
Citation: Zhu, Y.; Zhou, D.; Li, Y.;

Song, B.; Wang, C. How Can We

Achieve Query Keyword Frequency

Analysis in Privacy-Preserving

Situations? Future Internet 2023, 15,

197. https://doi.org/10.3390/

fi15060197

Academic Editor: Jingsha He

Received: 16 April 2023

Revised: 26 May 2023

Accepted: 26 May 2023

Published: 29 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

How Can We Achieve Query Keyword Frequency Analysis in
Privacy-Preserving Situations?
Yiming Zhu , Dehua Zhou * , Yuan Li, Beibei Song and Chuansheng Wang

College of Information Science and Technology/College of Cyber Security, Jinan University,
Guangzhou 510632, China; layer_zym@163.com (Y.Z.); yuanli.931012@gmail.com (Y.L.);
ssong0802b@gmail.com (B.S.); tcswang@jnu.edu.cn (C.W.)
* Correspondence: tzhoudh@jnu.edu.cn

Abstract: Recently, significant progress has been made in the field of public key encryption with
keyword search (PEKS), with a focus on optimizing search methods and improving the security and
efficiency of schemes. Keyword frequency analysis is a powerful tool for enhancing retrieval services
in explicit databases. However, designing a PEKS scheme that integrates keyword frequency analysis
while preserving privacy and security has remained challenging, as it may conflict with some of the
security principles of PEKS. In this paper, we propose an innovative scheme that introduces a security
deadline to query trapdoors through the use of timestamps. This means that the keywords in the
query trapdoor can only be recovered after the security deadline has passed. This approach allows
for keyword frequency analysis of query keywords without compromising data privacy and user
privacy, while also providing protection against keyword-guessing attacks through the dual-server
architecture of our scheme. Moreover, our scheme supports multi-keyword queries in multi-user
scenarios and is highly scalable. Finally, we evaluate the computational and communication efficiency
of our scheme, demonstrating its feasibility in practical applications.

Keywords: searchable encryption; keyword frequency analysis; multi-keyword search; keyword
guessing attacks; multi-user access

1. Introduction

With the exponential growth in massive data generated by the internet of things [1,2],
traditional storage systems are struggling to meet the storage demands. As a result, cloud
storage technology [3] based on cloud computing has gained popularity among businesses
and individuals for its scalability and flexibility.

Despite the rapid and recent development of cloud storage technology, most businesses
and individuals prefer to encrypt their important data before uploading it to a cloud server,
due to concerns about data security. This does effectively guarantee the security of data;
however, it also makes it difficult to retrieve and analyze the encrypted data.

Searchable encryption (SE) is a robust solution that addresses the challenge of search-
ing encrypted data while preserving data confidentiality. The concept of public key en-
cryption with keyword search (PEKS) was introduced by Boneh [4] et al. in their seminal
work. A PEKS scheme typically involves three entities: a data owner, a data user, and a
cloud server. To share data with data users, the data owner extracts keywords from files
and encrypts them with the public key of the designated data user, thereby generating
searchable ciphertexts. The data owner then sends the searchable ciphertext, together
with the corresponding files, to the cloud server. Subsequently, the designated data user
is the only entity capable of generating a query trapdoor, by using their private key and
specifying a keyword of interest. The generated query trapdoor is then sent to the cloud
server to retrieve the associated file. Finally, the cloud server will match the searchable
ciphertext with the query trapdoor one-by-one, and send the matching result to the data

Future Internet 2023, 15, 197. https://doi.org/10.3390/fi15060197 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15060197
https://doi.org/10.3390/fi15060197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-1066-7613
https://orcid.org/0000-0003-4256-4528
https://orcid.org/0000-0003-0922-5612
https://doi.org/10.3390/fi15060197
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15060197?type=check_update&version=2

Future Internet 2023, 15, 197 2 of 21

user. Since SE was proposed, it has been applied in many fields, such as online medical
care [5,6], cloud manufacturing [7], etc.

In many instances of cloud storage applications, counting the frequency of keyword
queries is important to improve the search experience of users. For example, in a cloud
manufacturing system [7], an upstream supplying plant (the data owner) will encrypt some
production data from its workshop and store the ciphertext on a cloud server. Subsequently,
the service platform providing the ciphertext retrieval service can respond to the search
request of the purchasing company (the data users), and provide the supply factory that
meets their needs. If another service platform that provides keyword frequency analysis
services can analyze the frequency of the query keywords while ensuring the privacy
of the purchasing company, the user’s search experience can be significantly optimized
(e.g., by placing the data of the most frequent keywords in the best position in the database).
Meanwhile, the cloud server shares analysis results with upstream supply factories, which
can also help factories to make targeted production adjustments, thus greatly improving
production efficiency. In our solution, the query token used by the purchasing company
(the data users) to query is embedded with a timestamp specified by the user themselves,
which is similar to the user setting a validity period for their query records, during which
the query operation will not compromise the user’s privacy. After this validity period, a
third party can recover the keyword information of the query token, but cannot associate
this keyword information with the user’s identity. In this way, we propose a PEKS scheme
that perfectly combines security with keyword frequency analysis. Meanwhile, the scheme
has many advantages: it is multi-user, has the capacity for multi-keyword queries, and can
resist KGA (keyword-guessing attack).

1.1. Our Contribution

In this work, we propose a PEKS scheme with keyword frequency analysis (KFA-
PEKS), which takes into account privacy protection and frequency analysis of keywords.
Furthermore, KFA-PEKS supports multi-user participation and multi-keyword search;
therefore, it is suitable for distributed IoT scenarios such as cloud manufacturing [7].
Overall, our contributions in this paper are as follows:

• We propose a novel KFA-PEKS scheme that combines searchable encryption with
keyword frequency analysis, while maintaining high levels of security and scalabil-
ity. Our solution allows the server to periodically analyze the frequency of queried
keywords without linking this information to the user’s identity, thereby preserving
user privacy.

• We conduct a comprehensive functional comparison of our KFA-PEKS scheme with
existing SE schemes. The comparison results demonstrate that our scheme is unique in
achieving multi-keyword search, resistance to KGA, and frequency analysis of query
keywords within a multi-writer/multi-reader model. Furthermore, the complexity
analysis of our scheme indicates that it is highly practical and applicable.

• We implement our KFA-PEKS scheme using Python, and perform extensive secu-
rity evaluations, including computational and communication overhead analysis, to
demonstrate its feasibility and effectiveness. Our experimental results highlight the
advantages of our KFA-PEKS scheme compared to other PEKS schemes, showcasing
its superior performance and suitability for real-world applications.

1.2. Paper Organization

In Section 2, we will review the relevant literature and related work. In Section 3, some
preliminaries required to understand our proposed KFA-PEKS will be given. In Section 4,
we will formally describe the KFA-PEKS scheme. Next, in Section 5, we will present a
concrete construction of KFA-PEKS and provide a proof of its security. The efficiency
of our construction will be analyzed theoretically in Section 6, and we will showcase its
practicality through experimental results. Finally, in Section 7, we will conclude the paper
as a whole.

Future Internet 2023, 15, 197 3 of 21

2. Related Work

Since the concept of SE was first introduced in [8], SE has been divided into two
categories: symmetric searchable encryption (SSE) [9–11] and PEKS [4,12–15]. The two
have different application scenarios and construction methods. SSE generally considers the
use of a single user, which is equivalent to establishing a personal encrypted cloud disk, and
relies on symmetric encryption algorithms for scheme construction; PEKS, which mainly
relies on public key cryptography algorithms, usually considers multi-user scenarios, such
as mail systems or multi-person file-sharing systems.

The first PEKS scheme was proposed by Boneh et al. [4], wherein the data owner could
use the public key of a specified data user, so that the user could use their key to generate a
trapdoor for query keywords to search encrypted data. Since then, many PEKS schemes
have been proposed. Among these schemes, examples in the literature, such as [16,17],
support multi-keyword search; however, these schemes cannot support multiple data
owners and data users at the same time. Sun et al. propose a PEKS scheme [18] supporting
multiple keyword queries and multiple users, which combines a data structure representing
a keyword/identity representation (T-set) in [11], and ciphertext-policy attribute-based
encryption (CP-ABE) in [19]. In their proposed scheme, the data owners grant keys to the
data users, requiring each data user to maintain a set of keys in order to access data that are
outsourced by different data owners. In addition, because this scheme does not deal with
the relationship between the ciphertext and keywords, it brings a huge storage overhead to
each entity in the scheme. In 2019, Xu et al. [20] proposed a lattice-based PEKS scheme that
was derived from a blind identity-based encryption (blind IBE) [21] scheme, by substituting
identities with keywords. Their construction involves an identity-based PEKS that maps
the identity of the data owner to a matrix, allowing the data owner to encrypt data with
the identity of the data user. In 2021, Liu [22] et al. combined a subset decision mechanism
on a distributed two-trapdoor public key cryptosystem [23] to construct a PEKS scheme to
be applied in distributed systems. In this scheme, both the data owner and data user have
their public and private key pairs, and can generate corresponding searchable ciphertexts
and trapdoors with their respective public keys. However, this scheme, similarly to all
previously proposed PEKS schemes, loses the availability of data; in addition, it cannot
expand the potential application scenarios of public key searchable encryption, because it
does not consider keyword frequency analysis of query keywords.

In 2019, Xu et al. [24] proposed the first PEKS scheme based on blind IBE [21], which
can accomplish keyword frequency analysis under the premise of protecting user privacy.
Unfortunately, due to its single-server setup, this solution is not immune to KGA [25,26].
In addition, it is difficult to extend the query method from a single keyword to multiple
keywords. KGA is a common type of attack facing PEKS schemes. Within KGA, an attacker
can generate searchable ciphertexts for any desired keyword using the public key of the
data user, and can then test these ciphertexts against the search trapdoor. To mitigate KGA,
various cryptographic primitives have been proposed, including public key authenticated
encryption with keyword search (PAEKS) [27–29] and public key encryption with fuzzy
keyword search (PEFKS) [30]. Based on [22], we propose a PEKS that can achieve keyword
frequency analysis while protecting data privacy and user privacy. In addition, this PEKS
is suitable for multi-user distributed scenarios and is resistant to KGA.

3. Preliminaries

For ease of reading, we refer to [22] for some symbols and related terms, and present
the following in Table 1, where W is a universal keyword set with keyword number η,
W = {ωη−1, ..., ω0}. After that, we have a decimal number T ∈ {0, ..., 2η − 1} to represent
the relationship between each keyword set W and a document D. This is expressed
as follows:

Ti =

{
1, i f ωi is contained in D,
0, otherwise

Future Internet 2023, 15, 197 4 of 21

WT = {ωi|ωi ∈ W, Ti = 1} denotes the keyword set corresponding to T. When a
data user (DU) initiates a query request, we use a decimal number t ∈ {0, ..., 2η − 1} to
represent the relationship between each keyword set W and DU’s interest. This is expressed
as follows:

ti =

{
1, i f DU is interetsed in ωi,
0, otherwise

Wt = {ωi|ωi ∈ W, ti = 1} denotes the keyword set corresponding to t. In the
description that follows, t matches T equivalently to Wt ⊆WT .

Table 1. Summary of notations.

Notations Descriptions

W The universal keyword set
D A document

DS All documents stored on the server
DS[ω] All documents that contain the keyword ω

SQ Keywords included in a query
Wid All keywords contained in document with identifier id
Wc The keyword set represented by c
ω A keyword

(cη−1, ..., c0) The unsigned binary representation of a positive decimal c
cη−1 The highest bit

c0 The least bit
η The bit length of c, the number of keywords in W
¬c The complement of c

T
A positive decimal integer is used as the plaintext representation of

searchable ciphertext, and its binary representation can represent the
relationship between the set WT and the universal set W

t
A positive decimal integer is used as the plaintext representation of

searchable ciphertext, and its binary representation can represent the
relationship between the set Wt and the universal set W

ski Secret key of participant i
pki Public key of participant i

MSKi Partial master key of participant i
TSO Timestamp specified by DUs
TSN Timestamp generated periodically by the time server
[·]pk The encryption of · under the public key pk
SUM The decimal integer 2η − 1
L(·) The bit length of ·

3.1. Pseudorandom Function

A function F : {0, 1}κ×{0, 1}l → {0, 1}l′ is called a pseudorandom function (PRF) [31]
if for all PPT adversary A, its advantage |Pr[AF(k,·)(1κ) = 1]− Pr[AR(·)(1κ) = 1]| ≤ υ(κ),

where k $← {0, 1}κ , R is a random function denoted as: {0, 1}l → {0, 1}l
′
, and υ(κ)

is negligible.

3.2. Subset Decision Mechanism (SDM)

Given a universal set W, and two subsets and WT and Wt, and these sets being
represented in decimal integers and binary representations, the role of the SDM [22] is
to perform some calculations on these decimal integers and binary representations to
determine whether Wt ⊆WT . In this paper, the SDM is used as an important component
of the matching process. In the next description, we let W denote the set of all keywords
whose binary and decimal forms are denoted as (1, ..., 1) and SUM, and WT denote the set
of keywords corresponding to the document uploaded by the data owner (DO), which is
represented in binary and decimal form as (Tη−1, ..., T0) and T, respectively. Furthermore,

Future Internet 2023, 15, 197 5 of 21

we let Wt denote the set of keywords corresponding to the data user’s (DU’s) query request
in binary and decimal form as (tη−1, ..., t0) and t, respectively.

The key for the SDM to determine Wt ⊆WT is to ensure that there is no i that satisfies
ti = 1 and Ti = 0. In the SDM, the inputs are a universal keyword set W = {ωη−1, ..., ω0}
with two subsets WT and Wt such that WT , Wt ⊆ W. The outputs are a result value R,
which represents whether Wt ⊆WT . The specific process can be described as follows. We
first compute the complement (¬Tη−1, ...,¬T0) of the binary of T and the corresponding
integer ¬T. Then, perform a bitwise addition of ¬Ti and ti to obtain Ci. Finally, if there is
no Ci = 2, then, Wt ⊆ WT ; otherwise, Wt * WT . The working mechanism of the SDM is
described formally in Algorithm 1.

Algorithm 1 Subset Decision Mechanism Source: [22], Algorithm 1 Subset Decision

Input:
A universal set W = {ωη−1, ..., ω0}, two subsets Wt, WT ⊆W.

Output:
Whether Wt ⊆WT .

1: Compute the binary representations (Tη−1, ..., T0), (tη−1, ..., t0) of WT , Wt.
2: Compute the complement (¬Tη−1, ...,¬T0) of (Tη−1, ..., T0).
3: Set i = 0,R = 1.
4: while i < η do
5: Ci = ¬ti + Ti;
6: Di = 2− Ci;
7: R = R · Di;
8: end while
9: ifR = 0 then

10: return Wt * WT
11: else
12: return Wt ⊆WT
13: end if

In addition, we are able to accelerate the execution of the SDM when Wt * WT . That is,
when Wt ⊆WT , there is always sum = t + ¬T ≤ SUM = 2η − 1. We describe this process
in Algorithm 2.

Algorithm 2 Subset Decision Mechanism With Modification. Source: [22], Algorithm 1
Subset Decision with Modification
Input:

A universal set W = {ωη−1, ..., ω0}, two subsets Wt, WT ⊆W.
Output:

Whether Wt ⊆WT .
1: We additionally compute the decimal integers T, t of WT , Wt, SUM = 2η − 1 of W,
¬T = SUM− T and sum = ¬T + t after executing steps 1 and 2 in Algorithm 1.

2: if sum > SUM then
3: return Wt * WT
4: else
5: Go to Step 3 of Algorithm 1.
6: end if

3.3. Secure Bit-Decomposition (SBD)

For a ciphertext [c]pk encrypted with pk, SBD [32] can encrypt each bit of c, and will
not leak information about c to the two parties involved in the calculation in SBD. A more
standardized expression of the SBD protocol is as follows.

SBD([c]pk)→ ([cη−1]pk, ..., [c0]pk).

Future Internet 2023, 15, 197 6 of 21

3.4. DT-PKC

A distributed two-trapdoor public key cryptosystem (DT-PKC) [23] is a toolkit that
can securely handle common integer operations across different cryptographic domains,
meaning it will become an important part of the KFA-PEKS.

3.4.1. Basic Structure

Our scheme takes a similar introduction to DT-PKC as that of [22]. Among them, since
this paper needs to use the joint decryption of dual servers, the PSDec1 algorithm and
PSDec2 algorithm in [23] are retained and rewritten as PMDec1 algorithm and PMDec2
algorithm in this paper. Furthermore, this paper does not involve the joint decryption
between users, so the PWDec1 and PWDec2 algorithms are omitted. It is important to em-
phasize that this change will not affect the content that follows. The DT-PKC infrastructure
consists of eight algorithms: KeyGen, Enc, Udec, MDec, MkeyS, PMDec1, PMDec2, and
CR. The definition of DT-PKC accepted in [23], with slight modifications, is as follows:

• KeyGen: Given the security parameter κ, KGC finds two large primes p, q such that
L(p) = L(q) = κ, where L(x) refers to the length of the parameter x, then computes
N = pq, p′ = (p−1)

2 , q′ = (q−1)
2 , of which p′ and q′ are two strong primes. Simultaneously,

KGC also chooses a generator of the order (p−1)(q−1)
2 , and chooses a random number θ

such that θ ∈ [1, N
4]. Finally, KGC obtains the public key pki = (N, g, hi = gθ) and the

private key ski = θ for user i, and computes the master key MSK = λ = lcm(p−1, q−1)
2 ,

where lcm(a, b) refers to finding the least common multiple of a and b.
• Encryption (Enc): Enter the plaintext m and the public key pki and choose a random

number r (r ∈ [1, N
4]) to generate the ciphertext [m]pki

= {Ci,1, Ci,2},
where Ci,1 = grθ(1 + mN) mod N2; Ti,2 = gr mod N2.

• Decryption With User’s Private Key (UDec): Enter the ciphertext [m]pki
and the private

key ski to generate the corresponding plaintext m as follows:
m
′
=

Ci,1
Ci,2

mod N2,

m = m
′−1
N .

• Decryption With Master Key (MDec): Enter the ciphertext [m]pki
and the master key

MSK to generate the corresponding plaintext m by first calculating:
Cλ

i,1 mod N2 = gλ·θ·r(1 + mNλ) mod N2 = (1 + mNλ).
Then, since gcd(λ, N) = 1, we are able to obtain m by the following expression:

m∗ = Cλ
i,1 mod N2,

m = m∗−1
N · λ−1 mod N.

• Master Key Splitting (MkeyS): Enter the master key MSK to generate two partial master
keys MSK1 = λ1 and MSK2 = λ2 such that λ1 + λ2 ≡ 0 mod λ and λ1 + λ2 ≡
1 mod N2.

• Partial Decryption With Partial Master Key Step One (PMDec1): Enter the ciphertext [m]pki

and the partial master key MSK1 to generate the partial ciphertext CT1
i as follows:

CT1
i = (Ci,1)

λ1 = grθλ1(1 + mNλ1) mod N2.
• Partial Decryption With Partial Master Key Step Two (PMDec2): Enter the partial ci-

phertext CT1
i , the ciphertext [m]pki

and the partial master key MSK2 to generate the
corresponding plaintext m by first calculating:

CT2
i = (Ci,1)

λ2 = grθλ2(1 + mNλ2) mod N2.
Then, we can obtain the plaintext m by computing:

CT = CT1
i · CT2

i ,
m = CT−1

N .
• Ciphertext Refresh (CR): Enter the ciphertext [m]pkθ

and a random number r
′ ∈ ZN to

generate another ciphertext [m]
′
pkθ

= {C′i,1, C
′
i,2}, where

C
′
i,1 = Ti,1 · hr

′

i ; C
′
i,2 = Ci,2 · gr

′
.

Future Internet 2023, 15, 197 7 of 21

3.4.2. Sub-Protocols

DT-PKC is capable of deriving several sub-protocols, which can be found in [23]. Since
the sub-protocols SAD and SMD of DT-PKC introduced in [22] are involved in our scheme,
only the sub-protocols SAD and SMD are briefly described later. The following is a brief
description of the sub-protocols SAD and SMD:

• Secure Addition Protocol across Domains (SAD): Enter the two ciphertexts [m1]pkθ1
and

[m2]pkθ2
, the partial master keys MSK1 and MSK2, and the public keys pkθ1 , pkθ2 and

pkθ3 to generate the addition of two ciphertexts [m1 + m2]pkθ3
in different encryp-

tion domains.
• Secure Multiplication Protocol across Domains (SMD): Enter the same inputs as the SAD

to generate the multiplication of two ciphertexts [m1 · m2]pkθ3
in different encryp-

tion domains.

4. KFA-PEKS
4.1. System Model

The following entities are included in our scheme: a key generation center (KGC), a
matching server (MS), a keyword frequency server (KFS), a time server (TS), data owners
(DOs), and data users (DUs). A brief description of our system model is given in Figure 1.

Data Owners

MS

KFS

Data Users

TS

1

2

3

4

4

Encrypted Data
Trapdoors

Matched data

Time Token

Keyword

frequency

Test3

Figure 1. Our scheme consists of four main steps. In the first step, the DOs encrypt their data using
their public key to generate searchable ciphertexts, which are then uploaded to an MS. In the second
step, the DUs generate query trapdoors for the set of keywords of interest and send them to the MS.
In the third step, the MS and the KFS cooperate to calculate the query results, which are then sent
back to the corresponding DU. Finally, in the fourth step, the TS periodically sends time tokens to the
KFS. The KFS can use time tokens to recover the keywords that satisfy the query trapdoor for the
current timestamp, and then analyze these keywords. The analysis results are sent back to the DOs.

• KGC: The role of the KGC is to generate public parameters and distribute the corre-
sponding keys to the various entities involved in the scheme.

• MS: The MS mainly provides secure file storage services for the DOs and secure file
search services for the DUs.

• KFS: The KFS collaborates with the MS in processing the DUs’ file query requests, and
conducts keyword frequency analysis on the DUs’ queries, while ensuring the privacy
of the DUs, in order to provide enhanced file storage and lookup services to both the
DOs and DUs.

• TS: The TS periodically sends time tokens embedded with the current timestamp to
the MS, which are then used to recover keyword information from the DUs’ queries in
order to conduct keyword frequency analysis.

• DO: Each DO generates their own public–private key pair based on the public param-
eters. They then extract keywords from a file to generate searchable ciphertext, which
is sent to the MS along with the file for secure storage and search services.

Future Internet 2023, 15, 197 8 of 21

• DU: Each DU generates their own public–private key pair based on the public param-
eters and generates a query trapdoor for a set of keywords of interest. Only the DU
has the ability to decrypt the queried results received from the MS in order to obtain
the corresponding file index, thereby ensuring privacy and security.

4.2. Threat Model

We assume that the KGC is an honest party, assigning corresponding keys to other
members in KFA-PEKS.

The MS and the KFS are assumed to be a pair of non-colluding semi-honest adversaries
(specific references in [33]). In KFA-PEKS, the MS will try to obtain information about trap-
doors (e.g., keyword information and corresponding documentation information); the KFS
will infer query keywords while analyzing the frequency of query keywords corresponding
to the user information. Non-collusion means that there will be no unnecessary interaction
between the MS and the KFS, except for query calculation and keyword frequency analysis.

We assume that the TS, DOs, and DUs are semi-honest, that the TS will strictly generate
the correct time token based on the current time and send it to the KFS, and that the DOs
and DUs will also honestly execute individual protocols in KFA-PEKS. However, they will
all try to gain access to the private data of other members of the scheme.

Based on the definition of individual entities given above, we introduce an adversary
A∗ into our model that is capable of compromising some of the entities in the model. For
example, A∗ can conspire with the MS or KFS (but not both) to guess the information in the
ciphertext. Furthermore,A∗ can conspire with several DOs or DUs to obtain the decryption
capability of the corresponding ciphertext or trapdoor. Such a security model has strong
practical implications, and we recommend that interested readers consult [23], upon which
we will not expand in this paper for brevity reasons.

4.3. Security Goals

Due to the need for user privacy, even if these keywords are restored by the KFS after
TSO, the DUs’ identities should not be linked to the keyword they queried. Furthermore,
these keywords should also not have been disclosed prior to the TSO. Specifically, the
security objectives of our program should achieve the following five points:

• Keyword privacy of DUs Before TSO: The DUs’ query operations will not leak keyword
information until the current time reaches the TSO specified by the DU.

• Indistinguishability of DO’s searchable ciphertext: The searchable ciphertext uploaded by
the DO does not reveal any information related to the file.

• Keyword privacy for DUs after TSO: After reaching the TSO specified by the DU, only
the KFS can recover the queried keywords, and for others, the trapdoor still retains its
previous security.

• Unlinkability of recovered keywords and DUs’ identities: The KFS is unable to locate the
relevant DU through recovering the keyword.

• Resist KGA: The focus of this paper is on offline keyword-guessing attacks by internal
attackers, that is, on preventing internal attackers, such as untrusted cloud servers,
from performing exhaustive attacks on keyword information in encrypted searchable
ciphertext or trapdoors.

4.4. Syntax

Public key encryption with keyword search supporting keyword frequency analysis
is a protocol shared among a KGC, an MS, a KFS, a TS, multiple DPs, and multiple DUs,
as follows:

• Setup(κ)→ (PP, r, r2): Given the security parameter κ, the KGC generates the public
parameter PP, a value shared by the KFS and DUs, and a key r2, shared by the TS
and DUs.

• KeyGenSer(PP)→ (MSKMS,MSKKFS): Given the public parameter PP, the KGC gen-
erates two keys for the MS and KFS, MSKMS and MSKKFS.

Future Internet 2023, 15, 197 9 of 21

• KeyGenDO(PP)→ (pkDO,skDO): Given the public parameter PP, the KGC generates
the public–private key pair (pkDO,skDO) for the DOs.

• KeyGenDU(PP)→ (pkDU , skDU): Given the public parameter PP, the KGC generates
the public–private key pair (pkDU ,skDU) for the DUs.

• KeyGenTS(PP)→ (pkTS, skTS): Given the public parameter PP, the KGC generates the
public–private key pair (pkTS,skTS) for the TS.

• PEKS(W, WT , pkDO)→ [T]pkDO : Given the universal keyword set W, a keyword subset
WT , and the DO’s public key, the DO computes the searchable ciphertext [T]pkDO .

• Trapdoor(W, r, r2, skDU , pkTS, TSO) → [t]PK: Given the universal keyword set W,
the value r, the key r2, the DU’s secret key skDU , the TS’s public key pkTS, and a
timestamp, the DU computes an encryption key PK and the trapdoor [t]PK.

• Test([T]pkDO , [t]PK, MSKMS, MSKKFS, pkDO, PK)→ [1]PK or [0]PK: Given the search-
able ciphertext [T]pkDO , trapdoor [t]PK, the MS’s secret key MSKMS, the KFS’s secret
key MSKKFS, the DO’s public key pkDO, and the encryption key PK, the MS and
the KFS compute a test result. The DU can compute the test result and outputs 1 if
Wt ⊆WT , or otherwise, 0.

• TimeTokenGen(skTS, pkDU , r2, TSN)→ TT: Given the TS’s secret key skTS, the DU’s
public key pkDU , the key r2, and a timestamp, the TS generates a time token TT.

• OpenKeyword([t]PK, r, TT)→ t: Given the encryption key PK, the value r, and a time
token TT, the KFS can recover to obtain t.

4.5. Correctness

The correctness of the solution KFA-PEKS is mainly reflected in two aspects: the
correctness of the search results and the correctness of the keyword frequency analysis.
Specifically, we express the correctness as follows:

• Correctness of search results:

- Test([T]pkDO , [t]PK, MSKMS, MSKKFS, pkDO, PK)→ 1 if, and only if, Wt ⊆WT .
- Test([T]pkDO , [t]PK, MSKMS, MSKKFS, pkDO, PK)→ 0 if, and only if, Wt * WT .

• Correctness of keyword frequency analysis:

- OpenKeyword([t]PK, r, TT)→ t if, and only if, TSN * TSO.
- OpenKeyword([t]PK, r, TT)→ ¬t. if, and only if, TSN ⊆ TSO.

5. Construction
5.1. The Concrete Construction

For clarity and visibility, we denote the subset decision mechanism as the SDM in the
description that follows. The KFA-PEKS is constructed as follows:

• Setup(κ) → PP: Given the security parameter κ, the KGC finds two large primes
p, q such that L(p) = L(q) = κ, where L(x) refers to the length of the parameter
x, then computes N = pq, p′ = (p − 1)/2, q′ = (q − 1)/2, of which p′ and q′ are
two strong primes. Simultaneously, the KGC also chooses a generator of the order
(p− 1)(q− 1)/2 and initializes a set of keywords W, the total number of which is η.
Later the KGC sends a secret value r to the KFS and the DUs, and sends PP = (W, η,
N, g) to others.

• KeyGenSer(PP) → (MSKMS,MSKKFS): The KGC first executes KeyGen in DT-PKC
to obtain the master key MSK = λ, and then executes MkeyS in DT-PKC to gen-
erate two partial master keys MSK1 = λ1, MSK2 = λ2. Finally, the KGC sends
MSKMS = MSK1 = λ1 to the MS, the partial master key MSKKFS = MSK2 = λ2 to
the KFS, and keeps MSK = λ secret.

• KeyGenDO(PP)→ (pkDO,skDO): Each DO chooses a random number skDO = θ1 and
calculates hDO = gθ1 . They then publish pkDO = (N, hDO, g) as their public key, and
keep skDO as their private key.

Future Internet 2023, 15, 197 10 of 21

• KeyGenDU(PP)→ (pkDU , skDU): Each DU chooses a random number skDU = θ2 and
calculates hDU = gθ2 . They then publish pkDU = (N, hDU , g) as their public key, and
keep skDU as their private key.

• KeyGenTS(PP) → (pkTS, skTS): Each TS chooses a random number skTS = θ3 and
calculates hTS = gθ3 . They then publish pkTS = (N, hTS, g) as their public key, and
keep skTS as their private key.

• PEKS(W, WT , pkDO)→ [T]pkDO : Firstly, DO chooses a random number r1, and gen-
erates WT based on W such that WT ⊆W and computes the corresponding decimal
number T according to its binary representation; then, encrypts T with their public
key pkDO to obtain the encrypted searchable ciphertext [T]pkDO = (TDO,1, TDO,2), which
specifically is as follows:

TDO,1 = gr1θ1(1 + TN) mod N2 (1)

TDO,2 = gr1 mod N2 (2)

Finally, the DO sends [T]pkDO to the MS.
• Trapdoor(W, r, r2, skDU , pkTS, TSO) → [t]PK: the DU uses their own private key

skDU and TS’s public key pkTS to generate an encryption key PK = gθ2θ3 . They then
generate the keyword set Wt of interest based on T such that Wt ⊆ W and compute
the corresponding decimal number t according to its binary representation. At the
same time, the DU runs a PRF F for the specified point in order to obtain a timestamp,
and shares the key r2 with the TS. Subsequently, the DU encrypts t with PK, a secret
value r (shared with the KFS) and their specified timestamp, and obtains the trapdoor
[t]PK = tDU,1, tDU,2, which specifically is as follows:

tDU,1 = gθ2·θ3·r·F(r2,TSO)(1 + tN) mod N2 (3)

tDU,2 = gθ3 mod N2. (4)

Finally, the DU sends [t]PK to the MS.
• Test([T]pkDO , [t]PK, MSKMS, MSKKFS, pkDO, PK) → [1]PK or [0]PK: After receiving

[T]pkDO and [t]PK, the MS can perform the following four steps with the KFS to obtain
an encrypted query result and send it to the DU.

- step 1: After the MS receives [T]pkDO and [t]PK, it will execute the SBD protocol
with the KFS to calculate the ciphertext of each bit of ¬T and t, i.e., [¬Ti]pkDO and
[ti]PK for i ∈ {0, ..., η − 1}.

- step 2: After obtaining [¬Ti]pkDO and [tj]PK, the MS can calculate the ciphertext
of each Ci and Di mentioned in the SDM, i.e., [Ci]PK and [Di]PK together with the
KFS, and finally the MS sends the randomized matching result to the DU.

- step 3: After obtaining [Di]PK, the MS and KFS together calculate the matching
result and the randomized value, i.e., [R]PK and [F]PK.

- step 4: After receiving [F]PK, the DU decrypts the final matching result. A result
of 0 means that the file does not match. Any other result means that the current
file does match, in which case the DU will request this file from the MS.

• TimeTokenGen(skTS, pkDU , r2, TSN)→ TT: The TS uses skTS and pkDU to deal with
the current timestamp TSN and obtain a time token TT = gθ2·θ3·F(r2,TSN) mod N2,
this is sent periodically to the KFS.

• OpenKeyword([t]PK, r, TT)→ t: The KFS receives the TT, and when the timestamp
in the TT is consistent with the timestamp specified by the DU, then, the KFS can
recover the keyword information in the trapdoor with r and TT, so as to analyze the
frequency of the queried keywords later. The recovery process is as follows:

t =

tDU,1

(TT)r′ − 1

N
mod N2 (5)

Future Internet 2023, 15, 197 11 of 21

5.2. Process of KFA-PEKS

Figure 2 shows specifically the workflow of the 6 members and 10 algorithms in
KFA-PEKS.

KGC KFSMSDO DU TS

Setup:

KeyGen:

PEKS:

Trapdoor:

Test:

Setup:

KeyGenSer

KeyGenDO

KeyGenDU

KeyGenTS

PP
store storestore store store

MSKKFSMSKMS
store store

TimeTokenGen:

OpenKeyword:

pkDO
store

store
pkDU

store
(pkTS,skTS)

store pkTS

PEKS

Trapdoor

Test

TimeTokenGen

store
[T]pkDO

[t]PK
store

result

TT

Figure 2. Workflow of our system.

Notably, since TSO in the query trapdoor is specified by the DUs, the DUs can better
grasp the conditions under which the query keywords are recovered, and, therefore, can
better protect the privacy of users. A DU can generate multiple trapdoors with different
TSOs, so that the TSO of this trapdoor is a time interval, i.e., the time interval is between
T1 = “10:00:00 AM January 1, 2022 GMT” and T2 = “10:00:00 AM December 1, 202 GMT”. In
this way, only when the current time T satisfies T1 ≤ T ≤ T2, can the KFS open the queried
trapdoors using the time token TT of the TS.

5.3. Security Proof

On the premise of being correct, our scheme should also satisfy the five security
definitions we mentioned earlier: keyword privacy of DUs before TSO, indistinguishability of
DO’s searchable ciphertext, keyword privacy of DUs after TSO, unlinkability of recovered keywords
and DUs’ identities, resistance to internal and external keyword-guessing attacks. Below, we will
prove each of these five security requirements by means of the following Theorems 1–5.

Theorem 1. The keyword privacy of the DU is protected until the TSO specified by the DU
is reached.

Proof. The DU generates a trapdoor which is sent to the MS to perform a query. Then, the
MS executes the Test algorithm together with the KFS, and returns the test result to the DU.
It is required that the test result can only be read by the DU, and the trapdoor must not
reveal any information about the keywords before reaching the TSO specified by the DU. It

Future Internet 2023, 15, 197 12 of 21

is worth noting that in our scheme, the encryption key for the trapdoor must be generated
separately by the TS or the DU, while the encryption key for the searchable ciphertext is
the public key of the DO; therefore, for the same keyword, the trapdoor is uncorrelated
with the searchable ciphertext, meaning that common chosen keyword attacks (CKA) can
be avoided in PEKS. We use A to denote the adversary in the indistinguishability game,
and C to denote the challenger; this game can be represented as follows:

First, A chooses a time point T∗ to attack, and selects two different sets of keywords
of interest, W1 and W2, which will be sent to C; then, C randomly selects one of the two sets
to generate a trapdoor which is then sent to A. Finally, A tries to distinguish which set of
keywords corresponds to the trapdoor returned by C.

In the following, if our scheme passes the indistinguishability game of trapdoor
privacy (IND-TP), then the scheme can be deemed IND-TP secure.

• Setup: First,A chooses a point in time T
′
at which to make the attack. Then, C executes

algorithms Setup, KeyGenSer, KeyGenDU , KeyGenDO, and KeyGenTS to obtain PP,
(MSKMS, MSKKFS), (pkDU , skDU), (pkDO, skDO), and (pkTS, skTS). Furthermore, it
sends (MSKMS, pkDU , pkDO, pkTS) to A.

• Phase 1: A interacts with C, which executes the TimeTokenGen algorithm in an imita-
tion of the TS, and sends the resulting time token to A.

• Challenge: A picks two different keyword sets W0, W1 ⊆ W, and sends t0 and t1,
representing the two sets, to C. Then, C picks b ⊆R {0, 1}, runs Trapdoor(W, r, skDU ,
pkTS, TSO)→ [tb]PK, and sends [tb]PK to A.

• Phase 2: A can continue with the first phase of queries while also executing the
algorithm PEKS in an imitation of the MS interacting with the KFS.

• Guess: A starts guessing b. If the given guess b
′

satisfies b
′
= b , then A wins

this game.

If A can win the game described above with a non-negligible probability, then the
KFA-PEKS is deemed IND-TP secure.

Suppose there exists an adversary A who can win the game described above with
a non-negligible probability. Let C be the challenger of the trapdoor privacy experiment
before TSO in KFA-PEKS, and here construct a simulator B to exploit adversaryA to defeat
the DDH hardness problem based on Z∗N2 .

Let (g, gx, gy, gxy, gz) be a set of examples of DDH hardness problems based on Z∗N2 .
Challenger C first uses the generating element g to construct the public parameters of the
scheme PP = (W, η, N, g). Then, challenger C uses PP by itself to run Setup, KeyGenSer,
KeyGenDO, KeyGenDU , and KeyGenTS, and obtains the secret value r shared by the KFS
and the DU, the secret value r2 shared by the TS and the DU, and some of the MS and KFS’s
partial master key (MSKMS, MSKKFS), the DO’s public–private key pairs (pkDO, skDO),
the DU’s public–private key pairs (pkDU , skDU), and the TS’s public–private key pairs
(pkTS, skTS). Then, challenger C sends (PP, MSKMS, pkDO, pkDU , pkTS) to adversary A
and (PP, MSKKFS, pkDO, pkDU , pkTS, skTS, r, r2) to simulator B. Adversary A chooses two
keyword sets W0 and W1 and corresponding trapdoor [t]bPK, where b ∈ {0, 1}. Next, A
sends (W0, W1, [t]bPK) to B. Finally, B gives a value b

′
to guess the set of keywords W

′
b

corresponding to the trapdoor [t]bPK, where b
′ ∈ {0, 1}. Throughout the process, simulator

B allows adversaryA to perform the following oracle queries with the following responses:

• QueryTrap(Wb, pkDU): Input a keyword set Wb and the DU’s public key pkDU , be-
cause simulator B has the TS’s private key skTS, so it can obtain the encryption key
PK = gθ2θ3 ; then, simulator B runs the Trapdoor algorithm to generate the query
trapdoor [t]bPK corresponding to keyword set Wb, and then, simulator B sends this
query trapdoor to adversary A.

• QueryTS(TSN): The current timestamp TSN is input, and since the simulator B has
the secret value r shared by the KFS and the DU and the secret value r2 shared by the
TS and the DU, it can obtain the processed timestamp gr·F(r2,TSN) and give this value
to the adversary A.

Future Internet 2023, 15, 197 13 of 21

• QueryTest([T]pkDO , [t]bPK , MSKMS, MSKKFS, pkDO, PK): In this stage of interroga-
tion, adversary A has the partial master key MSKMS of the MS, and simulator B
uses the partial master key MSKKFS of the KFS to cooperate with adversary A to
execute the Test algorithm and send the matching result to adversary A. For trapdoor
[t]bPK = (tDU,1, tDU,2), it satisfies:

tDU,1=gθ2·θ3·r·F(r2,TSO)(1 + tbN) mod N2,
tDU,2 = gθ2θ3 mod N2

At this point, the simulator B gives the guessed value b
′

by a non-negligible advantage
such that b

′
= b. This contradicts the DDH difficulty problem based on Z∗N2 , so the query

trapdoor satisfies indistinguishability in this scheme until it reaches the TSO specified by
the DU.

Theorem 2. The searchable ciphertext does not reveal information about its own keywords.

Proof. When the document is uploaded to the MS, the DO should also attach the corre-
sponding encrypted searchable ciphertext. It is required that the encrypted searchable
ciphertext should not reveal any information about its underlying keywords. Similar to the
previous security requirements, trapdoor queries and ciphertext queries are not considered.
The indistinguishability of the searchable ciphertext IND-SC is defined by an interaction
experiment between challenger C and adversary A, which is represented as follows:

• Setup: First,A chooses a point in time T
′
at which to make the attack. Then, C executes

algorithms Setup, KeyGenSer, KeyGenDU , KeyGenDO, and KeyGenTS to obtain PP,
(MSKMS, MSKKFS), (pkDU , skDU), (pkDO, skDO), and (pkTS, skTS). Furthermore, it
sends (MSKMS, pkDU , pkDO, pkTS) to A.

• Challenge: A picks two different keyword sets W0, W1⊆W, and sends T0, T1, rep-
resenting W0 and W1, to C. Then, C picks b ⊆R {0, 1}, runs PEKS(W, WT , pkDO)→
[T]pkDO , and sends [Tb]PK to A.

• Guess: A starts guessing b. If the given guess b
′

satisfies b′ = b, thenA wins this game.

If A can win the game described above with a non-negligible probability, then the
KFA-PEKS is deemed IND-SC secure.

Suppose there exists an adversary A who can win the game described above with a
non-negligible probability. Let C be the challenger of the searchable ciphertext indistin-
guishability experiment in KFA-PEKS, and here construct a simulator B to exploit adversary
A to defeat the DDH hardness problem based on Z∗N2 .

Let (g, gx, gy, gxy, gz) be a set of examples of DDH hardness problems based on Z∗N2 .
Challenger C first uses the generating element g to construct the public parameters of the
scheme PP = (W, η, N, g). Then, challenger C uses PP by itself to run Setup, KeyGenSer,
KeyGenDO, KeyGenDU , and KeyGenTS, and obtains the secret value r shared by the KFS
and the DU, the secret value r2 shared by the TS and the DU, and some of the MS and KFS’s
partial master key (MSKMS, MSKKFS), the DO’s public–private key pairs (pkDO, skDO),
the DU’s public–private key pairs (pkDU , skDU), and the TS’s public–private key pairs
(pkTS, skTS). Then, challenger C sends (PP, MSKMS, pkDO, pkDU , pkTS) to adversary A
and (PP, MSKKFS, pkDO, pkDU , pkTS, skTS, r, r2) to simulator B. Adversary A chooses two
keyword sets W0 and W1 and corresponding trapdoor [t]bPK, where b ∈ {0, 1}. Next, A
sends (W0, W1, [t]bPK) to B. Finally, B gives a value b

′
to guess the set of keywords W

′
b

corresponding to the trapdoor [t]bPK, where b
′ ∈ {0, 1}. Throughout the process, simulator

B allows adversaryA to perform the following oracle queries with the following responses:

• QueryCipher(Wb, pkDO) : Input the keyword set Wb and the DO’s public key pkDO,
and simulator B runs the PEKS algorithm to generate the searchable ciphertext
[T]bpkDO

= (TDO,1, TDO,2) corresponding to the keyword set Wb, where the cipher-
text structure is as follows:

TDO,1 = gr1θ1(1 + TbN) mod N2,

Future Internet 2023, 15, 197 14 of 21

TDO,2 = gr1 mod N2

Then, simulator B sends this searchable ciphertext to adversary A.
At this point the simulator B gives the guess value b

′
by a non-negligible advantage

such that b
′
= b. This contradicts the DDH difficulty problem based on Z

∗
N2 , so the

searchable ciphertext in this scheme satisfies indistinguishability.

Theorem 3. Upon receipt of a time token from TS, the keyword information in trapdoor cannot be
recovered by anyone except the KFS and the corresponding DU, based on the intractability of DDH’s
assumption over Z∗N2 [34] (more specific information about the hardness of DDH’s assumption over
Z∗N2 can be found in [34]).

Proof. After reaching the timestamp TSO specified by the DU, only the KFS can obtain
the keyword information in the trapdoor. Similar to the previous security requirements,
trapdoor queries and ciphertext queries are not considered. The trapdoor privacy after
TSO is defined by an interaction experiment IND-sT-TP (the indistinguishability trapdoor
privacy with a specific TSO) between challenger C and adversary A, which is expressed
as follows:

First, A chooses a time point T∗ to attack, and selects two different sets of keywords
of interest, W1 and W2, which will be sent to C; then, C randomly selects one of the two sets
to generate a trapdoor which is then sent to A. Finally, A tries to distinguish which set of
keywords corresponds to the trapdoor returned by C.

In the following, if our scheme passes the indistinguishability game of trapdoor privacy
with a specific TSO (IND-sT-TP), then the scheme can be deemed IND-sT-TP secure.

• Setup: First,A chooses a point in time T
′
at which to make the attack. Then, C executes

algorithms Setup, KeyGenSer, KeyGenDU , KeyGenDO, and KeyGenTS to obtain PP,
(MSKMS, MSKKFS), (pkDU , skDU), (pkDO, skDO), and (pkTS, skTS). Furthermore, it
sends (MSKMS, pkDU , pkDO, pkTS) to A.

• Phase 1: A interacts with C, which executes the TimeTokenGen algorithm in an imita-
tion of the TS, and sends the resulting time token to A.

• Challenge: A picks two different keyword sets W0, W1 ⊆ W, and sends t0 and t1,
representing the two sets, to C. Then, C picks b ⊆R {0, 1}, runs Trapdoor(W, r, skDU ,
pkTS, TSO)→ [tb]PK, and sends [tb]PK to A.

• Phase 2: A can continue with the first phase of queries while also executing the
algorithm PEKS in an imitation of the MS interacting with the KFS.

• Guess: A starts guessing b. If the given guess b
′

satisfies b
′
= b , then A wins

this game.

If A can win the game described above with a non-negligible probability, then the
KFA-PEKS is deemed IND-sT-TP secure.

Suppose there exists an adversary A who can win the game described above with a
non-negligible probability. Let C be the challenger of the trapdoor privacy experiment after
TSO in KFA-PEKS, and here construct a simulator B to exploit adversary A to defeat the
DDH hardness problem based on Z∗N2 .

Let (g, gx, gy, gxy, gz) be a set of examples of DDH hardness problems based on Z∗N2 .
Challenger C first uses the generating element g to construct the public parameters of the
scheme PP = (W, η, N, g). Then, challenger C uses PP by itself to run Setup, KeyGenSer,
KeyGenDO, KeyGenDU , and KeyGenTS, and obtains the secret value r shared by the KFS
and the DU, the secret value r2 shared by the TS and the DU, and some of the MS and KFS’s
partial master key (MSKMS, MSKKFS), the DO’s public–private key pairs (pkDO, skDO),
the DU’s public–private key pairs (pkDU , skDU) and the TS’s public–private key pairs
(pkTS, skTS). Then, challenger C sends (PP, MSKMS, pkDO, pkDU , pkTS) to adversary A
and (PP, MSKKFS, pkDO, pkDU , pkTS, skTS, r, r2) to simulator B. Adversary A chooses two
keyword sets W0 and W1 and corresponding trapdoor [t]bPK, where b ∈ {0, 1}. Next, A
sends (W0, W1, [t]bPK) to B. Finally, B gives a value b

′
to guess the set of keywords W

′
b

Future Internet 2023, 15, 197 15 of 21

corresponding to the trapdoor [t]bPK, where b
′ ∈ {0, 1}. Throughout the process, simulator

B allows adversaryA to perform the following oracle queries with the following responses:

• QueryTrap(Wb, pkDU) : Input a keyword set Wb and DU’s public key pkDU , be-
cause simulator B has the TS’s private key skTS, so it can obtain the encryption key
PK = gθ2θ3 ; then simulator B runs Trapdoor algorithm to generate the query trap-
door [t]bPK corresponding to keyword set Wb, and then simulator B sends this query
trapdoor to adversary A.

• QueryTS(TSN) : The current timestamp TSN is input, and since the simulator B has
the secret value r shared by the KFS and the DU and the secret value r2 shared by the
TS and the DU, it can obtain the processed timestamp gr·F(r2,TSN) and give this value
to the adversary A.

• QueryTest([T]pkDO , [t]bPK , MSKMS, MSKKFS, pkDO, PK) : In this stage of interroga-
tion, adversary A has the partial master key MSKMS of the MS, and simulator B
uses the partial master key MSKKFS of the KFS to cooperate with adversary A to
execute the Test algorithm and send the matching result to adversary A. For trapdoor
[t]bPK = (tDU,1, tDU,2), it satisfies:

tDU,1=gθ2·θ3·r·F(r2,TSO)(1 + tbN) mod N2,
tDU,2 = gθ2θ3 mod N2

At this point the simulator B gives the guessed value b
′

by a non-negligible advantage
such that b

′
= b. This contradicts the DDH difficulty problem based on Z∗N2 , so the query

trapdoor satisfies indistinguishability in this scheme until it reaches the TSO specified by
the DU.

Theorem 4. The KFS is unable to locate the relevant DU through the keyword being recovered.

Proof. In Theorem 3, we prove that after reaching the time point TSO, specified by the DU,
only the KFS can open the keyword information in the corresponding trapdoor, for the
purpose of performing keyword frequency analysis. In order to ensure the privacy of DUs
while performing keyword frequency analysis, our solution needs to prevent the KFS from
finding the corresponding DUs through the recovered keywords. In the specific structure
of our scheme, the MS is responsible for providing file storage services to the DO, and
for responding to query requests initiated by the DU at the same time. When performing
keyword frequency analysis, the MS sends the query trapdoor of the DU to the KFS, and
then the KFS uses the time token of the TS to recover the queried keywords of the DUs.
During the entire process, the KFS does not interact with the DUs. On the premise that
the MS does not collude with the KFS, the KFS can only recover the query keywords, but
cannot link them to the corresponding DUs through the recovery results. In this way, the
security required by the scheme is achieved.

Theorem 5. Internal or external attackers cannot obtain any information about users’ keywords
from encrypted searchable ciphertext or query trapdoors.

Proof. In the specific structure of the scheme, the result of the joint MS and KFS calculation
is a secret value which is encrypted with the DU’s public key. Therefore, only the DU
can know the query result. In this way, even if an external attacker can construct enough
encrypted searchable ciphertext to perform exhaustive attacks on query trapdoors, they
have no way of knowing the results of each retrieval; thus, keyword-guessing attacks by
external attackers can be avoided. Intuitively, because our solution uses a dual-server setup,
the Test algorithm is completed by the MS and KFS in succession. Therefore, on the premise
that the two servers MS and KFS do not collude, the MS or KFS cannot execute the test
algorithm alone. This means that keyword-guessing attacks by internal attackers can also
be avoided.

Future Internet 2023, 15, 197 16 of 21

6. Performance Evalution

We conducted experiments by using the Python language, based on the charm-crypto
library [35], on a PC with an AMD Ryzen 5 3600 3.6 GHz processor, 4 GB of RAM, and the
Ubuntu 18.04 LTS operating system. In the experiment, the security parameter was set to
1024, so that N was a positive integer of 1024 bits, and p and q were large prime numbers
of 512 bits. We tested the operating efficiency of KFA-PEKS when the maximum number
of keywords was 5, 10, 15, and 20, and carried out a corresponding comparative analysis
with [24].

6.1. Experimental Results

Figure 3a–d depict comparisons of the average execution times of the KeyGenD,
KeyGenU , KeyGenTS, and TimeTokenGen algorithms, respectively, between our scheme
and [24]. The average execution times of these algorithms in [24] are 9.107 ms, 6.274 ms,
3.989 ms, and 8.735 ms, respectively. As a comparison, the average execution times of these
algorithms in our scheme are 1.409 ms, 1.384 ms, 1.367 ms, and 1.496 m, respectively.

0

1

2

3

4

5

6

7

8

9

10

(a) (b) (c) (d)

E
x

e
c
u

ti
o

n
 t

im
e
(m

s)

[24]

Ours

Figure 3. The average execution times of ours and [24].

0

50

100

150

200

250

300

0 5 10 15 20

E
n

c
ry

p
ti

o
n

ti

m
e

(m
s)

Numbers of keywords

[24]

Ours

Figure 4. The encryption times of ours and [24].

Future Internet 2023, 15, 197 17 of 21

0

100

200

300

400

500

600

700

800

0 5 10 15 20

T
ra

p
d

o
o

r
ti

m
e
(m

s)

Numbers of keywords

[24]

Ours

Figure 5. The trapdoor generation times of ours and [24].

Figure 4 shows a comparison of the time cost of PEKS algorithms. Since [24] is a
single-keyword scheme, the time to generate ciphertexts is linearly related to the number
of keywords. When the number of keywords is 20, the time taken reaches 243.65 ms.
In contrast, the time cost of our ciphertext generation is only 2.739 ms, and is a figure
independent of the number of keywords.

Figure 5 represents the performance comparison of the Trapdoor algorithm. The time
cost in [24] is linearly related to the number of keywords and is approximately 681.503 ms
when the number of keywords is 20. In contrast, our time cost is constant, and measures
only about 4 ms.

0

500

1000

1500

2000

2500

0 5 10 15 20

S
e

a
rc

h
 t

im
e

(m
s)

Numbers of keywords

[24]

Ours

Figure 6. The search operation times of ours and [24].

Future Internet 2023, 15, 197 18 of 21

0

10

20

30

40

50

60

70

0 5 10 15 20

R
e
c
o

v
e
ry

 t
im

e
(m

s)

Numbers of keywords

[24]

Ours

Figure 7. The keyword recovery times of ours and [24].

Figure 6 shows a comparison of the Test algorithm. It can be seen that the time cost
of [24] is superior to ours when the number of keywords is relatively small, which is due
to the fact that our test algorithm requires multiple rounds of interaction between the
MS and the KFS, and the network latency affects the time consumption to a great extent.
However, the performance of [24] increases with the number of keywords, and its time cost
is 2234.265 ms at a keyword count of 20. In comparison, ours is about 1200 ms, and again is
independent of the keyword count.

Figure 7 shows the performance comparison of the OpenKeyword algorithm. The time
costs of [24] are 14.173 ms, 28.47 ms, 42.119 ms, and 57.199 ms for keyword counts of 5, 10,
15, and 20, respectively. As a comparison, our time cost is a constant value of about 0.03 ms.

6.2. Theoretical Analysis

We show some feature comparisons between KFA-PEKS and the existing schemes
in Table 2. In past research, SE schemes have been classified into four types as follows.
The single-writer/single-reader (SW/SR) setting [16] is often SSE, wherein the writer and
the reader act as one actor, i.e., only the writer is allowed to initiate the query. The multi-
writer/single-reader (MW/SR) setting [4,24,36] is a scheme in which multiple writers can
generate searchable ciphertexts for querying by a specific reader, as opposed to the single-
writer/multi-reader (SW/MR) setting [18]. The multi-writer/multi-reader (MW/MR)
setting [22] allows multiple users to encrypt and upload data while being able to search all
users’ stored encrypted data.

In the single-keyword schemes [4,24,36], the reader needs to generate multiple differ-
ent query trapdoors for multiple different query keywords, i.e., the number of trapdoors
is linearly related to the number of keywords. Similarly, the number of searchable ci-
phertexts is influenced by the number of keywords in the relevant document. The size
of the trapdoor and searchable ciphertext are significant factors affecting the efficiency of
keyword-searchable encryption schemes, compared to single-keyword schemes; this is
related to the |Wid| in [16]. In [18], the writer establishes the corresponding indexes for
the documents to be uploaded (and the keywords contained in them) in advance, so the
size of ciphertext is linearly related to |Wid|. Similarly, the search trapdoors generated
by the reader when making a query are all possible indexing relationships between the
query keywords and associated documents, so the number of trapdoors is linearly related
to both |DS| and |SQ|. Both the trapdoors and ciphertexts of our study and of [22] are
homomorphic encryptions of a decimal integer of constant size.

Future Internet 2023, 15, 197 19 of 21

Table 2. The feature and theoretical comparisons between our scheme and the existing schemes.

Multi-User KGA Resilience Keyword Recovery CipNum 1 TrapNum 2 CipSize 3 TrapSize 4

[4] × × × ∑ω∈W |DS[ω]| |SQ| O|Wid| O|SQ|

[22]
√ √

× |DS| 1 O(1) O(1)

[24] × ×
√

∑ω∈W |DS[ω]| |SQ| O|Wid| O|SQ|

[36] ×
√

× ∑ω∈W |DS[ω]| |SQ| O|Wid| O|SQ|

[16] ×
√

× (|DS|) 1 O|Wid| O|Wid|

[18] ×
√

× ∑ω∈W |DS[ω]| |SQ| O|Wid| O|DS| ∗ |SQ|

ours
√ √ √

|DS| 1 O(1) O(1)
1 The number of searchable ciphertexts. 2 The number of trapdoors generated when a data owner executes a
query SQ. 3 The size of the searchable ciphertext corresponding to a document. 4 The trapdoor size corresponding
to the SQ operation.

In PEKS, the searchable ciphertext is processed by the writer using the public key of
the target reader for the query keyword; therefore, the attacker can perform KGA on the
query trapdoor by forging the ciphertext. Ref. [16] is an SSE scheme in which the generation
of the ciphertext and trapdoor require the user’s key, so the attacker cannot generate the
test ciphertext used to perform KGA. The reader in [36] shares a secret value with the writer,
and the attacker cannot generate a test ciphertext to execute the KGA since they do not
know the secret value. Ref. [18] is an SW/MR setting, which means that only the writer
can generate the ciphertext. Our scheme and that of [22] use the partial private keys of the
MS and KFS as the input for the Test algorithm, which means that the attacker is unable
to execute the Test algorithm freely. Furthermore, among the above schemes, only ours
and that of [24] can complete a keyword frequency analysis of the query keywords. In
conclusion, the performance of our solution exceeds that of related works.

7. Conclusions

In this paper, we propose a PEKS scheme with secure keyword frequency analysis.
Within our scheme, multiple DOs can use their public keys to encrypt their data and upload
it to the MS. Then, multiple DUs can independently generate trapdoors that support a multi-
keyword search for data retrieval, without interacting with the DO. The entire solution
adopts a dual-server architecture, which can effectively resist KGA by internal attackers.
After reaching the time node TSO, as specified by the DU, the KFS is able to recover the
keyword information in the trapdoor for keyword frequency analysis, and cannot link the
recovered keywords with their corresponding data queriers. Although the generation and
utilization of a single time token are efficient for a time server, generating a common time
token for all data queriers and reducing the traffic between the MS and KFS remains the
direction of our future research.

Author Contributions: Conceptualization, Y.Z. and Y.L.; methodology, Y.Z.; software, Y.Z.; validation,
B.S., D.Z. and Y.Z.; formal analysis, Y.Z., Y.L. and C.W.; investigation, Y.Z. and Y.L.; resources, Y.Z.
and D.Z.; data curation, Y.Z. and B.S.; writing—original draft preparation, Y.Z.; writing—review
and editing, D.Z., C.W. and B.S.; visualization, Y.Z. and Y.L.; supervision, D.Z. and C.W.; project
administration, D.Z. and C.W.; funding acquisition, D.Z. and C.W. All authors have read and agreed
to the published version of the manuscript.

Funding: This paper was funded by the National Natural Science Foundation of China (Nos. U2001205,
61732021, 61932010), Guangdong Basic and Applied Basic Research Foundation (Nos. 2019B030302008,
2023B1515040020), Guangdong Provincial Key Laboratory of Power System Network Security
(No. GPKLPSNS-2022-KF-05), and TESTBED2 (No. H2020-MSCA-RISE-2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All data are presented in the main text.

Future Internet 2023, 15, 197 20 of 21

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lv, Z.; Singh, A.K. Big Data Analysis of Internet of Things System. ACM Trans. Internet Technol. 2021, 21, 28:1–28:15. [CrossRef]
2. Li, X.; Liu, H.; Wang, W.; Zheng, Y.; Lv, H.; Lv, Z. Big data analysis of the Internet of Things in the digital twins of smart city

based on deep learning. Future Gener. Comput. Syst. 2022, 128, 167–177. [CrossRef]
3. Kamara, S.; Lauter, K.E. Cryptographic Cloud Storage. In Proceedings of the Financial Cryptography and Data Security, FC 2010

Workshops, RLCPS, WECSR, and WLC 2010, Tenerife, Canary Islands, Spain, 25–28 January 2010; Revised Selected Papers; Sion,
R., Curtmola, R., Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F., Eds.; Springer: Cham, Switzerland, 2010; Volume 6054,
pp. 136–149. [CrossRef]

4. Boneh, D.; Crescenzo, G.D.; Ostrovsky, R.; Persiano, G. Public Key Encryption with Keyword Search. In Proceedings of
the Advances in Cryptology-EUROCRYPT 2004, International Conference on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, 2–6 May 2004; Springer: Cham, Switzerland, 2004; Volume 3027, pp. 506–522. [CrossRef]

5. Liu, J.; Wu, M.; Sun, R.; Du, X.; Guizani, M. BMDS: A Blockchain-based Medical Data Sharing Scheme with Attribute-Based
Searchable Encryption. In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC,
Canada, 14–23 June 2021; pp. 1–6. [CrossRef]

6. Li, H.; Yang, Y.; Dai, Y.; Yu, S.; Xiang, Y. Achieving Secure and Efficient Dynamic Searchable Symmetric Encryption over Medical
Cloud Data. IEEE Trans. Cloud Comput. 2020, 8, 484–494. [CrossRef]

7. Liu, P.; Liu, K.; Fu, T.; Zhang, Y.; Hu, J. A privacy-preserving resource trading scheme for Cloud Manufacturing with edge-PLCs
in IIoT. J. Syst. Archit. 2021, 117, 102104. [CrossRef]

8. Song, D.X.; Wagner, D.; Perrig, A. Practical techniques for searches on encrypted data. In Proceedings of the Proceeding 2000
IEEE Symposium on Security and Privacy, S&P 2000, IEEE, Berkeley, CA, USA, 14–17 May 2000; pp. 44–55.

9. Curtmola, R.; Garay, J.A.; Kamara, S.; Ostrovsky, R. Searchable symmetric encryption: Improved definitions and efficient
constructions. In Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, Alexandria,
VA, USA, 30 October–3 November 2006; Juels, A., Wright, R.N., di Vimercati, S.D.C., Eds.; ACM: New York, NY, USA, 2006;
pp. 79–88. [CrossRef]

10. Moataz, T.; Shikfa, A. Boolean symmetric searchable encryption. In Proceedings of the 8th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’13, Hangzhou, China, 8–10 May 2013; Chen, K., Xie, Q., Qiu, W., Li, N.,
Tzeng, W., Eds.; ACM: New York, NY, USA, 2013; pp. 265–276. [CrossRef]

11. Cash, D.; Jarecki, S.; Jutla, C.; Krawczyk, H.; Roşu, M.C.; Steiner, M. Highly-scalable searchable symmetric encryption with
support for boolean queries. In Proceedings of the Annual Cryptology Conference, Santa Barbara, CA, USA, 18–22 August 2013;
Springer: Cham, Switzerland, 2013; pp. 353–373.

12. Rhee, H.S.; Park, J.H.; Susilo, W.; Lee, D.H. Improved searchable public key encryption with designated tester. In Proceedings
of the 2009 ACM Symposium on Information, Computer and Communications Security, ASIACCS 2009, Sydney, Australia,
10–12 March 2009; Li, W., Susilo, W., Tupakula, U.K., Safavi-Naini, R., Varadharajan, V., Eds.; ACM: New York, NY, USA, 2009;
pp. 376–379. [CrossRef]

13. Lu, Y.; Li, J. Efficient searchable public key encryption against keyword guessing attacks for cloud-based EMR systems. Clust.
Comput. 2019, 22, 285–299. [CrossRef]

14. Senouci, M.R.; Benkhaddra, I.; Senouci, A.; Li, F. An efficient and secure certificateless searchable encryption scheme against
keyword guessing attacks. J. Syst. Archit. 2021, 119, 102271. [CrossRef]

15. Gu, X.; Wang, Z.; Fu, M.; Ren, P. A Certificateless Searchable Public Key Encryption Scheme for Multiple Receivers. In
Proceedings of the 2021 IEEE International Conference on Web Services, ICWS 2021, Chicago, IL, USA, 5–10 September 2021;
Chang, C.K., Daminai, E., Fan, J., Ghodous, P., Maximilien, M., Wang, Z., Ward, R., Zhang, J., Eds.; IEEE: Piscataway, NJ, USA,
2021; pp. 635–641. [CrossRef]

16. Wang, P.; Wang, H.; Pieprzyk, J. Keyword field-free conjunctive keyword searches on encrypted data and extension for dynamic
groups. In Proceedings of the International Conference on Cryptology and Network Security, Hong Kong, China, 2–4 December
2008; Springer: Cham, Switzerland, 2008; pp. 178–195.

17. Zhang, B.; Zhang, F. An efficient public key encryption with conjunctive-subset keywords search. J. Netw. Comput. Appl. 2011,
34, 262–267. [CrossRef]

18. Sun, S.; Liu, J.K.; Sakzad, A.; Steinfeld, R.; Yuen, T.H. An Efficient Non-interactive Multi-client Searchable Encryption with
Support for Boolean Queries. In Proceedings of the Computer Security-ESORICS 2016 - 21st European Symposium on Research
in Computer Security, Heraklion, Greece, 26–30 September 2016; Proceedings, Part I; Askoxylakis, I.G., Ioannidis, S., Katsikas,
S.K., Meadows, C.A., Eds.; Springer: Cham, Switzerland, 2016; Volume 9878, pp. 154–172. [CrossRef]

19. Bethencourt, J.; Sahai, A.; Waters, B. Ciphertext-policy attribute-based encryption. In Proceedings of the 2007 IEEE Symposium
on Security and Privacy (SP’07), IEEE, Berkeley, CA, USA, 20–23 May 2007; pp. 321–334.

20. Xu, L.; Yuan, X.; Steinfeld, R.; Wang, C.; Xu, C. Multi-writer searchable encryption: An LWE-based realization and implementation.
In Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security, Auckland, New Zealand, 9–12
July 2019; pp. 122–133.

http://doi.org/10.1145/3389250
http://dx.doi.org/10.1016/j.future.2021.10.006
http://dx.doi.org/10.1007/978-3-642-14992-4_13
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1109/ICC42927.2021.9500966
http://dx.doi.org/10.1109/TCC.2017.2769645
http://dx.doi.org/10.1016/j.sysarc.2021.102104
http://dx.doi.org/10.1145/1180405.1180417
http://dx.doi.org/10.1145/2484313.2484347
http://dx.doi.org/10.1145/1533057.1533108
http://dx.doi.org/10.1007/s10586-018-2855-y
http://dx.doi.org/10.1016/j.sysarc.2021.102271
http://dx.doi.org/10.1109/ICWS53863.2021.00085
http://dx.doi.org/10.1016/j.jnca.2010.07.007
http://dx.doi.org/10.1007/978-3-319-45744-4_8

Future Internet 2023, 15, 197 21 of 21

21. Camenisch, J.; Kohlweiss, M.; Rial, A.; Sheedy, C. Blind and anonymous identity-based encryption and authorised private
searches on public key encrypted data. In Proceedings of the International Workshop on Public Key Cryptography, Irvine, CA,
USA, 18–20 March 2009; pp. 196–214.

22. Liu, X.; Yang, G.; Susilo, W.; Tonien, J.; Liu, X.; Shen, J. Privacy-preserving multi-keyword searchable encryption for distributed
systems. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 561–574. [CrossRef]

23. Liu, X.; Deng, R.H.; Choo, K.K.R.; Weng, J. An efficient privacy-preserving outsourced calculation toolkit with multiple keys.
IEEE Trans. Inf. Forensics Secur. 2016, 11, 2401–2414. [CrossRef]

24. Xu, L.; Li, W.; Zhang, F.; Cheng, R.; Tang, S. Authorized keyword searches on public key encrypted data with time controlled
keyword privacy. IEEE Trans. Inf. Forensics Secur. 2019, 15, 2096–2109. [CrossRef]

25. Byun, J.W.; Rhee, H.S.; Park, H.A.; Lee, D.H. Off-line keyword guessing attacks on recent keyword search schemes over encrypted
data. In Proceedings of the Workshop on Secure Data Management, Seoul, Korea, 10–11 September 2006; pp. 75–83.

26. Yau, W.C.; Heng, S.H.; Goi, B.M. Off-line keyword guessing attacks on recent public key encryption with keyword search
schemes. In Proceedings of the International Conference on Autonomic and Trusted Computing, Oslo, Norway, 23–25 June 2008;
pp. 100–105.

27. Huang, Q.; Li, H. An efficient public-key searchable encryption scheme secure against inside keyword guessing attacks. Inf. Sci.
2017, 403, 1–14. [CrossRef]

28. Qin, B.; Chen, Y.; Huang, Q.; Liu, X.; Zheng, D. Public-key authenticated encryption with keyword search revisited: Security
model and constructions. Inf. Sci. 2020, 516, 515–528. [CrossRef]

29. He, D.; Ma, M.; Zeadally, S.; Kumar, N.; Liang, K. Certificateless Public Key Authenticated Encryption With Keyword Search for
Industrial Internet of Things. IEEE Trans. Ind. Inf. 2018, 14, 3618–3627. [CrossRef]

30. Xu, P.; Jin, H.; Wu, Q.; Wang, W. Public-key encryption with fuzzy keyword search: A provably secure scheme under keyword
guessing attack. IEEE Trans. Comput. 2012, 62, 2266–2277. [CrossRef]

31. Ghareh Chamani, J.; Papadopoulos, D.; Papamanthou, C.; Jalili, R. New constructions for forward and backward private
symmetric searchable encryption. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, Toronto, ON, Canada, 15–19 October 2018; pp. 1038–1055.

32. Samanthula, B.K.; Chun, H.; Jiang, W. An efficient and probabilistic secure bit-decomposition. In Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communications Security, Hangzhou, China, 8–10 May 2013; pp. 541–546.

33. Kamara, S.; Mohassel, P.; Raykova, M. Outsourcing Multi-Party Computation. Available online: https://eprint.iacr.org/2011/272
(accessed on 25 May 2023).

34. Bresson, E.; Catalano, D.; Pointcheval, D. A simple public-key cryptosystem with a double trapdoor decryption mechanism
and its applications. In Proceedings of the Advances in Cryptology-ASIACRYPT 2003: 9th International Conference on the
Theory and Application of Cryptology and Information Security, Taipei, Taiwan, 30 November–4 December 2003; Proceedings 9;
Springer: Cham, Switzerland, 2003; pp. 37–54.

35. Akinyele, J.; Green, M.; Rubin, A. Charm-Crypto Framework. Available online: https://eprint.iacr.org/2011/617 (accessed on
accessed on 25 May 2023).

36. Zheng, Y.; Xu, P.; Wang, W.; Chen, T.; Susilo, W.; Liang, K.; Jin, H. DEKS: A Secure Cloud-Based Searchable Service Can Make
Attackers Pay. In Proceedings of the Computer Security-ESORICS 2022-27th European Symposium on Research in Computer
Security, Copenhagen, Denmark, 26–30 September 2022; Proceedings, Part II; Atluri, V., Pietro, R.D., Jensen, C.D., Meng, W., Eds.;
Springer: Cham, Switzerland, 2022; Volume 13555, pp. 86–104. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPDS.2020.3027003
http://dx.doi.org/10.1109/TIFS.2016.2573770
http://dx.doi.org/10.1109/TIFS.2019.2957691
http://dx.doi.org/10.1016/j.ins.2017.03.038
http://dx.doi.org/10.1016/j.ins.2019.12.063
http://dx.doi.org/10.1109/TII.2017.2771382
http://dx.doi.org/10.1109/TC.2012.215
https://eprint.iacr.org/2011/272
https://eprint.iacr.org/2011/617
http://dx.doi.org/10.1007/978-3-031-17146-8_5

	Introduction
	Our Contribution
	Paper Organization

	Related Work
	Preliminaries
	Pseudorandom Function
	Subset Decision Mechanism (SDM)
	Secure Bit-Decomposition (SBD)
	DT-PKC
	Basic Structure
	Sub-Protocols

	KFA-PEKS
	System Model
	Threat Model
	Security Goals
	Syntax
	Correctness

	Construction
	The Concrete Construction
	Process of KFA-PEKS
	Security Proof

	Performance Evalution
	Experimental Results
	Theoretical Analysis

	Conclusions
	References

