considered for a wide range of applica-
tions, such as military, environmental, healthcare, and civilian, despite being vulnerable to
attacks [2]. Indeed, Wireless Sensor Networks (WSNs) result in major concerns in terms of
security. Concerns include the use of devices which have resource constraints in terms of
energy, the adopted wireless broadcasting channels, the involvement of multi-hop relays,
the dynamic network topology, variable medium-to-large network scales, heterogeneous
sensor node fabrication, and most importantly, the different routing protocols employed.
Securing WSNs is relevant to securing IoT [3], as the latter comprises one or more WSNs,
which implies that developing prevention, detection, and mitigation security solutions for
WSNs are essential for establishing secure and reliable IoT systems.

Classical WSN security techniques, such as spread spectrum, cryptography, and
key management [4,5], may not efficiently detect attacks, and can demand sophisticated
software and hardware changes, rendering these solutions insufficient to address WSN
security concerns, as WSN devices constrain the network’s power, storage, computational,
and communication capabilities [6]. There has been growing interest in novel security
paradigms, with cybersecurity companies investing as much as USD 119 billion to solve
these problems [7]. This has led to newly evolved means aimed at strengthening WSN
security against possible cyberattacks via Machine Learning (ML) and Blockchain (BC) [8].

Compared to classical techniques, ML techniques are particularly useful in WSNs
and IoT applications, as computational complexity and communication overhead can be
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significantly decreased, no human intervention is required, and they perform better in
dynamic environments. On the other hand, BC allows highly secure data transactions
within any network similar to WSNs [9]. The fact that ML and BC can potentially pro-
vide promising solutions and effective mechanisms to protect and secure WSNs against
cyberattacks has motivated several recent research works focused on evaluating the perfor-
mance of BC and ML to secure WSNs. The performance of ML and BC is affected by the
challenging characteristics of WSNs, such as its large generated data volume, which are
extremely hard to manage, especially when considering highly dense networks. To this
end, this paper attempts to answer the following overarching research questions. How is
ML used to detect WSN cyberattacks? How is BC used to prevent WSN cyberattacks? How
can the integration of ML and BC provide an effective framework to protect and secure
WSNs against cyberattacks? Finally, What are the key technical challenges related to this
integration? Thus, the main contributions of this survey are: (a) classification of WSN
cyberattacks and the unique characteristics that complicate the design of effective detection
and prevention mechanisms against cyberattacks; (b) a literature review of the existing
Intrusion Detection System (IDS) architectures in the context of WSNs; (c) a comprehensive
taxonomy of ML and BC along with an evaluation of relevant existing security techniques
and challenges; (d) discussion of an integrated solution incorporating both technologies
towards development of a WSN that is significantly immune against attacks; and (e) an
ultimate overview of our approach to providing a lightweight and integrated ML and BC
framework towards enhanced protection against cyberattacks in WSN contexts.

The rest of this paper is organized as follows: Section 2 reviews existing surveys on
ML and BC solutions in the context of securing WSNs; Section 3 outlines the unique WSN
characteristics that present network security challenges when developing such techniques;
Section 4 illustrates the security requirements for designing a secure WSN; Section 5
classifies and defines cyberattacks that target WSNs; Section 6 discusses the underlying
IDS architectures considered in conjunction with different WSN architectures; Section 7
extends the discussion to include different types of IDSs used for intrusion detection;
Sections 8 and 9 focus on the respective taxonomies of ML and BC techniques used to
detecting cyberattacks, along with related aspects; Section 10 explores the integration of
BC and ML towards developing a lightweight security framework for WSNs and presents
our approach to developing such a framework for cyberattack prevention and detection in
WSN contexts; finally, Section 11 concludes this review.

2. Existing Surveys on ML and BC in WSN

This paper discusses ML and BC protection mechanisms in a comprehensive manner [10–15];
however, the emphasis is on securing WSNs. In this regard, a few previous surveys have
focused on presenting state-of-the-art ML and BC techniques for WSN cybersecurity. Key
surveys tackling WSN security are tabulated in Table 1, which highlights the different
subtopics covered, including ML, BC, attack taxonomy, and ML–BC integration, among
others. The surveyed sources were collected from popular academic databases, such as
IEEE Xplore, Elsevier, and Scopus, as per the most recent citation provided by Google
Scholar, and are detailed in Figure 1.

Table 1 reveals that research work on ML techniques is the primary subject of existing
survey papers in the literature. A number of surveys that were published between 2012 and
2017, such as [16], did not examine WSN-related ML techniques, instead jointly discussing
methods adopted in both IoT and WSN. On the other hand, surveys similar to [16–19]
focused primarily on WSN. The authors of [19] considered only Denial of Service (DoS)
attacks over the five TCP/IP layers. The authors of [17] provided a generalized and
comprehensive review of ML techniques adopted to support WSNs against their inherent
limitations, including security. The paper specifically focused on ML methods used to
detect outlying and misleading measurements. The authors of [14] discussed the different
types of attacks targeting WSNs and associated proposed ML solutions. Protecting WSNs
using several ML methods was discussed in [16]. The authors of [20] explored using ML
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techniques with WSNs, including anomaly detection, with a focus on Deep learning (DL)
techniques. A different research direction was analyzed in [20,21], where the authors
focused on a specific type of WSN. The authors of [20] presented ML learning techniques
targeting advanced WSN systems, and [21] reviewed ML techniques to secure industrial
WSN systems. The authors of [22] reviewed ML algorithms and considered using software-
defined networking (SDN) as a solution that can help enhance the node efficiency, creating
a new foundation for using ML schemes to secure WSNs.
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Considering BC techniques, several reviews have been conducted on securing IoT
through the use of BC, such as [7,23–30]; however, [31] is the only article addressing BC
for mitigating cyberattacks in WSNs. The study concluded that integrating BC techniques
within WSNs has limitations, as BC is demanding in terms of both energy and computa-
tional complexity and is not expandable. Thus, to the best of our knowledge, our paper
is the first work to review the integration of both technologies to improve WSN security,
which is confirmed by Table 1.

Figure 1. Paper collection criteria flowchart.

Considering BC techniques, several reviews have been conducted on securing IoT
through the use of BC, such as [7,23–30]; however, Ref. [31] is the only article address-
ing BC for mitigating cyberattacks in WSNs. The study concluded that integrating BC
techniques within WSNs has limitations, as BC is demanding in terms of both energy and
computational complexity and is not expandable. Thus, to the best of our knowledge, our
paper is the first work to review the integration of both technologies to improve WSN
security, which is confirmed by Table 1.
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Table 1. Existing works on applicability of ML and BC for WSN security.

Year Ref. Direction

ML BC Attacks IDS Integration

2015 [9] X X X

2015 [19] X DoS X

2017 [32] X

2018 [21] X X X

2018 [16] X X

2020 [17] X

2020 [18] X X

2021 [20] X X

2022 [22] X X X

2021 [31] X

2023 our work X X X X X

3. WSN Security Requirements

The most important WSN security requirements include integrity, availability, scalabil-
ity, non-repudiation, mutual authentication, confidentiality, and data freshness, defined in
turn as follows:

1. Integrity: transmitted messages cannot be tampered with due to illegal actions when
moving from one node to the other.

2. Availability: legitimate (and authenticated) nodes can effectively access the net-
work/provided services.

3. Scalability: the network should be able to cope with increases in size and to adapt to
the dynamic addition and removal of various nodes, and node functionalities must
be incorporated with sensor nodes for every service without affecting the network’s
security level.

4. Mutual Authentication: the identities of any pair of nodes engaged in communication
must be recognized before they interact.

5. Non-repudiation: the nodes cannot deny the implemented operations or alter the
messages they send.

6. Confidentiality: the privacy of sensitive data transmitted over the network medium
must be preserved by ensuring that any intruder or other neighboring network
intercepting the communication channels cannot obtain any confidential information.

7. Data Freshness: the data must be recent in order to ensure that no old messages have
been replayed and that attackers cannot confuse the network by replaying captured
messages [33,34].

4. WSN Design Challenges and Unique Characteristics

WSN security solution design is highly affected by the unique features of these net-
works that make them more susceptible to cyberattacks than other technologies. This is
primarily due to their challenging underlying infrastructure, which consists of a collection
of sensor nodes utilizing scarce resources. The basic building blocks of a sensor node
consist of four main units, namely, processing, sensing, communication, and power [31], as
shown in Figure 2. The processing unit is the central unit, containing a processor or micro-
controller that controls the sensor’s activities and executes the communication protocols;
however, it has limited storage memory. The processing unit is connected to the sensing
unit by an Analog to Digital Converter (ADC). The sensing device captures surrounding
data, which are then converted into an electrical signal by the ADC. The communication
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unit typically supports data exchange between the sensor and the other network elements
using a transceiver. Finally, the power unit provides the electrical energy required by the
other units using limited-lifespan batteries. Optional sensor hardware additions include
power generation and mobilization units [35]. Certain nodes may include a location-finding
unit for positional localization in reference to the node’s neighbors. These special char-
acteristics must be identified before they can be used in the design and development of
more secure networks. The following points describe the dominant design considerations
in WSNs in detail, which are further highlighted in Figure 3.

Processor

Memory

Processing
Unit

TransceiverADCSensor

Location Finding
System Mobilizer

Power Unit

Power
Generator

Communication
Unit

Sensing
Unit

Figure 2. Illustration of sensor node building blocks.

Figure 3. Unique characteristics of WSNs.

• WSNs can be used in a wide range of applications with different security requirements;
however, they must be able to ensure privacy, confidentiality, integrity, freshness, and
authentication.

• Sensor nodes must be heterogeneous in terms of fabrication and energy-saving strategies,
such as sleep, idle, and wake-up modes, which dictates the need to provide different
underlying network architectures for the different heterogeneous applications.
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• WSNs have many appealing applications, creating a need for different levels of se-
cure functionalities and service requirements, such as secure node selection, data
aggregation [36], localization, and routing.

• Resource-constrained devices have limited memory, power, and transmitting band-
width. For example, TelosB [37] is an ultra-low-power sensor with a a 16 bit processor
and 8 MHz RISC microcontroller with only 10 Kb RAM, 48 Kb program memory, and
1024 Kb flash storage. The required total space for a typical code, such as TinyOS,
which is the de facto standard operating system for wireless sensors, is approximately
4 Kb [38]. Therefore, any implemented security algorithm within the network must
not be computationally demanding beyond these limitations.

• Security algorithms must be able to manage unsupervised sensors, which could be
exposed to physical attack by demolishing the hardware or to attackers equipping
sensors with extra hardware to perform hidden or malicious functions prior to their
being deployed in the network area.

• Determining the adopted broadcast dynamic channel used as a wireless communi-
cation medium is challenging, as it is unattended and might be affected by collision
and interference issues. WSN communication links are usually based on the 802.15.4
standard, and can be implemented via the use of other technologies as well, such as
Bluetooth, ZigBee, PLC, WiFi, 4G, and 5G.

• The lack of fixed physical infrastructure is a significant design challenge due to the
rapidly changing connectivity between nodes.

• A dynamic underlying network topology results from node failure, deployment of
new nodes, possible variations in node position (which is especially the case under
harsh environmental conditions), node mobility. The resulting flexibility in terms
of link connectivity presents a design challenge for security algorithms, which must
be able to adapt to network node variations in order to obtain the extra measure of
protection provided by monitoring of corrupted nodes.

• WSN routing protocols have weaknesses, including malicious routing information
injection, alteration, or spoofing, which might lead to network disruptions such as
creation of routing loops, broadcasting of fake error messages to partition the network,
attracting or repelling network traffic from particular nodes, extending or shortening
route paths, and increasing end-to-end latency. These issues are likely to complicate
the design of security routing techniques [39].

• Medium- to large-scale networks of hundreds or thousands of nodes deployed randomly
or uniformly throughout the network field presents a challenge when designing security
algorithms that are sufficiently flexible to support different security-level requirements.

• The scalability of WSNs implies handling large amounts of data that may have incon-
sistent, noisy, erroneous, redundant, and missing values, which requires designing
intelligent security approaches that can correctly interpret data to drive intelligent
decision-making.

• Data transmission over multi-hop relaying creates a significant threat, as relays could be
eavesdroppers [40], and communicated data may be breached, tampered with, or forged.

• Time synchronization is an issue, as nodes are independently controlled in the field.
Local clocks should be coordinated to avoid synchronization uncertainties, which
could cause sensed data to become ambiguous and unreliable.

• Unexpected and unusual sensor behavior patterns may arise during WSN deploy-
ment in unpredictable and hazardous environments, potentially changing the entire
historical pattern of the sensed data.

These characteristics render a completely secure WSN system almost impossible
to establish, unlike its counterpart networks. The characteristics of WSN systems limit
the available security options, including those similar to heavyweight classical security
approaches such as spread spectrum, cryptography, and key management at either the
device level or the overall network level. These options are demanding in terms of the
resources required to protect the network. As existing security solutions for WSNs are
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insufficient due to these networks’ unique characteristics, it is difficult to create lightweight
and effective security mechanisms that can enable optimization of node resource usage
while supporting network scalability and without compromising security, allow for a
dynamic network topology with different possible configurations and node localization,
and integrate heterogeneous hardware and software platforms for sensors to allow them to
detect malfunctioning or faulty nodes.

5. Cyberattacks in WSN Contexts

Cyberattacks are the greatest challenge facing communication networks worldwide.
The threat of cyberattacks affects any network’s connectivity, availability, reliability, and
confidentiality, limiting its efficient use. Mitigating this challenge is essential, especially
because the frequency and the nature of attacks have increased tremendously over time [41].
For this reason, cyberattacks targeting WSNs have been the focus of several recent studies
in the literature [4,42–46]. Cyberattacks occur when good nodes are communicating over
a communication link and intruder or eavesdropper nodes interfere with or disturb that
link. This malicious activity usually aims to obtain, alter, or prevent the flow of data within
the network using different means; therefore, this activity should be prevented, detected,
and mitigated in order to maintain a reliable communication channel [47]. Malicious
acts targeting WSNs have been classified in the literature in different ways: the first
classification divides attacks into active or passive attacks; the second classification is based
on the physical location of the attack relative to the network’s physical position, using this
distinction to divide attacks into inside or outside attacks; and the third classification is
based on the disrupted stack Open Systems Interconnection (OSI) layer, dividing attacks
into physical layer, data link layer, and network layer attacks [42,48]. Table 2 classifies a
selection of classical attacks targeting WSNs and provides their definitions.

Table 2. Classification of cyberattacks on WSNs.

Attack
Type

Affected
Stack
Layer

Attack Name Definition

Active

Multi-layer

Man-in-the-
Middle

A malicious node intercepts a message pass-
ing between two sensor nodes with the aim
of modifying, injecting, or deleting content
before relaying the message again.

Denial-of-
Service

An attacker performs malicious activities to
prevent original users from accessing sys-
tem resources.

Distributed
Denial-of-
Service

A more powerful version of DoS attack that
overwhelms the targeted nodes with exces-
sive messages to exhaust their resources, lead-
ing to a system overload that prevents it from
answering some or all legitimate messages.

Application

Deluge An attacker tries to remotely reprogram a
sensor node.

Misdirection
An attacker forwards packets to the wrong
destinations or paths by misdirecting packets
or altering routes towards a malicious node.
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Table 2. Cont.

Attack
Type

Affected
Stack
Layer

Attack Name Definition

Clock
skewing

Disrupts sensors that requir synchronization
for successful communication; an attacker
desynchronizes sensor clocks by generating
false timing information, leading to desyn-
chronization of the victim nodes.

Selective
Forwarding

Malicious nodes drop a portion of a received
message while forwarding most of the mes-
sage, impacting data integrity.

Transport

Flooding

An attacker sends a large number of useless
packets to a legitimate node, preventing it
from communicating normally and consum-
ing its resources.

Session
Hijacking

An attacker exploits a valid session, pretends
to be a victim node, and obtains fake access
to the session.

De-
synchronization

An attacker intercepts sequence numbers or
controls flag packets that it attempts to forge;
if the attacker can desynchronize two com-
municating nodes, the receiver node must
request retransmission from the sender for
the lost packet. Frequent retransmission con-
sumes network resources and increases traffic
over the network.

Network

Reply
An attacker records the messages sent be-
tween nodes and re-transmits them later to
waste the target node’s resources.

Selective
Forwarding
or Grayhole

A malicious node selectively, constantly, or
randomly drops packets while forwarding
the remaining packets to a particular desti-
nation, which happens when relay nodes do
not forward messages they receive.

Neglect and
Greed

A special case of selective forwarding attack
in which the attacker arbitrarily drops some
of the received packets while acknowledg-
ing the source node (neglect attack) or sends
its own packets with higher priority to other
nodes (greed attack) [49].



Future Internet 2023, 15, 200 9 of 45

Table 2. Cont.

Attack
Type

Affected
Stack
Layer

Attack Name Definition

Homing

An attacker analyzes traffic using a traffic pat-
tern analysis algorithm to recognize the nodes
with special responsibilities, such as cluster
heads (CHs) or base station (BS), which are
the attack targets. Afterwards, additional DoS
attacks may be launched toward these nodes
to jam or destroy them.

Spoofing

An attacker forges its identity by imperson-
ating another node and falsifying the iden-
tity field in routing messages to launch DoS
attacks by injecting fraudulent data packets,
such as falsely advertising services to other
nodes or providing incorrect routing and
control information to compromise network
operation [50].

Blackhole
A malicious node, usually located in the cen-
ter, does not forward traffic and drops the
packets completely.

Wormhole

A collusion-based attack in which two or
more malicious nodes create a low-latency
data delivery tunnel between two or more ma-
licious nodes to perform other attacks, such
as a blackhole attack. For instance, the nodes
may establish a low-latency tunnel by which
one malicious node misroutes the packets to
be forwarded and sends them to its partner
using a faked routing path to disrupt routing
operations in the network.

Sybil

A single attacker node assumes several iden-
tities or steals them from other authorized
nodes to create several sybil nodes that can be
virtually present in different neighborhoods,
then attack the network to cause problems
with multipath routing, network topology,
storage access, and detection [50].

Sinkhole

A malicious node identifies itself as a black-
hole to attract network traffic. The attacker
observes path requests and falsely offers the
shortest or most power-efficient paths to the
BS. As the attacker is in the relay path be-
tween the communicating nodes, it is able to
change or alter the packets passing between
them [44].
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Table 2. Cont.

Attack
Type

Affected
Stack
Layer

Attack Name Definition

Hello
Flooding

An attacker broadcasts advertisement ‘Hello’
messages with high power, asking network
nodes to join an existing WSN and tricking
the nodes into believing that it is located
in their neighborhood. The nodes choose
to route their packets through the attacker,
which has a longer transmission range than
normal nodes, leading to additional delays
and energy waste.

Data link

Collision

An attacker sends signals while another node
is transmitting a message, causing interfer-
ence that alters data packets or causes them
to be considered invalid. Collision usually
occurs when multiple nodes transmit data at
the same frequency and data rate.

Denial of
Sleep (Sleep
Deprivation)

A Malicious node prevents legitimate nodes
from entering low-power sleep mode, causing
them to keep wasting their energy [51].

Power
Exhaustion

In order to drain the victim node’s power,
an attacker sends packets over the channel
continually by requesting calculations or the
receipt or transmission of unnecessary data,
which leads to starvation. The source of the
attack can be a PC or laptop.

Unfairness

A malicious node continuously sends pack-
ets without waiting a reasonable time to let
other nodes use the channel. This is a kind of
exhaustion-based attack which disrupts equal
load sharing in the WSN.

Physical

Jamming
An attacker sends a radio signal that inter-
feres with the sensor network’s use of certain
radio frequencies.

Physical
or Node
Tampering

An attacker physically accesses a compro-
mised node and takes over the control, for
example, to obtain sensitive information such
as transmission keys [52,53].

Node Repli-
cation or
Clone

An attacker captures a compromised node,
obtains access to the stored credentials, pur-
posefully duplicates the node’s identity, and
then deploys clones in key positions of the
WSN [54] to initiate different internal attacks.
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Table 2. Cont.

Attack
Type

Affected
Stack
Layer

Attack Name Definition

Passive

Camouflage
Adversaries

A camouflaged node deceives the other nodes
and attract packets from them in order to ei-
ther misroute the packets or eventually drop
the packets.

Eavesdropping
and Traffic
Analysis

The most common attack on privacy,
also called sniffing or snooping, where
an attacker simply discovers the content
of communications.

Passive
Information
Gathering

If the content of messages from network com-
munication media, such as message identifi-
cation numbers (IDs), nodes locations, and
timestamps, is not encrypted then an attacker
with the appropriate receiver can collect and
observe the information.

Replay or
Duplication

An attacker copies a stream of messages be-
tween communicating nodes, then replays the
stream to one or more of the nodes [55]

Active attacks threaten network integrity and reduce availability by continuously
attempting to modify the content of the network packets or flooding the victim nodes with
surplus packets. The different types of active attacks are based on the underlying stack
layer disrupted by the attack, as shown in Figure 4 [42,48]. Attacks such as link jamming,
physical tampering, or node replication are hardware-oriented attacks that affect the node’s
physical layer. These attacks are more likely to occur when the sensor is exposed to a harsh
environment or open to an adversary; therefore, they are unlikely to occur when the sensor
node is placed in a secure indoor location. Other attacks, such as collision, exhaustion, and
unfairness, are executed against the Media Access Control (MAC) protocol at the data link
layer. These attacks cause collisions that result in packet re-transmission; therefore, copies
of the same packets must traverse the network, overwhelming the communication channel
and wasting limited sensors energy. The most common attacks, such as sinkhole, wormhole,
blackhole, selective forwarding (grayhole), ‘Hello’ flooding, sybil, spoofing, and altered or
replayed routing information attacks, all interrupt the network layer. These attacks prevent
proper packet delivery to the destination through methods such as taking advantage of the
multi-hop routing protocol, in which any node routes passing through malicious nodes
are unable to deliver packets or are intentionally redirected to incorrect nodes. Examples
of attacks impacting the functionality of the transport layer include session hijacking,
flooding, and de-synchronization attacks. For example, flooding results in node failure, as
the attacker consumes node resources by sending multiple connection requests. Attacks
that target the application layer include selective forwarding, deluge, and clock skewing.
The most difficult to detect among these attacks is selective forwarding, as the attacker
does not block packet forwarding entirely, and only drops or alters some of the received
packets from selected nodes. Deluge allows the sensor nodes to be reprogrammed remotely,
and clock skewing disrupts those sensors that require synchronization for successful
communication. Unlike active attacks, passive attacks do not affect network integrity,
instead compromising network confidentiality. These attacks sniff and read unauthorized
messages through the communication channels between nodes without disrupting their
communication or interrupting network processes. Passive attacks may make the network
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more vulnerable to other kinds of attacks, such as camouflaged adversaries, physical
tampering, eavesdropping, and traffic analysis.

Application Layer
Deluge, clock skewing selective message

forwarding, and data aggregation forwarding

Transport Layer
Flooding, Session Hijacking Desynchronization

Network Layer
Sinkhole, Wormhole, Blackhole, Grayhole

Hello Flooding, Sybil, Spoofing, Replay, Homing

Data Link Layer
Collision, Denial of Sleep, Exhaustion,

Unfairness

Physical Layer
Jamming, Physical Tampering, Node Replication

(clone)

Figure 4. Active attack classification according to OSI stack layer.

Internal attacks are initiated from within the network’s physical boundaries. These
attacks control and utilize other network nodes to execute malicious acts. An inside
attack can obtain the network transmission key or other network information from the
transmitted packets within the network, then use this information to attack the entire
network. A typical example of an internal attack is when an attacker takes advantage of
a dump security implementation at an unsecured sensor node or a non-updated device’s
firmware, which allows the attacker to turn sensing devices into malicious nodes. The
attacker then utilizes the node’s network connectivity with other nodes to extract network
data using eavesdropping, interfering, or misrouting. External attacks are initiated from
beyond the network boundaries; therefore, they cannot obtain network information, such as
node identification numbers or transmission keys, making attack recognition easier [48]. In
addition, external attackers require powerful wireless transceivers to listen to data packets
inside the network in order to accomplish malicious activities such as eavesdropping,
replay, injection, and interference. Figure 5 depicts scenarios for external and internal
attacks targeting a WSN.

In terms of OSI layers, the physical and network layers experience the most threatening
attacks. The physical layer possesses a broadcasting channel and a dynamic topology, which
allows attackers to easily listen to or sniff the communication channel and establish attacks.
While, the network layer has a weak routing protocol that attackers can exploit to execute
malicious acts. Another form of attack can be initiated over several WSN stack layers; such
attacks across multiple layers include DoS and Man-in-the-middle (MITM) attacks [38].
DoS attacks are numerous, and include jamming and node tampering at the physical layer,
collision, exhaustion, denial of sleep, unfairness at the data link layer, homing, blackhole,
grayhole, wormhole, sinkhole, spoofing, ‘Hello’ flooding, TDMA scheduling, sybil, and
replay attacks at the network layer, as well as flooding and desynchronization at the
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transport layer [56]. MITM attacks work as a relay between two victims [6]; this type of
attack can be passive, where the attacker eavesdrops or intercepts the data traveling on the
network between two legitimate nodes without altering the data, such as eavesdropping
at the physical layer, or it can be active, where the attacker can delay, drop, or modify the
content of a packet, such as a replay attack at the network layer [57].

Figure 5. Internal and external cyberattack scenarios in WSN contexts.

6. Architecture of WSN vs. Architecture of IDS

Intrusions are similar to attacks in that they aim to disturb the network’s normal
operation or obtain access to the network’s information. The IDS is the network’s line of
defense, designed to detect violations and tell the controller, or BS, to react appropriately.

6.1. Naive or Flat-Based WSN Architecture for Centralized IDS

In a centralized architecture, better known as a Naive WSN architecture, a central
BS collects all the information sensed by all network nodes and forwards the collected
information to the cloud IoT server. Similarly, in a centralized IDSs, the BS acts as a
global reference that performs computationally demanding tasks to monitor and filter data
traffic to facilitate attack detection. Several studies have considered executing the IDS
at both the BS level and at the remote server level connected to the IoT cloud, which is
called a multi-layer IDS scenario. This approach has multiple limitations, including attack
detection latency, considerable communication overhead, and high energy consumption.
Latency occurs when data traffic analysis is delayed until the information reaches the BS.
Communication overhead is caused by the need to transmit all sensed information to the
central BS over the communication link, increasing energy consumption as the node’s
distance relative to the central unit increases [58]. Due to these limitations, centralized IDS
architectures are typically used only in very small networks.

6.2. Naive or Flat-Based WSN Architecture for Stand-Alone IDS

The opposite philosophy to centralized IDS is stand-alone IDS, which is a node-centric
architecture. Each node individually uses an IDS detection model to detect any possible
attack locally without needing to exchange any information with the adjacent nodes or a
central BS unit. This approach does not exhibit latency when detecting node attacks or
introducing communication overhead; however, energy consumption at the node level is
higher than in a centralized IDS, and the nodes have lower battery life.

6.3. Naive or Flat-Based WSN Architecture for Distributed or Cooperative IDS

This approach assumes that each node has its own local IDS model to monitor the
data traffic, then involves all network nodes in deciding whether an intrusion is present in
the network based on the detected indicators. If a locally measured indicator is weak or
inconclusive, the involved node can initiate a cooperative global intrusion detection proce-
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dure in which all network nodes cooperatively participate in reaching a global decision.
Otherwise, if an intrusion is locally detected with sufficient evidence, the involved node
can independently alert the rest of the nodes to the presence of a violation in the network.
This approach reduces false attack stimulus events, which relate to scenarios in which a
violation alarm is triggered even though no real threat is in progress within the network. In
this approach, node power consumption is higher and node battery life is lower than the
stand-alone IDS due to the an additional optional cooperative procedure.

6.4. Naive or Flat WSN Architecture for Agent-Based IDS

Agent-based IDS involves installing the detection model in a selected subset of sensor
nodes, which are called Monitor Nodes (MNs), to reduce the detection overhead faced
by the stand-alone and distributed approaches. In tis approach, selected nodes perform
detection in addition to their normal sensing, communication, and routing activities in the
case of flat WSN architecture. Agents’ tasks are relocated to another predefined subset of
nodes after a certain period of time or when performing a specific mission, which improves
IDS detection efficiency and increases network lifetime. Agent-based IDS is especially
suitable for WSNs, as nodes near the BS can be excluded from communicating all of their
samples when developing the reference ML model at the BS because they do not contribute
much to the determination of hypersphere of the developed ML model. Agent-based
IDS is typically preferred over centralized IDS architecture, especially for networks with
geographically dispersed nodes, as in a centralized approach the nodes consume more
power when transmitting their data to the central location.

6.5. Hierarchical WSN Architecture for Distributed or Cooperative IDS

A WSN’s hierarchical architecture is a variation of centralized architecture, which can
be implemented as cluster-based or tree-based. In a cluster-based architecture all sensor
nodes are partitioned into clusters, whereas in a tree-based architecture the nodes are
partitioned into trees according to their topographical area. The nodes in a tree-based
architecture are organized into a routing tree rooted at the BS. Cluster-based architectures
can be static or dynamic. In static clustering the sensors are divided proactively into several
clusters at the time of network deployment, while in dynamic clustering the formation of
clusters is triggered reactively by detecting the event of interest. In a distributed IDS, the
detection model is placed in every sensor network node, allowing nodes to collaborate
in order to detect possible intrusions. The clear advantage of implementing a combined
hierarchical and distributed architecture is that the communication overhead is significantly
lower than in other approaches, as both hierarchical and distributed architectures involve
less communication exchange between nodes [58]. A disadvantage of this approach is the
need for each network node to have sufficient energy, processing, and storage capacity.
Studies have considered using multi-layer instead of distributed IDS, with heterogeneous
detection models placed only at the BS and CHs.

7. Types of IDS

IDS-based mechanisms are effective and lightweight solutions for detecting abnormal
behavior in WSN sensor nodes. An IDS requires an IDS agent or detector node that analyses
the network traffic to detect a abnormal behavior. Intrusion detection at the IDS agent level
involves three phases: collection, processing, and action. Network data traffic is collected
during a specific time period, then this collected information is processed according to a
particular detection mechanism. Detection approaches can be classified as misuse-based,
anomaly-based, and specification-based detection. In misuse-based or signature-based
detection, the system searches for specific patterns or signatures to identify and detect an
intrusion. This approach easily detects known attacks, but cannot detect new or unknown
attacks. In specification-based detection, a set of rules or specifications have been set as a
reference for normal system operation; any deviation from these specifications triggers an
abnormal behavior alert, allowing the system to take proper preventive actions accordingly.
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This approach has a low false positive rate; however, developing the required specifications
is very time-consuming. Anomaly-based detection systems learn the normal behavior
profile from normal network traffic and create a reference model accordingly. This model is
then used to detect any deviation from the learned pattern or behavior exceeding a certain
estimated threshold for use in identifying intrusions [32].

Anomaly-based detection is adaptive, and can detect new and unknown attacks
efficiently; however, it has a higher false positive rate compared to previous approaches,
as any deviation from the normal behavior profile is considered an attack even though
it might be due to normal activity of an unlearned profile or a faulty node producing
abnormal activities [15]. Especially in critical infrastructure applications, these types of
anomalies are just as harmful as those caused by intruders, and should be identified
by the developed reference model [32]. Anomaly-based detection is practical, flexible,
computationally feasible, bandwidth (BW) and both spectrally and memory efficient [21];
therefore, it is widely used to secure WSNs. For this reason, the focus of this survey is on
anomaly-based detection.

Anomaly-based detection techniques are classified into statistical and ML approaches.
The stochastic network behavior in normal conditions is measured during a specific time
window and is used to establish a baseline for future detection of patterns that are different
from normal traffic [58]. However, the approach continuously generates other reference
profiles with a given score for comparison to the reference profile during traffic monitoring.
In this approach, the IDS is able to detect an anomalous occurrence if the score is above a
certain threshold. On the other hand, ML approaches use classification algorithms to detect
intrusions and malicious activities. ML classification algorithms build models capable of
classifying packets to distinguish between normal and abnormal packets through training.
The model is installed at the sensor level, and can classify upcoming packets after training.
The advantage of ML is the ability of models to learn from experience without being
explicitly reprogrammed, allowing them to be improved automatically [15,59].

8. ML and Cyberattack Detection

ML algorithms are used to build self-learning classifiers consisting of behaviors, which
are able to act without human intervention by using mathematical techniques based on
specialized datasets. These algorithms enhance the network nodes’ ability to learn without
being explicitly programmed. Such models are used to make future predictions based
on new input data. ML algorithms are currently used in various applications, such as
smart cities, energy, agriculture, intelligent transportation systems, industry and manu-
facturing, search engines, social media, cyberattack detection, spam email filtering, and
recommendation systems. Different ML techniques are used to improve the functionalities
of WSNs, such as data sensing, CH selection, routing and optimal path determination,
data aggregation, minimizing packet delivery latency, duty cycle management, quality
of service (QoS) provisioning, resource management, and to increase network lifetime.
ML algorithms have been used to design lightweight detection and mitigation systems to
secure WSNs against cyberattacks. They allow sensor nodes to detect possible attacks and
immediately take appropriate actions to mitigate the impact of an attack by triggering an
alarm, determining the degree of the risk, and isolating the attacker node from the next
round of network progress [60]. The ML pipeline spans data collection and pre-processing
feature selection, model training using proper ML algorithms, hyperparameter tuning,
model testing, validation, and deployment.

8.1. ML Methodology

Several studies have developed and investigated effective ML techniques for cyberat-
tack detection and mitigation. Figure 6 illustrates the generalized methodology of an ML
algorithm applied to ML-based IDS. The workflow includes several phases correspond-
ing to dataset collection, data preprocessing, features selection and extraction, ML model
training, hyperparameter tuning, and model testing and validation. The first step is the



Future Internet 2023, 15, 200 16 of 45

availability of a dataset, which can be balanced (using of an equal number of samples
for each attack type in addition to normal class samples) or imbalanced (consisting of an
unequal distribution of the classes in the dataset). The next step is data preprocessing,
which involves several stages: class rebalancing and sample size reduction, missing value
imputations, cleaning or feature removal, data normalization, and transformation (i.e., en-
coding labeled data). The advantage of balancing the dataset before using it in training is to
avoid bias towards the majority class. This is followed by feature selection, which involves
determining an optimal set of features to help reduce dataset dimensionality, especially
when considering a large dataset that may have irrelevant, redundant, erroneous, and
correlated features. A lower number of dataset dimensions lead to less computational and
training time being required. The reduced dataset is then utilized to train the ML model.
Optimal hyperparameter values can be obtained by applying efficient tuning techniques.
The final step is testing and validation, which entails using several evaluation metrics to
assess ML model performance, such as the probability of detection Pd, probability of false
alarm Pf a, probability of misdetection Pmd, positive prediction value PPV, accuracy (ACC),
F1-score, root mean square error RMSE, and receiver operating characteristics (ROC).

Figure 6. Illustration of generalized ML conceptual methodology.

8.2. Existing ML-Based approaches
8.2.1. Classical Machine Learning

ML algorithms are typically categorized as supervised, unsupervised, semi-supervised,
and reinforcement learning. Supervised ML algorithms learn the inputs and their corre-
sponding outputs to perform the learning process. Supervised algorithms are subdivided
into regression and classification; well-known models include Logistic Regression (LR), K-
Nearest Neighbors (K-NN), Support Vector Machine (SVM), Decision Trees (DT), Gaussian
Naive Bayes (NB), Artificial Neural Network (ANN), and Random Forests (RF). Unsuper-
vised learning ML algorithms only use the inputs while learning, as the associated outputs
are not provided; the learning process is performed by classifying the provided input data
into groups called clusters, and any new input is classified within its corresponding group.
Clustering and dimensionality reduction are the two main categories of unsupervised
learning. Semi-supervised learning works by combining a small amount of labeled data
with a large amount of unlabeled data. In reinforcement learning, neither the inputs nor
their corresponding outputs are provided, and the relationship between the input and the
output is learned by interaction with the surrounding environment and a reward scheme.
The reward scheme depends on the learning algorithm’s performance when achieving a
certain task such that a reward is provided if it achieves high performance. A popular
example of reinforcement learning is Q-learning.

Several studies have discussed the efficiency of using classical ML techniques to tackle
different cyberattack types [47,60–71]. For instance, research has examined well-known
network layer DoS attacks (blackhole, grayhole, flooding, and TDMA scheduling). Another
study used ANN and SVM to target common MAC layer attacks (collision, unfairness, and
exhaustion) [72]. Other research work has considered the efficiency of RF techniques for
the detection of physical layer clone attack [73]. The authors of [74] used a reinforcement
learning (RL)-based IDS to detect DoS, remote-to-local, user-to-root, and probe attacks.

8.2.2. Deep Learning

DL requires a larger amount of data samples; therefore, more processing time and
power are required than with classical ML techniques, which is not favorable in resource-
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constrained WSN contexts. DL models are more suitable for classification and prediction
tasks in IoT applications that generate unstructured data, such as images, audio, and video.

DL techniques such as recurrent neural networks (RNN), deep belief networks, and
Convolutional Neural Network (CNN) are largely used for security preservation and attack
detection, due to their fundamental constraints when applied to WSNs. The computational
complexity associated with their training, inference, and adaptation makes their use in
sensor devices impractical. Several studies have been conducted on using DL techniques,
such as [72], where the authors used autoencoder neural networks with a single hidden
layer of neurons for lower complexity, which suits resource-constrained WSN contexts.
The authors of [75] proposed a hybrid DL model using CNN and long short-term memory
(LSTM) for blackhole and grayhole attack detection. The same techniques, CNN and LSTM,
were used by the authors of [76] to detect DoS attacks. The authors of [77] investigated the
performance of different DL techniques, including Deep Neural Network (DNN), CNN,
RNN, and CNN, in combination with RNN for a single detection layer against DoS attacks.
The authors of [78] proposed a DL model using a restricted Boltzmann machine with
different numbers of hidden layers. The authors of [79] proposed a DL using CNN for
the detection of DoS, UR2, R2L, and probe attacks. They proposed a hybrid algorithm
consisting of the whale optimization technique and artificial bee colony optimization
technique. Overall, both ML and DL techniques are promising for efficient IDSs in WSNs
and IoT thanks to their ability to process high–dimensional data, extract useful features
from network traffic payloads, and determine complex nonlinear relationships between
inputs and outputs to enable informed and intelligent decisions on the part of networks.

8.2.3. Deep Reinforcement Learning

Adapting to new or constantly evolving attacks is a major drawback in classical
ML and DL algorithms due to their dependence on the fixed features of existing attacks
provided by the dataset for the learning process, which limits the implementation of
algorithms in applications that are vulnerable to dynamic intrusions [80]. Research ac-
tivities have searched for a more efficient solution by integrating DL methods with RL,
which has proved effective in various IDS applications for detecting sophisticated types
of cyberattacks, especially in real-time and adversarial environments [80]. For instance,
attacks that affect both the physical and MAC layers were effectively detected using a
proposed deep reinforcement learning (DRL) model that relied only on partial observations.
In [81], a new DRL-based IDS for WSNs was designed considering link invulnerability and
node importance.

8.2.4. Federated Learning

Federated Learning (FL) supports a distributed approach to perform model training at
the sensor node, unlike ML or DL. WSN nodes sense and collect the data readings, then use
the locally collected data for model training [82]. Afterwards, the full locally obtained model
parameters in the network are shared with a powerful node, referred to as an aggregator,
usually the IoT cloud server. The aggregator then merges the received trained model
parameters and generates a global model that is deployed to all WSN nodes. A system
based on FL structures is more robust and privacy-preserving than a traditional ML- or DL-
based IDSs, because the sensor nodes collaboratively build a global learning model while
safely preserving all training data locally at the sensor storage location. In a traditional ML-
or DL-based IDSs, large volumes of raw data are continuously transmitted from sensors to
the BS, which involves significant channel interference and energy consumption, keeping
in mind that only a small fraction of the data readings are anomalous.

Recent studies have addressed the challenges of applying FL in the context of WSNs,
as FL requires additional overhead and complexity, which may affect detection accuracy
and convergence speed. Anomalous samples represent a very small fraction of the local
data, meaning the accuracy of the training process is reduced because only the node’s
locally collected data is used for training, and the local dataset may lack enough training
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data for certain types of attacks. The node’s resource heterogeneity and dynamic physical
topology could lead to unexpected inconsistencies during the training process. Different
nodes collect different numbers of data samples for training, meaning that attacks might
only appear in very few nodes, and the same type of attack may have diverse distribution
patterns at different nodes. This imbalanced distribution of data can slow down the training
process at the aggregator and reduce performance due to diverging weights; thus, reducing
the number of rounds required or the learning process to reach convergence is necessary in
the context of a WSN in order to reduce power consumption.

Fast iteration convergence is a challenge when considering that training data samples
at the local nodes are not independent and identically distributed (iid) in FL, as is the
case with other ML techniques. This challenge is caused by issues such as non-uniform
placement of sensors in space, faulty sensors, and high packet loss rates. Despite this,
several studies support the assumption that the data samples collected at the sensor nodes
are iid, as training on iid data is likely to converge faster than training on non-iid data.
However, this assumption is not applicable in FL.

A promising clustering FL approach has recently been examined in the literature to
solve these challenges. WSN nodes in a clustering architecture, known as MNs, send their
observations to their current CHs, which performs the learning process on the aggregated
data at the local cluster level. Each CH then uploads its model parameters to the FL cloud
server through the BS, where they are combined into a global model with the minimum
possible frequency to reach convergence [83]. This clustering approach can help to reduce
overall network energy consumption, as one aggregated transmission is much more energy-
efficient than multiple separate transmissions, especially when the data size is large [15].
In addition, it can help reduce communication overhead, as data compression is possible
in this approach [82]. A clear challenge with the clustering FL approach is the need to
optimize the number of the CHs and the number of cluster members (CMs) per cluster, in
addition to the possibility that a CH may fail to train or send its local model to the server.

The different approaches mentioned above share a common challenge related to
the high number of transmissions required for the BS or the aggregator to broadcast the
parameters of the developed model with the rest of the nodes in the WSN, which introduces
a different communication overhead that requires high energy consumption [84,85].

8.3. ML Challenges in WSN

This section discusses challenges introduced by network resources, application and
routing algorithms, the classical ML framework and, cross-layer attack detection when
implementing ML techniques for the detection of cyberattacks targeting WSNs.

8.3.1. Challenges Related to Constrained Resources

ML algorithm selection should include consideration of the computational complexity,
memory usage, and balance between the quality of learning and the associated energy
budget, as the developed models are intended for deployment on resource-scarce devices.
Continuous or periodic collection of network traffic results in big data issues, leading to a
prominent challenge for the ML framework [86]. Moreover, the frequency of uploading data
samples is different from one network scenario to another. For instance, certain networks
are configured to put sensor nodes into deep sleep mode in order to conserve network
energy; however, important readings may be missed in these scenarios, and a body of
knowledge may be lost. Another example involves the possibility that network resource
consumption may not be relative to the frequency of global aggregation and model training
accuracy [87].

8.3.2. Challenges Related to Applications and Routing Algorithms

Developing a suitable ML security model to detect attacks for diverse WSN applica-
tions is challenging, especially for mission-critical, highly sensitive, real-time, and adversar-
ial environment applications. It is preferable that anomaly detection be performed locally
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at the local sensor nodes to avoid any communication with other nodes, the BS, or the IoT
cloud due to high security requirements, which are not feasible for resource-scarce nodes.
Another cyberattack detection challenge is the attacker’s ability to exploit the routing
algorithm and compromise its individual forwarding steps to attack the network. The
purpose of these actions is to disrupt the routing and communication process by misdi-
recting or alternating the routing information or broadcasting fake information. The IDSs,
on the other hand, can take advantage of the known behavior associated with the routing
algorithm to build models of legitimate operation and compare them to the real exchange
of routing messages between the nodes. Routing attacks belong to the network layer, and
include sybil, ‘Hello’ flooding, sinkhole, blackhole, grayhole, and wormhole attacks [88,89].
Using secure routing protocols as a prevention technique and deploying proper ML-based
IDS should be considered when securing these networks.

8.3.3. Challenges Related to the ML Framework

Pre-processing, feature selection and extraction, and hyperparameter tuning are essen-
tial for the success of any ML model learning process; however, collecting labeled data is
not always possible in WSNs, as certain attacks may only appear in very few nodes and
with low frequency. Thus, selecting an algorithm that can use minimally labeled data in a
way that is sufficient for the learning process is crucial. Data reduction is required to reduce
the processing time of the learning proccess on large datasets, especially for large-scale
WSNs. ML preprocessing includes the process of adjusting the raw data to a format that can
be used to train an ML model, such as removing features, sample size reduction, class rebal-
ancing, missing data imputation, data normalization, encoding labeled data, and changing
the data type of certain features. The process of reducing redundancy and correlation by
selecting the most informative features during feature extraction while dropping irrelevant
or partially relevant features from the dataset can be classified as follows: filter-based,
wrapper-based, or embedded-based. Filter-based methods filter out irrelevant features
independently of the learning algorithm, making it much faster and computationally effec-
tive than other methods and more suitable for WSNs [90]. Stacked-based feature extraction
has been used as well; it combines several feature selection algorithms ordered as a stack
and executed one after another, then applied to the dataset [91].

Hyperparameters are the set of parameters or arguments that are set manually before
training and optimizing the ML model structure for better classification. These parameter
value ranges are different for each ML algorithm. Hyperparameter selection significantly
affects prediction results. Default parameters are the initial values that are pre-established
when no values are explicitly provided. Optimized hyperparameters can be determined
manually or automatically. Manual hyperparameter tuning is time-consuming, especially
with a high number of possible combinations. Optimization algorithms can automate
the process of finding the hyperparameters’ this is called hyperparameter optimization.
Different approaches include Bayesian optimization, grid search, random search, genetic
algorithms, and particle swarm optimization. Several parameter combinations can be
identified via search to determine the set of parameters that provide better detection results.
Hyperparameter tuning is time-consuming when additional hyperparameters are added,
as the number of parameter search combinations increases.

8.3.4. Challenges Related to Cross-Layer Attack Detection

Most of the existing techniques only mitigate specific types of attacks belonging to
a single stack layer, excluding attacks on other layers. For instance, the network layer
IDS can only detect routing attacks, and cannot recognize attacks belonging to the MAC,
physical, or transport layers. It is essential to develop a cross-layer IDS that can detect
different possible attacks that may occur at different WSN layers. Attacks can be identified
by exploiting the information across the different layers to correlate the cross-layer features
among them, such as between the MAC and network layers [86,88,89].
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8.4. Datasets

Datasets are needed during the learning process to train and test ML models; therefore,
dataset reliability and size are crucial to obtaining accurate results [92]. For instance,
datasets that are large enough to have samples of normal traffic allow ML algorithms to
learn normal network behavior, enabling the detection of unknown attacks by considering
any deviation beyond the known usual behavior as unusual. It is challenging for the
system to differentiate between the characteristics or signatures of a specific intrusion
and a malfunction, which may cause false positives. Overall, any dataset collection for
a specific network scenario should be performed over a sufficient time period to collect
a sufficient volume of samples for each data class. Dataset parameters such as whether
the dataset is balanced or imbalanced, the number of samples per class, dataset size, and
dataset dimensionality can influence the selection of a proper ML classification technique
and affect the behavior of the ML classifier.

Dataset quality affect the performance of ML models. First, ML algorithms used with
a certain dataset may not be applicable for other datasets, as they may have differences
in the number of classes to be distinguished, number of instances or samples for each
class, and number of attributes that differentiate each class. Second, dataset characteristics
such as being labeled or not (i.e., balanced or imbalanced), the number of features (i.e.,
dataset dimensionality), and feature importance can affect model quality. Feature extraction
methods are usually used to filter out potential and relevant features. Third, the criticality
and real-time nature of the WSN application at the time of data collection may result in
noisy samples and irrelevant features, which can affect the final classification results and
the ability of the trained model to differentiate between normal and abnormal behavior.
For instance, increasing attack timespan traces and capture size can be used to control
the imbalance within the dataset, thereby enhancing the learning process and allowing
the algorithm to learn more differences between normal and attack samples. In addition,
retraining ML models is possible, and can take place periodically during network progress
as new or unknown attacks occur, allowing an ML model to modify its behavior and
improve its detection accuracy.

Specialized datasets that consider the long list of cyberattacks targeting WSNs, whether
collected using real-time experiments or computer-simulated, are limited. WSN-DS [92],
NSL-KDD and its predecessor KDD Cup 1999 [93], CICIDS2017 [94], and UNSW-NB15 [95]
are the most commonly used datasets been utilized for training and testing ML-based
detection models in the context of securing WSNs. It is worth mentioning that none of
these datasets except for WSN-DS are tailored to the need of developing ML models for
WSNs, which motivates a need to generate new datasets or collect actual logs of real normal
network data and simulated attacks.

8.5. Evaluation Metrics

Two types of cyberattack classifications are present in the literature, based on the
number of classes (i.e., attacks): binary classification, in which there are only two classes,
attack or normal; and multi-class classification, in which the number of considered classes
is greater than two if more than one attack has been detected and sampled in the dataset.
In both cases, the testing phase in the process of developing a ML model involves different
evaluation metrics, which can include Pd, Pf a, Pmd, positive prediction value (PPV), ACC,
Error rate (ERR), geometric Mean (GM), root mean square error (RMSE), normalized RMSE,
normalized RMSE (NRMSE), receiver operating characteristics (ROC), and F1 − score,
which can be expressed as follows:
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Pd =
TP

TP + FN

Pf a =
FP

TF + FN

Pmd =
FN

TN + FP

PPV =
TP

TP + FP

ACC =
TP + TN

TP + TN + FP + FN

GM =
√
(Pd ∗ Pmd) =

√
(Tp/(Tp + FP) ∗ TN/(TN + FN))

ERR = (1 − ACC) =
FP + FN

TP + TN + FP + FN

F1 − score =
2(Pd ∗ PPV)

(Pd + PPV)

where TP, TN , FP, and FN are the number of true positives, true negatives, false positives,
and false negatives, respectively, as per the confusion matrix illustrated in Figure 7.
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Figure 7. Confusion matrix.

These attributes are estimated after dataset testing and are calculated from the gener-
ated confusion matrix.

Pd, called the sensitivity, recall, and detection rate or true positive rate, corresponds to
the number of correctly detected attacks vs. the total number of attacks. Pf a, or the false
alarm rate, corresponds to the number of incorrectly detected attacks vs. the total number
of normal traffic instances. Pmd, or the false negative rate, is the number of undetected
attacks vs. the total number of normal traffic instances. ACC is the measure of correctly
detected traffic instances, whether normal or attack, vs. the total number of detected
samples. ERR is the complement of ACC; it is the misclassification rate, which provides a
measure of incorrectly detected traffic instances vs. the total number of detected samples.
PPV represents the total number of correctly detected attacks vs. the total number of
correctly and incorrectly detected attacks [96]. The F1-score or F-measure represents the
harmonic mean of precision and recall; it uses FN and FP to efficiently classify noisy or
imbalanced data [97]. High ACC, Pd, PPV, F1-score, and GM and low Pf a and Pmd values
generally indicate that an ML model has the potential to accurately detect attacks while
ensuring that a low number of attacks go undetected. In addition, RMSE and NRMSE are
used to evaluate different cyberattack detection methods numerically, and can be expressed
mathematically as

RMSE =

√
∑N

i=1(Ai − Âi)

N
∗ 100%
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where i is the index of the evaluated sample, Ai is the actual value, Âi is the estimated
or predicted value, and N is the total number of tested samples. NRMSE is defined as
a measure of a model’s predictive power against simple prediction using the mean of
the observed data, and facilitates comparison between models with different scales; it is
calculated as follows:

NRMSE =
RMSE

A
where A represents the mean of the observed data values, which can be replaced with a
range defined as the difference between the maximum and the minimum values of the
observed samples. The ROC curve plot indicates the tradeoff between Pd (the Y-axis) and
Pmd (the X-axis). Preferably, the area under the ROC curve should be close to unity; low
values are an indication of weak model performance in terms of detection [98]. NRMSE
can be interpreted as a fraction of the overall range that is typically resolved by the model.
A lower RMSE is preferable. This value is minimized when the predicted value matches
the true observed value from the environment.

Evaluation metrics such as PPV, ACC, ERR, and F1-score are computed using values
from the confusion matrix in both columns, and as such are sensitive to any change,
especially with an imbalanced dataset. These metrics change as the distribution of data
changes, even if the classifier’s performance does not [96]. However, GM can be used
with both balanced and imbalanced data, even if its calculation involves values from
both columns of the confusion matrix, because the changes in the class distribution cancel
each other out.

Other evaluation metrics commonly used to assess the ability of ML models to detect
cyberattacks targeting WSNs are related to the required memory usage, buffer size, com-
putational complexity, processing time, and prediction time, which are other elementary
evaluation metrics. On-chip memory usage considers the random access memory (RAM)
and Flash memory in the microcontroller unit, usually measured in kilobytes (KB). The
amount of RAM directly affects processing speed. A larger amount can handle more data;
however, WSN nodes have relatively low on-chip memory, which means that ML models
must require low amounts of on-chip memory and be optimized for efficiency. Buffer size
affects the rate of false alarms, as the node buffer usually stores certain fields of monitored
traffic data that can be used as input for the detection model running within the nodes. In
certain scenarios, a specific MN is responsible for monitoring its neighbors, listening to
messages within radio range, and continuously examining traffic to look for intruders.

9. BC and Cyberattack Prevention

One of the earliest data security techniques of major significance is digital time-
stamping, which was proposed by the authors of [99] in 1991 and has drawn the attention
of industry and academia ever since. The work in [99] proposed using a family of crypto-
graphically secure collision-free hash functions, digital signatures, and linking schemes
to preserve the sequential occurrence of the client’s requests in the network. Digital time-
stamping is the precursor of the well-known BC technique [100], which is discussed in the
following subsections.

9.1. BC Background

A BC is a set of blocks, with each block being a combination of an individual set
of transactions. The number of transactions in each block depends on the block size
and the transaction size. The blocks are linked using cryptographical sequential digital
signatures [101,102]. These signatures are chained utilizing a hash value that involves data
from the previous and current blocks to preserve the authenticity of the block’s content
against any data tampering [100,103]. The chain starts with a genesis block, which is the
first block in the chain [104], and each subsequent block is added based on a distributed
consensus with a hash value and timestamp. The shared ledger in each node connected
to the BC network is updated through a consensus algorithm with each added block. The
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consensus mechanism ensures a common ledger database that is difficult to tamper with
and has unified content on all nodes.

Figure 8 depicts the general structure of the block. Each block consists of a block
header and block body. The block header contains that block’s metadata, including its
version number, previous block hash, nonce, Merkle root, timestamp, and nBits, while the
block body consists of the transactions embedded in the block [105]. An explanation of
each component is provided below.

• Version number: indicates validation rules that the BC must follow.
• Previous hash: a 256-bit value that points to the previous block (sometimes called a parent

block) and affects the current block’s hash to ensure the chain structure’s uniqueness.
• Timestamp: the block’s approximate creation time, which is required for traceability.
• Nonce: a one-time use number in the block header that is required in order to state

the number of leading zeros for the hash value. This number can then be used to
determine the level of difficulty when calculating the hash of a block and for verification
to ensure consensus.

• Merkle root: sometimes called the ‘hash of all hashes’, this uniquely identifies the block;
its calculation depends on the block’s transactions [106]. The Merkle tree is used to
verify the validity of the transactions instead of downloading the entire chain. Figure 8
illustrates the Merkle tree’s structure, which is represented through the individual hashes
of the transactions or leaf nodes; each set of child hashes is combined and hashed again
up the tree until the root is reached [102]. Changing one transaction causes a change in
the whole chain of hashes up to the Merkle root value [102].

• Hash target or nBits: a threshold value that the block header hash must not exceed in
order for the block to be valid; the nBit value is usually continuously adjustable and
increases with the number of leading zeros.

Txn Txn+1 Txn+2 Txn+3

Hashn Hashn+1 Hashn+2 Hashn+3

Hashn,n+1 Hashn+2,n+3

Merkle Root Current HashPrevious Hash

NonceTimestamp

Version
Number

Hash
Target

Header

Block N Block N-1Block N+1

Figure 8. Block structure.

BC eliminates the need for a third-party central authority, as it is distributed or
decentralized and comprises all committed transactions in the network; this makes it
useful for securing cryptocurrency systems. In addition, BC has an ideal architecture
for many applications that require ensuring distributed transactions between nodes and
decentralizing computation and management in a trustless environment [107]. Using BC in
IoT systems can reduce security risks by safely storing data, routing, accessing resources,
and authenticating identities [108]. As discussed in [109], BC is a promising approach
for securing data and authenticating identities in IoT because of its peer-to-peer (P2P)
distributed ledger, which supports scalability and faster settlement for coordinating and
securing joining nodes. However, the challenge of applying BC in WSN is its high demand
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in terms of storage and computational complexity, which causes additional delays and
reduces network throughput. BC is often costly in terms of communication, memory usage,
and power consumption, while sensor devices are typically designed to be low-cost with
restricted resources; however, the cost of setting up and maintaining a centralized database
can be reduced with BC. A node’s idle state can be fully utilized in terms of the device’s
computational, storage, and bandwidth capabilities, thereby lowering overall network
calculation and storage costs.

Overall, using BC to secure a WSN has many advantages; however, it is difficult to
develop lightweight BC security mechanisms that carefully consider the tradeoffs between
BC security and WSN design factors in terms of power and latency [110]. This work aims
to investigate how BC can effectively protect sensor nodes from possible cyberattacks and
determine its appropriateness for WSN applications.

9.2. BC Features

The main keywords or features that describe BC are illustrated below.

• Data immutability: data are protected using cryptographic hashes unique to each
block, disallowing manipulation or alteration after registration in the BC network.

• Decentralization: the absence of a trusted supervised centralized authority; decentral-
ization ensures a lower failure rate, makes the network less prone to malicious attacks,
and reduces reliance on a third party.

• Transparency: every involved node in the network is aware of the updated stored data.
• Security and Resilience: any data manipulation requires the approval of more than

half of the miner nodes, which is extremely difficult to obtain practically.
• Data Encryption: the provision of public and private keys for data encryption and

decryption, respectively, via the use of an asymmetric encryption algorithm for every
two communicating nodes; the public key is shared between all nodes in the network
to encrypt the data, and the targeted receiver can decrypt the data using its own
private key.

• Digital Signatures: digital signing of transactions using a digital signature algorithm,
such as the elliptic-curve digital signature algorithm (ECDSA), to approve transaction
content and originate node identities.

• Consensus: every node in the network should agree on the current state of the dis-
tributed ledger, which is made possible using one of several popular consensus
mechanisms, such as Proof-of-Work (PoW), Proof of Authority (PoA), Proof of Capac-
ity (PoC),Proof of Share Stake (PoS), Delegated Proof of Stake (DPoS), Raft, Proof of
Elapsed Time (PoET), and practical Byzantine fault tolerance (PBFT) [111].

• Smart contract: a piece of code that adds customizability to a BC. It represents an
arrangement and executes itself automatically under a predetermined set of rules and
conditions without a third party. Smart contracts can be used for node verification and
authentication. The input of the smart contract is the transaction, which is executed
with a corresponding code that consists of the value, address, functions, and state to
generate the output events (see Figure 9) [112].

Figure 9. Smart contract structure.

9.3. Types of BC

There are four primary types of BC platforms: public (or permissionless), private
(or permissioned), consortium (or federated), and hybrid (Figure 10). A BC is a fully or
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partially decentralized architecture that authenticates sensor devices joining the network
and accepts or rejects transactions. A public BC is completely distributed; it allows any
node to join the BC with similar access rights, generate new blocks, and validate data
blocks. Public access to the BC provides data availability, transparency, and confidentiality.
Examples of public BC platforms include Ethereum and Kadena [113]. A private BC has a
central authority (or network manager) that determines which nodes may join, and does
not provide each node with equal rights to perform tasks [114]. It differs from a public BC
in that it restricts node participation and access to the BC depending on the authorization
provided by the network [115]. Examples of private BC platform include Hyperledger
Fabric, Hyperledger Burrow, IOTA, Quorum, Corda, Tendermint, Symbiont, HydraChain,
Exonum, and Multichain. Both types, private and public, have disadvantages; for instance,
public BCs tend to have a longer validation period for new data than private BCs, while
private BCs are more exposed to certain types of cyberattacks. Compared to public BCs,
several research works have considered private BCs to be advantageous when used in
IoT systems, particularly in terms of network latency, due to the additional time required
by public BCs to obtain consensus between all peers. PA private BC is fully controlled
by one organization, and trust comes from preselecting which nodes are authorized to
use the shared ledger and to verify transactions; as there are fewer trust difficulties, fewer
security measures are necessary between nodes, creating a more responsive network, which
is needed in IoT deployments in terms of scalability. Another advantage of private BC
implementation is higher data privacy, as network data are limited to the private network
and are entirely controlled by the network manager. Changes can only be made by certain
nodes within the network, though all network nodes can read the data within the private
BC. The role of network miners, called voters, validators, or peers, is to approve transactions
and maintain copies of the BC ledger, which helps to secure and stabilize the private BC
network. Because only a few nodes are delegated to publish blocks within the network in a
private BC, they are more vulnerable to certain attacks types, as the authority may modify
or tamper with rules or even data, and the organization may choose to revoke their BC to a
previous time instant [116].

Figure 10. Types of BC.

When using a private BC for an IoT application, all nodes are identified before de-
ployment using a Certificate Authority (CA) or Membership Services Provider, which
releases identities, or key pairs, for IoT nodes. Each IoT node’s registration is performed
on the BC using its cryptographic hardware identity hash. Node registration is performed
by mapping an IoT device’s public keys and their identities, which must be stored on
the BC [24]. This stops the BC from receiving information from unauthorized IoT nodes,
securing it against potential attacks. A consortium BC is a type of permissionless BC; it
is partially decentralized, as it is governed by a group of preselected nodes that directly
participate in the consensus mechanism, instead of a single central entity as in a private
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BC. A consortium BC is more decentralized than a private BC, and provides better security;
however, establishing a consortium requires cooperation between a number of key nodes
(sometimes called organizations), which presents logistical challenges and increases poten-
tial risk in cases where a majority of the consortium wants to tamper with the BC. A hybrid
BC refers to a customizable BC architecture that combines features of both private and
public BCs. Hybrid BCs are best suited for systems that cannot be fully private or public
and involve a lack of trust, such as IoT, supply chains, finance, and banking.

9.4. Performance Evaluation Metrics

The performance of a BC security system used in a WSN depends on the effectiveness
of its peer trust, node authentication, access control, smart contracts, consensus mecha-
nisms, resources management, and big data processing and storage. There are multiple
performance criteria of interest, including transaction throughput, response time, latency,
storage overhead, and energy consumption, which are the most commonly used metrics
for security analysis of BC-based WSNs, and can be defined as follows [117]:

• Transaction Throughput: the maximum amount of transactions that are processed and
committed by the BC in a specific period of time, usually represented by transactions
per second (tps).

• Response time: the time required to handle and verify the transactions processed
by peers. The response time increases with increasing batch size, such as when the
number of transactions in the queue grows; this can result in system congestion, as
peers are required to handle more transactions.

• Latency: the period of time between when the transaction is invoked by a node and
the time the transaction is added to the ledger.

• Transaction size: the amount of data in the transaction to be added to the next block.
• Block size: the size of the block, that is, the number of transactions included in the block.
• Storage Overhead: the storage capacity required for BC operations, which may exceed

the node’s storage capabilities due to the large amount of data accumulated by security
tasks [118].

• Residual energy: the remaining energy in the sensor nodes; this metric is important
to consider for energy-related attacks which shorten the network lifetime by wasting
nodes’ energy by launching malicious activities [119].

Other metrics include processing frequency, percentage of central processing unit
(CPU) usage, computational complexity of encryption [120], and processing time of trust
evaluation. In addition, the authors of [121] used the probability of attack success and
strength of attack detection to evaluate secure mechanisms using BC. The probability of
attack detection identifies how efficiently a secured mechanism can distinguish between
legitimate and malicious entities targeting an IoT network, while attack strength is de-
termined by an attacker’s ability to compromise a certain node and force the network to
behave maliciously.

9.5. Securing WSNs Using BC

A typical BC procedure in a P2P WSN begins when a transaction is launched between
two sensor nodes. This transaction is hashed and broadcast to the P2P network. The nodes
involved in the interaction sign the transaction using their public keys, as several nodes are
involved in the forwarding path in a multi-path forwarding scenario. The transactions are
verified and validated based on the consensus mechanism in terms of data and identity by
miners or voters, then disseminated, stored, and grouped into a block. The new block is
sent to the BC P2P network to be added to the chain when complete. The chain is shared,
immutable, and tamper-proof across the participant nodes (Figure 11).

Two architectures are most common to build BC-based security systems in WSN
contexts, namely, centralized (Figure 12) and cluster-based (Figure 13) [122]. In addition,
there are two types of nodes, full and lightweight [123]. Full or Aggregator nodes store the
complete ledger locally; therefore, they have access to the complete transaction history in
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the chain. In a WSN, a full node is usually a BS or CH. Lightweight nodes do not store
a complete ledger; they only store the BC transactions with high importance and what is
relevant to their operation, placing their “trust” in their associated full nodes. These nodes
are usually the terminal nodes or CM. In this way, the download and storage requirements
of these nodes are reduced. These architectures align with private BCs; however, it is not
recommended to have a single central node similar to a BC or a CH as a master authority
in charge of authentication and trust management in order to avoid any critical points of
vulnerability in the network.

Figure 11. BC workflow in WSN.

Figure 12. Centralized architecture in a BC-based WSN.
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Figure 13. Cluster-based architecture in a BC-based WSN.

9.6. BC Challenges in WSNs

• Scalability and Storage: the amount of generated data grows exponentially with an
increase in the number of devices deployed in different IoT applications, which leads
to an increase in the rate of transaction execution and in the storage capacity needed
to keep the ledger up to date [124]. Scalability becomes a severe bottleneck with
an increasing number of transactions, and limits the practical development of BC in
WSN contexts. With BC technology, blocks are not stored in a central server; however,
a subset of the nodes need to keep a copy of the entire ledger in their own limited
storage, which means that maintaining enough storage space for the ledger may not
be feasible. Moreover, the size of the ledger increases over time, while most of nodes
have low storage capacity of 10 KB to 100 KB memory at the most.
The ledger storage requirement remains an open research issue. According to [125],
certain IoT devices are limited to up to 8 MB of memory, most of which is used for
storing the software that manages the device; therefore, lightweight mechanisms that
limit the ledger size and allow it to be stored by each node are highly recommended.
The authors of [118] defined three strategies for data storage by IoT sensors: full
storage, in which all nodes store the full current data; partial storage, in which each
node stores only part of the data, allowing it to be restored when combined with data
from other nodes; and persistent storage, in which low-priority or old data can be
stored in a remote centralized database. Similar criteria can be suggested to reduce
storage overhead.
Efficient consensus protocols, optimizing block size, sharding, pruning, lighting proto-
cols, and off-chain storage have been proposed in the literature to address scalability
issues. For instance, PBFT is considered a suitable protocol for fixed and small-size
networks, although it is not scalable for larger numbers of IoT devices [126]. Sharding
is one of the newer mechanisms to support scalability; it aims to split the overhead of
processing transactions between multiple ‘shards’, or subgroups, of consensus nodes.
These groups work in parallel to maximize performance while significantly avoiding
the overhead due to duplication of communication, computation, and storage per
full node, allowing the system to scale to larger networks [127]. Scalability can be
increased by pruning the size of blocks on the BC, which includes removing older
transactions to control memory usage [128]. Lighting protocols aim to lower the
verification process period by only allowing full nodes to store the complete ledger,
with lightweight nodes only keeping a portion of it. In off-chain storage, only hashes
are stored in the ledger, whereas actual data are stored off-chain i.e., in the cloud, to
support the scalability in dense WSNs.

• Consensus mechanisms: common consensus mechanisms such as PoA, PoS, and PoC
are primarily designed to work for monetary transactions, and are not suitable for
adoption in WSNs and constrained-resource IoT devices [129]. PoW is not common
in IoT and WSN applications, as it is demanding in terms of computational power;
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while PoC is energy efficient, it depends on a node’s storage capacity and monetary
stake, and monetary stakes do not exist in IoT and WSNs [130]. In addition, the most
commonly known consensus mechanisms do not perform as desired in their raw
mode because of massive requirements and scalability issues [131].

• Communication Overhead and Synchronization: a significant amount of communica-
tion overhead is required to synchronize the BC copies, as there is a need to forward
every verified transaction to all peers. Establishing keys and authenticating nodes
with cryptography, which is determined by the encryption type (either asymmetric
or symmetric), causes high communication overhead and key storage [118]. Time
consistency during time synchronization between sensor nodes requires exchanging a
number of messages depending on synchronization frequency.

• Computation Overhead: heterogeneous IoT devices have different processing capabil-
ities for running encryption and decryption, which leads to variations in processing
time. Integrating a BC into the sensor network enables a logical peer-to-peer network
to validate and store transactions locally, which is straightforward for personal com-
puters or workstations; however, it might be difficult for tiny sensors with limited
computational resources.

• Complexity and Energy Wastage: most widely employed BCs use PoW as a consensus
mechanism, where the network participants must solve a mathematical problem or
cryptographic puzzle in order to validate and authenticate transactions. PoW uses a
significant amount of computational resources, causing energy losses; therefore, it is
not practically suitable for IoT networks [30,111]. In addition, severe latency affects
WSN stability in delay-sensitive applications [132].

• Guaranteeing Security: many malicious activities target IoT and WSNs. A single attack
can harm a large number of devices or be used to destroy another system, as monitor
nodes can be turned into malicious nodes to launch further attacks. The network’s
ability to manage advanced cyberattacks is degraded due to the constrained resources
of IoT devices. However, a BC relies on sophisticated hash functions, which require
heavy computation and consensus mechanisms that consume network bandwidth.

• Compatibility and Standardization: standardization for BC security applications
is needed in to ensure that devices meet a reasonable set of standards and have
fundamental security and privacy capabilities and to diminish risks associated with
cyberattacks against IoT devices [133].

BC in WSN and IoT may never become a reality unless the storage, battery life,
computation power, and bandwidth availability of sensor devices are improved [134].
Securing a network using a BC with resource-constrained devices remains challenging [111],
and researchers are currently seeking lightweight mechanisms that can solve problem of
excessive resources consumption by sensor networks when using BC to secure WSN and
IoT networks against possible attacks such as data manipulation and tampering.

9.7. BC in the Literature

BC is a dynamic technology that has spurred tremendous technological advances in
many fields in the last few years. BC has been recently proposed as a method to secure
the systems applications associated with IoT, such as smart homes, supply chains, smart
agriculture, and smart grids [135]. The recent focus in the literature has shifted to securing
WSNs using BC, despite the challenging characteristics and performance limits discussed
in Section 9.6. BC characteristics, which drive many WSN design challenges include ledger
size, block size, number of transactions per block, smart contracts, miner selection criteria,
number of miners, selected BC type, and hash function specifications. Using BC to secure
WSNs includes proposing mechanisms to protect data sharing, establish trust, authenticate
identities, secure routing tables, and secure localization against dangerous cyberattacks
such as sybil, spoofing, DoS, message substitution, and replay attacks (see Table 3). The
rest of this section examines BC techniques presented in the literature while highlighting
their advantages and drawbacks.
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Malicious node detection is one of the main applications of BC in the context of
WSNs [31], and is the focus of [136], where the authors studied the use of BC in conjunction
with smart contracts to identify malicious nodes. The authors proposed a trust model
using smart contracts based on the processing delay, forwarding rate, and response time as
evaluation metrics to distinguish malicious and benign nodes. The result of the detection
process was then recorded in the BC. The work in [136] established that the proposed
method is effective in terms of detecting malicious nodes and allows detection process
traceability; however, the adopted traditional consensus method, PoW, is computationally
demanding and is unsuitable for resource-limited WSN nodes.

Another major application is maintaining data authenticity, which is ensured using
node authentication and trust management [52,106,109,136–143]. Trust management is
tied to authentication mechanisms, which identify end-communicating nodes and ensure
data validity and confidentiality. The authors of [138] proposed a BC-based trust model
and node authentication using a smart contract at gateway nodes such as CHs and BS to
reduce energy consumption, claiming that the model takes 0.000250 s, unlike Ethereum
BC, which requires 14 s to achieve the same results. The benefits of this type of model
were further discussed in [140] through a test-bed experiment, which was conducted
to determine whether a BC-based data-driven trust mechanism could reduce network
transaction throughput in the presence of grayhole and blackhole attacks. The authors
of [143] examined ways of reducing the communication overhead associated with BC by
reducing the size of public and private keys. This reduction was achieved in [139] by
employing Hyperel-liptic Curve Cryptography (HECC), which can potentially provide
a similar security level to other key generators along with a lower key size. Another
practical implementation of integrating BC into a WSN to protect data against tampering
was discussed and evaluated in [52,106,141,142]. The performance evaluation in [106]
indicated that the computational complexity associated with evaluating the hash function
increased as the amount of sensed data increased, as the ledger size increased accordingly,
resulting in reduced data transfer efficiency in the network. The work of [52] proposed
limiting the size of each BC and setting a time window with a circular buffer mechanism
to minimize BC length as a solution to this limitation. The authors of [52] considered
a hash and an additional time interval measure to determine nodes’ reliability levels,
which is equivalent to the dynamic value of the accumulated trust points of a certain
node. This reliability level was controlled (increased or decreased) by tracking a ledger-
checking message. The experimental results of [52] indicated that the proposed trust
mechanism could reduce both communication overhead and memory requirements. A
different approach to protecting data integrity was proposed in [120], where the authors
focused on using a cryptographic algorithm in conjunction with a private BC to protect data
during transmission between nodes. The authors proposed a methodology integrating BC
and Advanced Encryption Standard (AES) symmetric encryption in a WSN system, with the
hash value used to encrypt data during the transaction and AES used in the data transport
layer as an encryption/decryption process carried out between any two communicating
nodes. This methodology reduces resources consumption while protecting the network
against linking, MITM, and Distributed denial of service (DDoS) attacks. The method
proposed in [120] is not scalable, however, as it is limited to the use of private BCs. The
authors of [129] proposed and simulated a new model for a consensus algorithm that
can reduce the time required for mining. The results presented in [129] confirmed that
the proposed model can potentially protect the network against spoofing and injecting
phantom devices; however, the software associated with the model cannot be updated.

Protecting the network routing process using a BC was the focus of the work in [141,144,145].
The authors of [144] proposed a BC-based routing protocol that uses a BC to store the
network’s activities and broadcast the status of the nodes. In [144], the aim of the authors
was to secure the route determination process by avoiding untrusted nodes and to resolve
the load-balancing issues associated with routing. The authors of [141] proposed using the
a BC-block approach with flow routing tables instead of converting the entire SDN-enabled
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WSN network to a BC network, thereby preventing tampering with flow entries. This
approach reduces the energy consumption associated with traditional BC algorithms; the
results obtained in [141] using a simulated Riverbed model indicate that the proposed
scheme can provide security against MITM, replay, and blackhole attacks, though with
increased energy consumption and end-to-end delay. A different distributed ledger-based
technology was considered in [142] as an effective lightweight network to authenticate and
protect routing tables against sybil attacks in addition to protecting the network against
fake identities more broadly. However, the proposed network in [142] is time-consuming,
not scalable, and has a centralized architecture. The authors of [145] proposed a trust
model for a decentralized architecture to secure WSN routing through a dual BC model.
The first model is public and implements a PoW consensus to authenticate aggregating
nodes (ANs), while the second model is private and uses PoA for authenticated sensor
nodes. The PoW mechanism enhances the security level of the unauthenticated public
BC, which includes the BSs, though at the cost of high computational complexity. On the
other hand, PoA is less computationally complex, helping to reduce the overhead of the
resource-limited AN, which is included in the authenticated private BC. Node integrity is
evaluated using a trust evaluation metric to determine the legitimate nodes that take part
in the routing process; however, the security analysis in [145] indicated that the proposed
approach could be vulnerable to smart contract-based attacks resulting from possible bugs
in smart contract code, such as integer underflow, overflow, parity multisig, timestamp
dependency, transaction ordering dependence, call stack depth attack, and re-entrancy.

The authors of [109,139,146] proposed BC-based identity authentication mechanisms
for sensor nodes joining the network. The authors of [109] proposed a secure identity
authentication mechanism in a hierarchical architecture for a multi-WSN environment using
public and private BC, where the former includes the BS and terminal users as miners, while
the latter is composed of all authenticated CHs. This technique minimizes communication
overhead, as sensing nodes are not connected directly to the unauthenticated public BC;
therefore, frequent node authentication is not required. The focus of [146] was on securing
an identity authentication scheme against worm attacks by using the IOTA Tangle BC to
store the authentication data safely; however, the network proposed in [146] relies on a
single point, namely, sink nodes, to authenticate other nodes, which means that the network
has a centralized architecture. Another approach was proposed in [147], where the authors
considered a sequential detection scheme that starts by validating the hash value of the
node’s ID, followed by validation of the node signature by each node, and ends with a
voting technique that determines whether the node is malicious or benign. The results from
the different stages are then used to decide whether a suspect node is kept or eliminated.
The authors of [147] revealed that the security level of the proposed BC method is improved
compared to other classical approaches in the literature; however, the latency introduced
by the three combined phases could potentially be higher than classical approaches. The
authors of [148] proposed another decentralized authentication and trust model, which
stores the authentication and trust information in the BC and uses a subjective probability
as a reputation level. The technique is limited by the origin block problem, which causes
the system to misbehave in cases where malicious values are included in the first block in
the chain.

Localizing WSN nodes accurately is another application, and was addressed in [149] by
investigating a decentralized BC-based trust management model. Their model relied on a
trust value consisting of both behavior and data trust values evaluated by a selected number
of trusted nodes, such as the number of successful and unsuccessful interactions between
sensor nodes and feedback metrics related to the integrity of each beacon node. Though
the simulated results in [149] indicate that the proposed scheme outperforms other current
techniques in several aspects, it requires an additional number of transactions associated
with the evaluation processes, and lacks a complexity analysis of the proposed technique.
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Table 3. Existing research on BC-based WSN security (N/A means not available).

BC Type Ref. Security Threat Study Highlights

Private

[120] DDOS and Linking attacks Relies only on AES symmetric
encryption for data integrity

[138] Data Tampering
BC-based trust model and node
authentication using smart con-
tracts to reduce latency.

[106] Data Tampering
Performance evaluation of the
computational complexity asso-
ciated with the ledger.

[147] Internal attacks
Three-phase sequential detection
using sensor node hash values,
node signatures, and voting degree

[146] Worm attack Relies on IOTA Tangle

[142] Sybil attack Relies on IOTA Tangle

Consortium [136] Internal attacks Utilizes a smart contract in con-
junction with BC

Hybrid

[109] Sybil, MITM, DoS, Message Sub-
stitution, and Replay attacks

Identity management and secure
authentication mechanism

[139] Internal attacks Employs HECC to generate pub-
lic and private keys

[145] DoS and Sybil attacks

Employs dual public and private
BCs which implement a PoW
and PoA consensus, respectively,
for authentication of each BC.

N/A

[140] Greyhole and blackhole inter-
nal attacks

Test-bed experiments using a
data-driven trust mechanism
to reduce network transaction
throughput.

[52] Physical or logical data tam-
pering

Limits the size of the BC and uses
a time window with a circular
buffer mechanism to reduce the
BC’s length.

[149] Attacks on the localization
process

Uses both behaviour and data
trust values to determine the re-
liability level.
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Table 3. Cont.

BC Type Ref. Security Threat Study Highlights

[129]
Injection, data tampering,
firmware modification,
listening to traffic

Proposes a new consensus algo-
rithm model to reduce mining
time.

[144] Routing attacks
Utilizes BC as a shared memory
for route determination to avoid
untrusted nodes

[141] Routing attacks (blackhole, re-
play, and MITM)

Relies on BC block technology to
protect the flow routing tables at
the nodes against routing attacks
in an SDN-enabled WSN

[148] Internal attacks

Uses a subjective probability
measure as a reputation level
model for peer trust

10. BC–ML Integration

It is evident from Sections 8 and 9 that BC technology has been found in the literature
to be a useful framework for securely recording data transactions in a tamper-proof ledger
with the help of embedded mechanisms such as consensus and smart contracts, whereas
ML provides efficient classification models to identify attacks. Therefore, when considering
integrated BC and ML approaches, BC technology can help to securely store data generated
by WSN devices. This generates huge amounts of data, which can then be modified and
organized to safely train ML classifiers, potentially achieving high detection accuracy. It
is notable that the output of the ML detection process can be securely stored on the BC
network to preserve the integrity of the detection process results. Figure 14 depicts key
features of the integrated BC–ML security approach. Despite the potential benefits and
the fact that their integration is possible, inevitable, and beneficial, integrating these two
technologies simultaneously poses new challenges when adopted in any WSN application.
Most of the existing literature has studied ML and BC separately when considering securing
WSNs, unlike other IoT applications such as smart grids and supply chains. However,
the gains to be achieved and the challenges faced when seeking to combine these two
technologies for securing WSNs have not yet been extensively explored in the literature
due to its being a relatively new research direction.

In this regard, our approach is to have two lines of defense utilizing the integration
of BC and ML. The first line of defense is attack prevention using BC, while the second
line of defense is attack detection using ML. In case the first line of defense fails to prevent
an attack, the second should verify and examine the incoming traffic for any sign of
vulnerability, alerting the network to the presence of a malicious attack [150].

The emphasis of this section is on those research works that consider BC–ML integra-
tion to secure WSNs, as discussed in Section 10.1. Following a discussion of the important
open issues and research challenges involved in the interrelationship and integration of
both technologies to protect WSNs against cyberattacks, which is detailed in Section 10.2,
this section is closed by detailing our proposed approach to an integrated BC–ML solution.

10.1. Related Work

Integrating the technologies of ML and BC to secure WSNs has been considered in
the literature in several different directions, namely, secure routing, secure authentication,
malicious nodes detection, and trust mechanism, as outlined in Table 4.
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Table 4. Existing research works on BC and ML integration for securing WSNs (N/A means not avail-
able).

BC ML Ref. Attack Study Highlights

Public

Deep CNN [151] Internal

Trusted distributed routing us-
ing BC while avoiding routing
paths with congestion and mali-
cious nodes using DL-CNN

Hidden
Markov Model
(HMM)

[137] Sybil

Trust model for identifying
Sybil nodes; trust value is eval-
uated via HMM, and the trust
values are then added to the BC

Histogram
Gradient Boost
(HGB)

[152] DoS

BC-based authentication mecha-
nism in which IPFS is integrated
with BC for data storage, and
HGB detection module to miti-
gate DoS attacks

Private

Isolated forest
algorithm [153] Internal Isolated forest algorithm for

anomaly detection in the BC

Genetic Algo-
rithm (GA)-
based SVM
and GA-based
DT

[154]

Grayhole,
mistreat-
ment, and
MITM

ML models for malicious node
detection and registration along
with authentication mecha-
nism and data storage routing
using BC

Consortium

RL [155] Blackhole Trusted routing with the use of
BC and reinforcement learning

DNN [156]
Routing,
specifically
Blackhole

Trusted routing with the use of
BC and DNN

Hybrid Gaussian NB [122] Internal

BC-based identity management
and secure authentication mech-
anism with Gaussian NB detec-
tion module to mitigate DoS at-
tacks

N/A

Generative
Adversarial
Networks
(GAN)

[157] Network
layer

Authentication and validation
of current routing data us-
ing a Generative Adversarial
Network-based BC-enabled se-
cured routing protocol
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Figure 14. Key features of BC–ML integration for WSNs.

Securing WSN routing protocols using an integrated BC–ML approach has been
considered in [151,155–157]. The proposed framework in [155] relies on the BC network
to securely record the routing information via the use of a registration contract, token
contract, and token transactions, as well as to preserve data integrity by the use of PoA
due to its high processing efficiency. The routing protocol of the proposed framework
in [155] exploits a reinforcement learning algorithm to dynamically provide trusted routes.
The results in [155] confirm that the average packet delay is reduced by 81% compared
to state of the art techniques thanks to the trusted queue length information released in
the proposed framework [155], while the use of PoA helps to reduce token transaction
latency. A PoA-based BC was considered in the proposed framework of [156] as well,
which utilized a deep learning selection model through CNN to provide the validators
required for the PoA smart contract instead of randomly selecting them. The proposed
PoA–DL consensus mechanism was shown to require a steady latency that is less than the
average transaction delays of the state-of-the-art techniques, and enhances the transaction
processing capacity due to the preselected and limited number of validators. Another
deep learning method, referred to as Fully Decentralized Generative Adversarial Network
(FDGAN), was proposed in [157] in conjunction with GAN, IDS, and BC to design a new
routing protocol named Block Chain enabled secured Routing Protocol (GBCRP).

Malicious node detection techniques using integrated ML and BC methods were the
focus in [122,152–154]. The isolated forest algorithm anomaly detection model was studied
in [153]; this model it is not computationally demanding and can deliver good detection
performance, especially in the case of high-volume and high-dimensional processed data.
The BC helps to ensure safe storage and adequate updating of the isolated forest global
detection model by providing the required trusted blocks (isolated trees) to form the
model. The results reported by [153] indicate that the proposed anomaly detection model
integrating BC and the isolated forest algorithm can achieve a high detection level and
accuracy rate for all types of attacks while requiring less communication and storage
overhead compared to other similar BC-based anomaly detection models, as it only stores
the detection model and not the detection results. A joint identity management and secure
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routing model was proposed in [154], in which the GA-SVM and GA-DT ML techniques
were examined for the detection of malicious nodes. It was shown that GA-SVM is better
than GA-DT in terms of detection accuracy; the outcome of the GA-DT process determines
whether the node continues to be involved in the routing process or whether its registration
in the BC network is revoked, and the safety of the routing transactions is secured using the
PoA consensus mechanism. It was shown in [154] that when removing MNs, the packet
delivery rate increased to 99.72%. Another consensus mechanism known as Verifiable
Byzantine Fault Tolerance (VBFT) was used to validate transactions in [152], while the use
of the HGB–ML classifier was proposed for detecting MN. Furthermore, [152] proposed
storing data associated with normal nodes in an Interplanetary File System (IFS) to generate
hashed chunks that can be then stored in the BC. Extensive comparisons were performed
in [152], showing high precision of at least 98% obtained using HGB, which is more than
could be achieved by its counterparts, and further demonstrating the lower transaction
costs of VBFT compared to PoW. Our prior work in [122] proposed a BC-based identity
management and secure authentication mechanism using a Gaussian NB detection module
to mitigate possible internal DoS attacks targeting CH nodes.

10.2. Research Challenges

Developing a lightweight integrated framework that combines BC and ML while
being WSN-compatible is a research area that remains in its infancy, and many open issues
and challenges must be carefully addressed. The challenges associated with such systems
combine the challenges related to each individual technology. Key technical challenges
can be segmented into integration performance, scalability, lightweight architectures and
schemes, managing network resources, legal issues, and vulnerabilities.

• Integration performance: BC and ML integration performance depends on each
technology’s performance; however, having both technologies operating within the
same system rsises the idea of using each technology to improve the functional
performance of the other. For example, ML model detection performance can be
degraded by data tampering. In this regard, BC can protect the data transactions
used to train the ML models along with the recorded decisions (i.e., output) of attack
classification with confidence, disallowing tampering. These records can be reviewed
and audited at any time by authorized nodes, and can be used to improve future ML
detection decisions. In this way, incremental ML models can improve their future
decision-making to detect novel attacks and handle drift in networks that change
dynamically over time [65].

• Scalability: a measure of how well systems are used in conjunction with WSNs, scal-
ability is related to network capacity in terms of the number of nodes that can join
and the transaction volume that can be generated and processed over the network.
The selection of the BC type and consensus mechanism highly affect scalability. For
instance, the PBFT and PoA consensus mechanisms can improve transaction through-
put compared to PoW, which usually supports only a few dozen transactions per
second. Frequent authentication and peer trust requirements coupled with increased
ledger size as the number of nodes and data increase present a challenge when aim-
ing for a scalable ML–BC integrated security framework; however, many solutions
have been presented in the literature that support scalability when employing BC
technology. Among these solutions is the use of a hybrid BC, which utilizes a public
BC connected to multiple private BCs wherein each private BC operates with one
WSN. This structure limits the transaction volume and size of the ledger, ensuring
better scalability. Among the known consensus mechanisms, voting or multiparty
consensus works better with private BCs, and their combination is a candidate for
use in cooperative WSNs. Another consensus mechanism is Proof-of-Authentication
(PoAh), proposed in [158] for resource-scarce networks, adn which could be tested for
WSNs. ML algorithms, on the other hand, can be used to code smart contracts for a
more scalable approach to effective detection of malicious nodes.
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• Lightweight schemes: to reduce overhead, the development and refinement of lightweight
BC–ML integrated schemes while maintaining the same desired security level is es-
sential. Deploying BC involves many elements, such as trust, authentication, access
control, smart contracts, and consensus mechanisms, and each element can be im-
plemented using a variety of options. The complexity of a BC can be refined by
considering lightweight schemes in terms of storage, processing, and communication
for each element involved in the deployed BC. For instance, in [152] the authors
suggested Interplanetary File System (IPFS) to record the detection process, with the
aim of reducing the cost of data storage in WSN; however, they did not consider
the communication overhead required to upload and download data between IPFS
and BS. In terms of consensus, PBFT and PoA are preferable, as they offer reduced
computation and delay compared to PoW.

• Vulnerability: the ultimate goal of combining ML and BC into one system is the poten-
tial increase in security level; however, this integration does not completely eliminate
threats. The root of these possible threats can be understood by considering that even
though data my be safely protected by BC, it could be susceptible to tampering before
it is securely recorded in the ledger.
Considering the two approaches for BC implementation, namely, public and private,
a public BC is open and accessible to all nodes, whereas a private BC is not. Therefore,
a is preferable when higher levels of security are desired [159]. However, private BCs
limit access to the large amount of data required to develop an efficient ML model,
especially with the amount of continuously developed attack types, which makes an
ML–BC integrated system vulnerable to newly developed attacks. Other possible
threats might be due to malfunctioning or faulty sensors, or even sensors equipped
with extra hardware allowing them to be operated maliciously, and which cannot
be detected unless physically tested. These challenges add up when considering
that nodes can become malicious and threaten the network security after joining the
network. In addition, smart contracts can be vulnerable to possible smart contract-
based attacks due to bugs in the smart contract code. ML can be used for smart
contract verification and vulnerability detection [160].

• Managing network resources: limited-resource sensor nodes represent a key technical
challenge when developing an ML–BC integrated solution considering encryption,
trust and authentication, and validation of transactions through consensus. The
ledger grows exponentially over time, and eventually may not fit within a node’s
memory. These technical challenges in terms of storage and processing translate into
high power consumption, extending across all aspects of system design. The authors
of [161] suggested a solution to this problem by switching to symmetric instead of
asymmetric BC encryption in order to simplify the system’s computational complexity.
The computational complexity can be reduced using a simplified method for hash
function calculation, such as SHA-256 [161]. Another proposed direction is dedicating
specific nodes with high capabilities, such as CHs and BS nodes, for ledger storage,
with other nodes only keeping the constant-length hash value of the data in the ledger
to be referenced when needed. In addition, old data can be migrated from the CHs
and BS toward the IoT cloud or external storage (i.e., IPFS).

• Legal issues: proliferation of different standards or a lack of security regulation can
represent a challenge when designing systems involving two different technologies.
Setting standards for such integrated solutions can potentially be done at the level of
manufacturing and fabrication, that is, at the sensor stage.

Overall, a substantial amount of future research needs to be directed toward designing
a robust ML–BC integrated solution to secure WSNs before they can be expected to work
smoothly. A lightweight framework must be designed that considers sensor resource
constraints and is able to effectively secure WSNs in terms of establishing trust in a trust-
less environment. Specially-developed consensus mechanisms, application-specific smart
contracts, simple transaction verification, an alternative to block mining, and optimized
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architectures that balance computation and communication consumption between nodes
are vital to promoting such integration in WSN applications. In this regard, we propose
the BC–ML integrated system depicted in Figure 15. The proposed system includes an
ML detection model that detects the malicious behaviour of nodes using neighboring
information. The ML model can identify unknown types of attacks by recognizing any
deviation from the normal operation of a system as malicious [162], which allows it to
use transfer learning to detect new and unknown attacks by transferring its knowledge of
known attacks [163]. Concurrently, a BC-based prevention model avoids possible attempts
by malicious nodes to modify their data. The BC records the ML detection process securely
on the BC ledger in order to maintain its integrity. Furthermore, an smart contract is used
for identity management to prevent malicious nodes from becoming authorized to access
the BC network (if they are newly deployed) or to revoked their access (should malicious
behaviour be detected). In addition, a trust smart contract ensures end-to-end trustwor-
thiness between communicating nodes and limits the negative impact caused by attacks
to only the affected part of the network, specifically when a cluster-based architecture is
employed [134]. Smart contracts can host ML models to establish trust between nodes,
making smart contracts more effective. It has been proposed to use ML models to detect
smart contract-based attacks or vulnerable smart contracts deployed by malicious nodes;
however, studies have revealed that smart contracts may not be able to process ML tasks
with high computational needs [164]. The proposed overall BC structure is a multi-layer or
hybrid one, with private BCs deployed for internal authentication in the network and a
public BC deployed between the BS and IoT cloud.

Figure 15. Proposed integrated BC–ML system for use in WSNs.

11. Conclusions

Several countermeasures to secure WSNs have been considered in this review, and
extensive research efforts have been made to address the related security threats. How-
ever, at present these networks cannot manage the computational overhead necessary to
implement many of the proposed defensive strategies. ML and BC are two promising
technologies that we have focused on in this study for ensuring secure WSNs. In this paper,
we have aimed to investigate the integration of both technologies towards a lightweight
security framework for WSNs. Our review began by discussing existing surveys on ML and
BC in WSN contexts, then provided a taxonomy of ML and BC approaches for WSN-related
cyberattack detection and prevention. We next discussed related work and open issues for
future research associated with both technologies. Finally, we illustrated the integration
of ML and BC to secure WSNs, surveyed related work, and discussed the associated chal-
lenges. Finally, we ended our review by proposing the use of an integrated ML and BC
system in two lines of defense to enhance the security of WSNs. In our future work, we will
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consider the implementation of the proposed framework and examine the performance of
the integrated system with the goal of enhancing the security of WSNs.

Author Contributions: Conceptualization, S.I. and D.W.D.; Methodology, S.I. and D.W.D.; visualiza-
tion, S.I. and D.W.D.; Supervision, H.R.; Writing—original draft, S.I. and D.W.D.; Writing—review,
S.I., D.W.D. and H.R.; Writing—editing, H.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abbas, G.; Mehmood, A.; Carsten, M.; Epiphaniou, G.; Lloret, J. Safety, Security and Privacy in Machine Learning Based Internet

of Things. J. Sens. Actuator Netw. 2022, 11, 38. [CrossRef]
2. Bajaj, K.; Sharma, B.; Singh, R. Integration of WSN with IoT applications: A vision, architecture, and future challenges. In

Integration of WSN and IoT for Smart Cities; Springer: Berlin/Heidelberg, Germany, 2020; pp. 79–102.
3. Pavithran, D.; Shaalan, K.; Al-Karaki, J.N.; Gawanmeh, A. Towards building a blockchain framework for IoT. Clust. Comput.

2020, 23, 2089–2103. [CrossRef]
4. Sinha, P.; Jha, V.K.; Rai, A.K.; Bhushan, B. Security vulnerabilities, attacks and countermeasures in wireless sensor networks at

various layers of OSI reference model: A survey. In Proceedings of the 2017 International Conference on Signal Processing and
Communication (ICSPC), Coimbatore, India, 28–29 July 2017; pp. 288–293.

5. Panda, M. Security in wireless sensor networks using cryptographic techniques. Am. J. Eng. Res. (AJER) 2014, 3, 50–56.
6. Hussain, F.; Hussain, R.; Hassan, S.A.; Hossain, E. Machine learning in IoT security: Current solutions and future challenges.

IEEE Commun. Surv. Tutor. 2020, 22, 1686–1721. [CrossRef]
7. Xu, L.D.; Lu, Y.; Li, L. Embedding Blockchain Technology Into IoT for Security: A Survey. IEEE Internet Things J. 2021,

8, 10452–10473. [CrossRef]
8. Kumar, D.P.; Amgoth, T.; Annavarapu, C.S.R. Machine learning algorithms for wireless sensor networks: A survey. Inf. Fusion

2019, 49, 1–25. [CrossRef]
9. Alsheikh, M.A.; Lin, S.; Niyato, D.; Tan, H.P. Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and

Applications. IEEE Commun. Surv. Tutor. 2014, 16, 1996–2018. [CrossRef]
10. Bout, E.; Loscri, V.; Gallais, A. How Machine Learning Changes the Nature of Cyberattacks on IoT Networks: A Survey. IEEE

Commun. Surv. Tutor. 2022, 24, 248–279. [CrossRef]
11. Tahsien, S.M.; Karimipour, H.; Spachos, P. Machine learning based solutions for security of Internet of Things (IoT): A survey.

J. Netw. Comput. Appl. 2020, 161. [CrossRef]
12. da Costa, K.A.P.; Papa, J.P.; Lisboa, C.O.; Munoz, R.; de Albuquerque, V.H.C. Internet of Things: A survey on machine

learning-based intrusion detection approaches. Comput. Netw. 2019, 151, 147–157. [CrossRef]
13. Ahmad, R.; Alsmadi, I. Machine learning approaches to IoT security: A systematic literature review. Internet Things 2021,

14, 100365. [CrossRef]
14. Haji, S.H.; Ameen, S.Y. Attack and Anomaly Detection in IoT Networks using Machine Learning Techniques: A Review. Asian J.

Res. Comput. Sci. 2021, 9, 30–46. [CrossRef]
15. Faraj, O.; Megias, D.; Ahmad, A.M.; Garcia-Alfaro, J. Taxonomy and challenges in machine learning-based approaches to detect

attacks in the internet of things. In Proceedings of the 15th International Conference on Availability, Reliability and Security,
Virtual, 25–28 August 2020; pp. 1–10.

16. Mamdouh, M.; Elrukhsi, M.A.I.; Khattab, A. Securing the internet of things and wireless sensor networks via machine learning:
A survey. In Proceedings of the 2018 International Conference on Computer and Applications (ICCA), Beirut, Lebanon,
25–26 August 2018; pp. 215–218.

17. Mehta, A.; Sandhu, J.K.; Sapra, L. Machine Learning in Wireless Sensor Networks: A Retrospective. In Proceedings of the
2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan, India, 6–8 November 2020;
pp. 328–331. [CrossRef]

18. Baraneetharan, E. Role of machine learning algorithms intrusion detection in WSNs: A survey. J. Inf. Technol. 2020, 2, 161–173.
19. Gunduz, S.; Arslan, B.; Demirci, M. A Review of Machine Learning Solutions to Denial-of- Services Attacks in Wireless Sensor

Networks. In Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA),
Miami, FL, USA, 9–11 December 2015. [CrossRef]

20. Kim, T.; Vecchietti, L.F.; Choi, K.; Lee, S.; Har, D. Machine Learning for Advanced Wireless Sensor Networks: A Review. IEEE
Sens. J. 2021, 21, 12379–12397. [CrossRef]

21. Ramotsoela, D.; Abu-Mahfouz, A.; Hancke, G. A survey of anomaly detection in industrial wireless sensor networks with critical
water system infrastructure as a case study. Sensors 2018, 18, 2491. [CrossRef] [PubMed]

http://doi.org/10.3390/jsan11030038
http://dx.doi.org/10.1007/s10586-020-03059-5
http://dx.doi.org/10.1109/COMST.2020.2986444
http://dx.doi.org/10.1109/JIOT.2021.3060508
http://dx.doi.org/10.1016/j.inffus.2018.09.013
http://dx.doi.org/10.1109/COMST.2014.2320099
http://dx.doi.org/10.1109/COMST.2021.3127267
http://dx.doi.org/10.1016/j.jnca.2020.102630
http://dx.doi.org/10.1016/j.comnet.2019.01.023
http://dx.doi.org/10.1016/j.iot.2021.100365
http://dx.doi.org/10.9734/ajrcos/2021/v9i230218
http://dx.doi.org/10.1109/PDGC50313.2020.9315767
http://dx.doi.org/10.1109/ICMLA.2015.202
http://dx.doi.org/10.1109/JSEN.2020.3035846
http://dx.doi.org/10.3390/s18082491
http://www.ncbi.nlm.nih.gov/pubmed/30071595


Future Internet 2023, 15, 200 40 of 45

22. Ahmad, R.; Wazirali, R.; Abu-Ain, T. Machine Learning for Wireless Sensor Networks Security: An Overview of Challenges and
Issues. Sensors 2022, 22, 4730. [CrossRef]

23. Jesus, E.F.; Chicarino, V.R.; De Albuquerque, C.V.; Rocha, A.A.A. A Survey of How to Use Blockchain to Secure Internet of Things
and the Stalker Attack. Secur. Commun. Netw. 2018, 2018, 9675050. [CrossRef]

24. Liao, Z.; Pang, X.; Zhang, J.; Xiong, B.; Wang, J. Blockchain on Security and Forensics Management in Edge Computing for IoT: A
Comprehensive Survey. IEEE Trans. Netw. Serv. Manag. 2021, 19, 1159–1175. [CrossRef]

25. Sengupta, J.; Ruj, S.; Das Bit, S. A Comprehensive Survey on Attacks, Security Issues and Blockchain Solutions for IoT and IIoT.
J. Netw. Comput. Appl. 2020, 149, 102481. [CrossRef]

26. Khan, M.A.; Salah, K. IoT security: Review, blockchain solutions, and open challenges. Future Gener. Comput. Syst. 2018,
82, 395–411. [CrossRef]

27. Darla, S.; Naveena, C. Survey on Securing Internet of Things through Block chain Technology. In Proceedings of the 2022
International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 16–18 March 2022; pp. 836–844.
[CrossRef]

28. Uddin, M.A.; Stranieri, A.; Gondal, I.; Balasubramanian, V. A survey on the adoption of blockchain in IoT: Challenges and
solutions. Blockchain Res. Appl. 2021, 2, 100006. [CrossRef]

29. Pohrmen, F.H.; Das, R.K.; Saha, G. Blockchain-based security aspects in heterogeneous Internet-of-Things networks: a survey.
Trans. Emerg. Telecommun. Technol. 2019, 30, e3741. [CrossRef]

30. Miglani, A.; Kumar, N. Blockchain management and machine learning adaptation for IoT environment in 5G and beyond
networks: A systematic review. Comput. Commun. 2021, 178, 37–63. [CrossRef]

31. Matin, M.A.; Islam, M.M. Overview of wireless sensor network. Wirel. Sens.-Netw.-Technol. Protoc. 2012, 1, 3.
32. Khan, Z.A.; Samad, A. A study of machine learning in wireless sensor network. Int. J. Comput. Netw. Appl. 2017, 4, 105–112.

[CrossRef]
33. Rehana, J. Security of wireless sensor network. In Proceedings of the Seminar on Internetworking, Helsinki University of

Technology, Glasgow, UK, 24–28 August 2009.
34. Sora, D. Security Issues in Wireless Sensor Networks. Int. J. Online Biomed. Eng. (IJOE) 2010, 6, 26–30. [CrossRef]
35. Patel, N.R.; Kumar, S. Wireless Sensor Networks’ Challenges and Future Prospects. In Proceedings of the 2018 International

Conference on System Modeling & Advancement in Research Trends (SMART), Moradabad, India, 23–24 November 2018;
pp. 60–65. [CrossRef]

36. de Farias, C.M.; Pirmez, L.; Delicato, F.C.; Pires, P.F.; Guerrieri, A.; Fortino, G.; Cauteruccio, F.; Terracina, G. A multisensor data
fusion algorithm using the hidden correlations in Multiapplication Wireless Sensor data streams. In Proceedings of the 2017
IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), Calabria, Italy, 16–18 May 2017; pp. 96–102.
[CrossRef]

37. Karray, F.; Jmal, M.W.; Garcia-Ortiz, A.; Abid, M.; Obeid, A.M. A comprehensive survey on wireless sensor node hardware
platforms. Comput. Netw. 2018, 144, 89–110. [CrossRef]

38. Xie, H.; Yan, Z.; Member, S.; Yao, Z. Data Collection for Security Measurement in Wireless Sensor Networks: A Survey. IEEE
Internet Things J. 2019. 6, 2205–2224. [CrossRef]

39. Alam, S.; De, D. Analysis of security threats in wireless sensor network. arXiv 2014, arXiv:1406.0298.
40. Walters, J.P.; Liang, Z.; Shi, W.; Chaudhary, V. Wireless sensor network security: A survey. In Security in distributed, Grid, and

Pervasive Computing; Auerbach Publications: Boca Raton, FL, USA, 2006; pp. 208–222.
41. Chapter 16—Wireless Sensor Network Security. In Computer and Information Security Handbook, 2nd ed.; Vacca, J.R., Ed.; Morgan

Kaufmann: Boston, MA, USA, 2013; pp. 301–322. . [CrossRef]
42. Elhoseny, M.; Hassanien, A.E. Secure data transmission in WSN: An overview. In Dynamic Wireless Sensor Networks; Springer:

Cham, Switzerland, 2019; pp. 115–143.
43. Shahzad, F.; Pasha, M.; Ahmad, A. A survey of active attacks on wireless sensor networks and their countermeasures. arXiv 2017,

arXiv:1702.07136.
44. Mathew, A.; Terence, J.S. A survey on various detection techniques of sinkhole attacks in WSN. In Proceedings of the 2017

International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 6–8 April 2017; pp. 1115–1119.
45. Dewal, P.; Narula, G.S.; Jain, V.; Baliyan, A. Security attacks in Wireless sensor networks: A survey. In Cyber Security; Springer:

Berlin/Heidelberg, Germany, 2018; pp. 47–58.
46. Kaur, R.; Kaur Sandhu, J. A Study on Security Attacks in Wireless Sensor Network. In Proceedings of the 2021 International

Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 4–5 March
2021; pp. 850–855. [CrossRef]

47. Ismail, S.; Khoei, T.T.; Marsh, R.; Kaabouch, N. A Comparative Study of Machine Learning Models for Cyber-attacks Detection
in Wireless Sensor Networks. In Proceedings of the 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile
Communication Conference (UEMCON), New York, NY, USA, 1–4 December 2021; pp. 1–5.

48. Pruthi, V.; Mittal, K.; Sharma, N.; Kaushik, I. Network layers threats & its countermeasures in WSNs. In Proceedings of the 2019
International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 18–19 October
2019; pp. 156–163.

http://dx.doi.org/10.3390/s22134730
http://dx.doi.org/10.1155/2018/9675050
http://dx.doi.org/10.1109/TNSM.2021.3122147
http://dx.doi.org/10.1016/j.jnca.2019.102481
http://dx.doi.org/10.1016/j.future.2017.11.022
http://dx.doi.org/10.1109/ICEARS53579.2022.9752316
http://dx.doi.org/10.1016/j.bcra.2021.100006
http://dx.doi.org/10.1002/ett.3741
http://dx.doi.org/10.1016/j.comcom.2021.07.009
http://dx.doi.org/10.22247/ijcna/2017/49122
http://dx.doi.org/10.3991/ijoe.v6i4.1466
http://dx.doi.org/10.1109/SYSMART.2018.8746937
http://dx.doi.org/10.1109/ICNSC.2017.8000074
http://dx.doi.org/10.1016/j.comnet.2018.05.010
http://dx.doi.org/10.1109/JIOT.2018.2883403
http://dx.doi.org/10.1016/B978-0-12-394397-2.00016-7
http://dx.doi.org/10.1109/ICACITE51222.2021.9404619


Future Internet 2023, 15, 200 41 of 45

49. Yang, G.; Dai, L.; Wei, Z. Challenges, threats, security issues and new trends of underwater wireless sensor networks. Sensors
2018, 18, 3907. [CrossRef] [PubMed]

50. de Lima Pinto, E.M.; Lachowski, R.; Pellenz, M.E.; Penna, M.C.; Souza, R.D. A machine learning approach for detecting spoofing
attacks in wireless sensor networks. In Proceedings of the 2018 IEEE 32nd International Conference on Advanced Information
Networking and Applications (AINA), Krakow, Poland, 16–18 May 2018; pp. 752–758.

51. Bhattasali, T.; Chaki, R. A Survey of Recent Intrusion Detection Systems for wireless sensor network. In Advances in Network
Security and Applications, Proceedings of the 4th International Conference, CNSA 2011, Chennai, India, 15–17 July 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 268–269.

52. Tiberti, W.; Carmenini, A.; Pomante, L.; Cassioli, D. A Lightweight Blockchain-based Technique for Anti-Tampering in Wireless
Sensor Networks. In Proceedings of the 2020 23rd Euromicro Conference on Digital System Design (DSD), Kranj, Slovenia, 26–28
August 2020; pp. 577–582.

53. Periyanayagi, S.; Sumathy, V. Swarm-based defense technique for tampering and cheating attack in WSN using CPHS. Pers.
Ubiquitous Comput. 2018, 22, 1165–1179. [CrossRef]

54. Numan, M.; Subhan, F.; Khan, W.Z.; Hakak, S.; Haider, S.; Reddy, G.T.; Jolfaei, A.; Alazab, M. A Systematic Review on Clone
Node Detection in Static Wireless Sensor Networks. IEEE Access 2020, 8, 65450–65461. [CrossRef]

55. Gupta, S.; Verma, H.K.; Sangal, A.L. Security attacks & prerequisite for wireless sensor networks. Int. J. Eng. Adv. Technol. (IJEAT)
2013, 2, 558–566.

56. Premkumar, M.; Sundararajan, T.V. DLDM: Deep learning-based defense mechanism for denial of service attacks in wireless
sensor networks. Microprocess. Microsyst. 2020, 79, 103278. [CrossRef]

57. Mohapatra, H. Handling of Man-In-The-Middle Attack in WSN Through Intrusion Detection System. Int. J. Emerg. Trends Eng.
Res. 2020, 8, 1503–1510. [CrossRef]

58. Yahyaoui, A.; Abdellatif, T.; Attia, R. Hierarchical anomaly based intrusion detection and localization in IoT. In Proceedings of
the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June
2019; pp. 108–113.

59. Somaya, H.; Tomader, M. Build a malware detection software for IOT network Using Machine learning. In Proceedings of the 4th
International Conference on Networking, Information Systems & Security, Kenitra, Morocco, 1–2 April 2021; pp. 1–8.

60. Dener, M.; Al, S.; Orman, A. STLGBM-DDS: An Efficient Data Balanced DoS Detection System for Wireless Sensor Networks on
Big Data Environment. IEEE Access 2022, 10, 92931–92945. [CrossRef]

61. Park, T.; Cho, D.; Kim, H. An effective classification for DoS attacks in wireless sensor networks. In Proceedings of the 2018 Tenth
International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic, 3–6 July 2018; pp. 689–692.

62. Quincozes, S.E.; Kazienko, J.F. Machine learning methods assessment for denial of service detection in wireless sensor networks.
In Proceedings of the 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2–16 June 2020;
pp. 1–6.

63. Alsubaie, F.; Al-Akhras, M.; Alzahrani, H.A. Using machine learning for intrusion detection system in wireless body area network.
In Proceedings of the 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH), Riyadh,
Saudi Arabia, 3–5 November 2020; pp. 100–104.

64. Alsulaiman, L.; Al-Ahmadi, S. Performance evaluation of machine learning techniques for DOS detection in wireless sensor
network. arXiv 2021, arXiv:2104.01963.

65. Ifzarne, S.; Tabbaa, H.; Hafidi, I.; Lamghari, N. Anomaly detection using machine learning techniques in wireless sensor networks.
J. Phys. Conf. Ser. 2021, 1743, 012021. [CrossRef]

66. Batiha, T.; Krömer, P. Design and analysis of efficient neural intrusion detection for wireless sensor networks. Concurr. Comput.
Pract. Exp. 2021, 33, e6152. [CrossRef]

67. Al-Akhras, M.; Al-Issa, A.I.; Alsahli, M.S.; Alawairdhi, M. POSTER: Feature Selection to Optimize DoS Detection in Wireless
Sensor Networks. In Proceedings of the 2020 First International Conference of Smart Systems and Emerging Technologies
(SMARTTECH), Riyadh, Saudi Arabia, 3–5 November 2020; pp. 263–265.

68. Batiha, T.; Prauzek, M.; Krömer, P. Intrusion Detection in Wireless Sensor Networks by an Ensemble of Artificial Neural Networks;
Springer: Singapore, 2019; Volume 142, pp. 323–333. [CrossRef]

69. Ismail, S.; Dawoud, D.; Reza, H. A Lightweight Multilayer Machine Learning Detection System for Cyber-attacks in WSN. In
Proceedings of the 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Virtual, 26–29
January 2022; pp. 481–486. [CrossRef]

70. Ismail, S.; Reza, H. Evaluation of Naïve Bayesian Algorithms for Cyber-Attacks Detection in Wireless Sensor Networks. In
Proceedings of the 2022 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 6–9 June 2022; pp. 283–289.

71. Meng, D.; Dai, H.; Sun, Q.; Xu, Y.; Shi, T. Novel Wireless Sensor Network Intrusion Detection Method Based on LightGBM Model.
IAENG Int. J. Appl. Math. 2022, 52, 1–7.

72. Luo, T.; Nagarajan, S.G. Distributed anomaly detection using autoencoder neural networks in WSN for IoT. In Proceedings of the
2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6.

73. Sherubha, P.; Amudhavalli, P.; Sasirekha, S. Clone attack detection using random forest and multi objective cuckoo search classifi-
cation. In Proceedings of the 2019 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur,
India, 4–6 April 2019; pp. 0450–0454.

http://dx.doi.org/10.3390/s18113907
http://www.ncbi.nlm.nih.gov/pubmed/30428536
http://dx.doi.org/10.1007/s00779-018-1162-1
http://dx.doi.org/10.1109/ACCESS.2020.2983091
http://dx.doi.org/10.1016/j.micpro.2020.103278
http://dx.doi.org/10.30534/ijeter/2020/05852020
http://dx.doi.org/10.1109/ACCESS.2022.3202807
http://dx.doi.org/10.1088/1742-6596/1743/1/012021
http://dx.doi.org/10.1002/cpe.6152
http://dx.doi.org/10.1007/978-981-13-8311-3_28
http://dx.doi.org/10.1109/CCWC54503.2022.9720891


Future Internet 2023, 15, 200 42 of 45

74. Otoum, S.; Kantarci, B.; Mouftah, H. Empowering reinforcement learning on big sensed data for intrusion detection. In
Proceedings of the ICC 2019-2019 IEEE international conference on communications (ICC), Shanghai, China, 20–24 May 2019;
pp. 1–7.

75. Subasini, C.; Karuppiah, S.; Sheeba, A.; Padmakala, S. Developing an attack detection framework for wireless sensor network-
based healthcare applications using hybrid convolutional neural network. Trans. Emerg. Telecommun. Technol. 2021, 32, e4336.
[CrossRef]

76. Salmi, S.; Oughdir, L. CNN-LSTM Based Approach for Dos Attacks Detection in Wireless Sensor Networks. Int. J. Adv. Comput.
Sci. Appl. 2022, 13. . [CrossRef]

77. Salmi, S.; Oughdir, L. Performance evaluation of deep learning techniques for DoS attacks detection in wireless sensor network.
J. Big Data 2023, 10, 1–25. [CrossRef]

78. Otoum, S.; Kantarci, B.; Mouftah, H.T. On the feasibility of deep learning in sensor network intrusion detection. IEEE Netw. Lett.
2019, 1, 68–71. [CrossRef]

79. Hussain, K.; Xia, Y.; Onaizah, A.N.; Manzoor, T.; Jalil, K. Hybrid of WOA-ABC and Proposed CNN for Intrusion Detection
System in wireless sensor networks. Optik 2022, 170145. [CrossRef]

80. Nguyen, T.T.; Reddi, V.J. Deep reinforcement learning for cyber security. IEEE Trans. Neural Netw. Learn. Syst. 2019 . [CrossRef]
[PubMed]

81. Benaddi, H.; Ibrahimi, K.; Benslimane, A.; Qadir, J. A deep reinforcement learning based intrusion detection system (drl-ids)
for securing wireless sensor networks and internet of things. In Proceedings of the International Wireless Internet Conference,
Taichung, Taiwan, 26–27 November 2019; pp. 73–87.

82. Niknam, S.; Dhillon, H.S.; Reed, J.H. Federated learning for wireless communications: Motivation, opportunities, and challenges.
IEEE Commun. Mag. 2020, 58, 46–51. [CrossRef]

83. Kamel, R.M.; El Mougy, A. Retrospective sensing based on federated learning in the IoT. In Proceedings of the 2020 IEEE 45th
LCN Symposium on Emerging Topics in Networking (LCN Symposium), Sydney, Australia, 16–19 November 2020; pp. 150–161.

84. Kim, S.; Cai, H.; Hua, C.; Gu, P.; Xu, W.; Park, J. Collaborative anomaly detection for internet of things based on federated
learning. In Proceedings of the 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing,
China, 9–11 August 2020; pp. 623–628.

85. Mertens, J.; Galluccio, L.; Morabito, G. Federated learning through model gossiping in wireless sensor networks. In Proceedings
of the 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Bucharest, Romania,
24–28 May 2021; pp. 1–6.

86. Banerjee, J.; Maiti, S.; Chakraborty, S.; Dutta, S.; Chakraborty, A.; Banerjee, J.S. Impact of Machine Learning in Various Network
Security Applications. In Proceedings of the 2019 3rd International Conference on Computing Methodologies and Communication
(ICCMC), Erode, India, 27–29 March 2019; pp. 276–281. [CrossRef]

87. Wang, S.; Tuor, T.; Salonidis, T.; Leung, K.K.; Makaya, C.; He, T.; Chan, K. Adaptive federated learning in resource constrained
edge computing systems. IEEE J. Sel. Areas Commun. 2019, 37, 1205–1221. [CrossRef]

88. Zahariadis, T.; Trakadas, P.; Maniatis, S.; Karkazis, P.; Leligou, H.C.; Voliotis, S. Efficient detection of routing attacks in wireless
sensor networks. In Proceedings of the 2009 16th International Conference on Systems, Signals and Image Processing, Chalkida,
Greece, 18–20 June 2009; pp. 1–4.

89. Loo, C.E.; Ng, M.Y.; Leckie, C.; Palaniswami, M. Intrusion detection for routing attacks in sensor networks. Int. J. Distrib. Sens.
Netw. 2006, 2, 313–332. [CrossRef]

90. Amouri, A.; Alaparthy, V.T.; Morgera, S.D. Cross layer-based intrusion detection based on network behavior for IoT. In
Proceedings of the 2018 IEEE 19th Wireless and Microwave Technology Conference (WAMICON), Sand Key, FL, USA, 9–10 April
2018; pp. 1–4. [CrossRef]

91. Pande, S.; Khamparia, A.; Gupta, D. Feature selection and comparison of classification algorithms for wireless sensor networks.
J. Ambient. Intell. Humaniz. Comput. 2021, 1–13. [CrossRef]

92. Almomani, I.; Al-Kasasbeh, B.; Al-Akhras, M. WSN-DS: A Dataset for Intrusion Detection Systems in Wireless Sensor Networks.
J. Sens. 2016, 2016. [CrossRef]

93. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
pp. 1–6.

94. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 2018, 1, 108–116.

95. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, Australia,
10–12 November 2015; pp. 1–6.

96. Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2018, 17, 168–192. [CrossRef]
97. Panda, M.; Abd Allah, A.M.; Hassanien, A.E. Developing an Efficient Feature Engineering and Machine Learning Model for

Detecting IoT-Botnet Cyber Attacks. IEEE Access 2021, 9, 91038–91052. [CrossRef]
98. Alsahli, M.S.; Almasri, M.M.; Al-Akhras, M.; Al-Issa, A.I.; Alawairdhi, M. Evaluation of Machine Learning Algorithms for

Intrusion Detection System in WSN. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 617–626. [CrossRef]

http://dx.doi.org/10.1002/ett.4336
http://dx.doi.org/10.14569/IJACSA.2022.0130497
http://dx.doi.org/10.1186/s40537-023-00692-w
http://dx.doi.org/10.1109/LNET.2019.2901792
http://dx.doi.org/10.1016/j.ijleo.2022.170145
http://dx.doi.org/10.1109/TNNLS.2021.3121870
http://www.ncbi.nlm.nih.gov/pubmed/34723814
http://dx.doi.org/10.1109/MCOM.001.1900461
http://dx.doi.org/10.1109/ICCMC.2019.8819811
http://dx.doi.org/10.1109/JSAC.2019.2904348
http://dx.doi.org/10.1080/15501320600692044
http://dx.doi.org/10.1109/WAMICON.2018.8363921
http://dx.doi.org/10.1007/s12652-021-03411-6
http://dx.doi.org/10.1155/2016/4731953
http://dx.doi.org/10.1016/j.aci.2018.08.003
http://dx.doi.org/10.1109/ACCESS.2021.3092054
http://dx.doi.org/10.14569/IJACSA.2021.0120574


Future Internet 2023, 15, 200 43 of 45

99. Haber, S.; Stornetta, W.S. How to Time-Stamp a Digital Document. In Proceedings of the Advances in Cryptology-CRYPTO’ 90;
Menezes; Menezes, A.J., Vanstone, S.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 437–455.

100. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Decentralized Bus. Rev. 2008, 21260. Available online: https:
//bitcoin.org/bitcoin.pdf (accessed on 21 August 2018).

101. Wang, X.; Zha, X.; Ni, W.; Liu, R.P.; Guo, Y.J.; Niu, X.; Zheng, K. Survey on blockchain for Internet of Things. Comput. Commun.
2019, 136, 10–29. [CrossRef]

102. Gao, W.; Hatcher, W.G.; Yu, W. A Survey of Blockchain: Techniques, Applications, and Challenges. In Proceedings of the 2018
27th International Conference on Computer Communication and Networks (ICCCN), Hangzhou, China, 30 July–2 August 2018;
pp. 1–11. [CrossRef]

103. Zhang, S.; Lee, J.H. Analysis of the main consensus protocols of blockchain. ICT Express 2020, 6, 93–97. [CrossRef]
104. Gagneja, K.; Gagneja, K.; Kiefer, R. Security Protocol for Internet of Things (IoT): Blockchain-based Implementation and Analysis.

In Proceedings of the 2020 Sixth International Conference on Mobile And Secure Services (MobiSecServ), Miami, FL, USA, 22–23
February 2020. [CrossRef]

105. Monrat, A.A.; Schelén, O.; Andersson, K. A survey of blockchain from the perspectives of applications, challenges, and
opportunities. IEEE Access 2019, 7, 117134–117151. [CrossRef]

106. Hsiao, S.J. Employing Blockchain Technology to Strengthen Security of Wireless Sensor Networks. IEEE Access 2021, 9,
72326–72341. [CrossRef]

107. Xu, R.; Chen, Y.; Blasch, E.; Chen, G. Blendcac: A blockchain-enabled decentralized capability-based access control for iots.
In Proceedings of the IEEE 2018 International Congress on Cybermatics: 2018 IEEE Conferences on Internet of Things, Green
Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and Information
Technology, iThings/Gree Halifax, Canada, 30 July–3 August 2018; pp. 1027–1034. [CrossRef]

108. Khalil, A.A.; Franco, J.; Parvez, I.; Uluagac, S.; Rahman, M.A. A Literature Review on Blockchain-enabled Security and Operation
of Cyber-Physical Systems. In Proceedings of the 2022 IEEE 46th Annual Computers, Software, and Applications Conference
(COMPSAC), Los Alamitos, CA, USA, 27 June–1 July 2022.

109. Cui, Z.; Xue, F.; Zhang, S.; Cai, X.; Cao, Y.; Zhang, W.; Chen, J. A Hybrid BlockChain-Based Identity Authentication Scheme for
Multi-WSN. IEEE Trans. Serv. Comput. 2020, 13, 241–251. [CrossRef]

110. Mamdouh, M.; Awad, A.I.; Khalaf, A.A.; Hamed, H.F. Authentication and Identity Management of IoHT Devices: Achievements,
Challenges, and Future Directions. Comput. Secur. 2021, 111, 102491. [CrossRef]

111. Salimitari, M.; Chatterjee, M. A Survey on Consensus Protocols in Blockchain for IoT Networks. arXiv 2018, 1–15. arXiv:1809.05613v4.
112. Mohanta, B.K.; Panda, S.S.; Jena, D. An overview of smart contract and use cases in blockchain technology. In Proceedings of the

2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru, India,
10–12 July 2018; pp. 1–4.

113. Teslya, N.; Ryabchikov, I. Blockchain platforms overview for industrial IoT purposes. In Proceedings of the Conference of Open
Innovation Association, FRUCT, Jyvaskyla, Finland, 15–18 May 2018; pp. 250–256. [CrossRef]

114. Ismail, S.; Reza, H.; Zadeh, H.K.; Vasefi, F. A Blockchain-based IoT Security Solution Using Multichain. In Proceedings of the
2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 8–11 March
2023; pp. 1105–1111. [CrossRef]

115. Alkurdi, F.; Elgendi, I.; Munasinghe, K.S.; Sharma, D.; Jamalipour, A. Blockchain in IoT Security: A Survey. In Proceedings of
the 2018 28th International Telecommunication Networks and Applications Conference, ITNAC 2018, Sydney, Australia, 21–23
November 2018; pp. 1–4. [CrossRef]

116. Liu, Y.; Yu, F.R.; Li, X.; Ji, H.; Leung, V.C. Blockchain and Machine Learning for Communications and Networking Systems. IEEE
Commun. Surv. Tutor. 2020, 22, 1392–1431. [CrossRef]

117. Honar Pajooh, H.; Rashid, M.; Alam, F.; Demidenko, S. Hyperledger fabric blockchain for securing the edge internet of things.
Sensors 2021, 21, 359. [CrossRef]

118. Tian, Y.; Wang, Z.; Xiong, J.; Ma, J. A Blockchain-Based Secure Key Management Scheme With Trustworthiness in DWSNs. IEEE
Trans. Ind. Inform. 2020, 16, 6193–6202. [CrossRef]

119. Goyat, R.; Kumar, G.; Alazab, M.; Saha, R.; Thomas, R.; Rai, M.K. A secure localization scheme based on trust assessment for
WSNs using blockchain technology. Future Gener. Comput. Syst. 2021, 125, 221–231. [CrossRef]

120. Guerrero-Sanchez, A.E.; Rivas-Araiza, E.A.; Gonzalez-Cordoba, J.L.; Toledano-Ayala, M.; Takacs, A. Blockchain mechanism and
symmetric encryption in a wireless sensor network. Sensors 2020, 20, 2798. [CrossRef]

121. Rathee, G.; Balasaraswathi, M.; Chandran, K.P.; Gupta, S.D.; Boopathi, C. A secure IoT sensors communication in industry 4.0
using blockchain technology. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 533–545. [CrossRef]

122. Ismail, S.; Dawoud, D.; Reza, H. Towards A Lightweight Identity Management and Secure Authentication for IoT Using
Blockchain. In Proceedings of the 2022 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 6–9 June 2022; pp. 77–83.
[CrossRef]

123. Miraz, M.H. Blockchain of things (BCoT): The fusion of blockchain and IoT technologies. In Advanced Applications of Blockchain
Technology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 141–159.

124. Biswas, S.; Sharif, K.; Li, F.; Nour, B.; Wang, Y. A scalable blockchain framework for secure transactions in IoT. IEEE Internet
Things J. 2019, 6, 4650–4659. [CrossRef]

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1016/j.comcom.2019.01.006
http://dx.doi.org/10.1109/ICCCN.2018.8487348
http://dx.doi.org/10.1016/j.icte.2019.08.001
http://dx.doi.org/10.1109/MobiSecServ48690.2020.9042948
http://dx.doi.org/10.1109/ACCESS.2019.2936094
http://dx.doi.org/10.1109/ACCESS.2021.3079708
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00191
http://dx.doi.org/10.1109/TSC.2020.2964537
http://dx.doi.org/10.1016/j.cose.2021.102491
http://dx.doi.org/10.23919/FRUCT.2018.8468276
http://dx.doi.org/10.1109/CCWC57344.2023.10099128
http://dx.doi.org/10.1109/ATNAC.2018.8615409
http://dx.doi.org/10.1109/COMST.2020.2975911
http://dx.doi.org/10.3390/s21020359
http://dx.doi.org/10.1109/TII.2020.2965975
http://dx.doi.org/10.1016/j.future.2021.06.039
http://dx.doi.org/10.3390/s20102798
http://dx.doi.org/10.1007/s12652-020-02017-8
http://dx.doi.org/10.1109/AIIoT54504.2022.9817349
http://dx.doi.org/10.1109/JIOT.2018.2874095


Future Internet 2023, 15, 200 44 of 45

125. Kushch, S.; Prieto-Castrillo, F. A rolling blockchain for a dynamic WSNs in a smart city. arXiv 2018, 1, 1–8. arXiv:1806.11399.
126. Lao, L.; Li, Z.; Hou, S.; Xiao, B.; Guo, S.; Yang, Y. A survey of IoT applications in blockchain systems: Architecture, consensus,

and traffic modeling. ACM Comput. Surv. (CSUR) 2020, 53, 1–32. [CrossRef]
127. Zamani, M.; Movahedi, M.; Raykova, M. RapidChain: Scaling blockchain via full sharding. In Proceedings of the ACM

Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018. [CrossRef]
128. Cherupally, S.R.; Boga, S.; Podili, P.; Kataoka, K. Lightweight and Scalable DAG based distributed ledger for verifying IoT data

integrity. Int. Conf. Inf. Netw. 2021, 2021, 267–272. [CrossRef]
129. Buldin, I.D.; Gorodnichev, M.G.; Makhrov, S.S.; Denisova, E.N. Next Generation Industrial Blockchain-Based Wireless Sensor

Networks. In Proceedings of the 2018 Wave Electronics and its Application in Information and Telecommunication Systems
(WECONF), Saint Petersburg, Russia, 3–7 June 2018; pp. 1–5. [CrossRef]

130. Baig, M.A.; Ali Sunny, D.; Alqahtani, A.; Alsubai, S.; Binbusayyis, A.; Muzammal, M. A Study on the Adoption of Blockchain for
IoT Devices in Supply Chain. Comput. Intell. Neurosci. 2022, 2022, 9228982. [CrossRef]

131. Goyal, H.; Saha, S. Reli: Real-time lightweight byzantine consensus in low-power iot-systems. In Proceedings of the 2022 18th
International Conference on Network and Service Management (CNSM), Thessaloniki, Greece, 31 October–4 November 2022;
pp. 275–281.

132. Gopalakrishnan, K. Security vulnerabilities and issues of traditional wireless sensors networks in IoT. In Principles of Internet of
Things (IoT) Ecosystem: Insight Paradigm; Springer: Berlin/Heidelberg, Germany, 2020; pp. 519–549.

133. Waheed, N.; He, X.; Ikram, M.; Usman, M.; Hashmi, S.S.; Usman, M. Security and Privacy in IoT Using Machine Learning and
Blockchain: Threats and Countermeasures. ACM Comput. Surv. 2021, 53, 1–37.

134. Marchang, J.; Ibbotson, G.; Wheway, P. Will blockchain technology become a reality in sensor networks? In Proceedings of the
2019 Wireless Days (WD), Manchester, UK, 24–26 April 2019, pp. 1–4.

135. Shammar, E.A.; Zahary, A.T.; Al-Shargabi, A.A. A survey of IoT and blockchain integration: Security perspective. IEEE Access
2021, 9, 156114–156150. [CrossRef]

136. She, W.; Liu, Q.; Tian, Z.; Chen, J.S.; Wang, B.; Liu, W. Blockchain trust model for malicious node detection in wireless sensor
networks. IEEE Access 2019, 7, 38947–38956. [CrossRef]

137. Arifeen, M.M.; Al Mamun, A.; Ahmed, T.; Kaiser, M.S.; Mahmud, M. A Blockchain-Based Scheme for Sybil Attack Detection
in Underwater Wireless Sensor Networks. In Proceedings of International Conference on Trends in Computational and Cognitive
Engineering; Kaiser, M.S., Bandyopadhyay, A., Mahmud, M., Ray, K., Eds.; Springer: Singapore, 2021; pp. 467–476.

138. Chanana, R.; Singh, A.K.; Killa, R.; Agarwal, S.; Mehra, P.S. Blockchain Based Secure Model for Sensor Data in Wireless Sensor
Network. In Proceedings of the 2020 6th International Conference on Signal Processing and Communication (ICSC), Noida, India,
5–7 March 2020; pp. 288–293. [CrossRef]

139. Mubarakali, A. An efficient authentication scheme using blockchain technology for wireless sensor networks. Wirel. Pers.
Commun. 2021, 1, 1–15. [CrossRef]

140. Sivaganesan, D. A data driven trust mechanism based on blockchain in IoT sensor networks for detection and mitigation of
attacks. J. Trends Comput. Sci. Smart Technol. (TCSST) 2021, 3, 59–69.

141. Karakoç, E.; Çeken, C. Black hole attack prevention scheme using a blockchain-block approach in SDN-enabled WSN. Int. J. Hoc
Ubiquitous Comput. 2021, 37, 37–49. [CrossRef]

142. Soltani, R.; Saxena, L.; Joshi, R.; Sampalli, S. Protecting Routing Data in WSNs with use of IOTA Tangle. Procedia Comput. Sci.
2022, 203, 197–204. [CrossRef]

143. Javed, S.; Khan, M.A.; Abdullah, A.M.; Alsirhani, A.; Alomari, A.; Noor, F.; Ullah, I. An Efficient Authentication Scheme Using
Blockchain as a Certificate Authority for the Internet of Drones. Drones 2022, 6, 264. [CrossRef]

144. Lazrag, H.; Chehri, A.; Saadane, R.; Rahmani, M.D. Efficient and secure routing protocol based on Blockchain approach for
wireless sensor networks. Concurr. Comput. Pract. Exp. 2021, 33, e6144. [CrossRef]

145. Awan, S.; Javaid, N.; Ullah, S.; Khan, A.U.; Qamar, A.M.; Choi, J.G. Blockchain Based Secure Routing and Trust Management in
Wireless Sensor Networks. Sensors 2022, 22, 411. [CrossRef]

146. Chen, Y.; Yang, X.; Li, T.; Ren, Y.; Long, Y. A blockchain-empowered authentication scheme for worm detection in wireless sensor
network. Digit. Commun. Netw. 2022 . [CrossRef]

147. Almaiah, M.A., A New Scheme for Detecting Malicious Attacks in Wireless Sensor Networks Based on Blockchain Technology. In
Artificial Intelligence and Blockchain for Future Cybersecurity Applications; Maleh, Y., Baddi, Y., Alazab, M., Tawalbeh, L., Romdhani,
I., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 217–234. [CrossRef]

148. Moinet, A.; Darties, B.; Baril, J.L. Blockchain based trust & authentication for decentralized sensor networks. arXiv 2017, arXiv:1706.01730.
149. Kim, T.H.; Goyat, R.; Rai, M.K.; Kumar, G.; Buchanan, W.J.; Saha, R.; Thomas, R. A novel trust evaluation process for secure

localization using a decentralized blockchain in wireless sensor networks. IEEE Access 2019, 7, 184133–184144. [CrossRef]
150. Pundir, S.; Wazid, M.; Singh, D.P.; Das, A.K.; Rodrigues, J.J.P.C.; Park, Y. Intrusion detection protocols in wireless sensor networks

integrated to Internet of Things deployment: Survey and future challenges. IEEE Access 2019, 8, 3343–3363. [CrossRef]
151. Revanesh, M.; Sridhar, V. A trusted distributed routing scheme for wireless sensor networks using blockchain and meta-heuristics-

based deep learning technique. Trans. Emerg. Telecommun. Technol. 2021, 32, e4259. [CrossRef]
152. Nouman, M.; Qasim, U.; Nasir, H.; Almasoud, A.; Imran, M.; Javaid, N. Malicious Node Detection using Machine Learning and

Distributed Data Storage using Blockchain in WSNs. IEEE Access, 2023, 11, 6106–6121. [CrossRef]

http://dx.doi.org/10.1145/3372136
http://dx.doi.org/10.1145/3243734.3243853
http://dx.doi.org/10.1109/ICOIN50884.2021.9334000
http://dx.doi.org/10.1109/WECONF.2018.8604408
http://dx.doi.org/10.1155/2022/9228982
http://dx.doi.org/10.1109/ACCESS.2021.3129697
http://dx.doi.org/10.1109/ACCESS.2019.2902811
http://dx.doi.org/10.1109/ICSC48311.2020.9182776
http://dx.doi.org/10.1007/s11277-021-08212-w
http://dx.doi.org/10.1504/IJAHUC.2021.115125
http://dx.doi.org/10.1016/j.procs.2022.07.126
http://dx.doi.org/10.3390/drones6100264
http://dx.doi.org/10.1002/cpe.6144
http://dx.doi.org/10.3390/s22020411
http://dx.doi.org/10.1016/j.dcan.2022.04.007
http://dx.doi.org/10.1007/978-3-030-74575-2_12
http://dx.doi.org/10.1109/ACCESS.2019.2960609
http://dx.doi.org/10.1109/ACCESS.2019.2962829
http://dx.doi.org/10.1002/ett.4259
http://dx.doi.org/10.1109/ACCESS.2023.3236983


Future Internet 2023, 15, 200 45 of 45

153. Yang, X.; Chen, Y.; Qian, X.; Li, T.; Lv, X. BCEAD: A blockchain-empowered ensemble anomaly detection for wireless sensor
network via isolation forest. Secur. Commun. Netw. 2021, 2021, 9430132. [CrossRef]

154. Sajid, M.B.E.; Ullah, S.; Javaid, N.; Ullah, I.; Qamar, A.M.; Zaman, F. Exploiting Machine Learning to Detect Malicious Nodes in
Intelligent Sensor-Based Systems Using Blockchain. Wirel. Commun. Mob. Comput. 2022, 9, 24695–24707. [CrossRef]

155. Yang, J.; He, S.; Xu, Y.; Chen, L.; Ren, J. A trusted routing scheme using blockchain and reinforcement learning for wireless sensor
networks. Sensors 2019, 19, 970. [CrossRef]

156. Abd El-Moghith, I.A.; Darwish, S.M. Towards designing a trusted routing scheme in wireless sensor networks: A new deep
blockchain approach. IEEE Access 2021, 9, 103822–103834. [CrossRef]

157. Rajasoundaran, S.; Kumar, S.; Selvi, M.; Ganapathy, S.; Rakesh, R.; Kannan, A. Machine learning based volatile block chain
construction for secure routing in decentralized military sensor networks. Wirel. Netw. 2021, 27, 4513–4534. [CrossRef]

158. Puthal, D.; Mohanty, S.P.; Nanda, P.; Kougianos, E.; Das, G. Proof-of-Authentication for Scalable Blockchain in Resource-
Constrained Distributed Systems. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE),
Berlin, Germany, 8–11 September 2019; pp. 1–5. [CrossRef]

159. Mingxiao, D.; Xiaofeng, M.; Zhe, Z.; Xiangwei, W.; Qijun, C. A review on consensus algorithm of blockchain. In Proceedings
of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017;
pp. 2567–2572. [CrossRef]

160. Zhou, Q.; Zheng, K.; Zhang, K.; Hou, L.; Wang, X. Vulnerability Analysis of Smart Contract for Blockchain-Based IoT Applications:
A Machine Learning Approach. IEEE Internet Things J. 2022, 9, 24695–24707. [CrossRef]

161. Wang, S.Y.; Hsu, Y.J.; Hsiao, S.J. Integrating blockchain technology for data collection and analysis in wireless sensor networks
with an innovative implementation. In Proceedings of the 2018 International Symposium on Computer, Consumer and Control
(IS3C), Taichung, Taiwan, 6–8 December 2018; pp. 149–152.

162. Omar, S.; Ngadi, A.; Jebur, H.H. Machine learning techniques for anomaly detection: An overview. Int. J. Comput. Appl. 2013, 79,
33–41. [CrossRef]

163. Zhao, J.; Shetty, S.; Pan, J.W.; Kamhoua, C.; Kwiat, K. Transfer learning for detecting unknown network attacks. Eurasip J. Inf.
Secur. 2019, 2019, 1. [CrossRef]

164. Lu, Y.; Tang, Q.; Wang, G. On enabling machine learning tasks atop public blockchains: A crowdsourcing approach. In
Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018;
pp. 81–88.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2021/9430132
http://dx.doi.org/10.1155/2022/7386049
http://dx.doi.org/10.3390/s19040970
http://dx.doi.org/10.1109/ACCESS.2021.3098933
http://dx.doi.org/10.1007/s11276-021-02748-2
http://dx.doi.org/10.1109/ICCE.2019.8662009
http://dx.doi.org/10.1109/SMC.2017.8123011
http://dx.doi.org/10.1109/JIOT.2022.3196269
http://dx.doi.org/10.5120/13715-1478
http://dx.doi.org/10.1186/s13635-019-0084-4

	Introduction
	Existing Surveys on ML and BC in WSN
	WSN Security Requirements
	WSN Design Challenges and Unique Characteristics
	Cyberattacks in WSN Contexts
	Architecture of WSN vs. Architecture of IDS
	Naive or Flat-Based WSN Architecture for Centralized IDS 
	Naive or Flat-Based WSN Architecture for Stand-Alone IDS 
	Naive or Flat-Based WSN Architecture for Distributed or Cooperative IDS 
	Naive or Flat WSN Architecture for Agent-Based IDS 
	Hierarchical WSN Architecture for Distributed or Cooperative IDS 

	Types of IDS
	ML and Cyberattack Detection
	ML Methodology
	Existing ML-Based approaches
	Classical Machine Learning
	Deep Learning
	Deep Reinforcement Learning 
	Federated Learning

	ML Challenges in WSN
	Challenges Related to Constrained Resources
	Challenges Related to Applications and Routing Algorithms
	Challenges Related to the ML Framework
	Challenges Related to Cross-Layer Attack Detection

	Datasets
	Evaluation Metrics

	BC and Cyberattack Prevention
	BC Background
	BC Features
	Types of BC 
	Performance Evaluation Metrics
	Securing WSN Using BC
	 BC Challenges in WSN
	BC in the Literature

	BC–ML Integration
	Related Work
	Research Challenges

	Conclusions
	References

