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Abstract: In fifth Generation (5G) networks, protection from internal attacks, external breaches,
violation of confidentiality, and misuse of network vulnerabilities is a challenging task. Various
approaches, especially deep-learning (DL) prototypes, have been adopted in order to counter such
challenges. For 5G network defense, DL module are recommended here in order to symptomize
suspicious NetFlow data. This module behaves as a virtual network function (VNF) and is placed
along a 5G network. The DL module as a cyber threat-symptomizing (CTS) unit acts as a virtual
security scanner along the 5G network data analytic function (NWDAF) to monitor the network
data. When the data were found to be suspicious, causing network bottlenecks and let-downs of
end-user services, they were labeled as “Anomalous”. For the best proactive and adaptive cyber
defense system (PACDS), a logically organized modular approach has been followed to design the
DL security module. In the application context, improvements have been made to input features
dimension and computational complexity reduction with better response times and accuracy in
outlier detection. Moreover, key performance indicators (KPIs) have been proposed for security
module placement to secure interslice and intraslice communication channels from any internal or
external attacks, also suggesting an adaptive defense mechanism and indicating its placement on
a 5G network. Among the chosen DL models, the CNN model behaves as a stable model during
behavior analysis in the results. The model classifies botnet-labeled data with 99.74% accuracy and
higher precision.

Keywords: PACDS; VNF; vCTS; interslice; intraslice; NWDAF; 5G network; slice security

1. Introduction

The phenomenon of KPIs in 5G networks specifies the functionality from the access
level to the core network, to supporting critical network functions (NFs) [1,2]. Network
slicing has been developed as a special logical and virtualized network on top of the multi-
domain physical structure, enabling the coexistence of many verticals “Slices” over the
same infrastructure. Each network slice has functional resources that are either dedicated,
shared, or both; separated from other network slices; and have useful potential based on the
requirement of each slice. Network slicing can be incorporated into the core network (CN)
using both software defined networking (SDN) and network function virtualization (NFV).
NFV and SDN demonstrate how software functions can be connected to share physical
resources and can be operated in a virtual environment.

Among new network security challenges, 5G slice security has not yet been ex-
plored [3]. A rule-based slice-service-type (SST) security system is generally initiated on 5G
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networks. The physical resources of the network are shared among users or enterprises
and can be managed in a secure environment using virtualization. The process of the slice
initiating or embedding with resources during its execution cycle causes many loopholes in
configuration, malware injection, or telnet session misconfiguration, which can help hack-
ers to compromise the shared resources in a 5G environment. Moreover, legitimate tenants
(users and enterprises) could facilitate the penetration of attacks while using suspicious
third party services in a 5G network [4–8]. The auto-negotiation and intra-communication
of shared resources with distinct security measures is also an emerging phenomenon in
5G slicing [9,10]. In the context of 5G slice resiliency and security control, to what extent
can shared network resources can be managed, preserved in quarantine, and kept safe
from paired suspicious resources? Hence, the attack vectors are multi-directional and can
be dispersed in networks more swiftly [8,11]. To mitigate or suppress such attack vectors
before activation, much effort has taken place in the field of AI using DL security modules,
following proactive security schemes to optimize slices [12,13]. Further, the placement of
security modules or NFs is a challenging task. Points of presence (PoPs) of security scanners
and their integration can reduce the operating expenditure (Opex) and provide better QoS
in a 5G virtual infrastructure. Virtual security as a service (Vsaas) is an upcoming challenge,
and its integration and placement in virtual slices can facilitate VNF operators and provide
a reliable solution to the dynamic security deployment of 5G and B5G networks [14,15].

When talking about speedy networks, e.g., 5G networks (high data rates and quick
convergence) can encounter AI multi-vector attacks. While traditional defense systems fail
to block such attacks because of their obsolete and stationary architecture [16], conventional
security systems become overloaded and drop packets due to large data. Additionally,
parallel techniques, e.g., FPGA and ASIC, have been adopted to deal with AI attacks, but
these cutting-edge technologies are bound by hardware limitations. For zero-day attack
detection, DL models have been proven as the most superior forms and make a significant
contribution to 5G and Beyond 5G (B5G) infrastructure security and robustness. Designing
a diversified security system with an advanced architectural approach is more challenging
than ever before. Considering essential security measures to safeguard the cyber world
through the strong, effective, and adaptive security steps can prove more sustainable
and proactive in the real-time identification of attack vectors in modern networks with
logical reasoning.

For zero-day attack detection, we suggest an AI-based adaptive security model using
adaptive defense systems (ADSs), as shown in Figure 1, focusing on a modular approach to
design advanced PACDSs, which can help to develop and deploy the DL security modules
and their placements on PoPs, which are defined by the proposed KPIs for 5G network
security. This supervisory approach can help to monitor the NetFlow on shared slices more
efficiently and rapidly and to empower network security systems to be smarter and more
tactically secure in regard to intelligent attacks.
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This paper mainly contributes to the design of a CTS module, such as VNF. It can
be deployed on interslice and intraslice communication channels to deal with security
challenges in a shared environment, and furthermore, can identify the places for the security
scanners’ PoPs among slices and associated VNFs. We seek to deploy the CTS module
on multiple streams of the 5G network for threat detection and channel optimization.
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Using isolation as a tool, we utilize the proposed “KPIs” to secure 5G networks from
compromised 5G tenants. This effort will ensure the stable E2E QoS among slices and
their VNFs in a shared architectural system. The research objective is to create an efficient
defense mechanism that not only defends network services but also deals with the issue of
security service placement on 5G networks. The suggested architecture maintains a degree
of stability in terms of QoS, budgetary costs, and security as a service. KPIs-based network
analysis also assists an operator in mounting a NetFlow-based virtual security scanner on
desired logical channels or in a space between multiple network domains. For tactical and
partial security deployment, it is necessary to define the logical partition of the network,
whilst considering communication channels and NFs. For logical partitions, the following
suggested KPIs are more helpful for mounting data checkpoints on:

• Inter-slice communication channels;
• Intra-slice communication channels;
• 5G and tenants’ network (2G, 3G, 4G) communication channels.

The security PoPs are logical blueprints for mounting checkpoints for backhaul and
fronthaul security to the 5G core. The 5G network is a service-based architecture (SBA)
system that uses service-level agreements (SLAs) with various tenants. The 5G supports
the sharing of services used by operators. The shared service can be compromised using
a third-party network service in a shared slice. The proposed security schemes, e.g., the
design of the CTS module, the logical partition of the network, and defined security PoPs,
provide real-time threat detection in 5G network streams. Network data analytic function
(NWDAF) [18–20], a novel feature, has been used to assist the security program integration
of a CTS module on 5G networks for adaptive defense. Moreover, the train and test models
used to improve classification accuracy contrast with past efforts based on experimental
work. The virtualized CTS (vCTS) as a security module is used to generalize a higher
accuracy rate and a quicker response time in order to narrow down the research gap in
past contributions in anomaly detection and make an additional effort in the placement of
virtualized security modules.

2. Materials and Methods

The DL-based security module design, configuration, and hyper-parameter selection
has been considered to provide the maximum classification and detection accuracy in
anomaly detection for better performance and designated throughput. Considering the two-
tier anomaly detection method, we followed a modular approach to design a virtualized
security module. The security module is used to symptomize suspicious data as an anomaly.
The proposed CTS module behaves as an intelligent DL agent that can provide sufficient
NetFlow information to analyze any attack’s inception. The recommended KPIs serve as
the blueprint for the tactical deployment of security modules in 5G architecture. It is an
additional approach to 5G architecture by isolating the network logically in order to deploy
the proactive and adaptive defensive mechanism for committed E2E QoS. The suggested
process steps of the methodology for PACDS are described and shown in Figure 2, which
are taken into account in order to design and deploy the DL security module in the defined
PoPs of the network for the best PACDS. Additionally, the CTS module is able to provide
sufficient threat information to optimize slices and their VNFs in a shared environment.
The methodological domain follows the suggested process steps, which are:

1. Information—vertical industry.
2. NetFlow accounting—security scanners.
3. Data preparation for input feature vectors.
4. DL security module design.
5. Model analysis based on symptoms classification.
6. KPIs-based security module placement as VNF in 5G communication channels.
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2.1. Input Feature—Vector Selection

The process of meaningful feature selection and utilizing these features to train an ML
model is mandatory when dealing with large amounts of data. ML supports numerous
arrangements for data handling, comprising NetFlows and pcap packet-capture data [21].
Scenario 11 of the CTU-13 dataset has been selected for threat symptomizing. The dataset
holds three labels, namely “background”, “Normal”, and “Botnet”. The dataset contains
labeled data with multiple real botnet attack vectors rather than simulated ones, which
have been used for the training and testing of the opted models. Before model evaluation,
it is necessary to pre-process and normalize the selected data as filtered input vectors for
the DL model to achieve better performance. The data columns have many values, such
as source IP addresses and multi-range data columns, which cannot be transformed into
suitable input data vectors, and also low-scope or parsing value data columns, which cause
delays in model execution. All such data columns are removed from the dataset to decrease
the data size. The remaining columns, such as “Dir” and “Proto” with low cardinality but
retaining categorical values, are considered for pre-processing. The “Dir” column has 6
categories, and the “Proto” column has 13 categories. The categorical columns are “one-hot”
encoded to binary input vectors. Encoding is used to transform the categorical column
into single-value binary columns. In addition, the dataset with large-scale data columns,
such as “Dur”, ”Tot-Pkts”, “Src-Bytes”, and “Tot-Bytes”, may exhaust memory or cause an
interruption in the training process. This problem has been addressed via the normalization
of such columns in a range close to the “0” and “1” values, and the large-scale data columns
are listed with min–max values, as seen in Table 1.

Table 1. Large-scale data columns.

Min Value Max Value

Dur (secs) 0.0 971.284058
Tot-Pkts (count) 1 498,932
Tot-Bytes (count) 60 480,143,707
Src-Bytes (count) 0 22,872,870

Moreover, the “sTos” and “dTos” columns carry null values and have been removed
from the data. Indeed, ML models tend to acquire majority-class features and have a
penchant for over-fitting. During training cycles, models have achieved accuracy mostly in
the majority class. To avoid this data imbalance, oversampling is used. Here, the Synthetic
minority oversampling technique (SMOTE) is used to add multiple minority-class sample
groups, as represented in Figure 3. The default minority class samples induction ratio is
k = 5, which designates a close neighbor of the same class. Near the boundary between
minority samples and their closest neighbors, synthetic samples are produced.
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The target column “label” contains the output labels of normal and anomalous classes.
We mapped the label “0” for “Background and Normal” data and “1” for “Botnet” data.
We defined Class “0” as a normal class and Class “1” as an anomalous class.

2.2. Analytical Engine Selection

Recently, researchers have been emphasizing DL techniques to build security models,
such as DL models of a generative or discriminative nature. Recurrent neural networks
(RNN) and convolutional neural networks (CNN) are discriminative models, which are
mostly adopted for DL security model design. RNNs models classify data with discrimina-
tive power when input data correlates with the models’ output labeled sequence explicitly.
The RNN model is one of three types: simple RNN, long short-term memory unit (LSTM),
and gated recurrent unit (GRU) [23]. The LSTM is one of the most popular RNN systems
as well as the most effective in response to temporal data, e.g., speech recognition. The
model uses sequencing with two LSTMs, well known as “Bi-LSTM”, being fed in both
forward and backward directions for the process cycle. The CNN model contains one or
more “convolutional” and “pooling” layers in the form of an array to construct a multilayer
neural network [23–25]. For spatial and temporal pattern classification, a hybrid approach
combines LSTM and CNN functionality. Conv-LSTM first picks up spatial features from
visuals and images, while simultaneously honing temporal features [26]. For the DL model
design, we have to evaluate Bi-LSTM, CNN-LSTM, and CNN models for NetFlow analysis
on a chosen dataset. The performance of each DL model has been examined using selected
configurations and hyper-parameters, as given in Table 2. Additionally, the results are
investigated thoroughly for the optimum model selection among the three. The outcomes
of each model have been evaluated based on metrics, e.g., recall, precision and F1, and the
confusion matrix (CM), that help to assess the best-fit DL model, which can classify the
temporal and spatial data features on 5G networks [27,28].

Table 2. Hyper-parameters for CTS module evaluation.

Hyper-Parameters Bi-LSTM CNN-LSTM CNN

Input Feature Size 24 24 24
Batch Size 10,000 10,000 10,000

Layers Size 10 16-14-12 16-14
Activation Function Leaky-ReLU Leaky-ReLU Leaky-ReLU

Drop-Out 0.1 0.1 0.1
Output Layer Size 2 2 2

Output Activation Function Softmax Softmax Softmax

2.3. Analytical Procedure

In this section, the analytical procedure has been described as shown in Figure 4. The
process of analysis starts with the partition of the dataset into two sets. The “Training set”
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is used to train the model, and later, the “Test set” is used to evaluate the model’s accuracy.
The CTS module as the analysis engine (AE) comprises a DL framework library that is
used to design and develop a DL model. The model evaluation determines the overall
accuracy of the model on unobserved data. In NetFlow analysis, the CTS module observes
suspicious data or any attack data that pass through security checkpoints. The CTS module
can be virtually initiated by the operator if any services or links seem to be compromised.
As an action, the CTS module stamps the suspicious data and forwards the symptomized
labeled data to the next level module for deep packet inspection (DPI). DPI determines the
contents of packets with symptoms and categorizes the attack vectors for future analysis
and network safety. NetFlow data without suspicious symptoms are considered normal
data. The primary focus is on the first level VNF as a CTS security module and its multi-tier
deployment on a 5G network.

Future Internet 2023, 15, 193 6 of 16 
 

 

2.3. Analytical Procedure 
In this section, the analytical procedure has been described as shown in Figure 4. The 

process of analysis starts with the partition of the dataset into two sets. The “Training set” 
is used to train the model, and later, the “Test set” is used to evaluate the model�s accuracy. 
The CTS module as the analysis engine (AE) comprises a DL framework library that is 
used to design and develop a DL model. The model evaluation determines the overall 
accuracy of the model on unobserved data. In NetFlow analysis, the CTS module observes 
suspicious data or any attack data that pass through security checkpoints. The CTS mod-
ule can be virtually initiated by the operator if any services or links seem to be compro-
mised. As an action, the CTS module stamps the suspicious data and forwards the symp-
tomized labeled data to the next level module for deep packet inspection (DPI). DPI de-
termines the contents of packets with symptoms and categorizes the attack vectors for 
future analysis and network safety. NetFlow data without suspicious symptoms are con-
sidered normal data. The primary focus is on the first level VNF as a CTS security module 
and its multi-tier deployment on a 5G network.  

 
Figure 4. CTS module analysis flow-chart. 

2.4. Hyper-Parameter Selection  
The following configuration and hyper-parameters are defined to design and evalu-

ate the CTS module, shown in Table 2. 
The given hyper-parameters and configuration have been chosen to decide the per-

formance of the best-fit model. The model input feature size comprises 24 feature vectors 
(Fv). The batch size is fixed at 10,000 Fv per second. Previously, the ReLU activation func-
tion was used for cross-validation among neural network layers. The ReLU is notorious 
for the problem of dying nodes in neural networks. ReLU was replaced with the optimized 
leaky ReLU activation function for cross-validation among network layers. Drop-out reg-
ularization has been tuned to 0.1 for nodes released from a neural network. For binary 
classification, the output layer size is set to 2. The Softmax function is typically used in 
neural network models as an output layer activation function; it can convert logits into 
probabilities. On the configuration and hyper-parameters selected, the models are trained 
and tested on certain epochs for classification accuracy in “Normal” and “Botnet” classes, 
respectively. For neural network design, the Bi-LSTM size is fixed to 10 filter layers for 
both forward and backward sequencing, the CNN-LSTM model has convolution layer 
sizes of 16–14, and the temporal input layer size is set to 12. For CNN, the same 16–14 
layer size is adopted. Moreover, Python 3.10 is used as a DL framework to construct and 
evaluate all models. Simulation and experimental work was carried out on a Google-Col-
laboratory Notebook. 

Figure 4. CTS module analysis flow-chart.

2.4. Hyper-Parameter Selection

The following configuration and hyper-parameters are defined to design and evaluate
the CTS module, shown in Table 2.

The given hyper-parameters and configuration have been chosen to decide the perfor-
mance of the best-fit model. The model input feature size comprises 24 feature vectors (Fv).
The batch size is fixed at 10,000 Fv per second. Previously, the ReLU activation function was
used for cross-validation among neural network layers. The ReLU is notorious for the prob-
lem of dying nodes in neural networks. ReLU was replaced with the optimized leaky ReLU
activation function for cross-validation among network layers. Drop-out regularization
has been tuned to 0.1 for nodes released from a neural network. For binary classification,
the output layer size is set to 2. The Softmax function is typically used in neural network
models as an output layer activation function; it can convert logits into probabilities. On
the configuration and hyper-parameters selected, the models are trained and tested on
certain epochs for classification accuracy in “Normal” and “Botnet” classes, respectively.
For neural network design, the Bi-LSTM size is fixed to 10 filter layers for both forward and
backward sequencing, the CNN-LSTM model has convolution layer sizes of 16–14, and
the temporal input layer size is set to 12. For CNN, the same 16–14 layer size is adopted.
Moreover, Python 3.10 is used as a DL framework to construct and evaluate all models.
Simulation and experimental work was carried out on a Google-Collaboratory Notebook.

2.5. Multi-Tier Approach for Placement of vCTS Module

Transport layer security (TLS) and IP firewalls do not offer complete protection from
intrusions. Assuring a security level where data cannot be breached requires fine-grained
multi-tier security, where SLA can be employed safely at the access to core levels. A KPI-



Future Internet 2023, 15, 193 7 of 16

based defense mechanism is a novel approach for deploying security modules, as depicted
in Figure 5. The proposed defense system design is based on the 5G–SBA data analytic
service “NWDAF”. In a shared slice environment, virtualized (vNWDAF) can be used as
a data analyzer with associated VNFs, which provides the ability to collaboratively work
with third-party NFs. This ability of vNWDAF provides an advantage when coupling vCTS
security modules to a slice in a shared environment. This approach allows an operator
to query an event analysis using vCTS to examine intraslice data activity through VNFs
communication on a shared slice. vCTS deployment at this level not only provides NetFlow
monitoring but also raises an alarm or identifies symptomized suspicious activities in real-
time. Additionally, it enables the safety of core slices and their associated NFs, particularly
when these are shared with the tenants during SLA compliance. Shared services can be
endangered via third-party network services in a virtual environment. The tenant can use
both 5G and third-party wireless services. The compromised third-party services used by
the legitimate 5G user can expose 5G slice services or cause bottlenecks or halt the network.
Compromised 5G slice services can be dangerous to other 5G slices. However, we have
outlined this novel challenge using predefined KPIs for the vCTS module deployment at
logically demarcated PoPs on the 5G architecture. For cyber threat symptomization, the
CTS module is placed as virtualized security scanner for data analysis on the 5G network:

• Intra-slice (NFs): the CTS module behaves as a core security scanner as NF and can
demand the event analysis from 5G NFs.

• Core filter (backhaul): the CTS filter can monitor the backhaul channel between the
core and edge depicting the main to regional topography of the 5G system.

• Slice filter (front-haul): at this level, the CTS acts as a slice security scanner to safeguard
individual slices with a distinct slice-ID.

• Inter-slice filter (multiple slices): inter-slice filtering is applied across 5G slices, where
each slice is monitored by individual vCTS to safeguard from compromised tenants
(using third party network services).
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The novelty of our approach is to enhance security at 5G verticals in contrast to past
efforts based on physical rather than virtual infrastructure, which only deals with security
at the RAN level. The deployment of the CTS module not only at the 5G RAN level but
to promote the strategy from access to core level using the advantages of the SDN-NFV
plane to initiate a security module on demand with multi-tier scanning capabilities in 5G
communication channels in virtual slices (shared twins) in virtualized environments based
on proposed KPIs.

3. Related Work

Software-defined networking refers to the physical separation of the network control
plane from the data plane. The control plane controls various network devices, and the data



Future Internet 2023, 15, 193 8 of 16

plane is used to route network data. The specialty of SDN is the steering of the data plane
without engaging the underlying physical architecture, whereas NFV is used to integrate
various VNFs, such as load balancers, databases, and security modules. NFV refers to a
high-level reference plane, as shown in Figure 6. The management and orchestration (MANO)
plane has been used for virtual infrastructure management and orchestration [29–31].
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Based on the high-level MANO plane, the two-level VNF system was recommended
by researchers [29]. The first-level VNF ASD (anomaly symptom detection) analyzes the
NetFlow streams received from the flow collector, which is part of the 5G radio access net-
work (RAN). ASD symptomized or labeled the suspicious data features using supervised
and semi-supervised learning, based on sliding window operation. At a later level, symp-
tomized packets were forwarded to the second VNF NAD (network anomaly detection)
for deep packet inspection (DPI) to the evolved packet core (EPC), as shown in Figure 7.
The performance of numerous CPU- and GPU-based DL frameworks was examined to
deal with big data [30]. The authors of [29] further extend their work to a two-level botnet
symptomizing approach using a CTU-13 dataset.
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On botnet labeled data, a deep belief network (DBN) and stack auto-encoder (SAE)
were scored, namely F1-score—0.8940; recall—0.9934; and precision—0.8126 [29]. In ad-
dition, the same group of researchers fine-tuned their model and examined the NetFlow
before sending it to network slices, the suspicious data were stripped by substituting suspi-
cious data. For an integrated clinical environment (ICE), an SDN-NFV architecture was
used with a few improvements in the model with a metric recall score of 0.9954 and a metric
precision score of 0.9537 [31]. The sliding-window approach faces multi-class (fixed-size)
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window problems. Sliding-window techniques often justify pairs of flows as an anomaly,
even though they display no attack symptoms. In the time series data, this gap has been
considered through two-dimensional image input data “image with time frame t”, shifting
the human activity classification (HAC) problem to image segmentation. Inspired by the
two-level VNF approach [29], a DL residual U-Net (CNN) module was designed by another
group of researchers. The residual U-Net with a focal Tversky loss function performed
with the metrics: precision = 0.138; recall = 0.7257; and F2 = 0.4. The authors claimed
that the suggested technique was an alternative solution to the sliding window multiclass
classification problem in the self-adaptive models for anomaly detection [32]. NWDAF is a
5G service (SBA) that provides the ability to mount an ML model of one’s own choice for
network analysis. It has been deployed for network load optimization and suspicious data
analysis, in which it has performed dual tasks, first as an “information behavior analyzer”
and, additionally, to “percept the fictitious data classification” on suspicious datasets [20].

4. Results

In contrast to the previous two-level anomaly detection approach at the 5G RAN
(Figure 7), we extended our method to a multi-tier security approach across the 5G net-
work (Figure 5). The vCTS module can symptomize the suspicious NetFlow data from
communication channels at the Core, Edge, and RAN levels. The vCTS can be virtually
initiated to optimize and secure the network slices from external attacks. We evaluated
three DL models to deal with both temporal and spatial data models in discriminative
manners on an opted dataset. Moreover, the chosen dataset was used to evaluate Bi-LSTM,
CNN-LSTM, and CNN models rather than a single model in order to consider all data
aspects of input for the future meta-data nature 5G slices. For the optimum model selection
in anomaly detection, the performance of all opted models has gone through exhaustive
evaluation and discussion. The models have been trained appropriately after some feature
engineering and pre-processing for suitable input feature vectors. The dataset has split into
training sets (80%), presenting “X_train” and “X_test”, in order to validate models, and test
sets (20%), which are used to evaluate two classes, namely “Normal” and “Botnet”, using
bi-label classification for cyber threat symptomizing. Models were trained to a maximum
of 20 iterations for stable output. “Train-Test loss” and “Train-Test accuracy” of each model
were analyzed. The behavior of each DL model was observed and compared to all model
outcomes. The analysis of each model is described, considering the metrics recall, precision,
F1, and confusion matrix.

4.1. Bi-LSTM Model Behavior Analysis

Figure 8 shows the behavior of the Bi-LSTM in the “loss vs. accuracy” during the
model train–test. It determines the model attitude by showing a fast reduction in loss
(improved accuracy) until the tenth epoch and observing a gradual reduction until the
last epoch.
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The comparison of “Normal’ and ‘Botnet” class samples are represented in the con-
fusion matrix. Bi-LSTM classification results are displayed in Figure 9. From 19,709 valid
labels of “Normal class”, out of which 18,818 are correctly categorized as normal samples
with a 95.6 percent accuracy. In the “Botnet class”, the model predicted 19,874 sample
as botnet out of 19,926 true labels. Malicious labels were classified with 99.7% accuracy.
The total number of predictions from each class categorized successfully is shown in the
confusion matrix.
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The recall of the normal class is 95.6%, and 4.7% of unseen suspicious data was found
by the Bi-LSTM during the model test. In contrast, the botnet’s detection accuracy is 99.7%.
According to Table 3, the model performs quite well in terms of accuracy with an F1-score
of 98%.

Table 3. Classification score—Bi-LSTM.

Precision Recall F1-Score Support

Class 0 1.00 0.95 0.98 19,709
Class 1 0.96 1.00 0.98 19,926

Accuracy 0.98 39,635
Macro Avg. 0.98 0.98 0.98 39,635

Weighted Avg. 0.98 0.98 0.98 39,635

4.2. CNN-LSTM Model Behavior Analysis

The CNN-LSTM model train–test “Loss vs. Accuracy” is described in Figure 10. Until
the eighth epoch, the performance of the CNN-LSTM model shows a gradual drop in
the loss. Initially, some variations have been recorded in model accuracy up to the sixth
iteration, later on, the model converges smoothly and is found to be stable in the final epoch.
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The classification of the labels of the “Normal” and “Botnet” classes produced by the
CNN-LSTM model is depicted in the confusion matrix, as shown in Figure 11. The 18,890
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out of 19,709 true labels were classified in the “Normal” class at 95.84%. In contrast, the
model predicts malicious data with 99.74% accuracy as anomalies out of 19,926 true labels.

Future Internet 2023, 15, 193 11 of 16 
 

 

 
Figure 10. CNN-LSTM train–test loss vs. accuracy. 

 
Figure 11. Confusion matrix CNN-LSTM. 

The CNN-LSTM model performance determines the recall score of 95%, where 4.42% 
of unobserved labeled data are identified as suspicious. The accuracy of the model in bot-
nets is 99.74 percent with an F1-score of 0.98. The CNN-LSTM model exhibits excellent 
behavior on both the training and test data, as shown in Table 4. 

Table 4. Classification score, CNN-LSTM. 

 Precision Recall F1-Score Support 
Class 0 1.00 0.95 0.98 19,709 
Class 1 0.96 1.00 0.98 19,926 

Accuracy   0.98 39,635 
Macro Avg. 0.98 0.98 0.98 39,635 

Weighted Avg. 0.98 0.98 0.98 39,635 

4.3. CNN Model Behavior Analysis 
The CNN model behavior summary depicted in Figure 12 shows the train–test “loss 

vs. accuracy” of the model. The test loss decreases steadily at the same interval as the 
training loss until the sixth epoch. With more iterations, both the training and test loss 
decreased at a steady rate where the test accuracy exhibits a certain level of steady behav-
ior after the third iteration, contradicting training loss. The CNN model performs steadily 
during the learning process and behaves as the best model. 

Figure 11. Confusion matrix CNN-LSTM.

The CNN-LSTM model performance determines the recall score of 95%, where 4.42%
of unobserved labeled data are identified as suspicious. The accuracy of the model in
botnets is 99.74 percent with an F1-score of 0.98. The CNN-LSTM model exhibits excellent
behavior on both the training and test data, as shown in Table 4.

Table 4. Classification score, CNN-LSTM.

Precision Recall F1-Score Support

Class 0 1.00 0.95 0.98 19,709
Class 1 0.96 1.00 0.98 19,926

Accuracy 0.98 39,635
Macro Avg. 0.98 0.98 0.98 39,635

Weighted Avg. 0.98 0.98 0.98 39,635

4.3. CNN Model Behavior Analysis

The CNN model behavior summary depicted in Figure 12 shows the train–test “loss
vs. accuracy” of the model. The test loss decreases steadily at the same interval as the
training loss until the sixth epoch. With more iterations, both the training and test loss
decreased at a steady rate where the test accuracy exhibits a certain level of steady behavior
after the third iteration, contradicting training loss. The CNN model performs steadily
during the learning process and behaves as the best model.
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Figure 13 describes the CNN model classification score based on “True labels” and
“Predicted labels” in confusion matrix findings. The 96.54% accuracy in a normal class is
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gained by the model, predicting 19,709 labels of 19,697 true labels. In addition, the model’s
accuracy forecast for the anomalous class was 99.74%. Based on 19,926 real labels, the
model performed with a 98.2% accuracy rate.
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In both the “Normal” and “Botnet” classes, the CNN model has a recall of 98%. Table 5
shows an overall F1-score of 98%, indicating that CNN performed extremely well during
the training and testing phase on the selected dataset.

Table 5. Classification score—CNN.

Precision Recall F1-Score Support

Class 0 1.00 0.97 0.98 19,709
Class 1 0.97 1.00 0.98 19,926

Accuracy 0.98 39,635
Macro Avg 0.98 0.98 0.98 39,635

Weighted Avg 0.98 0.98 0.98 39,635

5. Discussion

Table 6 shows a “Comparative Analysis” of the models’ outcome in terms of the
accuracy of suspicious data symptomizing. The data model domain can be described using
multiple aspects, that is, the generative models explain how data are placed in the data space
and analyzed in an unsupervised way using a probabilistic approach. The discriminative
models are swift enough to detect outlier data, predict data, and define boundaries among
data classes. The CTS module uses a deterministic approach to solve anomaly detection
problems in a supervised way. The better results and behavior predicted by learning
algorithms are based on feature engineering and model behavior. From a large number of
features, the desirable and relevant attribute selection is able to reduce the data dimension
to address the complexity of the problem. The learning of classification models can be
improved with dimensional reduction techniques for feature selection [33]. Minimizing the
feature size can improve performance, computational efficiency, generalization, and feature
interpretability [34]. The redundant and strongly correlated variables cannot assure that
the proof of additional information can increase training time [35]. Most of the features are
irrelevant (either partially or completely) to the target output, and minimizing irrelevant
features can reduce the learning process [36].

In the application context, improvements are made by minimizing the CTS input to
24 Fv for less computational complexity, better response time, and the improved robustness
of the model. The unidirectional shallow architecture DBN model [23,29,31], as listed in
the following Table, consumes 256 Fv as an input, causing redundant feature extraction
with extra training time, the modification of weights, and biases at each learning cycle with
more response time and the maximization of the computation. Furthermore, the large size
input and the strong correlation of data features can affect output yield.
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Table 6. Comparative analysis of past contributions and suggested model performance.

Purposed
Model Architecture DL Model Technique Input

FVs Size Batch Size Classification Activation
Function Dataset Results

Anomaly
Detection Generative DBN [29] Sliding

Window 256 CPU
GPU Binary ReLU CTU-13 99.34%

Anomaly
Detection Generative DBN [31] Sliding

Window 256 CPU
GPU Binary ReLU CTU-13 99.54%

Anomaly
Detection Discriminative CNN [32] Image

segmentation 3 * Mini
Fixed Binary ReLU CTU-13 72.57%

Anomaly
Detection Discriminative CNN Feature-

based 24 Fixed Binary Leaky ReLU CTU-13 99.74%

* image input is treated as a single column on each channel (three channels).

The DBN is a greedy model that needs a large number of data features to perform.
The ReLU activation function used in the DBN model faces the “dying ReLU” problem,
which extends to the training process. To address this limitation, we substituted the ReLU
activation with its improved form: the “Leaky ReLU” [37]. The Leaky ReLU can fix the
“dying ReLU” concerns with a few slope and leak positive values at “0” to avoid the
valuable information vanishing. Its training ability becomes faster when its mean activation
reaches close to zero, which is able to increase training efficiency. The DBN follows the
backpropagation technique through the modification of weight and fine-tuning in each
iteration, as more depth in DBN can cause computational decay. Considering such an issue,
for faster convergence, we adopted the Adam (adaptive moments) optimization technique
to allow the model operators to learn adaptively with better speed and accuracy. The Adam
optimization boosts the model convergence and the learning process, and it also helps
to minimize the cost function or loss using operational parameters [38]. Moreover, the
categorical cross-entropy loss function is used for encoded input labels (0, 1), ensuring
better classification. On the other hand, the CNN [32] model uses the two-dimensional
frame input data for image segmentation by transforming time-series data into multiple
channels for model learning. The image input utilizes multi-dimensional data as a feature
input, which can also decrease response time and increase the computation power of the
model in real-time scenarios.

At the next level, the models’ interpretation was examined using the “Friedman
test” and “post hoc“ analysis for significant performances. The non-parametric test was
performed to determine the significant difference in botnet classification, and the output
metrics of DBN [29,31], CNN [32], and the proposed CNN (CTS) models were analyzed.

The Freidman test value of 9.00 and the related p-value of 0.029 were recorded, reveal-
ing different distributions (reject H0). We performed Nemenyi’s post hoc test to decide
what group of models acted differently. Through the evaluation results, the CNN group of
models [32] appear to be statistically significant with different means of 0.022960.

It can be concluded that with fewer feature sizes, the CTS DL module gains relatively
better accuracy and performs with higher precision in botnet detection against its coun-
terparts of DBN [29], DBN [31], and CNN [32] without the loss of valuable information
carried by same data features. Furthermore, optimization techniques were considered to
address the limitations of former models. Improvements have been made with relatively
better accuracy and robustness of the model. The proposed CNN (CTS) model performed
significantly better than CNN [32] with a high accuracy rate.

6. Conclusions

New tenants are welcomed in 5G networks but this participation can increase the
threat level of a 5G core network. Using an adaptive security-based modular approach is
beneficial to countering cyber threats in real-time. The KPIs defined in this paper help to
deploy the vCTS module on PoPs in the context of 5G network protection. The suggested
data filtering and validation approach allows us to undertake the logical separation of a
network in the security region. Such security scanners help to share threat information
between security NFs, strengthening the defense against expert hackers. Security regions
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enable operators to manage better the protection and swift detection of threats by initiating
security VNFs on a slice or among slices. DL-based enhanced security NFs and VNFs
with multitier approaches provide a comprehensive security view of shared slices and
their virtual twins in a shared 5G environment and provide the stress-free integration of
updated threat intelligence. Furthermore, comparing and contrasting the DL module to the
limitation of past models in 5G network security enables us to provide the best solution in
the current context. In the application context, improvements have been made to the input
features dimension and computational complexity reduction with better response time
and accuracy in outlier detection. The outcomes of all three proposed DL modules were
recorded, with the best accuracy rate of 99.74% for botnet classification. For future work,
we suggest researching the logical security management of a 5G network in both backhaul
and fronthaul communication channels. The shared 5G slices and associated VNFs can be
dealt with as “virtual twins” in a shared environment using service-level agreements with
5G tenants.
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