
Citation: Wali, A.; Mahamad, S.;

Sulaiman, S. Task Automation

Intelligent Agents: A Review. Future

Internet 2023, 15, 196. https://

doi.org/10.3390/fi15060196

Academic Editor: Maria Gabriella

Xibilia

Received: 3 April 2023

Revised: 17 May 2023

Accepted: 22 May 2023

Published: 29 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Review

Task Automation Intelligent Agents: A Review
Abdul Wali , Saipunidzam Mahamad * and Suziah Sulaiman *

Department of Computer & Information Sciences, Universiti Teknologi PETRONAS,
Seri Iskandar 32610, Malaysia; abdul_21002750@utp.edu.my
* Correspondence: saipunidzam_mahamad@utp.edu.my (S.M.); suziah@utp.edu.my (S.S.)

Abstract: As technological advancements increase exponentially, mobile phones become smarter
with machine learning and artificial intelligence algorithms. These advancements have allowed
mobile phone users to perform most of their daily routine tasks on mobile phones; tasks performed
in daily routines are called repetitive tasks and are performed manually by the users themselves.
However, machine learning and artificial intelligence have enabled those tasks to be performed auto-
matically, known as task automation. The users can perform task automation, e.g., through creating
automation rules or an intelligent agent, e.g., conversational agents, virtual personal assistants, etc.
Several techniques to achieve task automation have been proposed, but this review shows that task
automation by programming by demonstration has had massive developmental growth because
of its user-centered approach. Apple Siri, Google Assistant, MS Cortana, and Amazon Alexa are
the most known task automation agents. However, these agents are not widely adopted because
of their usability issues. In this study, two research questions are evaluated through the available
literature to expand the research on intelligent task automation agents: (1) What is the state-of-the-art
in task automation agents? (2) What are the existing methods and techniques for developing usability
heuristics, specifically for intelligent agents? Research shows groundbreaking developments have
been made in mobile phone task automation recently. However, it must still be conducted per
usability principles to achieve maximum usability and user satisfaction. The second research question
further justifies developing a set of domain-specific usability heuristics for mobile task automation
intelligent agents.

Keywords: HCI; mobile; task automation; intelligent agent; usability heuristics; domain-specific
heuristics; multimodal interaction

1. Introduction

Task automation automates tasks using technology that humans would otherwise
perform. Task automation has the potential to improve efficiency, reduce errors, and free
up time for more complex and creative work, therefore becoming significantly impor-
tant [1]. Automating tasks can improve efficiency by reducing the time and effort required
to complete them, allowing users to focus on more high-level and value-added tasks. Task
automation also increases accuracy due to being less prone to errors and mistakes than
manual tasks, which can improve quality and user satisfaction. Currently, task automation
is being used in a wide range of industries, including manufacturing, healthcare, finance,
and customer service. For example, in manufacturing, task automation leads to streamlin-
ing production processes, reducing errors, and increasing efficiency [2]. In healthcare, task
automation helps improve patient care by automating the administering of medication and
tracking patients’ vital signs [3]. In finance, task automation processes transactions, gener-
ates reports, and performs other tasks efficiently [4]. In customer service, task automation
is used to provide quick and accurate responses to customer inquiries through the use of
chatbots [5], virtual personal assistants/intelligent agents [6], or recommender systems [7].

Over the last decade, the usage of conversational agents such as virtual personal assis-
tants and intelligent agents has increased exponentially [8,9]. These conversational agents

Future Internet 2023, 15, 196. https://doi.org/10.3390/fi15060196 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15060196
https://doi.org/10.3390/fi15060196
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0001-4966-5623
https://orcid.org/0000-0002-9300-4363
https://orcid.org/0000-0003-0956-9853
https://doi.org/10.3390/fi15060196
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15060196?type=check_update&version=1

Future Internet 2023, 15, 196 2 of 20

assist their users with task automation for personal and work-related activities, as mobile
phones become the primary medium to conduct a variety of daily life activities and tasks,
e.g., information requests (checking the weather, internet surfing, etc.); purchases (online
shopping, ordering food, etc.); communication (instant text messages, calling, sharing on
social media, etc.); carrying out professional work-related duties (health monitoring, re-
mote server configuration, online teaching, etc.) [10]. Worldwide developments in machine
learning and artificial intelligence and their integration with user interfaces have created a
new field of studies which is known as intelligent user interfaces [11]. Advances in intelli-
gent user interfaces have shown that these tasks could be automated and performed by
virtual personal assistants or intelligent agents by giving natural language commands [12].
The most used intelligent agents are Apple Siri, Google Assistant, Microsoft Cortana, and
Amazon Alexa, which can converse with users and provide daily updates and perform
tasks on the user’s behalf, e.g., checking the weather, sending a text message, searching the
Internet, and conversing with children or adults [13].

With such diverse usage, the current intelligent agents also have their limitations;
they directly call back-end services to activate underlying capabilities. Therefore, each
supported application and service needs its own set of customized agents; they cannot
control arbitrary third-party applications and services and can only, by default, activate
built-in applications, e.g., messaging, calling, calendars, music, etc. At the same time, other
intelligent agents can only access some integrated external applications and online services,
e.g., searching Google, checking the weather, etc., as concluded by the study of [14]. To
overcome the limitations of existing intelligent agents, [15,16] developed an intelligent
agent that uses programming by demonstration, conversational approaches, learning from
demonstration and natural language instructions, and generating an automation script
from demonstrations on a graphical user interface. Programming by demonstration is
an end-user development approach that allows users to teach computers and systems to
perform certain tasks, enabling the creation of personalized systems or task automation [17].

Due to the end-user development approach, programming-by-demonstration systems
have received greater attention in recent decades, and much work has been carried out
regarding task automation using programming-by-demonstration. An earlier study review
by [18] delivered a critique on programming-by-demonstration systems despite their
potential to assist humans in daily life; their usage still needs to be improved, suggesting
that it is primarily because of their poor usability. A recent systematic mapping study
by Barricelli et al. [19] suggested that only a few unifying frameworks and approaches
are available for guiding novice designers and practitioners in developing easy-to-use
and easy-to-interact programming-by-demonstration task automation systems. Similarly,
a study by Moussawi [20] concluded that continuous interaction with intelligent agents
via voice helps users in various manners, i.e., it satisfies other non-utilitarian needs of
users; cognitive affordance improves the usability of intelligent agents by boosting the
user’s efficiency and satisfaction, and functional affordance enhances the usefulness of
intelligent agents. Therefore, several researchers and developers have worked on proposing
task automation systems and intelligent agents using the programming-by-demonstration
approach; however, little work has been carried out that focuses on enhancing the usability
of these intelligent agents and intelligent systems.

Usability is a crucial factor to consider in designing task automation intelligent
agents, as it can significantly affect the user experience and overall effectiveness of the
systems [21,22], such that good usability can lead to higher user satisfaction, increased
productivity, and improved efficiency [21]. Conversely, poor usability can lead to frus-
tration, decreased productivity, and decreased efficiency [11]. Among available usability
evaluation methods and techniques, heuristic evaluation and surveys/questionnaires are
widely accepted methods within academia and industry [22]. Heuristic evaluation is an
inspection approach that identifies usability problems based on usability heuristics or
principles/guidelines. Heuristic evaluation entails usability experts inspecting a product’s
interface based on heuristics and identifying usability issues, which are then linked with

Future Internet 2023, 15, 196 3 of 20

usability heuristics. The experts evaluate each problem’s frequency, severity, and critical-
ity, which the developers correct. Heuristic evaluation is preferable due to its low cost
compared to other methods in terms of time, usability experts, and resources; its minimal
planning requirements; its applicability in the preliminary stages of software development,
from paper prototype to executable systems; its ability to identify many problems, critical
and less critical; and its avoidance of user involvement.

Currently, there are no specified usability heuristics for task-automating intelligent
agents to perform heuristic evaluation because it is still in its preliminary stages, as con-
cluded by the research of Elshan et al. [12]. Similarly, other methods such as usability test
questionnaires, e.g., SUS (system usability scale), SUMI (software usability measurement
inventory), and QUIS (questionnaire for user interaction satisfaction), cannot be used to
evaluate task automation intelligent agents because they do not take into account the fea-
tures of automation systems, their autonomy, or the intricate internal information processes,
as concluded by Maehigashi et al. [23].

In summary, this study primarily investigates the following research questions:

• RQ.1. What is the state-of-the-art in task automation intelligent agents, and do these
intelligent agents use any usability guidelines in the development process?

• RQ.2. What are the existing methods and techniques for developing usability heuris-
tics, and for which domains have they been developed? Are there any domain-specific
usability heuristics for evaluating intelligent agents?

Developing usability heuristics for task automation intelligent agents is important
because of the nature of intelligent agents, which requires interaction with humans; this
interaction should be natural and intuitive, and the agent should be able to understand and
respond to user input in a way that is accurate and reliable, also ensuring that the agents
are user-friendly and easy to use. Developing domain-specific usability heuristics for task
automation intelligent agents can help ensure that these agents meet the requirements
and provide guidelines for designing agents that are understandable and easy to use.
Overall, developing usability heuristics for task automation intelligent agents is crucial and
necessary to provide a positive and effective human–computer interaction experience.

2. Methodology

This study uses the search strategy previously used by Qiu et al. [24]. This is a
systematic methodology that includes conducting a search on databases with search terms
and analyzing articles based on inclusion and exclusion criteria. After the articles are
analyzed, a full-text review is conducted on selected articles.

2.1. Data Collection

In April 2022, a literature search explored the available intelligent agents for task
automation from 1994 to 2023. Similarly, a literature search explored the available usability
heuristics from 2018 to 2023. The search for usability heuristics has been conducted since
2018 because a systematic literature review was already effectuated by Quiñones and
Rusu [25].

2.1.1. Search Terms

The search terms used for the five databases were “Intelligent Task Automation
Agents” and “Usability Heuristics OR Intelligent Agent”. Both searched terms were
modified according to the databases in different combinations.

2.1.2. Databases Searched

The relevant articles were searched on five different databases widely used by re-
searchers of the human–computer interaction community: Scopus, Web of Science, Asso-
ciation for Computing Machinery (ACM) digital library, ScienceDirect, and the Institute
of Electrical and Electronics Engineers (IEEE) Xplore. These research databases provide

Future Internet 2023, 15, 196 4 of 20

full-text journals and research papers published on intelligent agents, task automation, and
usability heuristics.

2.2. Article Selection

This study follows the guidelines of the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) statement, in an updated version by Page et al. [26].
The procedure of article selection is as follows:

A search strategy using the terms mentioned in Section 2.1.1 was conducted for articles
from 1994–2023 for intelligent agents and usability heuristics from 2018–2023.

Duplicates were removed, and titles and abstracts were evaluated against inclusion
and exclusion criteria.

Inclusion (quality criteria) and exclusion criteria are presented as follows:

• In inclusion or quality criteria, the articles were first selected based on the title. After
the relevant titles were separated from the search results, the articles were filtered by
reading the abstracts. Articles were included in the review if they had studies focus-
ing on the system design of task automation intelligent agents, design of intelligent
personal agents/assistants, intelligent virtual assistants, virtual personal assistants,
user-centered design for task automation, or contained usability heuristics for intel-
ligent agents, development of heuristics, proposed heuristics, user evaluations, or
heuristics to evaluate intelligent user interfaces.

• In exclusion criteria, articles were excluded or rejected if they were not written in the
English language, were duplicate reports of the same studies or systems from various
sources, studies that had no design of intelligent agents for task automation, or studies
that did not propose or develop any usability heuristics to evaluate intelligent agents
or intelligent user interfaces.

2.3. Data Analysis

The articles for RQ.1 were coded in terms of (a) reference, (b) domain, (c) research aim,
(d) findings, and (e) limitations. This review only analyzes the available task automation
systems and intelligent agents using the programming-by-demonstration approach because
of the user-centered design.

3. Results
3.1. RQ.1

To answer the research question (R.Q.1), twenty-one task automation systems and intelli-
gent agents were selected for the review. Figure 1 visually represents the work undertaken in
task automation using end-user development’s programming-by-demonstration approach.

Future Internet 2023, 15, x FOR PEER REVIEW 5 of 21

Figure 1. Task automation systems and intelligent agents.

3.1.1. Desktop-Based Task Automation Systems and Intelligent Agents
The early task automation systems and intelligent agents which were developed

were mostly desktop-based. The first task automation system using the programming-by-
demonstration approach was Pursuit by Modugno and Myers [27], which enables users
to create abstract programs directly containing variables, loops, and conditionals within
the interface. It made programming easy for the users but hardly automated their tasks
and needed to be supported by a user study. Being the first of its kind, as a programming-
by-demonstration system, Pursuit failed to adhere to standardized usability heuristics,
and the user interface was developed based on the developers’ experience. One of the
main reasons is that Nielsen’s heuristics were introduced the same year this system was
developed, making it hard for researchers to consider usability [28]. SMARTedit, another
programming-by-demonstration system, allowed users to automate repetitive text-edit-
ing tasks by learning techniques drawn from a machine-learning concept called version
space algebra, through which it could learn useful text-editing procedures after only a few
demonstrations. The limitations of this system were that it only worked for text editing,
and no usability evaluation was performed [29]. Another task automation system that
used a similar version of space algebra was CHINLE, which automatically constructed
programming-by-demonstration systems for applications based on the interface specifi-
cations by Chen and Weld [30]. CHINLE was also unsupported by usability evaluation or
user study, built atop SUPPLE, had fixed-length loops, and could not use logical connec-
tives inside conditionals. DocWizard, another programming-by-demonstration system,
presented a novel algorithm in the Eclipse platform for automatically capturing follow-
me documentation wizards by demonstrations through observing experts performing
procedures. The limitation of this system was that it lacked the features for the author to
specify where user inputs were required and violated several usability principles, e.g.,
visibility of system status, user control and freedom, and error prevention [31]. FlashFill
was inductive programming to create opportunities for task automation for non-program-
mers through synthesizing functional or logic programs for general-purpose tasks. How-
ever, the major challenges of this research were compositionality (i.e., requiring more us-
ability studies) and making inductive programming more cognitive (i.e., ease of use or a
simple and minimalistic design). Other challenges were domain change, validation, and
noise tolerance [32].

Photo manipulation tutorials, where the author demonstrates the manipulation us-
ing an instrumented version of GIMP that records all the interface and application state
changes. The system automatically generates tutorials from the recordings that illustrate
the manipulation using images, text, and annotations [33]. These tutorials are not sup-
ported by usability evaluation and therefore have no feedback and error correction
method; the semantic tool is based on computer vision and needs to learn macros from
multiple demonstrations rather than one and to generalize it. Another GUI-based task

Figure 1. Task automation systems and intelligent agents.

Future Internet 2023, 15, 196 5 of 20

3.1.1. Desktop-Based Task Automation Systems and Intelligent Agents

The early task automation systems and intelligent agents which were developed
were mostly desktop-based. The first task automation system using the programming-by-
demonstration approach was Pursuit by Modugno and Myers [27], which enables users
to create abstract programs directly containing variables, loops, and conditionals within
the interface. It made programming easy for the users but hardly automated their tasks
and needed to be supported by a user study. Being the first of its kind, as a programming-
by-demonstration system, Pursuit failed to adhere to standardized usability heuristics,
and the user interface was developed based on the developers’ experience. One of the
main reasons is that Nielsen’s heuristics were introduced the same year this system was
developed, making it hard for researchers to consider usability [28]. SMARTedit, another
programming-by-demonstration system, allowed users to automate repetitive text-editing
tasks by learning techniques drawn from a machine-learning concept called version space
algebra, through which it could learn useful text-editing procedures after only a few
demonstrations. The limitations of this system were that it only worked for text editing,
and no usability evaluation was performed [29]. Another task automation system that
used a similar version of space algebra was CHINLE, which automatically constructed
programming-by-demonstration systems for applications based on the interface specifi-
cations by Chen and Weld [30]. CHINLE was also unsupported by usability evaluation
or user study, built atop SUPPLE, had fixed-length loops, and could not use logical con-
nectives inside conditionals. DocWizard, another programming-by-demonstration system,
presented a novel algorithm in the Eclipse platform for automatically capturing follow-me
documentation wizards by demonstrations through observing experts performing proce-
dures. The limitation of this system was that it lacked the features for the author to specify
where user inputs were required and violated several usability principles, e.g., visibility
of system status, user control and freedom, and error prevention [31]. FlashFill was in-
ductive programming to create opportunities for task automation for non-programmers
through synthesizing functional or logic programs for general-purpose tasks. However,
the major challenges of this research were compositionality (i.e., requiring more usability
studies) and making inductive programming more cognitive (i.e., ease of use or a simple
and minimalistic design). Other challenges were domain change, validation, and noise
tolerance [32].

Photo manipulation tutorials, where the author demonstrates the manipulation us-
ing an instrumented version of GIMP that records all the interface and application state
changes. The system automatically generates tutorials from the recordings that illustrate
the manipulation using images, text, and annotations [33]. These tutorials are not sup-
ported by usability evaluation and therefore have no feedback and error correction method;
the semantic tool is based on computer vision and needs to learn macros from multiple
demonstrations rather than one and to generalize it. Another GUI-based task automation
system is Sikuli, which uses a similar visual approach to search and automate GUIs using
screenshots. No usability evaluation was performed at any stage of development; therefore,
it had the following issues and limitations: it did not work as expected due to theme
variation and background changes, and it also had visibility constraints because it operated
on visible screen elements and did not accept invisible GUI elements, e.g., hidden under-
neath other windows, tabs, or scrolling out of view [34]. Another GUI-based intelligent
agent is Bespoke, a system synthesizing custom GUIs by observing user demonstrations of
command-line applications. Theoretically and structurally, Bespoke seemed like a promis-
ing task automation system; however, in practice, a user study was performed instead of a
usability study. A user study is equally important in the development of a system; however,
it has some key changes, e.g., different goals or focus, methods, and stages in the design
process. No testing of GUI synthesized by Bespoke on end-users to assess their benefits
and limitations was performed; this is because the user study was conducted within a
lab setting where the developers were present to guide study participants. Secondly, the
authors needed a more rigorous assessment of user performance on a controlled set of tasks.

Future Internet 2023, 15, 196 6 of 20

Lastly, no comparison of Bespoke against alternative GUI creation methods was conducted
by Vaithilingam and Guo [35].

Ruler is an interactive visualization system synthesizing labeling rules using span-
level interactive demonstration over document examples. It relieves users from the burden
of writing labeling functions and enables them to focus on higher-level semantic analysis,
such as identifying relevant signals for the labeling task. However, it is domain-dependent,
as it is developed for data labeling, and therefore no usability evaluation was undertaken
because of the specific domain dependency [36]. A state-of-the-art, desktop-based task
automation system is Help-It-Looks-Confusing (HILC), a system prototype proposing a
user-in-the-loop framework that learns to generate scripts of actions performed on the vi-
sual elements of GUI. A user study with the available baseline system Sikuli was conducted,
which showed that Sikuli struggled to assist users in most of the test experiments. HILC ac-
complished simple linear and complicated tasks that spanned across multiple applications.
The user study showed promising results favoring HILC; however, this state-of-the-art
has limitations as well, e.g., basic actions are occasionally misclassified when none has a
high probability; it works without the awareness of the state of the computer; it requires
short fixed-length sleep commands after each action to account for computer loading time
because the system cannot know if the operating system’s task has finished or a webpage
has loaded; the current appearance models have a fixed-size aspect ratio, which decreases
the accuracy when items are of different sizes; processing a video tutorial takes a longer
time because the system has to analyze every frame for the mouse and keyboard button
status; propagation of errors to the pipeline due to inaccurate log-file generation, which is
because the videos from the internet have noise and compression artifacts due to recording
software and websites’ video-sharing policies [37]. In the present study, the user study was
centered solely on the end-user, with little attention paid to the system itself. The author
contends that considering a usability study instead of a user study would have mitigated
the identified limitations.

X-Droid is a framework that provides Android app developers with the ability to
produce functional prototypes of applications quickly and easily. With this framework, de-
velopers can create a new app that imports various functionalities from other applications
without understanding the implementation and source code. The limitation of X-Droid
is responsiveness; it does not support reading images, sounds, or videos from the user
interface; it does not support customized user interfaces such as interfaces managed by
custom game engines; also, it can exploit external resources because the server cannot dis-
tinguish between X-Droid and regular users [38]. The researchers in this study performed
a usability study to evaluate the application programming interface (API) and showed that
the system was usable and easy to understand. However, as this is domain-specific and
intended primarily for Android developers rather than the general population (i.e., normal
users), it does not align with nor is it deemed a significant contribution to the research
questions of this study. Nonetheless, it was noteworthy to mention the usability evaluation
since the system was developed using a programming-by-demonstration (PbD) approach.

3.1.2. Web-Based Task Automation Systems and Intelligent Agents

d.mix is a tool for creating web mashups that leverages site-to-service correspondence.
The user browses annotated websites and selects samples, and d.mix’s sampling mechanism
generates the underlying service calls that yield those elements. The limitations of this
system are that the coexistence of two different sampling strategies confused the tool on
how to separate a dataset; in a user study, participants had difficulty switching between
multiple languages interspersed in a single page; documentation and error handling in the
wiki environment was insufficient compared to other tools; and wiki-hosted applications
were not scaled well beyond prototypes for a few users, similarly because a user study was
performed instead of usability study which differs in goals, methods, and design process
stages [39]. CoScripter developed a collaborative scripting environment for recording,
automating, and sharing web-based processes [40]. A user study was performed instead

Future Internet 2023, 15, 196 7 of 20

of a usability evaluation for this task automation system. It was deployed in the office
set-up, and over fifty corporate employees volunteered to incorporate it into their work
practices. However, with usage over time, the issues of reliability and robustness provoked
the need for advanced features due to upgrades in system interaction. Vegemite, an
extension of CoScripter, was introduced with a spreadsheet-like environment that used
direct manipulation and programming-by-demonstration techniques to populate tables
with information collected from various websites automatically. However, the intelligent
agent did not consider the response time of the web servers for requested data and did not
support automatic or semi-automatic data cleaning [41].

Ringer is also a web-based task automation system in which a user demonstrates as
input and creates a script that interacts with the page as a user would. The limitations
of Ringer are that for action construct, some document object model (DOM) events occur
at a remarkably high rate because JavaScript is single-threaded. A similar thread that
records and replays each event must also process webpage interactions, so recording an
exceptionally large number of high-frequency events can make pages slow to respond; the
element construct’s similarity-based node addressing approach is inherently best-effort
but has no theoretical guarantees—however, in practice, it is sufficient; in the trigger
construct, Ringer was designed for interactions that satisfy the trigger assumptions but fail
when these do not hold. An overall limitation of Ringer is the possibility of failure due to
client-side delays such as animations, timeouts, local storage issues, etc. [42]. Rousillon
is a programming system based on relation selection and a generalization algorithm for
writing complex web automation scripts by demonstration. This system allows the user to
demonstrate how to collect the first row of a universal table view of the hierarchical dataset
to teach Rousillon how to collect all rows. The limitation of Rousillon is that it focuses on
realistic datasets, particularly distributed and hierarchical data [43].

3.1.3. Mobile-Based Task Automation Systems and Intelligent Agents

Assistive Macros by Rodrigues [44] presented an accessibility service to enable users
to perform a sequence of commands with a single selection. The user could create these
macros manually or automatically by detecting repeated interactions with a mobile phone.
Assistive macros showed excellent results, but usability evaluation was not performed
nor even a user study, and it was supported by only one case study; it also needed to
support data with contextual information. Another mobile task automation system is
InstructableCrowd, a crowdsourcing approach that allows users to create trigger-action (if,
then) rules based on their needs via conversation [45]. The limitations of this system are
that it does not focus on the robust creation of rules via conversation; it does not have a
repository of common if-then patterns; it provides no feedback on the successful creation
of rules; and there is no way to validate if-then rules created by the users. In addition,
a user study was performed but not supported by a usability evaluation. VASTA, a
vision and language-assisted programming-by-demonstration system for smartphone task
automation overcomes three key challenges: (1) how to make a particular demonstration
robust to positional and visual changes; (2) how to recognize changes in the automation
parameters to make demonstration as generalizable as possible; (3) how to recognize from
user utterance what automation the user wishes to carry out [46]. VASTA provides a vast
domain usage due to the absence of complex engineering required to fetch, parse, and
interpret various markup languages; vision-guided techniques can be used to supplement
traditional methods; and it has no dependency on the user interfaces underlying markup
languages. Therefore, it can be applied to systems where none is available, e.g., interfaces
rendered with low-level graphic libraries. Similarly, as discussed above, this study is
supported by a user study rather than a usability evaluation. The limitations of this
intelligent agent are (1) semantic labeling of user interface elements: it only records a feature
representation of user interface elements to track and find elements later while executing;
(2) extensible markup language (XML) data with computer vision: automation might
fail due to the object detection network’s mistake. In the literature, two task automation

Future Internet 2023, 15, 196 8 of 20

intelligent agents are state-of-the-art in mobile phone task automation. One is Sugilite, and
the other is DoThisHere.

Sugilite is a multimodal programming-by-demonstration system that enables users to
create smartphone automation, which can be performed by giving voice commands. It uses
the Android accessibility application programming interface (API) to support automating
arbitrary tasks in any Android application. If the user gives a verbal command, which
Sugilite does not know how to execute, it prompts the user to demonstrate by direct
manipulating the regular apps on the user interface. Sugilite has some limitations, which
are discussed in a dissertation by Li [14]. It has usability issues in text entry such as violating
standard usability principles; another major concern is privacy and security while sharing
generated scripts; it also does not support confirming crucial steps, e.g., online orders
and purchases, and performing undo-able tasks which are also a violation of standard
usability principles.

Figure 2 shows the working of Sugilite. The user interacts with the intelligent agent
through voice commands. If the intelligent agent does not know how to perform a certain
task, the user demonstrates the task on the user interface, and the intelligent agent observes
and learns.

Future Internet 2023, 15, x FOR PEER REVIEW 8 of 21

of rules; and there is no way to validate if-then rules created by the users. In addition, a
user study was performed but not supported by a usability evaluation. VASTA, a vision
and language-assisted programming-by-demonstration system for smartphone task auto-
mation overcomes three key challenges: (1) how to make a particular demonstration ro-
bust to positional and visual changes; (2) how to recognize changes in the automation
parameters to make demonstration as generalizable as possible; (3) how to recognize from
user utterance what automation the user wishes to carry out [46]. VASTA provides a vast
domain usage due to the absence of complex engineering required to fetch, parse, and
interpret various markup languages; vision-guided techniques can be used to supplement
traditional methods; and it has no dependency on the user interfaces underlying markup
languages. Therefore, it can be applied to systems where none is available, e.g., interfaces
rendered with low-level graphic libraries. Similarly, as discussed above, this study is sup-
ported by a user study rather than a usability evaluation. The limitations of this intelligent
agent are (1) semantic labeling of user interface elements: it only records a feature repre-
sentation of user interface elements to track and find elements later while executing; (2)
extensible markup language (XML) data with computer vision: automation might fail due
to the object detection network’s mistake. In the literature, two task automation intelligent
agents are state-of-the-art in mobile phone task automation. One is Sugilite, and the other
is DoThisHere.

Sugilite is a multimodal programming-by-demonstration system that enables users
to create smartphone automation, which can be performed by giving voice commands. It
uses the Android accessibility application programming interface (API) to support auto-
mating arbitrary tasks in any Android application. If the user gives a verbal command,
which Sugilite does not know how to execute, it prompts the user to demonstrate by direct
manipulating the regular apps on the user interface. Sugilite has some limitations, which
are discussed in a dissertation by Li [14]. It has usability issues in text entry such as vio-
lating standard usability principles; another major concern is privacy and security while
sharing generated scripts; it also does not support confirming crucial steps, e.g., online
orders and purchases, and performing undo-able tasks which are also a violation of stand-
ard usability principles.

Figure 2 shows the working of Sugilite. The user interacts with the intelligent agent
through voice commands. If the intelligent agent does not know how to perform a certain
task, the user demonstrates the task on the user interface, and the intelligent agent ob-
serves and learns.

Figure 2. Sugilite learning task automation with a programming-by-demonstration (PbD) ap-
proach.

Similarly, DoThisHere is also a multimodal interaction technique that streamlines
cross-app tasks and reduces the burden of performing tasks imposed on users. It allows
users to use voice commands to refer to information or app features that are off-screen
and touch to specify where the relevant information should be inserted or displayed. This
allows users to transfer information to other apps with less context switching [47]. The

Figure 2. Sugilite learning task automation with a programming-by-demonstration (PbD) approach.

Similarly, DoThisHere is also a multimodal interaction technique that streamlines
cross-app tasks and reduces the burden of performing tasks imposed on users. It allows
users to use voice commands to refer to information or app features that are off-screen
and touch to specify where the relevant information should be inserted or displayed. This
allows users to transfer information to other apps with less context switching [47]. The
user study showed that several of the system’s features were not used in the user study.
Secondly, time delays affect the user taps on the icon before the system can listen to voice
commands and user interface selections. The limitation of this system is that it uses a virtual
assistant framework design to handle ambiguity and provide feedback; it also requires
improvement in the user interface element selection algorithm.

3.2. RQ.2

To answer the research question (RQ.2.), thirty-nine review papers were selected for
full-paper review.

Future Internet 2023, 15, 196 9 of 20

3.2.1. Heuristic Development Methodologies

Table 1 describes the methods and techniques for developing usability heuristics in
the last half-decade.

Table 1. Heuristic development methods and techniques.

Heuristic Development Methodology References Number of Studies

Existing Heuristics
Nielsen’s [48–54] 7

Others [55–60] 6

Literature Review [61–69] 9

Mixed Processes [70–78] 9

Usability Problems [79–85] 7

Theory [86] 1

Total 39

Similarly, Figure 2 visually represents the heuristic development methodology within
the last half-decade.

Figure 2 describes the methods and techniques adopted by the available researchers to
achieve their goals. In existing heuristics studies, researchers have used existing heuristics
established by practitioners and designers to develop or propose their own domain-specific
heuristics. In literature reviews, researchers have used the literature to develop heuristics.
Similarly, researchers in mixed processes have used different methods and techniques to
develop heuristics, i.e., heuristic evaluation, usability testing, questionnaires, interviews,
experiments, or even tools. In usability problems, researchers conducted a user study,
interviews, usability testing of existing products, etc., to develop heuristics. However, only
one researcher developed usability heuristics using universal design theory.

3.2.2. Development of Heuristics in Domains

Among the heuristics developed, Table 2 shows the domains in which heuristics are
developed or proposed.

Table 2. Domains of developed usability heuristics.

Domain References Number of Studies

Health Information Systems [49,71] 2

Online Websites [48,63,70,80] 4

Virtual Learning Environments [51,53,64,69] 4

Mobile Applications [50,54,56,58,59,62,65,68,76,79,82–84,87] 14

Intelligent Agents [57,78,85] 3

Other Domains [52,60,61,66–68,72–75,77,81] 12

Total 39

Figure 3 visualizes the work carried out in different domains to develop usability heuristics.

Future Internet 2023, 15, 196 10 of 20

Future Internet 2023, 15, x FOR PEER REVIEW 10 of 21

Figure 3 visualizes the work carried out in different domains to develop usability
heuristics.

Figure 3. Heuristic development methods.

Figure 4 visualises the domains in which the usability heuristics have been developed
in the last half decade.

Figure 4. Development of heuristics in domains.

3.2.3. Analysis

Health Information Systems
Among the reviewed studies, only two research papers present work on the usability

evaluation of health information systems. Tremoulet et al. [71] used a mixed method to
develop usability heuristics for health information systems. A literature review was

Theory
3%Literature Review

23%

Mixed Processes
23%

Usability Problems
18%

Nielsen's Hueristics
15%

Nielsen's &
Nokelainen's

3% Other Domains
15%

Existing Heuristics
33%

HEURISTIC DEVELOPMENT METHODS

Figure 3. Heuristic development methods.

Figure 4 visualises the domains in which the usability heuristics have been developed
in the last half decade.

Future Internet 2023, 15, x FOR PEER REVIEW 10 of 21

Figure 3 visualizes the work carried out in different domains to develop usability
heuristics.

Figure 3. Heuristic development methods.

Figure 4 visualises the domains in which the usability heuristics have been developed
in the last half decade.

Figure 4. Development of heuristics in domains.

3.2.3. Analysis

Health Information Systems
Among the reviewed studies, only two research papers present work on the usability

evaluation of health information systems. Tremoulet et al. [71] used a mixed method to
develop usability heuristics for health information systems. A literature review was

Theory
3%Literature Review

23%

Mixed Processes
23%

Usability Problems
18%

Nielsen's Hueristics
15%

Nielsen's &
Nokelainen's

3% Other Domains
15%

Existing Heuristics
33%

HEURISTIC DEVELOPMENT METHODS

Figure 4. Development of heuristics in domains.

3.2.3. Analysis
Health Information Systems

Among the reviewed studies, only two research papers present work on the usability
evaluation of health information systems. Tremoulet et al. [71] used a mixed method
to develop usability heuristics for health information systems. A literature review was
conducted, clinical interviews were taken to gather qualitative data, and a survey was
conducted to gather quantitative data. The data gathered were reviewed, issues were

Future Internet 2023, 15, 196 11 of 20

identified within the health information system, and usability heuristics were generated
based on the identified issues. The developed heuristics were then cross-checked with
existing heuristics to eliminate the overlapping heuristics. The new heuristics were then
implemented in the health information system, and validation was performed through
heuristic evaluation by expert reviewers.

Another study by Bouraghi et al. [49] used Nielsen’s existing heuristics to evaluate the
health information system. They initially performed an expert evaluation of the system
and identified usability errors, which were then categorized in severity. Validation was not
performed because the study did not propose any heuristics.

Health information systems share several commonalities with intelligent agents, such
as data processing, decision support, personalization, communication and interaction,
integration with other systems, security, and privacy. While there are commonalities
between intelligent agents and health information systems, it is important to note that they
also have distinct features and purposes. Intelligent agents focus on intelligent decision-
making and user interaction, while health information systems are specifically designed to
manage and exchange healthcare-related data and support clinical workflows. Therefore,
usability heuristics development methods for both domains could be similar, or general
usability principles may overlap, but specific considerations and priorities reflect the unique
characteristics and requirements of their respective domains and interaction modalities.

Online Websites

A systematic methodology for the development of usability heuristics by Quiñones
and Rusu [25] has been adopted by several researchers to develop domain-specific usability
heuristics, and Saavedra et al. [63] developed usability heuristics for social networks
using a similar methodology. A domain-specific literature review was conducted, and
the eight stages for systematic development of heuristics were performed. The developed
heuristics were evaluated by experts, the results were analyzed, and future work was
presented. However, Huang [80] performed a case study in which the author used mixed
processes to evaluate tourism websites. A user-centered approach to empirically assess
the website was undertaken, which involved conducting a literature review, a selection of
websites, a selection of tasks to be performed by participants, development of a usability
questionnaire for assessment, and data collection and analysis, and a discussion with results
was conducted. In this work, no validation process was performed because the heuristics
were generated after the literature review and experiment.

Similarly, Krawiec and Dudycz [48] used Nielsen’s heuristics to evaluate a website and
identify usability errors. After identification, errors were categorized, and new categories
were added to Nielsen’s heuristics. Experts evaluated the proposed heuristics, and results
showed that new categories were able helpful in detecting more usability errors. A mixed
development method was adopted by Zardari et al. [70] to develop usability heuristics for
an e-learning website. The study included heuristic evaluation, usability testing, a user
experience questionnaire, and eye tracking to identify usability errors. Heuristics were
developed and used to identify errors. The designers and developers fixed the identified
errors, and after fixing the errors, another usability test was completed to validate the
proposed heuristics. A questionnaire survey was conducted to gather qualitative feedback.

Online websites and intelligent agents also share some commonalities, such as commu-
nication and interaction with diverse users, information access, personalization, automa-
tion, and integration. While there are similarities, it is also important to note the distinct
characteristics and purposes. Online websites primarily serve as platforms for presenting
information and conducting online transactions, while intelligent agents focus on conver-
sational interactions, task automation, and providing personalized assistance. Therefore,
usability heuristics development methods also require a focus on different priorities and
considerations due to key differences in interaction modalities, information presentation,
and user inputs.

Future Internet 2023, 15, 196 12 of 20

Virtual Learning Environments

Usability heuristics to evaluate virtual labs were proposed by Kumar et al. [53] after
conducting a literature review. These heuristics were a combination of Nielsen’s and Noke-
lainen’s heuristics. The researchers performed a literature review and selected heuristics
relevant to virtual labs. The proposed heuristics were then evaluated using available vir-
tual lab platforms, and an analysis was made. The results showed that proposed usability
heuristics were more helpful in detecting usability issues. The proposed heuristics were
not validated because they were developed after a literature review. A similar approach
was adopted by Vieira et al. [64] to develop usability heuristics for evaluating the usability
of educational games. The development method used in this research was based on a
literature review. It was conducted in four phases: identification of articles to be selected
for review, triage–study selection and exclusion, articles included after eligibility, and
an analysis was conducted. The results showed that proposed heuristics could not be
validated, as the field of knowledge was still beginning to develop.

Using Nielsen’s heuristics, systematic usability heuristics were developed by Figueroa
et al. [51]. This study also adopted the development method proposed by Quiñones and
Rusu [25] and validated the heuristics through experiments, heuristic evaluation, case
studies, and user tests. A post-pandemic study was conducted by Ismail et al. [69] to
evaluate online learning environments such as Zoom and Teams. This study was initiated
by conducting a literature review and selecting usability heuristics relevant to online
learning environments. The proposed heuristics were used to evaluate the two most widely
used platforms, and an analysis was conducted. No validation process of heuristics was
carried out because heuristics were developed from the literature review.

The virtual learning environment and intelligent agents have similarities such as
personalized learning, adaptive learning, providing in-time support and assistance, au-
tomation, and feedback and assessment. Despite similarities, virtual learning environments
focus on providing a digital platform for instructional content delivery, interaction, and
assessment. Intelligent agents, on the other hand, emphasize personalized assistance,
automation, and conversational interactions for enhanced learning experiences. General
usability principles may overlap intelligent agents, but specific considerations and priorities
reflect each platform’s unique characteristics and objectives.

Mobile Applications

In the last half-decade, massive mobile application growth has been observed across
different fields and domains. Similarly, the human–computer interaction field has been
trying to catch up with the fast-paced development in the mobile industry. Several usability
heuristics and evaluation methods have been proposed and implemented by academicians
and industry experts to enhance the usage of mobile phones, according to Hasan et al. [88].

A literature review conducted by Da Costa et al. [62] for the quality assessment of
mobile phones proposed usability heuristics. These heuristics could not be validated, and
the author intended to use them in empirical validation, allowing dynamic incorporation
and improvements. Similarly, a literature review by Salah et al. [68] proposed usability
heuristics for evaluating m-commerce applications in Arabic. This study also did not
validate the proposed usability heuristics because the heuristics were developed after a
literature review, and the authors planned to assess different interfaces in Arabic. Another
study by Kumar et al. [76] developed usability heuristics for mobile learning applications
using a mixed-process approach. They used Nielsen’s heuristics and a literature review
to develop specific heuristics, which were then used to categorize usability problems. An
expert evaluation was performed to validate the proposed heuristics.

The only study that uses existing heuristics, except Nielsen’s, was conducted by
Sancho Nascimento et al. [59] to develop usability heuristics for mobile game applications
for children with Down syndrome. This study used existing heuristics proposed by Breyer
evaluation, Able Games Association, and Recommendations of Preece, Sharp, and Rogers
to develop the game. The game was evaluated by usability experts and endorsed by a

Future Internet 2023, 15, 196 13 of 20

walkthrough with health professionals. Another usability heuristic was developed for
mobile games by Robson and Sabahat [84]. They identified usability problems in existing
game applications and analyzed the gathered data. After data analysis, usability heuristics
were developed and implemented by creating a game prototype. The implemented usability
heuristics were validated by expert gamers evaluating the game prototype.

A literature review was conducted by Abreu et al. [65] to evaluate the usability of
children’s education applications. Usability heuristics were developed by reviewing the
literature, and expert evaluators and an experiment evaluated the developed heuristics.
Expert evaluators included teachers, researchers in child education, specialists in HCI, and
researchers in computing in education. Another study by Limtrairut et al. [56] proposed
heuristics for an m-learning application and developed a prototype using existing heuristics.
The proposed heuristics were validated by seven experts evaluating the prototype.

After conducting a literature review and questionnaire survey from users, design rec-
ommendations for mobile stock exchange applications were presented by Hussain et al. [58].
Expert evaluators evaluated the developed heuristics by reviewing the existing applications
and identifying problems. The analysis was conducted, and design recommendations were
presented as results. Similarly, usability heuristics to evaluate financial technologies were
developed by Ali et al. [54] based on Nielsen’s heuristics. Bashir et al. [55] presented
usability heuristics for fitness-related, context-aware mobile applications based on existing
usability heuristics. The researchers reviewed the literature, developed domain-specific
heuristics, and evaluated existing applications. After the identification of the problem, the
heuristics were refined and validated. The validation was performed through two evalua-
tion studies and one usability expert review. A similar approach using Nielsen’s heuristics
was conducted by Faria Gomes et al. [50], but this study focused on IOS applications. The
study was fairly similar in terms of methodology. However, the validation was performed
by conducting a system usability scale (SUS) questionnaire.

For evaluating children’s education relating to mobile applications, Samarakoon
et al. [79] experimented with preschool children and observed while children interacted
with the tablet’s interface. The problems were identified, and new heuristics were de-
veloped based on the observations. The developed heuristics were implemented in the
interface, and another experiment was conducted for validation. Similarly, Eltalhi et al. [82]
evaluated children’s education application in three steps: pre-test, post-test, and usability
test. However, no validation was performed because this study did not propose usabil-
ity heuristics.

One study validated usability heuristics during the design phase through user testing,
including a mix of surveys, concurrent think-aloud, and interviews for feedback on the
prototype. This study was conducted by Kim et al. [83] and evaluated a disease app.
The methodology used to generate usability heuristics was based on usability problems
gathered by creating personas, conducting competitor analysis, heuristic evaluation, and
user interviews. Another study used universal design theory to propose usability heuristics.
After conducting a literature review, heuristics were developed by the researcher. The
developed heuristics were evaluated and validated by mixed methods, including usability
testing and user-experience evaluation, and the designers addressed the results.

Usability heuristics for mobile applications and intelligent agents also share common-
alities such as user-centered design, interaction design, error prevention and recovery, and
consistency and familiarity. However, there are also some differences in terms of interaction
modalities, context and portability, presentation and content, and multimodal capabilities.
Similarly, both differ in unique characteristics and specific considerations.

Intelligent Agents

Usability heuristics for speech-based smart devices and intelligent agents differ based
on their specific characteristics and intended uses. To evaluate the speech-based smart
devices, a literature review was conducted on existing heuristics, and domain-specific
heuristics were developed by Wei and Landay [57]. After the development of heuristics,

Future Internet 2023, 15, 196 14 of 20

an evaluation of speech-based smart devices was carried out. Expert evaluators validated
proposed heuristics. Speech-based smart devices differ in terms of physical interaction.
Usability heuristics for speech-based smart devices consider physical aspects of interaction,
such as wake word detection, microphone sensitivity, and voice recognition accuracy.

Similarly, usability heuristics for voice user interfaces also differ from intelligent
agents in terms of task-oriented interactions. To evaluate Voice User Interfaces (VUIs),
a usability study was conducted using System Usability Scale (SUS), Post-Study System
Usability Questionnaire (PSSUQ), heuristic questionnaires, and interviews by Pyae [85].
The data gathered from the usability study was analyzed, and usability heuristics were
formulated from the analysis; therefore, no validation of heuristics was required. The
usability heuristics for voice user interface focus on designing interactions for specific tasks
or use cases, such as clear and concise prompts, appropriate dialog flow, and accurate
recognition of user commands.

Usability heuristics to evaluate chatbots developed by Sánchez-Adame et al. [78]. In
their study, the researchers conducted a literature review and developed usability heuristics
based on their experience developing related applications and systems The researchers
adopted a modified version of the Quiñones and Rusu [27], findings for this study and
performed 6 stages of systematic heuristic development. Chatbots are also considered
intelligent user interfaces, however, they differ from intelligent agents in terms of conversa-
tional flow. Usability heuristics for chatbots prioritize natural and coherent conversations.
Addressing factors such as contextual understanding, maintaining conversational context,
and generating appropriate responses based on user inputs.

While there may be some overlaps in general usability principles, the specific consid-
erations and priorities in usability heuristics for speech-based smart devices, voice user
interfaces, chatbots, and intelligent agents reflect the unique characteristics and objectives of
each system or platform. Speech-based smart devices focus on physical and audio-related
aspects, voice user interfaces emphasize task-oriented interactions, chatbots prioritize
conversational flow, and intelligent agents aim for adaptive and personalized experiences.

Other Domains

Usability heuristics to evaluate information architecture framework for academic
library websites are proposed by Silvis et al. [67]. The methodology used for heuristic de-
velopment is based on a literature review. An analysis was conducted, proposed heuristics
were implemented in websites, and recommendations and reviews were provided, but no
heuristics were validated.

A tool to evaluate the usability of games using Nielsen’s heuristics was used by Yanez-
Gomez et al. [74], and usability problems were identified. A domain-specific heuristics
were developed based on problems identified and implemented into the games. After
developing heuristics were implemented, a preliminary evaluation was conducted on two
games. Analysis suggested that the proposed heuristics successfully identified usability
problems in the games.

Usability heuristics to evaluate the interface for Arabic m-commerce applications were
developed by Salah et al. [68], which were also used to evaluate the system interface in the
Arabic language by Muhanna et al. [60]. These heuristics were developed by conducting a
systematic literature review, and usability experts validated the proposed heuristics. The
developed heuristics successfully detected usability issues and violations in interfaces of
the Arabic language.

A literature review on Nielsen’s heuristics and user tests was conducted to develop us-
ability heuristics for evaluating systems with tabletop interfaces by de Franceschi et al. [75].
This study adopted a modified version of Quiñones and Rusu [25], and a prototype was
developed with proposed heuristics. The proposed heuristics were validated by a case
study where multiple users used the prototype.

A set of usability heuristics developed by Umar et al. [52] focused on enhancing the
usability of systems used for children’s education, also known as child computer interaction

Future Internet 2023, 15, 196 15 of 20

(CCI), using Nielsen’s heuristics. This study was carried out by conducting a use-case
study with children and identifying the usability issues. Nielsen’s heuristics were modified
and evaluated by experts. The finalized heuristics were implemented in a prototype and
another round of user testing validated the heuristics. The prototype developed with the
proposed heuristics was more usable for children’s education.

For evaluating interactive web maps, Marquez et al. [66] used the eight stages proposed
by Quiñones and Rusu [25] to develop usability heuristics systematically. The eight stages
include exploratory study, experimentation, descriptive, correlation, selection, specification,
validation, and refinement. The developed heuristics were validated by experts performing
the heuristic evaluation.

To evaluate set-top box and television interfaces, Kaya et al. [73] performed a mixed
process involving problems identified by the developers, three experts with cognitive
walkthroughs, and customer complaints to develop usability heuristics. Based on the
gathered data, the researchers developed usability heuristics, and experts evaluated those
heuristics by creating clusters of problems previously identified. A validation checklist was
created based on cluster analysis. The proposed heuristics were validated by user testing,
expert judgment, and heuristic evaluation.

Viana et al. [81] applied usability heuristics in a machine-learning system for data
labeling. A preliminary study was conducted to identify the usability problems in an
existing system. The gathered data were analyzed and compared to Nielsen’s heuristics.
The finalized heuristics were used to develop the labeling system.

Existing heuristics could not be used for evaluating augmented reality (AR) or mixed
reality (MR); therefore, Derby et al. [61] conducted a literature review to develop usability
heuristics for these systems. For the heuristic development, the eight stages proposed by
Quiñones and Rusu [25] were used, and expert reviews, heuristic evaluation, and user
testing of the systems performed the validation. A similar approach of eight-stage heuristic
development for evaluating progressive web applications was also adopted by Anuar
et al. [72]; however, the validation was performed by five experts from academia and
industry on three different domain applications: cultural heritage, stock photo industry,
and marketplace.

Usability heuristics for evaluating a hospital-based computerized decision support
system (CDSS) developed by Marcilly et al. [77] using a mixed approach, where the heuristic
evaluation of the existing system was performed. Concurrently, the researchers conducted
questionnaires and interviews with hospital staff. Cross-checking of collected data was
performed, and after a comprehensive analysis, the heuristics were validated during the
design phase through user testing.

4. Discussion

The field of intelligent task automation systems and intelligent agents has rapidly
grown over the past few years. While most of these systems are currently desktop-based,
recent advancements in mobile phone devices have led to the development of mobile-based
task automation systems. However, despite these advancements, limitations still need to
be addressed.

This review study concludes that one of the major limitations or causes of the inadapt-
ability of such mobile-based task automation systems and applications is the unavailability
of domain-specific usability heuristics for developers and designers to develop easy-to-use
and user-friendly systems. Even with high-speed processors and RAMs, these systems can
still present usability issues. Only if a user understands how a certain function works or
why certain functions exist will they be able to use the device to its full potential. Otherwise,
many of the system functionalities will not be known to the users due to the bad design
of the interface. Additionally, even if users understand how to perform certain tasks and
activities, they can only sometimes be sure that the system or application will perform
as expected.

Future Internet 2023, 15, 196 16 of 20

This study also suggests that the human–computer interaction community needs to
give more attention to developing systematic domain-specific usability heuristics, such as
for task automation intelligent agents, because these systems have the potential to make
human life easier. To effectively utilize this potential, usability is an essential aspect to
consider during the design and development of such systems and applications. In addition
to usability issues, there are other limitations to mobile-based task automation systems
and applications; for example, they may need help to handle large amounts of data or
complex tasks as effectively as desktop-based systems. Additionally, they may need more
battery life and storage capacity, which can limit their usefulness for certain tasks; this can
be considered future work.

Despite these limitations, there is a significant amount of development in the field of
mobile-based task automation systems and applications. However, as discussed in research
question R.Q.2, most proposed or developed usability heuristics have been focused on
domains other than task automation intelligent agents. This raises the question of why
there is a significant amount of development in one area, while the human–computer
interaction community is exploring other fields. While it is valuable to explore other fields,
it is essential to consider the need for rapid advancements and the demands of daily life.
Mobile technology has become an integral part of people’s lives, and mobile-based task
automation systems or applications have the potential to provide numerous benefits to
users. Therefore, R.Q.2 concludes that it is essential to undertake systematic efforts to
support the development of mobile technology and mobile-based task automation systems
and applications.

The author also suggests some approaches to overcome the limitations and concludes
from this review study that one potential approach to address these limitations is to design
mobile-based task automation systems and applications with a user-centered approach.
This approach involves involving users in the design process to ensure that their needs
and preferences are taken into account. Additionally, usability testing can be conducted to
identify potential issues and make necessary improvements before releasing the product.
Another approach is to incorporate more machine learning and other artificial intelligence
techniques into mobile-based task automation systems. These techniques can help improve
the efficiency and effectiveness of these systems and applications, making them more
useful for a wider range of daily life tasks. While there are limitations to mobile-based task
automation systems, they have the potential to provide numerous benefits to users. To
realize this potential, the human–computer interaction community needs to give attention
to usability issues and undertake systematic efforts to support the development of mobile
technology. By doing so, we can create mobile-based task automation systems that are
efficient, effective, and user-friendly.

The development of usability heuristicsfor intelligent agents that automate tasks is
essential due to the unique nature of these agents, which necessitates human interaction.
This interaction should feel natural and intuitive, with the agent being capable of accurately
and reliably understanding and responding to user inputs. It is also important to ensure
that the agents are user-friendly and easily accessible. By creating domain-specific usability
heuristics for task automation intelligent agents, we can guarantee that these agents meet
the requirements and offer guidelines for designing agents that are comprehensible and
straightforward to use. Ultimately, the development of usability heuristics for task au-
tomation intelligent agents is vital and indispensable for providing a positive and efficient
human–computer interaction experience.

5. Conclusions

In conclusion, this study shows the availability and potential of a wide range of re-
search work that could be carried out in this domain. This study also confirms the need for
usability heuristics to be developed in the future to develop usable task automation intelli-
gent agents effectively and efficiently. Developing usability heuristics for task automation
intelligent agents is a vital aspect to consider while creating effective human–computer

Future Internet 2023, 15, 196 17 of 20

interaction experiences. These intelligent agents are designed to interact with humans, and
thus, it is crucial that the interaction must be natural and intuitive. To achieve this, it is
essential to develop usability heuristics that can guide the design process of these agents,
ensuring that they are user-friendly, easy to use, and accurately respond to user inputs.
These agents can be designed for a specific domain, such as healthcare, finance, or customer
services, where the requirements for user interaction might vary, and domain-specific
usability heuristics can be developed to ensure that the agents meet the necessary criteria.

The study also shows the development of usability heuristics for task automation
intelligent agents and systems which considers the intelligence and automation aspects
of the devices interacting with the users multimodally, e.g., voice, gestures, contextually
aware techniques, etc. The usability heuristics for task automation intelligent agents should
aim to provide guidelines for creating agents that are easy to learn and use, with a minimal
cognitive load on the user. The heuristics should focus on aspects such as the visibility of
system status, which ensures that the user is aware of the agent’s current state and that the
feedback provided to the user is relevant and timely. Additionally, the heuristics should
aim to reduce the need for the user to remember complex commands or procedures, and
instead, provide recognition-based interactions that allow users to easily recognize the
desired action.

Overall, developing usability heuristics for task automation intelligent agents is cru-
cial to ensure that these agents meet the user’s needs, are easy to use, and provide a
positive user experience. The heuristics can guide the design process and help create
agents that accurately respond to user inputs while reducing cognitive load and ensuring
user satisfaction.

Author Contributions: Conceptualization, A.W.; methodology, A.W.; validation; A.W., S.M. and S.S.;
formal analysis, A.W.; investigation, A.W.; writing—original draft preparation, A.W.; writing—review
and editing, A.W., S.M. and S.S.; supervision, S.M. and S.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research/paper was partially supported by Centre for Graduate Studies (CGS),
Universiti Teknologi PETRONAS with cost centre (015BD1-001) and partially supported by Institute
of Health and Analytics (IHA), Universiti Teknologi PETRONAS with Cost Centre (015NC0-001).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflict of interest/competing interests.

References
1. Mohamed, S.A.; Mahmoud, M.A.; Mahdi, M.N.; Mostafa, S.A. Improving efficiency and effectiveness of robotic process

automation in human resource management. Sustainability 2022, 14, 3920. [CrossRef]
2. Iqbal, J.; Islam, R.U.; Abbas, S.Z.; Khan, A.A.; Ajwad, S.A. Automating industrial tasks through mechatronic systems-a review of

robotics in industrial perspective. Teh. Vjesn. Tech. Gaz. 2016, 23, 917–924.
3. Bauer, M.; Monteith, S.; Geddes, J.; Gitlin, M.J.; Grof, P.; Whybrow, P.C.; Glenn, T. Automation to optimise physician treatment of

individual patients: Examples in psychiatry. Lancet Psychiatry 2019, 6, 338–349. [CrossRef] [PubMed]
4. Mehrotra, A. Artificial intelligence in financial services–need to blend automation with human touch. In Proceedings of the 2019

International Conference on Automation, Computational and Technology Management (ICACTM), London, UK, 24–26 April
2019; IEEE: Piscataway, NJ, USA, 2019. [CrossRef]

5. Stoilova, E. AI chatbots as a customer service and support tool. ROBONOMICS J. Autom. Econ. 2021, 2, 21.
6. Kepuska, V.; Bohouta, G. Next-generation of virtual personal assistants (microsoft cortana, apple siri, amazon alexa and google

home). In Proceedings of the 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las
Vegas, NV, USA, 8–10 January2018; IEEE: Piscataway, NJ, USA, 2018. [CrossRef]

7. Nunes, I.; Jannach, D. A systematic review and taxonomy of explanations in decision support and recommender systems.
User Model. User-Adapt. Interact. 2017, 27, 393–444. [CrossRef]

8. Feine, J.; Gnewuch, U.; Morana, S.; Maedche, A. A taxonomy of social cues for conversational agents. Int. J. Hum.-Comput. Stud.
2019, 132, 138–161. [CrossRef]

9. Pfeuffer, N.; Benlian, A.; Gimpel, H.; Hinz, O. Anthropomorphic information systems. Bus. Inf. Syst. Eng. 2019, 61, 523–533.
[CrossRef]

https://doi.org/10.3390/su14073920
https://doi.org/10.1016/S2215-0366(19)30041-0
https://www.ncbi.nlm.nih.gov/pubmed/30904127
https://doi.org/10.1109/ICACTM.2019.8776741
https://doi.org/10.1109/CCWC.2018.8301638
https://doi.org/10.1007/s11257-017-9195-0
https://doi.org/10.1016/j.ijhcs.2019.07.009
https://doi.org/10.1007/s12599-019-00599-y

Future Internet 2023, 15, 196 18 of 20

10. Deng, T.; Kanthawala, S.; Meng, J.; Peng, W.; Kononova, A.; Hao, Q.; Zhang, Q.; David, P. Measuring smartphone usage and task
switching with log tracking and self-reports. Mob. Media Commun. 2019, 7, 3–23. [CrossRef]

11. Schmidt, A.; Mayer, S.; Buschek, D. Introduction to Intelligent User Interfaces. In Proceedings of the Extended Abstracts of the
2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8 May 2021. [CrossRef]

12. Elshan, E.; Zierau, N.; Engel, C.; Janson, A.; Leimeister, J.M. Understanding the design elements affecting user acceptance of
intelligent agents: Past, present and future. Inf. Syst. Front. 2022, 24, 699–730. [CrossRef]

13. Bharadwaj, N.A.; Dubé, A.K.; Talwar, V.; Patitsas, E. How Parents and Children Interact with Digital Assistants in the Home: An
Exploratory Study. In Proceedings of the Society for Research in Child Development, 2021, Virtual Biennial Meeting, 7–9 April 2021.

14. Li, T.J.-J. A Multi-Modal Intelligent Agent that Learns from Demonstrations and Natural Language Instructions. Ph.D. Thesis,
Human-Computer Interaction Institute, School of Computer Science Carnegie Mellon University, Pittsburgh, PA, USA, 3 May 2021.

15. Li, T.J.-J.; Azaria, A.; Myers, B.A. SUGILITE: Creating multimodal smartphone automation by demonstration. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017. [CrossRef]

16. Li, T.J.-J.; Radensky, M.; Jia, J.; Singarajah, K.; Mitchell, T.M.; Myers, B.A. PUMICE: A Multi-Modal Agent that Learns Concepts
and Conditionals from Natural Language and Demonstrations. In Proceedings of the 32nd Annual ACM Symposium on User
Interface Software and Technology, New Orleans, LA, USA, 17 October 2019; pp. 577–589. [CrossRef]

17. Alt, R.; Human, S.; Neumann, G. End-user empowerment in the digital age. In Proceedings of the 53rd Hawaii International
Conference on System Sciences, Maui, HI, USA, 7–10 January 2020.

18. Lau, T. Why programming-by-demonstration systems fail: Lessons learned for usable ai. AI Mag. 2009, 30, 65. [CrossRef]
19. Barricelli, B.R.; Cassano, F.; Fogli, D.; Piccinno, A. End-user development, end-user programming and end-user software

engineering: A systematic mapping study. J. Syst. Softw. 2019, 149, 101–137. [CrossRef]
20. Moussawi, S. User experiences with personal intelligent agents: A sensory, physical, functional and cognitive affordances view.

In Proceedings of the 2018 ACM SIGMIS Conference on Computers and People Research, New York, NY, USA, 18–20 June 2018.
21. Følstad, A.; Brandtzaeg, P.B. Users’ experiences with chatbots: Findings from a questionnaire study. Qual. User Exp. 2020, 5, 3.

[CrossRef]
22. Abulfaraj, A.; Steele, A. Coherent Heuristic Evaluation (CoHE): Toward Increasing the Effectiveness of Heuristic Evaluation for

Novice Evaluators. In Design, User Experience, and Usability. Interaction Design. HCII 2020; Lecture Notes in Computer Science;
Marcus, A., Rosenzweig, E., Eds.; Springer: Cham, Swtzerland, 2020; Volume 12200. [CrossRef]

23. Maehigashi, A.; Miwa, K.; Kojima, K.; Terai, H. Development of a Usability Questionnaire for Automation Systems. In Human-
Computer Interaction. Theory, Design, Development and Practice. HCI 2016; Lecture Notes in Computer Science; Kurosu, M., Ed.;
Springer: Cham, Switzweland, 2016; Volume 9731. [CrossRef]

24. Qiu, S.; An, P.; Kang, K.; Hu, J.; Han, T.; Rauterberg, M. Investigating socially assistive systems from system design and evaluation:
A systematic review. Univers. Access Inf. Soc. 2021, 22, 609–633. [CrossRef] [PubMed]

25. Quiñones, D.; Rusu, C. How to develop usability heuristics: A systematic literature review. Comput. Stand. Interfaces 2017, 53,
89–122. [CrossRef]

26. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;
Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906.
[CrossRef]

27. Modugno, F.; Myers, B.A. Pursuit: Graphically representing programs in a demonstrational visual shell. In Proceedings of the
Conference Companion on Human Factors in Computing Systems, Boston, MA, USA, 24–28 April 1994.

28. Nielsen, J. Enhancing the explanatory power of usability heuristics. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, Boston, MA, USA, 24–28 April 1994.

29. Lau, T.; Wolfman, S.A.; Domingos, P.; Weld, D.S. Learning repetitive text-editing procedures with SMARTedit. In Your Wish Is My
Command; Elsevier: Amsterdam, The Netherlands, 2001; Volume XI, pp. 209–225. [CrossRef]

30. Chen, J.-H.; Weld, D.S. Recovering from errors during programming by demonstration. In Proceedings of the 13th International
Conference on Intelligent User Interfaces, Gran Canaria Spain, 13–16 January 2008.

31. Bergman, L.; Castelli, V.; Lau, T.; Oblinger, D. DocWizards: A system for authoring follow-me documentation wizards. In Proceedings
of the 18th Annual ACM Symposium on User Interface Software and Technology, Seattle, WA, USA, 23–26 October 2005.

32. Gulwani, S.; Hernández-Orallo, J.; Kitzelmann, E.; Muggleton, S.H.; Schmid, U.; Zorn, B. Inductive programming meets the real
world. Commun. ACM 2015, 58, 90–99. [CrossRef]

33. Grabler, F.; Agrawala, M.; Li, W.; Dontcheva, M.; Igarashi, T. Generating photo manipulation tutorials by demonstration. In
Proceedings of the ACM SIGGRAPH 2009 Papers, New Orleans, LA, USA, 3–7 August 2009; pp. 1–9.

34. Yeh, T.; Chang, T.-H.; Miller, R.C. Sikuli: Using GUI screenshots for search and automation. In Proceedings of the 22nd Annual
ACM Symposium on User Interface Software and Technology, Bend, OR, USA, 29 October–2 November2009.

35. Vaithilingam, P.; Guo, P.J. Bespoke: Interactively synthesizing custom GUIs from command-line applications by demonstration.
In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, New Orleans, LA, USA, 20–23
October 2019. [CrossRef]

36. Evensen, S.; Ge, C.; Demiralp, C. Ruler: Data programming by demonstration for document labeling. In Proceedings of the
Findings of the Association for Computational Linguistics: EMNLP 2020, Online, 16–20 November 2020.

https://doi.org/10.1177/2050157918761491
https://doi.org/10.1145/3411763
https://doi.org/10.1007/s10796-021-10230-9
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1609/aimag.v30i4.2262
https://doi.org/10.1016/j.jss.2018.11.041
https://doi.org/10.1007/s41233-020-00033-2
https://doi.org/10.1007/978-3-030-49713-2_1
https://doi.org/10.1007/978-3-319-39510-4_32
https://doi.org/10.1007/s10209-021-00852-w
https://www.ncbi.nlm.nih.gov/pubmed/34803565
https://doi.org/10.1016/j.csi.2017.03.009
https://doi.org/10.1016/j.ijsu.2021.105906
https://doi.org/10.1016/B978-155860688-3/50012-9
https://doi.org/10.1145/2736282
https://doi.org/10.1145/3332165

Future Internet 2023, 15, 196 19 of 20

37. Intharah, T.; Turmukhambetov, D.; Brostow, G.J. Hilc: Domain-independent pbd system via computer vision and follow-up
questions. ACM Trans. Interact. Intell. Syst. (TiiS) 2019, 9, 1–27. [CrossRef]

38. Kim, D.; Park, S.; Ko, J.; Ko, S.Y.; Lee, S.-J. X-droid: A quick and easy android prototyping framework with a single-app illusion.
In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, New Orleans, LA, USA, 20–23
October 2019.

39. Hartmann, B.; Wu, L.; Collins, K.; Klemmer, S.R. Programming by a sample: Rapidly creating web applications with d. mix. In
Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, Newport, RI, USA, 7–10 October 2007.

40. Leshed, G.; Haber, E.M.; Matthews, T.; Lau, T. CoScripter: Automating & sharing how-to knowledge in the enterprise. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence Italy, 5–10 April 2008.

41. Lin, J.; Wong, J.; Nichols, J.; Cypher, A.; Lau, T.A. End-user programming of mashups with vegemite. In Proceedings of the 14th
International Conference on Intelligent User Interfaces, Sanibel Island, FL, USA, 8–11 February 2009.

42. Barman, S.; Chasins, S.; Bodik, R.; Gulwani, S. Ringer: Web automation by demonstration. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, Amsterdam, The
Netherlands, 2–4 November 2016.

43. Chasins, S.E.; Mueller, M.; Bodik, R. Rousillon: Scraping distributed hierarchical web data. In Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology, Amsterdam, The Netherlands, 2–4 October 2018.

44. Rodrigues, A. Breaking barriers with assistive macros. In Proceedings of the 17th International ACM SIGACCESS Conference on
Computers & Accessibility, Lisbon, Portugal, 26–28 October 2015.

45. Huang, T.-H.K.; Azaria, A.; Bigham, J.P. Instructablecrowd: Creating if-then rules via conversations with the crowd. In Proceedings
of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016.

46. Sereshkeh, A.R.; Leung, G.; Perumal, K.; Phillips, C.; Zhang, M.; Fazly, A.; Mohomed, I. VASTA: A vision and language-assisted
smartphone task automation system. In Proceedings of the 25th International Conference on Intelligent User Interfaces, Cagliari,
Italy, 17–20 March 2020.

47. Yang, J.; Lam, M.S.; Landay, J.A. DoThisHere: Multimodal Interaction to Improve Cross-Application Tasks on Mobile Devices. In
Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, Virtual, 20–23 October 2020; pp. 35–44.

48. Krawiec, Ł.; Dudycz, H. Identification of heuristics for assessing the usability of websites of public administration units. In
Proceedings of the 2019 Federated Conference on Computer Science and Information Systems (FedCSIS), Leipzig, Germany, 1–4
September 2019; IEEE: Piscataway, NJ, USA, 2019. [CrossRef]

49. Bouraghi, H.; Rezayi, S.; Amirazodi, S.; Nabovati, E.; Saeedi, S. Evaluating the usability of a national health information system
with heuristic method. J. Educ. Health Promot. 2022, 11, 182. [CrossRef]

50. Faria Gomes, R.; Costa de Souza, M.d.F. Reprojecting a Fitness App Regarding Retention and Usability Using Nielsen’s Heuristics.
In Design, User Experience, and Usability: Design for Diversity, Well-being, and Social Development. HCII 2021; Lecture Notes in
Computer Science; Soares, M.M., Rosenzweig, E., Marcus, A., Eds.; Springer: Cham, Switzerland, 2021. [CrossRef]

51. Figueroa, I.; Jiménez, C.; Allende-Cid, H.; Leger, P. Developing usability heuristics with PROMETHEUS: A case study in virtual
learning environments. Comput. Stand. Interfaces 2019, 65, 132–142. [CrossRef]

52. Umar, M.M.; Bakhat, M.U.; Hassan, M. Mapping HCI Principals to Evaluate the Usability of Learning Applications for CCI User.
Int. J. Comput. Sci. Telecommun. 2020, 11, 1–7.

53. Kumar, M.; Emory, J.; Choppella, V. Usability analysis of virtual labs. In Proceedings of the 2018 IEEE 18th International
Conference on Advanced Learning Technologies (ICALT), Mumbai, India, 9–13 July 2018; IEEE: Piscataway, NJ, USA, 2018.

54. Ali, G.; Dida, M.A.; Sam, A.E. Heuristic Evaluation and Usability Testing of G-MoMo Applications. J. Inf. Syst. Eng. Manag. 2022,
7, 15751. [CrossRef]

55. Bashir, M.S.; Farooq, A.; Humayoun, S.R.; Iqbal, M.M.; Iqbal, M.J. EAUHHCAMA: Extending and Adapting Usability Heuristics
for Healthcare Related Context-Aware Mobile Applications. J. Med. Imaging Health Inform. 2020, 10, 2345–2360. [CrossRef]

56. Limtrairut, P. Newly developed heuristics to evaluate m-learning application interface. In Proceedings of the 2020-5th International
Conference on Information Technology (InCIT), Chonburi, Thailand, 21–22 October 2020; IEEE: Piscataway, NJ, USA, 2020.

57. Wei, Z.; Landay, J.A. Evaluating speech-based smart devices using new usability heuristics. IEEE Pervasive Comput. 2018, 17,
84–96. [CrossRef]

58. Hussain, A.; Barakat, M.M.; Zaaba, Z.F. Heuristic evaluation of stock exchange mobile application in Malaysia. Int. J. Adv.
Sci. Technol. 2020, 29, 340–354.

59. Sancho Nascimento, L.; Zagalo, N.; Bezerra Martins, L. Challenges of developing a mobile game for children with Down
Syndrome to test gestural interface. Information 2020, 11, 159. [CrossRef]

60. Muhanna, M.A.; Amro, R.N.; Qusef, A. Using a new set of heuristics in evaluating Arabic interfaces. J. King Saud Univ.-Comput.
Inf. Sci. 2020, 32, 248–253. [CrossRef]

61. Derby, J.L.; Chaparro, B.S. The Development and Validation of an Augmented and Mixed Reality Usability Heuristic Checklist. In
Augmented and Mixed Reality: Design and Development. HCII 2022; Lecture Notes in Computer Science; Chen, J.Y.C., Fragomeni, G.,
Eds.; Springer: Cham, Switzerland, 2022; Volume 13317. [CrossRef]

62. Da Costa, R.P.; Canedo, E.D.; De Sousa, R.T.; Albuquerque, R.D.O.; Villalba, L.J.G. Set of usability heuristics for quality assessment
of mobile applications on smartphones. IEEE Access 2019, 7, 116145–116161. [CrossRef]

https://doi.org/10.1145/3234508
https://doi.org/10.15439/2019F307
https://doi.org/10.4103/jehp.jehp_349_21
https://doi.org/10.1007/978-3-030-78224-5_30
https://doi.org/10.1016/j.csi.2019.03.003
https://doi.org/10.55267/iadt.07.12296
https://doi.org/10.1166/jmihi.2020.3255
https://doi.org/10.1109/MPRV.2018.022511249
https://doi.org/10.3390/info11030159
https://doi.org/10.1016/j.jksuci.2018.05.014
https://doi.org/10.1007/978-3-031-05939-1_11
https://doi.org/10.1109/ACCESS.2019.2910778

Future Internet 2023, 15, 196 20 of 20

63. Saavedra, M.J.; Rusu, C.; Quiñones, D.; Roncagliolo, S. A Set of Usability and User eXperience Heuristics for Social Networks.
In Social Computing and Social Media. Design, Human Behavior and Analytics. HCII 2019; Lecture Notes in Computer Science;
Meiselwitz, G., Ed.; Springer: Cham, Switzerland, 2019; Volume 11578. [CrossRef]

64. Vieira, E.A.O.; Silveira, A.C.d.; Martins, R.X. Heuristic evaluation on usability of educational games: A systematic review.
Inform. Educ. 2019, 18, 427–442. [CrossRef]

65. Abreu, C.A.; Rosa, J.C.S.; Matos, E.D. Usability Heuristics for Children Educational Mobile App. Abakos 2020, 8, 42–60. [CrossRef]
66. Marquez, J.O.; Meirelles, P.; da Silva, T.S. Towards Usability Heuristics for Interactive Web Maps. In Proceedings of the XX

Brazilian Symposium on Human Factors in Computing Systems, Virtual Event Brazil, 18–22 October 2021.
67. Silvis, I.M.; Bothma, T.J.; de Beer, K.J. Evaluating the usability of the information architecture of academic library websites.

Libr. Hi Tech 2019, 37, 566–590. [CrossRef]
68. Salah, M.S.; Jusoh, S.; Muhanna, M.A. The development of usability heuristics For Arabic m-commerce applications. In

Proceedings of the 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT),
Amman, Jordan, 9–11 April 2019; IEEE: Piscataway, NJ, USA, 2019.

69. Ismail, H.; Khafaji, H.; Fasla, H.; Younis, A.R.; Harous, S. A cognitive style-based usability evaluation of Zoom and Teams
for online lecturing activities. In Proceedings of the 2021 IEEE Global Engineering Education Conference (EDUCON), Vienna,
Austria, 21–23 April 2021; IEEE: Piscataway, NJ, USA, 2021.

70. Zardari, B.A.; Hussain, Z.; Arain, A.A.; Rizvi, W.H.; Vighio, M.S. QUEST e-learning portal: Applying heuristic evaluation,
usability testing and eye tracking. Univers. Access Inf. Soc. 2021, 20, 531–543. [CrossRef]

71. Tremoulet, P.D.; Shah, P.D.; Acosta, A.A.; Grant, C.W.; Kurtz, J.T.; Mounas, P.; Kirchhoff, M.; Wade, E. Usability of Electronic
Health Record–Generated Discharge Summaries: Heuristic Evaluation. J. Med. Internet Res. 2021, 23, e25657. [CrossRef] [PubMed]

72. Anuar, N.N.; Othman, M.K. Development and validation of progressive web application usability heuristics (PWAUH).
Univ. Access Inf. Soc. 2022. [CrossRef]

73. Kaya, A.; Gumussoy, C.A.; Ekmen, B.; Bayraktaroglu, A.E. Usability heuristics for the set-top box and TV interfaces. Hum. Factors
Ergon. Manuf. Serv. Ind. 2021, 31, 270–290. [CrossRef]

74. Yanez-Gomez, R.; Font, J.L.; Cascado-Caballero, D.; Sevillano, J.-L. Heuristic usability evaluation on games: A modular approach.
Multimed. Tools Appl. 2019, 78, 4937–4964. [CrossRef]

75. de Franceschi, V.D.; Fontoura, L.M.; Silva, M.A.R. Usability Heuristics for Tabletop Systems Design. ICEIS 2020, 2, 555–562.
76. Kumar, B.A.; Goundar, M.S. Usability heuristics for mobile learning applications. Educ. Inf. Technol. 2019, 24, 1819–1833.

[CrossRef]
77. Marcilly, R.; Colliaux, J.; Robert, L.; Pelayo, S.; Beuscart, J.-B.; Rousselière, C.; Décaudin, B. Improving the usability and usefulness

of computerized decision support systems for medication review by clinical pharmacists: A convergent, parallel evaluation.
Res. Soc. Adm. Pharm. 2023, 19, 144–154. [CrossRef]

78. Sánchez-Adame, L.M.; Mendoza, S.; Urquiza, J.; Rodríguez, J.; Meneses-Viveros, A. Towards a set of heuristics for evaluating
chatbots. IEEE Lat. Am. Trans. 2021, 19, 2037–2045. [CrossRef]

79. Samarakoon, S.; Weerasinghe, T.; Usoof, H. Usability Heuristics for Early Primary Children: A Case Study in Sri Lanka. In
Proceedings of the 2021 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas,
NV, USA, 15–17 December 2021; IEEE: Piscataway, NJ, USA, 2021.

80. Huang, Z. Usability of tourism websites: A case study of heuristic evaluation. New Rev. Hypermedia Multimed. 2020, 26, 55–91.
[CrossRef]

81. Viana, L.; Passos, L.; Oliveira, E.; Conte, T. Applying Usability Heuristics in the Context of Data Labeling Systems. In Proceedings
of the XX Brazilian Symposium on Human Factors in Computing Systems, Virtual Event Brazil, 18–22 October 2021.

82. Eltalhi, S.; Kutrani, H.; Imsallim, R.; Elrfadi, M. The Usability of BenKids Mobile Learning App in Vocabulary Teaching for
Preschool. iJIM 2021, 15, 5. [CrossRef]

83. Kim, M.J.; Schroeder, S.; Chan, S.; Hickerson, K.; Lee, Y.-C. Reviewing the User-Centered Design Process for a Comprehensive
Gastroesophageal Reflux Disease (GERD) App. Int. J. Environ. Res. Public Health 2022, 19, 1128. [CrossRef] [PubMed]

84. Robson, R.S.; Sabahat, N. Heuristic based approach for usability evaluation of mobile games. In Proceedings of the 2020
International Conference on Computing, Electronics & Communications Engineering (iCCECE), Southend, UK, 17–18 August
2020; IEEE: Piscataway, NJ, USA, 2020.

85. Pyae, A. A usability evaluation of the Google Home with non-native English speakers using the system usability scale. Int. J.
Netw. Virtual Organ. 2022, 26, 172–194. [CrossRef]

86. Kirkscey, R. Development and patient user experience evaluation of an mHealth informational app for osteoporosis. Int. J.
Hum.–Comput. Interact. 2022, 38, 707–718. [CrossRef]

87. Bashir, M.S.; Farooq, A. EUHSA: Extending usability heuristics for smartphone application. IEEE Access 2019, 7, 100838–100859.
[CrossRef]

88. Hasan, M.S.; Yu, H. Innovative developments in HCI and future trends. Int. J. Autom. Comput. 2017, 14, 10–20. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-3-030-21902-4_10
https://doi.org/10.15388/infedu.2019.20
https://doi.org/10.5752/P.2316-9451.2020v8n2p42-60
https://doi.org/10.1108/LHT-07-2017-0151
https://doi.org/10.1007/s10209-020-00774-z
https://doi.org/10.2196/25657
https://www.ncbi.nlm.nih.gov/pubmed/33856353
https://doi.org/10.1007/s10209-022-00925-4
https://doi.org/10.1002/hfm.20885
https://doi.org/10.1007/s11042-018-6593-1
https://doi.org/10.1007/s10639-019-09860-z
https://doi.org/10.1016/j.sapharm.2022.08.012
https://doi.org/10.1109/TLA.2021.9480145
https://doi.org/10.1080/13614568.2020.1771436
https://doi.org/10.3991/ijim.v15i24.22237
https://doi.org/10.3390/ijerph19031128
https://www.ncbi.nlm.nih.gov/pubmed/35162160
https://doi.org/10.1504/IJNVO.2022.122849
https://doi.org/10.1080/10447318.2021.1965773
https://doi.org/10.1109/ACCESS.2019.2923720
https://doi.org/10.1007/s11633-016-1039-6

	Introduction
	Methodology
	Data Collection
	Search Terms
	Databases Searched

	Article Selection
	Data Analysis

	Results
	RQ.1
	Desktop-Based Task Automation Systems and Intelligent Agents
	Web-Based Task Automation Systems and Intelligent Agents
	Mobile-Based Task Automation Systems and Intelligent Agents

	RQ.2
	Heuristic Development Methodologies
	Development of Heuristics in Domains
	Analysis

	Discussion
	Conclusions
	References

