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Abstract: Cyber-physical systems (CPS) refer to systems that integrate communication, control,
and computational elements into physical processes to facilitate the control of physical systems
and effective monitoring. The systems are designed to interact with the physical world, monitor
and control the physical processes while in operation, and generate data. Deep Neural Networks
(DNN) comprise multiple layers of interconnected neurons that process input data to produce
predictions. Spatial-temporal data represents the physical world and its evolution over time and
space. The generated spatial-temporal data is used to make decisions and control the behavior of
CPS. This paper systematically reviews the applications of DNNs, namely convolutional, recurrent,
and graphs, in handling spatial-temporal data in CPS. An extensive literature survey is conducted to
determine the areas in which DNNs have successfully captured spatial-temporal data in CPS and the
emerging areas that require attention. The research proposes a three-dimensional framework that
considers: CPS (transportation, manufacturing, and others), Target (spatial-temporal data processing,
anomaly detection, predictive maintenance, resource allocation, real-time decisions, and multi-modal
data fusion), and DNN schemes (CNNs, RNNs, and GNNs). Finally, research areas that need
further investigation are identified, such as performance and security. Addressing data quality, strict
performance assurance, reliability, safety, and security resilience challenges are the areas that are
required for further research.

Keywords: deep neural networks; spatial-temporal data; cyber-physical systems

1. Introduction

Cyber-physical systems (CPS) are intended to integrate communication, control,
and computational elements with physical processes, aiming to improve the effective
monitoring and control of physical components. As the systems are designed to interact
with the physical world, monitoring and controlling the physical processes shall generate a
variety of data. The data is used to make decisions and control the behavior of CPS [1–3].
As shown in Figure 1, examples of CPS include autonomous vehicles in smart trans-
portation, the industrial control system (ICS) in smart manufacturing, wearable sensors
in medical CPS, etc. [4–8]. In CPS, vast amounts of data will be generated, represent-
ing space and time while operating themselves. Such data is generally denoted as CPS
spatial-temporal data [9–11].

In CPS, the spatial-temporal data represents the physical world, and its evolution over
time and space. CPS generates large amounts of data as they monitor and control physical
processes in real-world objects. This data is used in CPS to make decisions and control
behavior, such as predicting future events, detecting anomalies, and optimizing resource
allocation, among others. For example, the spatial-temporal data collected by sensors in
the smart transportation system detects obstacles and makes vehicle trajectory decisions.
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ICS, a crucial component of smart manufacturing systems, utilizes spatial-temporal data to
monitor and manage physical processes. The effective management and analysis of spatial-
temporal data in CPS require sophisticated techniques and algorithms, including spatial
data mining, temporal data analysis, and geographic information systems. The effective
use of spatial-temporal data in CPS can significantly improve its performance, reliability,
safety, and security [12].

Figure 1. Example of the CPS Architecture.

Several techniques have evolved over the last decades to learn the complex patterns
and changing dynamics of spatial-temporal data. This includes temporal time-series
analysis (ARIMA, SARIMA, etc.) [13], spatial data analysis (spatial regression and auto-
correlation, kriging, etc.) [14], signal processing approaches (Fourier and wavelet analysis,
Kalman filtering, etc.) [15], and machine learning approaches (regression analysis, support
vector machine, etc.) [16,17]. Nonetheless, most of these methods are not well-suited for
handling large, dynamic, non-stationary data, which depicts its space and how it changes
over time [18–21]. Deep Neural Networks (DNNs), on the other hand, are applicable
due to their ability to handle immense amounts of data and their capability of modeling
complex relationships, both spatially and temporally [22]. For example, DNNs predict
future events based on spatial-temporal data in CPS, including traffic patterns in smart
cities, resource demand, and fault or intrusion detection in smart manufacturing systems,
among others [23–26].

The existing research efforts revealed numerous successes in the application of
DNNs, including anomaly detection [27,28], resource management [24], predictive
maintenance [29–32], multi-modal data fusion [33], real-time decision making [34,35],
and spatial-temporal data processing [36,37], among others. For example, Luo et al. [28]
reviewed the applications of deep learning for anomaly detection in CPS, outlining areas,
where deep learning has achieved promising results and areas that need improvement.
Likewise, Zhang et al. [38] reviewed the historical and state-of-the-art applications of deep
learning in energy CPS (i.e., frequency analysis and control in power systems). Carvalho
et al. [39] systematically reviewed machine learning applications in general to predictive
maintenance of industrial CPS to determine the best-performing models and the areas of
challenge. However, more research needs to be done to review the applications of DNNs in
CPS with spatial-temporal datasets.

In line with Rowe et al. [40], the survey strategy adopted for this paper explored and
selected the relevant journals and articles submitted to highly reputable venues that are ac-
cessible online. Research databases like Google Scholar, IEEE Xplore, ACM Digital Library,
Science Direct, and Springer were used. We focused on titles, abstracts, keywords, and ar-
ticles that include ‘deep neural networks’, ‘spatial-temporal data’, and ‘cyber-physical
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systems’. Even though the ‘AND’ operation was used within the terms, i.e., ‘deep neural
networks’ AND ‘spatial-temporal data’ AND ‘cyber-physical systems,’ it had more precise
results. Furthermore, each paper was examined carefully to ensure that the selected DNNs
were applied to spatial-temporal datasets in CPS for the experiments. In other words, each
article failing to satisfy the requirements falls under the research exclusion category.

This survey paper systematically reviews the applications of DNNs in handling spatial-
temporal data in CPS. The research areas are outlined where DNNs have successfully
handled spatial-temporal data in CPS and the emerging areas that require improvements
as well. The major contributions in this paper are as follows.

• The applications of Deep Neural Networks (DNNs) - convolutional, recurrent, and
graphs in handling spatial-temporal data in CPS are systematically reviewed.

• A three-dimensional problem space that considers: CPS (transportation, manufac-
turing, and others), Target (spatial-temporal data processing, anomaly detection,
predictive maintenance, resource allocation, realtime decisions, and multi-modal data
fusion), and DNN scheme (CNNs, RNNs, and GNNs) is proposed.

• Future research directions concerning data quality, strict performance assurance and
reliability, safety, and security resilience have been outlined.

The remainder of this paper is organized as follows. The background of DNNs, spatial-
temporal data, as well as CPS are reviewed in Section 2. In Section 3, the state-of-the-art
DNNs to handle spatial-temporal data in CPS are explored. In Section 4, the existing
research efforts on applying DNN to different CPS application domains are reviewed.
In Section 5, several challenges and future research directions are outlined. Finally, Section 6
concludes the paper.

2. Preliminaries

This section briefly discusses deep neural networks (DNNs), spatial-temporal data,
and CPS, respectively.

2.1. Deep Neural Networks (DNN)

Generally speaking, DNN is comprised of multiple layers of interconnected neurons
that process input data to make a decision (prediction, classification, etc.). The term “deep”
means many layers, enabling them to learn increasingly complex features from the input
data. DNNs are useful and popular nowadays for their ability to learn and extract vital
features from data without the help of any domain experts. They have been used in different
domains for various tasks and purposes (e.g., security, industrial component recognition,
integrated design of components to optimize the overall system performance) [41–43].
Training DNNs involves adjusting the weights of connections between neurons to minimize
the prediction error with optimization algorithms. Some of the algorithms under DNNs
are CNN in computer vision, graph neural networks (GNNs) for graph-structured data,
recurrent neural networks (RNNs) in sequential data problems, natural language processing
(NLP) in processing text data, and many other applications.

2.2. Spatial-Temporal Data

It describes the location and time of an observation. The data changes as the location
and time change [44], as shown in Figure 2. It is common in different domains, including
climate science [45], transportation [46], manufacturing [47], ecology [48], and social sci-
ences [49], among others [50]. Examples of spatial-temporal data include climate data that
tracks weather patterns across regions and time [45], traffic data that records vehicle move-
ment and traffic patterns across different times and locations [51], and social media data
that captures the space and time of user activity [52]. The characteristics of spatial-temporal
data typically result in more complex data correlations than conventional methods can
handle. Additionally, they are frequently firmly self-correlated, and unlike traditional
data, data samples are often not produced independently. It is more challenging to process
spatial-temporal data than traditional stationary data. For instance, interpreting spatial-
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temporal data is more complicated than interpreting pictures, where researchers could
rely on visual inspections [44]. The data can be represented as raster images, trajectories,
and many more. Understanding and analyzing spatial-temporal data is difficult due to the
complexity and interdependent nature of the spatial and temporal dimensions. Traditional
statistical methods have been applied, but they are not the final panacea, which calls for
more advanced machine learning techniques, such as the DNNs.

Figure 2. Spatial-Temporal Data.

2.3. Cyber Physical Systems (CPS)

It merges the physical world with the virtual world, driven by information commu-
nication technology, to create a new intelligent system that enables effective interaction
with the environment. As a vertical architecture, CPS has various application domains,
including transportation, manufacturing, and healthcare, among others [3,53]. It collects
information about the physical world via sensors and responds to the system via actuators,
and other parts. In the monitoring and control of physical systems, information collected
needs to be transmitted to the processing unit (cloud, edge servers, etc.). The processing
unit analyzes the data, makes decisions, and sends instructions to the actuators to control
the physical system. CPS aims to revolutionize a wide range of industries by improving
the performance that they render. For example, Industry 4.0 is the vision of CPS to realize
the revolution of manufacturing processes in the industrial domain.

3. DNNs in CPS-Based Spatial-Temporal Data

In this section, the state-of-the-art DNNs used to handle spatial-temporal data in
CPS are explored. As shown in Figure 3, a three-dimensional framework is proposed,
in which X-axis indicates the CPS domains (transportation, manufacturing, and others),
the Y-axis displays the targets (spatial-temporal data processing, anomaly detection, pre-
dictive maintenance, resource allocation, real-time decision, and multi-modal data fusion,
among others), and the Z-axis reveals the different types of DNNs (i.e., CNNs, RNNs, and
GNNs). Note that the purpose of mapping (say Xi, Yj, Zk) is to categorize the existing effort
in the designed 3D framework. Recall that, in the X-axis, denote the transportation CPS
as X1, manufacturing CPS as X2, etc.; in the Y-axis, denote Y1 as data processing, Y2 as
anomaly detection, Y3 as predictive maintenance, Y4 as resource allocation, Y5 as real-time
decisions, and Y6 as multi-modal data fusion; in Z-axis, denote CNNs as Z1, RNNs as Z2
and GNN as Z3, respectively. Given that a specific DNN (say RNN) is applied to anomaly
detection in transportation CPS, the corresponding effort can be categorized as (X1, Y2, Z2)
in the defined framework.
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The proposed 3D framework can be used as a framework to summarize the existing
research efforts concerning DNNs in handling spatial-temporal data in CPS. The designed
framework can be used to categorize the existing research efforts, and help readers better
understand the intersections among different DNNs with different application targets
under different CPS. Furthermore, this designed framework is a generic one and can be
extended to include more CPS, targets, and DNN techniques.

Figure 3. Problem Space for DNNs in CPS Spatial-Temporal Data.

3.1. The Problem Space

As denoted by Figure 3, six targets are defined to represent the fundamental research
objectives that the DNNs have been used to handle spatial-temporal data in CPS. The targets
emerged from the adopted research strategy described above and the careful consideration
of the various goals achieved by the research conducted. For example, traffic speed, flow,
and congestion prediction are achieved by processing road traffic data in transportation
CPS. Research with these kinds of goals is categorized under spatial-temporal data pro-
cessing. While those to detect or prevent the occurrence of attacks are categorized under
anomaly detection. Real-time decisions go to autonomous vehicles or industrial control
scenarios. However, in manufacturing CPS, for example, predicting equipment failures
are classified as predictive maintenance, while the allocation of production logistics counts
under resource allocation. Researchers that use data from various sources of different types
are categorized under multi-modal data fusion.

The defined targets are elaborated further below:

• Spatial-temporal Data Processing (Y1): It involves using DNNs to process and analyze
spatial-temporal data in CPS, including feature extraction, classification, regression,
and future event predictions.

• Anomaly Detection (Y2): It involves using DNNs to detect anomalies based on spatial-
temporal data in CPS, such as faults, attacks, or intrusions.

• Predictive Maintenance (Y3): It involves using DNNs to predict the performance and
maintenance needs of CPS according to spatial-temporal data, such as predicting the
failure of smart manufacturing systems.

• Resource Allocation (Y4): It involves using DNNs to optimize the allocation of re-
sources in CPS, such as allocating network resources in communication networks and
production logistics in manufacturing CPS.

• Real-time Decision (Y5): It makes real-time decisions with spatial-temporal data,
controlling the trajectory of autonomous vehicles.
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• Multi-modal Data Fusion (Y6): It includes employing DNNs to process data from
multiple sources in CPS, such as combining data from sensors and communication
networks to provide insightful information to the decision process.

3.2. CPS Application Domains

CPS can be classified into several domains based on the application area and the
type of interactions between the physical and cyber components. In this context, CPS is
categorized into application domains such as transportation, industrial manufacturing,
and others.

3.2.1. Transportation CPS

It is popularly known as smart transportation. Physical systems are integrated with
computational and communication techniques to realize various goals, such as improving
traffic flow, toll collection, reducing congestion, smart parking, enhancing safety, safe
pedestrian crossing, reducing carbon emissions, and autonomous driving, among others.
Transportation CPS is a sophisticated, heterogeneous system that intends to offer effective
services connected to various modes of transportation and traffic management. Trans-
portation CPS manages a variety of new data sources, including geospatial transportation
area, connected vehicle, roadside unit (RSU), and traffic network data. It also empowers
users to be better informed and use transportation systems in a more innovative, safer,
and organized fashion.

Smart transportation technology can offer services such as utilizing cameras to enforce
traffic regulations, dialing 911 in the event of a car accident, and tracking the speed
limit of vehicles, among others. There are several forms of security and privacy issues
related to transportation CPS, targeting its essential elements such as IoT devices (sensors,
actuators, microcontrollers, etc.), cloud services, and location-based services, among others.
Examples of security issues include data tampering, man-in-the-middle (MITM) attacks,
eavesdropping, impersonation, distributed denial of service (DDoS) attack, and artificial
intelligence (AI)-based attacks, etc. In addition, model inversion, model poisoning, model
evasion, and model extraction are typical ways of attacking AI models, which leads to
severe impacts on driverless cars. While location privacy and commuter privacy are
among the privacy concerns. To address the security and privacy issues in transportation
CPS, both industry experts and researchers in academia are actively engaged in research
to solve the problems. Nonetheless, despite these challenges, transportation CPS has
the potential to revolutionize transportation systems, making them safer, more efficient,
and more sustainable.

Transportation CPS can be categorized into vehicle transportation (which involves
the integration of computing, communication, and physical systems within a vehicle);
infrastructure transportation CPS (which consists of the integration of computing, commu-
nication, and physical procedures in transportation infrastructure); and system-level trans-
portation CPS (which involves the integration of computing, communication, and physical
systems at the system level).

Vehicle transportation CPS includes sensors, actuators, embedded systems, autonomous
driving, etc. The main goal of vehicle transportation CPS is to improve safety, energy ef-
ficiency, and user experience. Transportation infrastructure for the transportation CPS
includes traffic lights, sensors, cameras, communication networks, and other components
that enable traffic monitoring, control, and management. The main objectives of trans-
portation infrastructure CPS are to increase safety, improve traffic flow, and lessen conges-
tion. System-level transportation CPS includes data analytics, simulation, optimization,
and control algorithms that enable efficient and effective transportation planning, operation,
and management. The main goal of system-level CPS is to improve the overall performance
and sustainability of transportation systems. Real-time requirements for processing large
amounts of data, secure communication mediums, interoperability among different sys-
tems, and effective collaboration between different stakeholders are among the challenges
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faced by transportation CPS nowadays. However, despite these challenges, transportation
CPS has the potential to revolutionize transportation systems, making them safer, more
efficient, and more sustainable.

As shown in Figure 4, using the autonomous car as an example in the transportation
CPS domain, the sensors/actuators will collect and send spatial-temporal data of the
moving vehicle. With the help of the DNN model, the autonomous vehicle will obtain
updated instructions about its environment.

Figure 4. An Illustrative Example of Spatial-Temporal Data in Transportation CPS.

3.2.2. Manufacturing CPS

It is also known as smart manufacturing or Industry 4.0, which integrates physical
processes with advanced computing and communication technologies to optimize manu-
facturing production and operation processes. The systems monitor and regulate physical
processes using sensors and actuators while using data analytics and machine learning
algorithms to streamline operations, boost productivity, and reduce costs. It applies to
various manufacturing processes, including assembly lines, material handling, quality con-
trol, maintenance, and supply chain management. The Industrial Internet of Things (IIoT)
and machine learning are the critical enabling blocks of manufacturing CPS. The former
connects machines, sensors, and other devices to a network to collect and share data. This
allows for real-time monitoring and control of equipment and the ability to control and
adjust machines remotely. At the same time, the latter makes use of the data generated
by the system. This includes predictive analytics, which can forecast equipment failures
and maintenance needs, and prescriptive analytics, which can optimize manufacturing
processes and improve product quality. With real-time data and analytics, industrial-
based manufacturing CPS helps manufacturers optimize their production processes, reduce
energy consumption, minimize waste, as well as enhance product quality.

3.3. DNN Techniques

There are different variants of DNNs. The most prominent techniques to handle spatial-
temporal data in CPS are recurrent neural networks (RNNs), convolutional neural networks
(CNNs), and graph neural networks (GNNs). Note that while RNN, CNN, and GNN are
discussed, other DNN techniques can be expanded in the framework designed.

3.3.1. CNN

It refers to the class of DNNs, which is mainly used for image recognition and computer
vision tasks. The essential attribute of this model is its ability to learn the spatial hierarchy of
features from the input data, making it highly effective for tasks requiring an understanding
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of the visual context of images. CNNs comprise several layers, including convolution,
pooling, and fully connected layers. Each layer performs a specific function to extract
features from the input data. The convolution layer applies filters or kernels to the input
image, which slide over the entire image to capture specific features such as edges or
corners. Each filter produces a feature map, representing a particular feature’s presence
in the input image. The pooling layer downsamples the feature maps obtained from the
convolution layer to reduce their dimensionality and make subsequent computations more
efficient. The Max Pooling layer can choose the maximum value from each sub-region of
the feature map. After several convolution and pooling operations, the output is passed to
the fully connected layer, which performs a non-linear transformation of the feature maps
to produce a set of probabilities for each possible class. The final output is compared with
the actual labels, and the network weights are updated using backpropagation, aiming to
minimize the gap between the predicted and actual output. CNNs have been applied to
various tasks, including object identification, facial recognition, and image classification.
They have also been enhanced nowadays to accommodate other types of data (speech, text,
video, etc.), making them a potent tool for numerous machine learning problems.

3.3.2. RNN

It refers to the DNNs designed to process sequential data, such as time series or text
data, by maintaining an internal memory or state. The basic idea behind RNNs is that
the output at a given time step is impacted not only by the current input but also by the
previous inputs and the current state of the network. The network comprises a series
of interconnected recurrent cells, which process the input at each time step and update
the internal state of the network. Each cell takes the current and previous states as input,
produces an output, and passes a new state to the next cell in the sequence. The back-
propagation through time method trains RNNs, a variant of the standard backpropagation
algorithm used to update the network weights based on the error signal at each time step.
RNNs are suitable for application areas such as language modeling, speech recognition,
etc. They are particularly effective for tasks requiring an understanding of the temporal
dependencies of sequential data. Nonetheless, it is a challenging issue to train and prone to
vanishing and exploding gradients. Various mechanisms have been developed to address
the drawbacks, such as gradient clipping and regularization techniques (e.g., dropout).

RNN has two representative variants: one is LSTM and the other is GRU, which are
briefly explained below.

• LSTM: It is an RNN variant designed to deal with challenges in RNNs in handling
sequential data. Since conventional RNNs suffer from the “vanishing gradient problem”
that limits their capability of capturing long-term dependencies between input and
output sequences. LSTMs improve on that by remembering and selectively forgetting
information over longer time horizons, making them effective for modeling sequences
of variable lengths, such as natural language processing (text or speech). An LSTM
consists of four main components: a memory cell, three gating units (an input, a forget,
and an output gate), and an activation function. The memory cell stores information
over long periods and passes it on to the next time step. The input gate controls data
flow into the memory cell according to the current and previous outputs. Based on the
input and output from the previous and current cycles, the forget gate determines the
data to be erased from the memory cell. The output gate determines the output based
on the current input and the current state of the memory cell. The activation function,
mostly a hyperbolic tangent or sigmoid function, is used to compute the cell’s current
state. At each iteration, the LSTM unit receives an input vector and a hidden state
vector from the previous time step and produces an output vector and a new hidden
state vector. The input vector is passed through the input gate, and the output gate
determines the output vector. The forget gate determines what information to keep
from the previous hidden state, and the memory cell updates its internal state based
on the input and the last hidden state. The updated memory cell is then passed on
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to the next time step. LSTMs have been effective in various applications, including
speech recognition, machine translation, image captioning, and music composition.
They are often combined with other DNNs, such as CNNs or attention mechanisms,
to realize performance on given tasks.

• GRU: It is a gating mechanism for RNN. It was introduced to serve as a simplified
version of the complex LSTM. Like other RNNs, GRU processes sequential input data,
such as text or time series, by maintaining a hidden state that captures information
about the past sequence elements. It also uses a gating mechanism to selectively
update and reset the hidden state, enabling it to capture longer-term dependencies in
the sequence. GRU has two gating mechanisms: the reset gate and the update gate.
The reset gate decides the past hidden state to forget, while the update gate makes the
current input to incorporate into the new hidden state. GRU is a powerful and flexible
neural network architecture that can capture long-term dependencies in sequential
data and deal with the “vanishing gradient problem” that bedevils standard RNNs. It
has been used in various applications, including NLP, speech/voice recognition, time
series prediction, etc.

3.3.3. GNN

GNN is an architecture designed to operate on graph-structured data, such as traf-
fic networks, social networks, molecular structures, etc. The framework incorporates
information about the graph’s structure and the relationships between nodes into their
computations. The fundamental idea behind GNNs is to represent each node in the graph
as a vector or tensor and use message passing between nodes to update these representa-
tions based on the graph’s structure. At each iteration of the message-passing process, each
node aggregates information from its neighbors and updates its representation based on
a learned update function. There are different variations on the basic GNN architecture,
depending on the specific problem being addressed [54]. For example, some GNNs use
graph convolutional layers to learn local features of the graph, while others use attention
mechanisms to learn global relationships between nodes. Some GNNs are designed to
handle dynamic graphs that change over time, while others are designed for heterogeneous
graphs with nodes and edges of different types. GNNs have been applied to address
various problems, including traffic prediction, social network analysis, recommendation
systems, and drug discovery, among others.

4. CPS Application Domains

As shown in Figure 3, several representative CPS application domains; transportation,
manufacturing, and others are considered. Note that the transportation CPS and manufac-
turing CPS are two key examples to illustrate the designed framework outlined in Section 3
and show the existing efforts on applying DNN in representative CPS.

4.1. Transportation-Based CPS

We now review the recent literature on the DNNs that capture the data’s latent spatial-
temporal features in the transportation-based CPS with respect to traffic forecasting, threat
detection, data inconsistency identification, and autonomous vehicle collision prediction.

4.1.1. Traffic Forecasting

Traffic forecasting predicts future traffic patterns in an urban or city transportation
system, which is necessary for traffic control, navigation systems management, and trans-
portation planning. Accurate traffic forecasting aids in reducing congestion, enhancing
safety, and maximizing the use of available transportation resources. Nowadays, DNNs
learn the latent relationships and patterns within the traffic data to generate predictions
based on those patterns. This motivated the effort of Zhou et al. [37], who proposed a

“wide-attention and deep-composite (WADC) model”. To investigate its performance, they used
CNN-LSTM to train the model with traffic flow spatial-temporal datasets. The result
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revealed that it outperformed other models. Similarly, Guo et al. [55] proposed a “graph
attention-temporal convolutional network (GATCN)” to forecast traffic speed in the short term.
Graph attention and temporal convolution networks are combined to form each layer in the
GATCN to apprehend the hidden spatial-temporal relationships concurrently. Likewise,
Ma et al. [56] proposed a capsule network (CapsNet) and Nested LSTM (NLSTM) for
network speed prediction, in which CapsNet was considered to extract extensive spatial
features from roadway networks, while NLSTM was leveraged to capture traffic state
hierarchical temporal dependencies.

Furthermore, Yan et al. [57] aimed to achieve an accurate and adaptable scheme for
traffic flow prediction by proposing a graph-based network model. The model employed a
fully connected layer to create a matrix from traffic data. LSTM was applied to the data
to capture the temporal dependency, while ChebNet captured the spatial dependency.
The spatial-temporal attributes were further combined for accurate traffic flow forecasting.
Han et al. [58] stated that graph-based neural networks could be applied to enhance fore-
casting of traffic speed. To this end, they proposed a scheme that can learn time-specific
spatial dependencies and a dynamic graph convolution module that aggregates hidden
states of neighboring nodes to focal nodes using dynamic adjacency matrices and message
passing. According to their study, the proposed scheme could offer clear and interpretable
spatial relationships between road segments.

Furthermore, Tian et al. [59] proposed a multi-step prediction model that integrates
CNN with an attention mechanism. In this way, the spatial-temporal dependencies and
forecast traffic conditions of road networks could be captured. With the self-adaptive
node embedding, the model is capable of extracting the latent spatial relationships in the
data even without prior knowledge of the graph topology. Li et al. [60] observed that
spatial-temporal correlations among road networks are changeable and complex. They
proposed a model to achieve a dynamic traffic flow prediction model. Their proposed
model comprises an adaptive mechanism block that preprocesses the data, improves its
quality, and passes it to the multi-sensor data correlation convolution block to learn the
dynamic temporal and spatial correlation among roads.

There are other related efforts. For example, Bai et al. [23] aimed for an effective
traffic jam forecasting strategy in smart cities by proposing a “Relative Position Congestion
Tensor (RPCT)” and a predictor for the “Position Congestion Tensor”. The proposed schemes
leveraged the concept of relative locations to realize congestion matrices on regional traffic
networks and convert them into spatial-temporal tensors. ConvLSTM was used to forecast
future traffic congestion across the entire road network. Likewise, Lin et al. [61] discussed
the significance of accurate traffic condition predictions in intelligent transportation systems.
To this end, they proposed a “graph convolution gated RNN (GCGRNN)” to analyze multistep
traffic volume by automatically determining the spatial-temporal dependencies in historical
traffic data, where GCGRNN is based on encoder-decoder RNN and a data-driven graph
filter. One benefit of their approach is that graph convolution is not dependent on a
predefined adjacency matrix.

In the case of flight networks, there are some related studies. For example, Cai et al. [62]
proposed an approach to carrying out the flight delay forecast. Their designed approach
leveraged graph convolutional neural networks (GCN), which capture the insightful in-
formation of the airport network. In their study, an adaptive graph convolutional block
was embedded in the proposed scheme so that the hidden spatial interactions in an airport
network could be exposed. As another example, Peng et al. [63] observed that CNNs,
GCNs, and RNNs were the most frequently utilized for extracting spatial-temporal features
from traffic networks. They added that dynamic graphs could be more effective at reflecting
the spatial-temporal features of the traffic network, but generating graph structures from
data can be difficult. Thus, they proposed a long-term traffic flow prediction scheme that
relies on GCN-LSTM to extract the spatial-temporal features for carrying out prediction.
Furthermore, they developed a network of graph convolutional policies using the principle
of reinforcement learning to create dynamic graphs when static ones are lacking because of
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data sparsity problems. These efforts can be mapped to the cube <X1, Y1, Z1/Z2/Z3> in
Figure 3 and Table 1. It means that, in those efforts, all the representative DNNs (CNNs,
RNNs and GNNs) Z1, Z2, and Z3 are utilized for traffic prediction (Y1) in transportation
CPS (X1).

4.1.2. Threat Detection

Threat detection involves ensuring the safety and reliability of transportation CPS
by training models with the standard system behavior data to detect deviations from the
said standard as anomalies. Some of these anomalous data may be targeted at cyber-
attacks, trigger equipment failures, or cause environmental disturbances. For example,
Kong et al. [64] proposed a framework combining trajectory data with environmental
perception to detect outliers in driving behavior. The framework is comprised of trajectory
processing, classification, and a mix of spatial-temporal-cost environments. Karim et al. [65]
aimed to improve traffic safety by predicting accidents early on using video data recorded
by dashboard cameras to study a dynamic spatial-temporal attention (DSTA) network
model. The presented model combines both the dynamic temporal and spatial attention
modules to focus on the most informative segments of a video and the spatial regions of
frames. The gated recurrent unit module predicts the probability of a future accident.

Likewise, Diao et al. [66] aimed to prevent traffic accidents by proposing CRFAST-
GCN, a multi-branch spatial-temporal attention graph convolution network that extracts
long- and short-term dependencies, semantic similarity, and periodicity. Furthermore, Chen
and Lv [67] considered improving the safety, performance, and development of intelligent
transportation systems for autonomous vehicle in smart cities using digital twins and AI-
based technologies. An architecture was proposed to use the 5G network so that resource
load balancing scheduling could be provided to secure the transmission of autonomous
vehicle data. A spatial-temporal graph convolution network technique was designed to
forecast traffic flow in road networks, as well as real-space analysis of the compound traffic
condition in the area of the road network using the concept of digital twin. These efforts
can be mapped to the cube <X1, Y2, Z3> areas in Figure 3 and Table 1. It means that in these
efforts, GNNs (Z3) are utilized to detect the threats (Y2) of transportation CPS (X1).

Table 1. DNNs in Transportation CPS.

Research Objectives Research Papers

<X1, Y1, (Transportation-Data Processing), Z1, Z2, Z3> [23,37,55–59,61–63,65–71]

<X1, Y2, (Transportation-Anomaly Detection), Z3> [64,65,67]

<X1, Y3, (Transportation-Predictive Maintenance)> N/A (No much research con-
ducted in this direction)

<X1, Y4, (Transportation-Resource Allocation)> N/A (No much research con-
ducted in this direction)

<X1, Y5, (Transportation-Real-time Decisions), Z3> [60,68,69]

<X1, Y6, (Transportation-Multi-modal Fusion)> N/A (No much research con-
ducted in this direction)

4.1.3. Data Inconsistency Identification

Data inconsistency identification entails identifying and resolving inconsistencies
in spatial-temporal datasets to ensure their accuracy and reliability. Related to this,
Liang et al. [68] proposed a spatial-temporal aware data recovery network (STAR) to ad-
dress the real-time spatial-temporal data imputation problem in a cooperative intelligent
transportation system. The model is geared to handle the three types of data recovery
tasks in real time and with inductive inference. Likewise, To infer missing values in the
spatiotemporal input data, Kong et al. [69] proposed a novel paradigm for imputing traffic
data. The model dramatically decreased the imputation error while increasing imputation
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accuracy compared with the state-of-the-art. Additionally, the correlated information ex-
tracted from historical observations is used to deal with missing values. These efforts can
be mapped to the cube <X1, Y5, Z3> area in Figure 3 and Table 1.

4.1.4. Autonomous Vehicle Collision Prediction

Autonomous vehicle collision prediction entails forecasting the likelihood of a collision
between an autonomous vehicle and another object, such as a pedestrian or vehicle. Related
to such an effort, Malawade et al. [70] proposed a spatial-temporal scene-graph embedding
technique (SG2VEC), which adopts GNNs and LSTM layers to predict future autonomous
vehicle accidents with the assistance of visual scene perception. Likewise, Sun et al. [71]
adopted GNN and RNN to propose a global scheme called GST-GAT for traffic prediction.
The framework leveraged “global interaction + node query” as a coherent way of information
flow between nodes, which captures the interaction between traffic road networks that is
spatial-temporal. These efforts can be mapped to the cube <X1, Y5, Z3> area in Figure 3 and
Table 1.

Table 2 houses the identified research gaps and the contributions made by the reviewed
efforts in the transportation domain.

Table 2. Summary of the Reviewed Contributions in Transportation (X1) CPS.

Ref, Year Framework Gap Contribution

[23], 2021 ConvLSTM Traffic jam forecasting models were
location specific

Created a model that covers the en-
tire smart city

[37], 2020 CNN-LSTM Traffic forecasting models were
vehicle-type based

Proposed a generalized model appli-
cable to all smart vehicles

[55], 2020 GATCN Inaccurate prediction of spatial-
temporal features from traffic data

An improved prediction of the hid-
den spatial-temporal features that
lies in the data

[57], 2021 ChebNet-LSTM Inadequate accuracy, deficient adapt-
ability and inferior real-time

Proposed an enhanced real-time,
adaptable prediction scheme

[58], 2021 DGNN Previous models were built based on
static adjacency matrix

Proposed a dynamic graph construc-
tion method

[59], 2021 STAWnet Previous models were built based on
the static dependency within the pre-
defined structure

Designed a self attentive model that
requires no prior knowledge of the
graph topology

[61], 2021 GCGRNN CNN models are inefficient in han-
dling structure-varying data

Proposed a graph convolution ap-
proach that is independent of a pre-
defined adjacency matrix

[62], 2021 GCN Previous models were single airport
specific

Proposed a flight delay prediction of
airport networks framework

[63], 2021 GCN-LSTM Previous models were static graphs
based

Addressed data defects problems
caused by the static graphs

[64], 2021 GNNs Current methods were not security
driven

Designed a taxi driving fraud detec-
tion system

[71], 2021 GST-GAT Previous methods neglects the non-
Euclidean nature of the road network

an improved dynamic spatial-
temporal correlation method that
captures the relevant characteristics
of the traffic network

[65], 2022 DSTA Conventional methods neglects the
spatial-temporal features that exist in
the data

Proposed Dashcams video data to
predict/detect accidents

[66], 2022 CRFAST-GCN Traditional forecasting methods ne-
glects the semantic similarity be-
tween traffic nodes that degrades ac-
curacy

Designed a model that extracts long
and short-term dependencies, seman-
tic similarity, and periodicity

[67], 2022 CNN-DT Current accidents prediction meth-
ods do not operate in real-time

Presented digital-twins AI-enabled
autonomous cars prediction model
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Table 2. Cont.

Ref, Year Framework Gap Contribution

[68], 2022 STAR Imputing the missing entries in
spatial-temporal traffic data is chal-
lenging

addressed the transport data corrup-
tion problem in real-time

[70], 2022 SG2VEC Traditional collision prediction meth-
ods were expensive

Proposed an improved future au-
tonomous vehicles accidents predic-
tion method

[69], 2023 DGCRIN Missing data imputation methods do
not account for the dynamic spatial
dependencies of the road network
over time and the effective utilization
of the diverse data

Designed an improved dynamic im-
putation method

4.2. Manufacturing CPS

In this section, research efforts that apply DNNs to apprehend the latent spatial-
temporal attributes of manufacturing CPS data (real-time monitoring of factory logistics,
production resource allocation, threat detection, etc.) are discussed.

4.2.1. Real-Time Monitoring of Factory Logistics

Wu et al. [34] proposed a scheme that integrates industrial IoT with digital twin
technology to enable timely spatial-temporal traceability and visibility of manufacturing
resources for efficient factory logistics. In their study, an LSTM network-based genetic
indoor-tracking model was created and utilized to locate product trolleys with Bluetooth
low energy and ultra-wide band technology. The extracted spatial-temporal features were
used to activate location-based services for operational efficiency. This effort can be mapped
to the cube <X2, Y5, Z2> as shown in Figure 3 and Table 3.

Table 3. DNNs in Manufacturing CPS.

Research Objectives Research Papers

<X2, Y5 (Industrial-Real-time Decisions), Z2> [34]

<X2, Y4 (Industrial-Resource Allocation), Z3> [24]

<X2, Y2 (Industrial-Anomaly Detection), Z1, Z3> [25,72,73]

<X2, Y3 (Industrial-Predictive Maintenance)> [74–76]

<X2, Y1 (Industrial-Data Processing)> N/A (No much research conducted
in this direction)

<X2, Y6 (Industrial-Multi-modal Data Fusion)> N/A (No much research conducted
in this direction)

4.2.2. Production Resources Allocation

Zhao et al. [24] proposed a model that improves production logistics efficiency through
effective resource allocation. The model adopts dynamic knowledge graph modeling and
the digital twin spatial-temporal mapping method to learn and represent the spatial-
temporal values and relationships among the resources. A graph algorithm is employed
to allocate the resources. This effort can be mapped to the cube <X2, Y3, Z3> as shown in
Figure 3 and Table 3.

4.2.3. Threat Detection

Anomaly detection mechanisms in manufacturing CPS are only effective if the non-
linear spatial-temporal features of the industrial processing data are considered [25]. In their
study, the authors proposed a method based on spatial-temporal modeling (AD-RoSM) for
detecting FDIA in ICS [25]. Their proposed scheme employs a neural-based state estimation
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model that utilizes CNN for time-related modeling and a mechanism for carrying out space-
related modeling. In this way, the spatial-temporal correlations within the process data can
be described explicitly. Yang et al. [72] proposed a graph representation-based scheme for
the detection of multivariate time series anomalies in highly complex industrial processes.
Their proposed model is capable of improving the existing techniques by offering spatial-
temporal feature extraction and decision criteria based on spatial-temporal graph modeling
with no predefined topological priors and a discriminative decision boundary. HiSTAR was
shown to provide the expected anomaly detection performance and anomaly localization
outcomes. Likewise, Liu et al. [73] adopted CNN on manufacturing spatial-temporal data
to identify abnormal production processes. Their study was based on a pasting process
in lead-acid battery production as a case study. The CNN-based approach was designed
to recognize abnormal processes by analyzing spatial-temporal data from sensors. These
efforts can be mapped to the cube <X2, Y2, Z1, and Z3> as shown in Figure 3 and Table 3.

4.2.4. Predictive Maintenance

Li et al. [74] proposed a convolutional network model that mines deterioration infor-
mation in order to anticipate the remaining usable life of a machine. Their designed scheme
models the sensor network by taking into account both the spatial-temporal dependencies
of the sensors. It adopts a hierarchical graph representation layer to model spatial depen-
dencies, a bi-directional LSTM to model temporal dependencies, as well as a regularized
self-attention graph pooling for effective information fusion. Yang et al. [75] proposed
SuperGraph, a feature extraction technique for diagnosing rotating machinery faults. The
technique adopts graph theory-based spectrum analysis so that a spatial-temporal graph
can be constructed and a Laplacian matrix-based feature vector can be derived. GCN was
further utilized to learn the latent features. Shcherbakov et al. [77] proposed a hybrid
multi-task learning framework by integrating CNN and LSTM to reflect the relatedness of
functional life prediction with the health status detection process for complex multi-object
systems in the CPS environment. The CNN extracts significant spatial-temporal features
from raw multi-sensory input data and compresses the condition monitoring data, while
the LSTM captures the temporal dependencies. As another example, Zhang et al. [76]
proposed an equipment fault prediction technique using spatial-temporal graph informa-
tion. Their proposed scheme has the potential to stop fatal damage and reduce equipment
maintenance costs. Their experimental results showed that their approach is capable of
offering precise short-term and long-term fault prediction. These efforts can be mapped to
the cube <X2, Y3, Z2, and Z3> as shown in Figure 3 and Table 3.

There are other related efforts concerning predictive maintenance. For instance,
Xiong et al. [78] discussed the importance of human-robot collaboration (HRC) in smart
manufacturing processes and the role of human action recognition in enabling HRC. In their
study, a method based on optical flow and CNN transfer learning was proposed. Their
proposed scheme leverages the optical flow to extract time-related information from video
images and simultaneously parse spatial-temporal information with a two-stream CNN
structure. Transfer learning was also leveraged to establish feature extraction capability by
pre-training the model on a non-manufacturing specific dataset and transferring the gained
knowledge to the target domain of assembly tasks, which have limited training samples.
Zheng et al. [79] addressed the problems of scene recognition in underground coal mining
using CNN, LSTM, and an attention mechanism. Jia et al. [80] proposed a data-driven
method using a graph convolution network to model the compound and time-varying
characteristics of the process industry. The technique tends to capture the relationships
among variables. The model was trained with regularization terms so that distinctive
localized spatial-temporal correlations can be learned and time-series properties can be
derived using temporal convolution.

Furthermore, Li et al. [81] proposed CLSTMA, a hybrid model that integrates CNN,
LSTM, and an attention mechanism to monitor water quality in a wastewater treatment
system. In their proposed model, a sequential fusion CNN, LSTM, and attention mechanism
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were used to predict water quality and assist in the reduction of energy and emissions. Their
proposed scheme captures the fused spatial features using CNN, LSTM for the temporal
information, and variable-weighted calculations using the attention mechanism. Likewise,
Guo et al. [82] employed historical energy consumption time series and previous knowledge
of material flow to propose a spatial-temporal deep learning network (STDLN) framework,
which merges a GCN and a GRU and forecasts the energy consumption of nodes.

In order to enhance maintenance practices in production CPS, Bampoula et al. [83]
adopted autoencoders to conduct predictive maintenance so that maintenance planning
can be enabled based on real-time machine operation. Table 3 and Table 4 summarizes
the identified research gaps and the contributions made by the reviewed efforts in the
manufacturing domain.

Table 4. Summary of the Reviewed Contributions in Manufacturing (X2) CPS.

Ref, Year Framework Gap Contribution

[24], 2022 DSTKG The Dynamites of the operating environ-
ment makes the efficient allocation of pro-
duction logistics challenging

Proposed a framework for the adequate
allocation of smart production logistics

[73], 2020 CNN Abnormal manufacturing processes are
not well examined

Extensible recognition framework for
identifying abnormal manufacturing pro-
cesses

[78], 2020 CNN Accurate prediction of the evolving
human activities in Human-Robot-
Collaboration (HRC) was challenging

Optical flow CNN-based transfer learn-
ing technique was leveraged to promote
HRC in smart manufacturing system

[79], 2020 CNN-LSTM previous methods were inaccurate An improved scene identification frame-
work for underground coal mining

[74], 2021 HAGCN Machineries remaining useful life predic-
tion models do not consider their operat-
ing environment

Considered the environment and its dy-
namic features for improved accuracy

[75], 2021 SuperGraph Achievement of a generic feature extrac-
tion method for vibration signals was
challenging

Graph theory was found supportive and
successfully applied for rotating machin-
ery fault diagnosis

[83], 2021 LSTM-
Autoencoders

Data quality challenges and preventive
maintenance strategies

Proposed predictive maintenance for
steel industry production processes

[81], 2021 CLSTMA Effective feature extraction methods, data
size and scalability challenges

An improved scheme for monitoring wa-
ter quality in a wastewater treatment sys-
tem

[82], 2022 GCN-GRU Early energy prediction of complex nodes
in smart manufacturing systems remains
a challenge

Framework for predicting energy con-
sumption behaviour of multiple nodes
concurrently

[34], 2022 LSTM-GITA Real-time monitoring of factory logistics
is under-investigated

IIoT-DT based method of monitoring fac-
tory logistics

[25], 2022 AD-RoSM Accuracy problems for anomaly detec-
tion schemes in ICS

An improved anomaly detection method
for ICS

[72], 2022 HiSTAR Spatial-temporal feature extraction was
challenging for multivariate industrial
anomaly detection schemes

A graph-theory concept was proposed for
improved feature extraction and detec-
tion accuracy

[77], 2022 CNN-LSTM Health assessment of complex systems re-
mains a challenge

A method for evaluating the heath status
of smart CPS

[76], 2022 Markov graph Accuracy problems in predicting faults
for electromechanical instruments

An improved scheme aims to stop fatal
damage and reduce equipment mainte-
nance costs

[80], 2023 GCN Compound and time-varying characteris-
tics of the process industry are not well
investigated

Graph theory was used to capture the in-
herent relationships among the affected
variables for an improved accuracy

4.3. Other CPS

Apart from transportation CPS and manufacturing CPS, there are other types of CPS
in different application domains, such as smart cities, medical CPS, aviation CPS, etc.
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4.3.1. Flood Prediction

Related to smart cities as an important application domain of CPS, Chen et al. [84]
proposed a flood process prediction model based on CNN using a decade’s worth of
historical data collected by smart sensors in city infrastructure. To predict the peak of the
flood and its arrival time, the model takes rainfall spatial-temporal, geographical, and trend
features into account. The model was presented to predict stream flow by integrating the
rainfall spatial-temporal feature obtained through analyzing the historical stream flow and
the digital elevation model data. These efforts can be mapped to the cube <X3, Y1, Z1,
and Z3> as shown in Figure 3 and Table 5.

Table 5. DNNs in Other CPS.

Research Objectives Research Papers

<X3, Y1 (Other CPS-Data Processing), Z1, Z2, Z3> [84,85]

<X3, Y2 (Other CPS-Anomaly Detection), Z1> [86]

<X3, Y3 (Other CPS-Predictive Maintenance), Z1> N/A (No much research conducted
in this direction)

<X3, Y4 (Other CPS-Resource Allocations)> N/A (No much research conducted
in this direction)

<X3, Y5 (Other CPS-Real-time Decisions), Z1, Z2> [8,87,88]

<X3, Y6 (Other CPS-Multi-modal Data Fusion)> N/A (No much research conducted
in this direction)

4.3.2. CPS-Data Processing

Related to smart cities and aviation CPS, Jiang et al. [85] proposed a GNN-based
approach for predicting air mobility to enable the control and decision-making process in
the airport of things. In their study, a spatial-temporal GCNN was employed to capture the
latent characteristics of the graph-structured data. Their proposed approach was validated
using airline on-time performance data and found to be effective in predicting spatial-
temporal air mobility. This effort can be mapped to the cube <X3, Y1, Z1, and Z3> as shown
in Figure 3 and Table 5.

4.3.3. Physical Attack Detection

Related to smart cities, Pan et al. [86] adopted ConvLSTM to propose a method
for detecting threats (from cyber or physical spaces) against cyber-physical surveillance
cameras. The technique uses a new video frame interpolation to detect video anomalies in
spatial-temporal feeds. This effort can be mapped to the cube <X3, Y2, Z1, Z2> as shown in
Figure 3 and Table 5.

4.3.4. Real-Time Fire Identification Systems

Also related to smart cities, Zhang et al. [87] developed a real-time fire identification
system that uses an IoT sensor network, cloud server, AI engine, and user interface to
collect, store, process, and display complex building fire information. Their designed
system also leveraged Conv-LSTM neural network. The neural network was trained based
on given numerical data and validated in a fire test room with successful results. This effort
can be mapped to the cube <X3, Y5, Z1, Z2> as shown in Figure 3 and Table 5.

4.3.5. Medical CPS

Wang et al. [8] developed a framework (PhysiQ) that uses passive sensory detection to
track and objectively assess people’s off-site physical therapy exercises in real-time using
a smartwatch. The system used a multi-task spatial-temporal Siamese neural network to
evaluate the effectiveness of exercises based on absolute and relative quality. Exercises
were assessed by PhysiQ using metrics (i.e., range of motion, stability, and repetition).
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Ge et al. [89] adopted RNN-LSTM with an attention mechanism to determine the specific
variable patterns in a medical application. Likewise, Pan et al. [88] proposed a temporal-
based Swin Transformer network (TSTNet) for the surgical video workflow recognition
problem. These efforts can be mapped to the cube <X3, Y5, Z1, Z2> as shown in Figure 3
and Table 5.

Table 6 outlined the identified research gaps and the contributions made by the
reviewed efforts in the other CPS domain.

Table 6. Summary of the Reviewed Contributions in Other (X3) CPS.

Ref, Year Framework Gap Contribution

[8], 2023 PhysiQ Lack of adequate and convenient
methods of tracking exercises done
off-site

Proposed a framework that tracks
and assesses people’s off-site phys-
ical therapy exercises in real time us-
ing a smartwatch.

[86], 2019 ConvLSTM Integrity attacks against the physi-
cal configuration of cyber-physical de-
vices are underinvestigated

Method of detecting threats against
cyber-physical surveillance cameras

[84], 2021 CNN Both traditional and data-driven
methods are inefficient for flood pro-
cess forecasting

Proposed an effective method of
flood process prediction

[85], 2021 GNN Previous methods neglected the prop-
agation of traffic perturbations among
airports

Air mobility prediction model for ef-
fective control and decision-making
in the airport of things network

[87], 2022 Conv-LSTM Modern firefighting systems need to
be integrated with the state-of-the-art
technologies

Proposed a real-time fire identifica-
tion system

[89], 2022 RNN-LSTM Methods for status monitoring and
evaluating patients in ICUs neglect
the temporal features of their operat-
ing environment

A method for determining the longi-
tudinal variable patterns associated
with the higher risk of medical ICU
patient mortality.

5. Challenges and Future Research Directions

Despite DNNs having achieved remarkable success in handling spatial-temporal data
in CPS, there are some limitations and challenging issues that require attention in future
research. As for the limitations, it is affirmed that DNNs are not the final panacea to all
spatial-temporal data problems in CPS, which calls for integrating other sophisticated
machine learning and data analytics techniques (continuous learning, and transfer learning,
among others). Similarly, in the areas where DNNs have been successfully applied, it is also
realized that they raise additional challenging issues to CPS, ranging from longer training
times to insufficient training data, which in turn conflicts with the strict performance
requirements in CPS.

Note that the challenges and future research directions listed in this section are not
only based on the thorough literature review of this topic but also based on our research
experience and vision in this topic. As future research directions, we outline three funda-
mental challenges: Data Quality Assurance, Strict Performance Assurance, and Reliability,
Safety, and Security Resilience, which consider both data quality that affects the effective-
ness of DNNs and the performance requirements of CPS. Therefore, the purpose of this
section is to present the limitations and challenges examined, which are later supported
by future research directions from our vision, and we believe that those challenges should
be addressed by the research community. Other technical challenges that can affect the
application of DNN in spatial-temporal data in CPS are high computational power, problem
complexity, and the learning hyperparameter.

• Performance: Real-time communication could be impacted by the latency caused
by several protocols, especially when event-driven communication and detection
are involved. Some protocols influence the performance of DNNs while handling
CPS spatial-temporal data, i.e., by affecting data transmission, size, latency, reliability,
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and synchronization. For example, network protocols (UDP and TCP by determining
the reliability and latency of data transmission), data serialization protocols (JSON,
protocol buffers by affecting the data size, encoding/decoding overhead), compres-
sion protocols (by scaling/shrinking the data size during transmission to improve the
network performance), real-time communication protocols (MQTT, DDS by providing
low-latency, publish-subscribe messaging for timely data delivery), and synchroniza-
tion protocols (PTP, NTP by ensuring time synchronization in distributed systems,
which aides coordinated processing.

Cross-platform sensor-actuator communication remains a challenging issue, and it
is important to design a comprehensive quality of service framework and satisfy the per-
formance requirements of CPS. In addition, sensor failure is another remaining challenge
because most CPS heavily rely on sensing data for the sake of control and motoring pur-
poses. The entire CPS will not function well if there are failures of some sensors within
the ecosystem. Thus, the deployment model shall be thoroughly studied to guarantee
the robustness of sensor deployment (e.g., coverage, connectivity). Therefore, it is critical
to design a holistic solution to ensure the overall performance of CPS by considering all
components and their integration as one complex system. The realization of the perfor-
mance satisfaction of CPS systems depends on the performance with respect to computing,
control, and communication. Thus, it is critical to design the modeling and optimization
techniques to integrate all components (sensing, networking, computing, and data). Some
existing research efforts have been conducted to address the integration of some compo-
nents (sensing, control, networking, and data). Nonetheless, to enhance the performance of
CPS, how all its components interact and interplay jointly, leading to a unified design and
optimization strategy, is worth investigation.

• Security: CPS has unique system requirements and security challenges. Specifically,
the confidentiality, integrity, and availability (CIA) security paradigm has been widely
used to design security standards for information technology-driven systems. For ex-
ample, availability is a crucial property regarding security and an essential requirement
of a CPS. Different threats (DoS attacks, malware propagation, etc.) could affect the
availability of CPS. Under this situation, computing and networking components
in the CPS shall employ effective mitigation measures so that malicious computing
requests and traffic can be detected in time and the impact of such attacks can be
effectively mitigated. For CPS integrity, an ML model that depends on real-time
data inputs is critical for the realization of highly dependable and trustworthy CPS
(transportation infrastructure, manufacturing infrastructure, etc.). Data fidelity is
crucial for the CPS, as it is the information that can accurately simulate and direct
the physical system in response to environmental changes accurately and quickly.
In CPS, an adversary could compromise the integrity of sensing data by intercepting
the communication channel using either a man-in-the-middle (MITM) attack or the
commands transmitted by the programmable logic controllers. Thus, security mea-
sures (device authentication, etc.) shall be in place to prevent unauthorized users
from changing data. Although solutions based on cryptography have been promoted
in the context of CPS, such as those that use TLS, HMACs, or other authentication
and integrity guarantees. Historically, such countermeasures have not been widely
used due to hardware restrictions and the relative computational cost of deploying
protocols and mechanisms. Table 7, summarizes the challenges of utilizing the DNN
in CPS spatial-temporal data.

Based on the requirements of performance and security in CPS, we consider the
following fundamental research challenges that are required for further research concerning
the performance of DNNs and the performance requirement of CPS.
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• Data Quality Assurance for Effective DNNs: The spatial-temporal data in CPS is
characterized as complex (generated from multiple sources of sensors, microcon-
trollers, etc.), incomplete (measurement errors, missing values, outliers, etc.), noisy
data (real-time streaming data), challenging to interpret, and unavailability in some
cases, among others. There is a need to address these challenges, i.e., by developing
better data collection techniques, missing data imputation and normalization methods,
and new feature extraction procedures that can effectively capture the relevant latent
spatial-temporal information in large and complex datasets.
Similarly, explainable AI can be leveraged to develop more precise, interpretable,
and explainable DNNs that provide the detailed underlying features and relationships
driving results or decisions. On the other hand, transfer learning can be leveraged with
existing knowledge and pre-trained models to improve the accuracy and efficiency of
DNNs. For example, the transfer of knowledge from related spatial-temporal datasets
within or across the different CPS domains would be beneficial for improving ML
model efficiency and supporting the CPS co-design initiative.

• Strict Performance Assurance for CPS: Most models that handle spatial-temporal
data in CPS are highly complex, combining two or more DNNs for a given task
(CNN-LSTM, GCN-GTN, etc.). This calls for the use of multiple layers and many
parameters, leading to a longer training time and hindering real-time performance in
practice. In a nutshell, the computational complexity, which translates to communi-
cation delays, and the dynamic nature of CPS data are among the factors hindering
the achievement of real-time performance in various CPS domains. This calls for the
design of new efficient model architectures that require few parameters to handle CPS
spatial-temporal data.
The targeted model architectures can significantly reduce the computational require-
ments and memory footprint of DNN models, making them more suitable for real-time
tasks. Such architectures can include lightweight models, such as MobileNet and
ShuffleNet, with smaller parameters that can be executed on CPS-resource-constrained
devices. Alternatively, using specialized hardware, such as field-programmable gate
arrays, can further optimize the execution of DNN models. Furthermore, the tar-
geted model architectures can enable the deployment of DNN models in edge devices
(sensors, actuators, smart cameras, etc.), which can process data locally within the
network edge to reduce communication latency with the cloud. This can be critical
for CPS applications, which require real-time decision-making and control. Similarly,
developing and using continuous learning techniques that can adapt to the changing
CPS data in real time can improve the performance, accuracy, and reliability of DNN
models as well.

• Reliability, Safety, and Security Resilience Insurance for DNNS and CPS: Reliabil-
ity entails predicting, detecting, and mitigating failures, while safety guarantees the
system by dealing with unexpected failures. Security resilience entails preventing
security threats posed by adversaries. As for reliability and safety, CPS could fail due
to hardware or software faults resulting in inconsistent spatial-temporal data, which
might lead the DNN models to make incorrect predictions or even shut down the
system. There is a need for models that adopt spatial-temporal data to predict, detect,
and mitigate hardware and software failures in CPS. Similarly, methods for evaluating
the reliability and availability of DNN models and systems, such as reliability metrics
and failure analysis, are critical too. Developing strategies for implementing fault-
tolerant techniques and self-healing CPS cost-effectively and efficiently is critical for
the predictive maintenance of CPS.
On the other hand, data breaches and theft can compromise the confidentiality and
integrity of spatial-temporal data in CPS. Furthermore, threats can lead the models to
make incorrect predictions. In addition, malware and other cyberattacks can infect
CPS and disrupt its regular operations. There is a need for strategies to predict, detect,
and prevent attacks (defensive distillation, adversarial training, etc.). Additionally,
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introducing methods to ensure the privacy and confidentiality of spatial-temporal
data in CPS (such as access control, encryption, and privacy-preserving machine
learning techniques) is necessary. Finally, procedures for detecting and mitigating
malware and other cyberattacks on CPS systems (e.g., intrusion detection and network
segmentation) shall be considered as well.

Table 7. Challenges of Using DNN in CPS Spatial-Temporal Data.

S/NO Performance Security

1 Longer training time Data Fidelity issue

2 High computational power Attack on availability

3 Insufficient training data Sensing data attack

4 Problem complexity Cost of protocols deployment

5 Learning hyperparameter PLC compromise

6. Final Remarks

CPS combines computational, control, and communication components with physical
processes. It is made to communicate with the physical world, keep track of and manage
operational physical processes, and produce data. Within the operation of CPS, “spatial-
temporal data” refers to the data used to describe the physical world and how it has
changed over time. Decisions are made with spatial-temporal data to regulate the behavior
and operation of CPS. This paper systematically reviewed the applications of DNNs,
i.e., convolutional, recurrent, and graph neural networks, in handling spatial-temporal data
in CPS. Additionally, an extensive literature survey was conducted to determine the areas,
in which DNNs have successfully taken spatial-temporal data in representative CPS and
the emerging areas that require attention. A generic three-dimensional framework was
proposed by considering the type of CPS, target (spatial-temporal data processing, anomaly
detection, predictive maintenance, resource allocation, real-time decisions, and multi-
modal data fusion), and DNN schemes (CNNs, RNNs, and GNNs). Finally, research
areas that need further investigation, such as performance and security, were identified.
Additionally, data quality assurance, strict performance assurance, reliability, safety, and
security resilience challenges were outlined as future research challenges and opportunities.

In the future, this line of research could be extended by conducting several case
studies to address the areas that have not received sufficient attention (i.e., “N/A”) as
depicted by Tables 1–5. Similarly, other attention mechanisms like the Transformers could
be explored further and employed in this domain to compare their performance with the
DNNs considered in this survey.
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