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Abstract: With the advancement of IoT technologies, there is a large amount of data available from
wireless sensor networks (WSN), particularly for studying climate change. Clustering long and noisy
time series has become an important research area for analyzing this data. This paper proposes a
feature-based clustering approach using topological data analysis, which is a set of methods for
finding topological structure in data. Persistence diagrams and landscapes are popular topological
summaries that can be used to cluster time series. This paper presents a framework for selecting an
optimal number of persistence landscapes, and using them as features in an unsupervised learning
algorithm. This approach reduces computational cost while maintaining accuracy. The clustering
approach was demonstrated to be accurate on simulated data, based on only four, three, and three
features, respectively, selected in Scenarios 1–3. On real data, consisting of multiple long temperature
streams from various US locations, our optimal feature selection method achieved approximately a
13 times speed-up in computing.

Keywords: elbow method; feature construction; IoT time series; persistence landscape; topological
data analysis; unsupervised learning

1. Introduction

Enhanced IoT technologies have been developing at a remarkable pace, allowing long
streams of data to be collected from a large number of in situ wireless sensor networks.
Application domains include business, biomedicine, energy, finance, insurance, and trans-
portation sensors being installed across broad geographic regions. Data streams collected
by these sensors constitute long, noisy time series with complex temporal dependence
patterns, leading to several different types of interesting and useful data analysis. For
example, specially adapted machine learning techniques for anomaly detection in internal
temperatures, by sensors placed inside thousands of buildings in the US by an insurance
company, were developed in [1], with the goal of alerting clients, and attempting to mitigate
the risk of pipe freeze hazard. An extended analysis of the same IoT streams was provided
in [2], by employing a Gaussian process model framework, to assess the causal impact of a
client reaction to an alert. Data analysis of energy usage, management, and monitoring on
a large academic campus was described in [3]. The role of wireless sensor technologies in
the agriculture and food industry was discussed in [4].

There is also considerable interest in analyzing IoT streams to understand different
aspects of weather monitoring and climate change. For example, remote sensing in water
environmental processes was discussed in [5], while [6] discussed how inexpensive open-
source hardware is democratizing (climate) science, because open-source sensors are able
to measure environmental parameters at a fraction of the cost of commercial equipment,
thus offering opportunities for scientists in developed and developing countries to analyze
climate change at both local and global regional levels. A report from the United Nations
Intergovernmental Panel on Climate Change (IPCC) states that average temperatures
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are likely to continue rising, even with mitigating efforts in place (https://www.ipcc.ch/
report/ar6/wg1/ (accessed on 1 October 2019)). NOAA observation systems collect data
twice every day, from nearly 100 locations in the US. The National Weather Service (NWS)
launches weather balloons, carrying instrument packages called radiosondes. Radiosonde
sensors measure upper air conditions, such as atmospheric pressure, temperature and
humidity, and wind speed and direction. The Automated Surface Observing Systems
(ASOS) program is a joint effort by the National Weather Service (NWS), the Federal
Aviation Administration (FAA), and the Department of Defense (DOD). The ASOS system
serves as the primary surface weather observing network in the US, updating observations
every minute (https://www.weather.gov/about/ (accessed on 1 October 2019)) (https:
//nosc.noaa.gov/OSC/ (accessed on 1 October 2019)).

When weather data are available from a large number of locations, clustering/grouping
locations based on stochastic properties of the data are of considerable interest [7–10]. To
this end, it is useful to develop effective algorithms that construct useful features that
capture the behavior of the time series: clustering then proceeds on the basis of simi-
larity/dissimilarity metrics between the features. There is a considerable literature on
feature-based time series clustering. For example [11], categorized feature representations
for time series fall into into four broad types: (i) data-adaptive representations, which are
useful for time series of arbitrary lengths; (ii) non-data-adaptive approaches, which are used
for time series of fixed lengths; (iii) model-based methods, which are used for representing
time series in a stochastic modeling framework; and (iv) data-dictated approaches, which
are automatically defined, based on raw time series. In this article, we describe feature
construction based on persistent homology, a concept in topological data analysis (TDA),
which we used to cluster locations with similar weather patterns.

Topological data analysis [12] encompasses methods for discovering interesting shape-
based patterns, by combining tools from algebraic topology, computer science, and statistics,
and it is becoming an increasingly useful area in many time series applications. For a review
of persistent homology for time series, and a tutorial using the R software, see [13]. In
particular, the review discusses ideas such as transforming time series into point clouds via
Takens embedding [14], creating persistence diagrams [15,16], and constructing persistence
landscapes of all orders [17]. While persistent homology is a central tool in TDA, for
summarizing geometric and topological information in data using a persistence diagram
(or a bar code), it is cumbersome to construct useful statistical quantities using metrics
such as the Wasserstein distance. Persistence landscapes enable us to map persistent
diagrams to a Hilbert space, thereby making it easier to apply tools from statistics and
machine learning. Recent research has explored the use of persistence landscapes as
features to either cluster or classify time series [18–20]. Persistence landscapes of all orders
using weighted Fourier transforms of continuous-valued EEG time series were constructed
by [21], and used as features for clustering the time series, using randomness testing to
examine the robustness of the approach to topology-preserving transformations, while
being sensitive to topology-destroying transformations. First-order persistence landscapes,
constructed from Walsh–Fourier transforms of categorical time series from a large activity–
travel transportation data set, were used by [22] to create features for clustering, arguing
that the first-order landscape was sufficient for accurately clustering time series with
relatively simple dependence properties. Several aspects of using persistence homology in
time series analysis have been discussed in-depth in [23].

It is well-known that lower-order persistence landscapes contain more important
topological features than higher-order landscapes, which are closer to zero [17]. In many
situations, it may be unnecessary and computationally prohibitive to use persistence
landscapes of all orders to elicit useful features of time series. Selecting the order of the
persistence landscapes to serve as features requires a delicate balance between missing
important signals and introducing too much noise. Existing research has not addressed
the problem of data-based selection of the order of persistence landscapes that is sufficient
to yield accurate clustering: thus, the focus of this article was to address the problem of
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deciding the order of persistence landscapes in a time series clustering scenario, and to study
this question in the context of noisy, periodic stationary time series, using the smoothed
second-order spectrum to construct persistence landscapes. The solution was an algorithm
which automatically selected the optimal order of persistence landscapes in a sequential
way. These features were then used in clustering the time series. The computational
gain from the algorithm was demonstrated through extensive simulation studies, which
showed a speed-up of approximately 13 times. We then illustrate our approach, using long
temperature streams from from different US locations, and show that features constructed
from the selected orders of persistence landscapes produced meaningful clusters of the
locations, which may be useful for climate scientists in a comparative study of temperature
patterns over time in several locations.

The format of the paper is as follows. Section 2 provides the background of persis-
tence homology for time series, and specifically describes the construction of persistent
landscapes. Section 3 discusses literature that is closely related to our research. Section 4
then presents the motivation for our research, and highlights our contribution. Section 5
describes the construction and implementation of our proposed algorithm for feature con-
struction, which is used for time series clustering. Section 6 presents a simulation study,
to evaluate the performance of our clustering method. Section 7 clusters daily maximum
temperatures across various locations in the United States. Section 8 summarizes the paper.

2. Background

In this section, we briefly present the background of persistence homology for time
series, which is relevant to our objective of clustering time series based on their stochastic
properties.

2.1. Time Series to Second-Order Spectrum

Let xt, t = 1, . . . , T be T observations from a stationary time series {Xt} with second-
order spectral density function f (ω). Let ι =

√
−1. The tapered discrete Fourier transform

(DFT) and the corresponding second-order periodogram of Xt are defined as [24]

d(ωj) = T−1/2
T

∑
t=1

htxte−2πιωjt, and (1)

I(ωj) =
∣∣d(ωj)

∣∣2, (2)

where ωj = j/T, j = 1, 2, . . . , T/2 are the Fourier frequencies. It is well-known that I(ωj)
is not a consistent estimate of the true spectrum f (ω) of the time series Xt: a remedy is to
smooth the periodogram I(ω), in order to get a consistent estimate of the true spectrum.
Several smoothing kernels can be employed, including the Daniell, modified Daniell,
Bartlett, and Hanning kernels. Let Ĩ(ω) be the smoothed periodogram, using a modified
Daniell kernel over 2m + 1 points surrounding ωj as

Ĩ(ω) =
m

∑
k=−m

ck I(ωj + k/T),

where the weights ck at the two endpoints receive half the weight that the interior points
receive; see [24–26] for more details.

2.2. Spectrum to Persistence Diagram

Starting from the smoothed spectrum Ĩ(ωj), the R function gridDiag() in the R-TDA
package computes the persistence diagram, which shows the births and deaths of the con-
nected components of the time series Xt, denoted by Ω̃ = {(λk,1, λk,2), k = 1, 2, . . . , K̃} [13].
The function gridDiag() is useful for computing the persistent homology of sublevel sets
(or superlevel sets) of functions evaluated over a grid of points; specifically: (a) it computes
the periodogram function in Equation (2) over a triangulated grid; (b) it constructs a fil-
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tration of simplices, using the values of the function; and (c) it computes the persistent
diagram. (https://cran.r-project.org/web/packages/TDA/vignettes/article.pdf (accessed
on 1 June 2019))

2.3. Persistence Diagram to Persistence Landscape

Next, we construct persistence landscapes from the persistence diagrams, using the
R function landscape() in the R-TDA package. Persistence landscapes provide useful
summaries of topological properties, and are easy to combine with tools from statistics
and machine learning. It was proved by [17] that a set of persistence landscapes admits a
unique mean, and preserves the statistical stability of the data distribution, and that using
persistence landscapes can preserve differences in the persistence diagrams. The function
landscape() takes as inputs a persistence diagram Ω̃ (Diag), its dimension p (dimension),
the landscape order ν (KK) with default value 1, the value of L (length), and the region of L
(tseq); it outputs the persistence landscape of each order ν as a vector PLν(`), ` = 1, . . . , L.
If we set ν = 40, for example, the function will produce a persistence landscape for each ν.
See [12,17,27] for more details, and [13] for the R code for constructing persistence diagrams
and persistence landscapes from estimated spectra.

3. Related Work

Clustering locations or climate stations based on temperature or precipitation time
series have been discussed in several recent articles. A two-step cluster analysis of
449 southeastern climate stations was described in [7], to determine general climate clus-
ters for eight southeastern states in the US, and has been employed in several follow-up
analyses involving the classification of synoptic climate types. In a similar vein, ref. [8]
used a hierarchical cluster analysis to demarcate climate zones in the US, based on weather
variables, such as temperature and precipitation.

Spatial grouping of over 1000 climate stations in the US was discussed in [10], by
using a hybrid clustering approach, based on a measure of rank correlation as a metric of
statistical similarity. Based on the clustering temperatures at these stations, they showed
that roughly 25% of the sites accounted for nearly 80% of the spatial variability in seasonal
temperatures across the country.

Recent research has used persistence landscapes constructed from time series as
features to cluster the time series. In this section, we review related works that focus on
using persistent homology for clustering time series. We then highlight the novelty and
usefulness of our approach.

A framework for implementing the break detection of critical transitions on daily
price cryptocurrencies, using topological data analysis (TDA), was proposed by [19].
They (i) transformed the time series into point clouds, using Taken’s delay embedding,
(ii) computed persistence landscapes for each point cloud window, (iii) converted to their
L1 norms, and (iv) used K-means clustering for these windowed time series.

Persistence landscapes of all orders were employed by [20] as topological features for
time series, via Taken’s time-delayed embedding transformation, and principle component
analysis for denoising the time series.

The problem of clustering continuous-valued EEG time series was studied by [21].
They constructed weighted Fourier transforms of the time series, and constructed persis-
tence landscapes of all orders: they used these as features for clustering the time series. They
also examined the robustness of their approach to topology-preserving transformations,
while being sensitive to topology-destroying transformations.

The use of persistence landscapes for clustering categorical time series from a large
activity–travel transportation data set was described in [22]. They first constructed Walsh–
Fourier transforms of the categorical time series, and then obtained first-order persistence
landscapes from the Walsh–Fourier transforms, which they used as features for clustering
the time series. In this case, they argued that the first-order landscape was sufficient for

https://cran.r-project.org/web/packages/TDA/vignettes/article.pdf
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accurately clustering time series with relatively simple dependence properties, as in the
activity–travel transportation data.

An analysis of multivariate time series using topological data analysis was proposed
in [28], by converting the time series into point cloud data, calculating Wasserstein dis-
tances between the persistence diagrams, and using the k-nearest neighbors algorithm for
supervised machine learning, with an application to predicting room occupancy during a
time window.

Time series clustering with topological–geometric mixed distance (TGMD) was dis-
cussed in [29], which jointly considered the local geometric features and global topolog-
ical characteristics of time series data. The results revealed that their proposed mixed-
distance-based similarity measure could lead to promising results, and to better perfor-
mance than standard time series analysis techniques that consider only topological or
geometrical similarity.

In our approach, we constructed persistent landscapes from the second-order spectra
of stationary time series, with the goal of clustering a large number of time series. To
balance computing time and clustering accuracy, we developed an algorithm to select an
optimal number of landscapes to be employed as features in the clustering.

4. Motivation and Contributions

In the previous sections, we discussed issues regarding employing features based on
persistence landscapes for clustering time series. Persistence landscapes constitute repre-
sentations of topological features in a Hilbert space: hence, using landscapes of all orders
as features may be the most informative approach in statistical learning [17]; however,
constructing landscapes of all orders may be computationally expensive. In general, lower-
order persistence landscapes contain information about important topological features
of the data, while higher-order persistence landscapes are closer to zero, and generally
represent noise.

If K̃ denotes the number of local minima in the smoothed periodogram Ĩ(ωj), then
in computing its persistence landscapes PLν(1), . . . , PLν(L) of all orders ν, a large fraction
of the computing time is used for sorting the K̃ topologies for each value of `. When
the time series Xt has complex signals (perhaps consisting of a complicated mixture of
several patterns), or Xt is very noisy (perhaps with a small signal-to-noise ratio, and/or
time-varying variances), then K̃ is likely to be large, and it may be important to construct
landscapes of large order, to pull out information useful for learning the time series.
However, for time series with simpler stochastic patterns, the order of landscapes need not
be very high, and computing them may be costly, but wasted effort. In summary, while
the use of persistence landscapes for time series clustering is a useful and novel idea, the
method can be time-consuming if landscapes of all orders are used, and inaccurate if too
few (say, one) landscapes are used as features.

In particular, when we cluster or classify a large number N of time series, an algorithm
to decide the order of useful persistence landscapes is useful. There is no approach in the
existing literature, to our knowledge, for determining the optimal number of persistence
landscapes as features for clustering time series: this motivated our work to explore this
question and contribute to the literature in this regard.

Specifically, the contribution of this research is the development of an algorithm to
select the smallest order of persistence landscapes to be employed as features for clustering
a large number of time series, in order to speed up the computing without sacrificing
accuracy. The implementation is described in the next section.

5. Implementation

This section describes optimal feature construction from persistence landscapes corre-
sponding to time series. Specifically, our research describes an algorithm for selecting the
smallest order of persistence landscapes to be employed as features for clustering/classifying
a large number of time series, in order to speed up the computing without sacrificing
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accuracy. Depending on the nature of the time series, the selected number could be one
or a small integer—say, two or three. Our algorithm takes advantage of the monotonicity
and non-negativity of persistence landscapes, to set up a scoring function that accumulates
over the different orders. This is similar to the behavior of the total within-cluster sum
of squares, as the number of clusters increases in unsupervised learning, where the elbow
method is used to select the appropriate number of clusters [30].

For n = 1, . . . , N, let Ĩ(n)(ωj), j = 1, . . . , T/2 be the smoothed spectrum, Ω̃(n) =

{(λ(n)
k,1 , λ

(n)
k,2 ), k = 1, 2, . . . , K̃} be the persistence diagram, and PL(n)ν (`), ` = 1, . . . , L be

the νth order persistence landscapes. Algorithm 1 describes an approach to selecting the
optimal (smallest) order ν = νopt, in the context of clustering N time series, each of length
T: specifically, it chooses the farthest point (νopt, Sνopt) from the function formed by using
points (1, S1) and (ν, Sν).

The features PL(n)ν (`), ν = 1, 2, . . . νopt; ` = M1, . . . , M2 obtained from Algorithm 1
for each time series represent the important topological features of the data. Using these
features within a K-means algorithm produces effective clustering of the N time series in
less computing time than if all the persistence landscapes were employed as features. Let

D(n1, n2) =

√√√√νopt

∑
ν=1

M2

∑
`=M1

(PL(n1)
ν (`)− PL(n2)

ν (`))2

denote the Euclidean distance between the persistence landscapes of the n1-th and n2-th
time series. Smaller (larger) Euclidean distance implies that the two series have similar
(dissimilar) topological features.

Algorithm 1 Feature Construction Using Persistence Landscapes

Input: Set of time series {X(n)
t , t = 1, . . . , T, n = 1, 2, . . . , N}; N is the number of time series,

each of length T.
for n = 1 to N do

Compute Ĩ(n)(ωj), j = 1, . . . , T/2 by using the R function spec.pgram() with a modified
Daniell kernel.
Compute the persistence diagram Ω̃(n) = {(λ(n)

k,1 , λ
(n)
k,2 ), k = 1, 2, . . . , K̃} from I(n)(ωj) by

using the R function gridDiag() in R-TDA package.
end for
Compute M1 = minn,k λ

(n)
k,1 and M2 = maxn,k λ

(n)
k,2 .

Initialize PL order ν = 1, flag = true, νopt = 1 when ν = 1.
while flag do

for n = 1 to N do
Compute the ν-th order persistence landscapes PL(n)ν (`), ` = 1, . . . , L.

end for
Compute Sν = ∑M2

`=M1
∑N

n=1 PL
(n)
ν (`).

if ν > 1 then
Fit linear function y = ax + b of (x, y) on points (1, S1) and (ν, Sν), so that â = Sν−S1

ν−1 , b̂ =
S1 − â.
for ν+ = 1 to ν do

Compute D(ν+) =
|âν++b̂−Sν+ |√

â2+1
as Euclidean distances of points (ν+, Sν+ ) to the fitted

linear function above.
end for
Calculate νopt = argmaxν+≤ν D(ν+) (let νopt = 1 when ν = 2 since D(1) = D(2) = 0
when ν = 2).
if ν ≥ 3 and νopt = (ν− 1)opt = (ν− 2)opt then

flag = false
end if

end if
ν = ν + 1

end while
Output: optimum order νopt, and PL(n)ν0 (`), ν0 = 1, 2, . . . νopt; ` = M1, . . . , M2 as the feature
representation for the n-th time series.
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We implement K-means clustering via the function kmeans() in R, using multiple
random initializations with nstart=10 [31,32]. Section 6 implements the landscape order
selection algorithm and K-means clustering for N simulated time series, while Section 7
illustrates the approach on daily temperatures from monitoring sensors.

6. Simulation Study

We simulated time series of length T = 1024 generated from J different popula-
tions. Each time series X(n)

j,t within the j-th population contained a (population spe-
cific) signal Yj,t, which was a mixture of Mp periodic components together with additive

white noise ε
(n)
j,t . The scenarios varied according to their signal-to-noise ratio, defined by

SNR = Var(Yj,t)/Var(ε(n)j,t ). The set of Mp signal frequencies and amplitudes differed
between the J populations. We studied single-frequency signals and signals that were a
mixture of three different frequencies. Furthermore, within each population, we slightly
perturbed the signal frequencies around the selected fixed values, in order to simulate
realistic situations: as a result, each of the n time series within the same population were
allowed to have nearly similar, though not identical, signals.

Step 1. Let the number of populations be J = 2. We selected three different values of SNR,
i.e., 0.5, 1.5, and 3.0. Corresponding to each SNR value, we generated periodic
time series, with frequencies and amplitudes described below:

(a) Scenario 1 with Mp = 3. We selected three periods in the first population,
to be (180, 90, 14) (i.e., half-year cycle, three-month cycle, and two-week
cycle), and in the second population, as (120, 30, 7) (i.e., four-month cycle,
one-month cycle, and one-week cycle). We selected the amplitudes at these
frequencies, to be Aj,u = (2, 1, 0.5) in the first population, and (1.5, 1.5, 0.5) in
the second population, for u = 1, . . . , Mp;

(b) Scenario 2 with Mp = 3. We selected three periods in the first population, to
be (30, 14, 7) (i.e., one-month cycle, two-week cycle, and one-week cycle), and
in the second population, as (120, 30, 14) (i.e., four-month cycle, one-month
cycle, and two-week cycle). We select the amplitudes at these frequencies, to
be Aj,u = (2, 1, 0.5) in the first population, and (0.1, 0.15, 2.5) in the second
population, for u = 1, . . . , Mp;

(c) Scenario 3 with Mp = 1. We selected the period, as 180 in the first population,
and 120 in the second population. We selected the amplitude in the first
population, as A1,1 = 2, and the amplitude in the second population, as
A1,1 = 1.5.

With these parameters, we generated Yj,t = ∑
Mp
u=1 Aj,u cos(2πt/ f j,u), to represent

the simulated signal in the j-th population.
Step 2. We simulated Nj = 20 time series in each of J = 2 populations. The period was not

fixed, but randomly varied about the fixed periods selected for each population:

(a) We simulated Mp random periods that uniformly varied around the fixed
periods selected for each population, i.e., δ f j,u ∼ Uniform(aj,u, bj,u), where
we set aj,u = 0.8 f j,u and bj,u = 1.2 f j,u;

(b) We simulated a time series in the j-th population as

X(n)
j,t =

Mp

∑
u=1

Aj,u cos(2πt/δ f j,u) + εj,n,t, where ε
(n)
jt ∼ N

(
0,

Var(Yj,t)

SNR

)
,

which generated Nj = 20 time series in each of the J = 2 populations.
Step 3. We constructed features based on persistence landscapes in the N = N1 + N2

series, as follows:

(a) based on ν = 1 only;
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(b) based on ν = 1, . . . , νopt, using Algorithm 1;
(c) based on ν = 1, . . . , 40, to reflect all orders.

Step 4. In each of the cases above, we used K-means clustering, using the kmeans()
function in R with C = 2 clusters, and we computed the accuracy of clustering, via

ASNR =
#{correct labels}

∑J
j=1 Nj

,

where the numerator denoted the number of correct labels (classification).
Step 5. We repeated Steps 2–4 for a total of R = 50 times, and computed the average

accuracy across the replications, as ASNR.

The average classification accuracy corresponding to each SNR value in each of the
three scenarios, and each feature construction approach (smoothed tapered spectrum, PL(1),
PL(ν), ν = 1, . . . , νopt, and PL(ν), ν = 1, . . . , 40) is shown in Table 1. Note that there is no
upper bound on the PL order ν, and that we chose ν = 40 as a sufficiently large number.
In Scenario 1, when Mp = 3, the elbow method chose νopt = 4, and the features were
constructed using persistence landscapes of orders ν = 1, . . . , 4; whereas, in Scenario 2,
νopt = 3 was selected. When Mp = 1, νopt = 3 was selected. The use of νopt was able
to preserve almost all the information that was preserved when using all orders, and
performed best in most cases.

Table 1. Comparisons of the average accuracy of clustering. Different PL orders corresponding to
three SNR Values.

Scenarios Scenario 1 (νopt = 4) Scenario 2 (νopt = 3) Mp = 1 (νopt = 3)

SNR 0.5 1.5 3 0.5 1.5 3 0.5 1.5 3

In(ωj) 0.97 0.9735 0.9735 0.505 0.5075 0.5045 0.9615 0.9645 0.964

PL(1) 0.9295 0.9655 0.977 0.9275 0.9615 0.967 0.9615 0.9795 0.9875

PL(ν), ν = 1 . . . νopt 0.94 0.981 0.991 0.928 0.962 0.9685 0.9615 0.9795 0.988

PL(ν), ν = 1 . . . 40 0.94 0.981 0.991 0.928 0.962 0.9685 0.9615 0.9795 0.988

7. Clustering Temperature Time Series

We clustered long streams of temperatures, measured by sensors in various weather
stations in the US. We considered time series of maximum daily temperatures (TMAX)
from 11 December 2016 to 30 September 2019 (T = 1024). The length T is a power of two,
which was ideal for estimating the second-order spectrum using a Fast Fourier Transform
(FFT). In addition, the time span included days from all four seasons in the US. Data for
these locations were obtained from the National Oceanic and Atmospheric Administration
(www.ncdc.noaa.gov (accessed on 1 October 2019)), and were preprocessed by (i) excluding
the series if there were more than 100 missing values, and (ii) imputing a smaller number of
missing values in the series, using the function na_se adec() in the R package imputeTS.
We then fitted a linear trend regression model to the time series in N = 63 locations, in
order to remove the long-term trend.

Figure 1 shows the raw preprocessed temperature series (black) and the detrended
series (blue) at four randomly selected locations. Each of the detrended time series at
different locations showed a strong annual cycle. The levels and ranges of temperatures
varied between locations: for instance, in Albany, the time series exhibited amplitudes
ranging from 20 to 100 degrees Celsius, while Albert Lea had amplitudes ranging from
−20 to around 80 degrees Celsius. The locations also exhibited different patterns of
temporal dependence.

We implemented Algorithm 1, to select persistence landscapes of optimal order as
features, and then used the K-means algorithm to cluster the N = 63 temperature time

www.ncdc.noaa.gov
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series based on these features. The red circle in each plot in Figure 2 denotes the selected
order νopt from the elbow method. The method converged quickly (at iteration 5) and
chose νopt = 3. Note that, because νopt = 3 held for two successive iterations, this value
was picked as the optimum order for these data. We constructed the persistence landscapes
of orders ν = 1, 2, 3, and used these as features in the K-means algorithm. We showed the
computing times on a MacBook Pro (16-inch, 2019 with a 2.3 GHz 8-Core Intel Core i9).
The code for the optimum νopt = 3 landscapes was 27.92 seconds versus 6.04 minutes to
run ν = 40 landscapes: that is, using the optimum landscapes produced a speed-up of
approximately 13 times.
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Figure 1. Raw temperatures (blue) and detrended temperatures (black) from four locations.
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Figure 2. Persistence landscape (PL) order selection for temperature time series using the elbow method.
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The number of clusters in the K-means method was chosen to be C = 3, using the
average silhouette method [33] (see Figure 3). The profiles of the daily temperatures within
the three clusters are shown in Figure 4. The titles of each plot show the number of time
series in each cluster, i.e., C1 = 21, C2 = 9, and C3 = 33. In each plot, the black lines are
the time-wise median of the time series, while the blue dots denote the maximum and
minimum over time within the cluster. The temperatures in the three clusters clearly exhibit
different temporal patterns. For instance, the locations in Cluster 3 have higher temperature
values in general than the locations in the other clusters, while Cluster 2 includes locations
with a wider range of temperatures.
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Figure 3. Selecting the number of clusters, using the average silhouette method.
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Figure 4. Profiles of daily temperatures in the C = 3 clusters selected using the K-means method
with νopt persistence landscapes as features.

It is useful to visualize the weather stations geographically, as shown in Figure 5, in
order to see how the locations in different regions of the US were clustered by our algorithm.
The locations in Cluster 2 (the green dots) are dense around the north-central parts of the
US, while both Cluster 1 and Cluster 3 appear to be more spread out around the country.
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For the most part, the locations in Cluster 1 appear to span the northern part of the country,
while the locations in Cluster 3 are at lower latitudes, and are closer to the coast.
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Figure 5. Distribution of locations in the C = 3 clusters.

It is also interesting to discuss the clustering based on the eight climates in the US
(https://scijinks.gov/climate-zones/ (accessed on 2 October 2019)): these include subtropi-
cal evergreen broad-leaved forest, subtropical desert and grassland, temperate deciduous
broad-leaved forest, temperate grassland, plateau mountain, temperate desert, Mediter-
ranean, temperate maritime, and sub-cold coniferous forest. Most of the locations in Cluster
3 are located in warm climate zones, such as the subtropical evergreen broad-leaved forest
zone. The locations in Cluster 1 are mainly located in the mid-south (the temperate de-
ciduous broad-leaved forest zone, and the middle part of the temperate grassland zone).
Cluster 2 is mainly located in the northern part of the temperate deciduous broad-leaved
forest zone and the temperate grassland zone.

8. Conclusions

The use of persistent homology (an important topic in topological data analysis) for an-
alyzing time series is a novel emerging area of scientific enquiry, which connects mathemat-
ics, computer science, and statistics. Persistent landscapes are especially useful constructs
for clustering a large number of time series with different temporal dependence properties.
As lower-order persistence landscapes contain more important topological features than
those of higher orders, in many situations it may be unnecessary and computing-intensive
to use persistence landscapes of all orders to elicit useful features of time series. Previous
research on this topic has not considered the problem of selecting the order of the persistence
landscapes for effective clustering. In this paper, we present the elbow method, a data-
based approach to selecting the optimal order of persistence landscapes. The novelty of our
approach was to only use persistence landscapes up to the selected order as features, for

https://scijinks.gov/climate-zones/
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faster clustering of a large number of time series. Note that if we have labeled time series,
these features can also be used in supervised learning algorithms (classification).

We evaluated our approach through a simulation study, which showed that using
features up to the optimal selected order produced the best clustering performance in most
cases. We also applied our algorithm to clustering weather stations in the US, based on
daily temperatures from sensors, in interesting and meaningful ways.

It is interesting to note that, unlike the simulated cases, the same clustering labels
that we obtained from our algorithm were also obtained for the temperature series by
using only the first-order persistence landscape, or all orders of persistence landscapes as
features. In future work, it will be useful to demonstrate the usefulness of our algorithm
for IoT time series with different types of complex dependence patterns. If the IoT series
exhibit nonstationary behavior, we could construct persistent landscapes starting from
higher-order spectra, whose fast computation is discussed in [34]. Other useful extensions
of our approach would include an investigation of the robustness properties of persistent-
homology-based statistical learning for time series, and developing alternatives to the
elbow method.
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