
Citation: Bagui, S.; Mink, D.; Bagui,

S.; Subramaniam, S.; Wallace, D.

Resampling Imbalanced Network

Intrusion Datasets to Identify Rare

Attacks. Future Internet 2023, 15, 130.

https://doi.org/10.3390/fi15040130

Academic Editor: Cheng-Chi Lee

Received: 12 March 2023

Revised: 22 March 2023

Accepted: 27 March 2023

Published: 29 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Resampling Imbalanced Network Intrusion Datasets to Identify
Rare Attacks
Sikha Bagui 1,* , Dustin Mink 1 , Subhash Bagui 2, Sakthivel Subramaniam 1 and Daniel Wallace 1

1 Department of Computer Science, University of West Florida, Pensacola, FL 32514, USA;
dmink@uwf.edu (D.M.); ss346@students.uwf.edu (S.S.); dw85@students.uwf.edu (D.W.)

2 Department of Mathematics and Statistics, University of West Florida, Pensacola, FL 32514, USA;
sbagui@uwf.edu

* Correspondence: bagui@uwf.edu

Abstract: This study, focusing on identifying rare attacks in imbalanced network intrusion datasets,
explored the effect of using different ratios of oversampled to undersampled data for binary clas-
sification. Two designs were compared: random undersampling before splitting the training and
testing data and random undersampling after splitting the training and testing data. This study
also examines how oversampling/undersampling ratios affect random forest classification rates in
datasets with minority dataor rare attacks. The results suggest that random undersampling before
splitting gives better classification rates; however, random undersampling after oversampling with
BSMOTE allows for the use of lower ratios of oversampled data.

Keywords: imbalanced data; resampling; rare attacks; network intrusion datasets; minority data;
oversampling; BSMOTE; random undersampling; random forest

1. Introduction

The internet generates traffic at a rate of 6.59 billion GB per second [1]. Approximately
1–3% of this traffic is malicious [2]. Advances in machine learning (ML) have allowed
us to detect some of these attacks but not all. The challenge that cyber security experts
face is not one of having enough data but one of having enough of the right type of data.
Some organizations never see anomalous data on their network; most network traffic is
generated by routine workplace business. Given this scenario, it is hard to know what to
look for since we have such a small sample size of the attacks. Some types of attacks are
more frequent than others, and it is only in the infrequent or rare attacks, or minority data,
that this detection problem lies. Machine learning models, by their very nature, are good
at detecting patterns where there is more data (in majority data); hence, detection of rare
attacks (minority data) is challenging for machine learning models.

Minority data is a tiny percentage of network intrusion datasets, and for the purposes
of this work, we are defining minority data as less than 0.1%. Various oversampling
techniques, including different smote methods, random oversampling, ADASYN, and
others, have been used by researchers to try to model minority data better. Oftentimes a
combination of oversampling (of minority data) and undersampling (of majority data) is
used [3].

When oversampling and undersampling are used, researchers have to determine
how much undersampling should occur, how much oversampling should occur, and
when the resampling should occur in the process. This research presents two different
design methodologies, one performing random undersampling before splitting the training
and testing data and the second performing random undersampling after splitting the
training and testing data. In addition, for each of these two designs, the paper compares
different ratios of random undersampling to oversampling using BSMOTE. Finally, binary
classification using random forest is used to classify the various combinations of the data.

Future Internet 2023, 15, 130. https://doi.org/10.3390/fi15040130 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15040130
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-1886-4582
https://orcid.org/0000-0003-0106-3890
https://doi.org/10.3390/fi15040130
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15040130?type=check_update&version=1

Future Internet 2023, 15, 130 2 of 24

For this research, two datasets have been used—the first being a widely used network
intrusion dataset, UNSW-NB15 [4], and the second being a newly created network intrusion
dataset based on the MITRE ATT&CK framework, UWF-ZeekData22 [5].

The rest of this paper is organized as follows. Section 2 presents the background;
Section 3 presents works related to oversampling and undersampling; Section 4 explains
the datasets used in this study; Section 5 presents the experimental designs; Section 6
presents the hardware and software configurations; Section 7 presents the metrics used
for assessment of the classification results; Section 8 presents the results and discussion;
Section 9 presents the conclusions; and Section 10 presents the future works.

2. Background

To adequately address resampling, the resampling techniques used in this paper are
briefly explained next. Though oversampling and undersampling are aimed at changing the
ratios between the minority and majority classes, respectively, this is particularly important
when the minority classes are minimal, that is, in the case of rare attacks.

A minority class refers to very low-occurring data categories. In this work, since a
binary classification was performed, the dataset for each experimentation contained only
two data types—one attack category and benign data. For example, for the analysis of
worms, the dataset contained only worms and benign data. Out of these two categories of
data, worms would be considered the minority class. Table 1, which presents the UNSW-
NB15 dataset, shows that worms account for 0.006% of the data and 0.007% of the benign
data. The raw data count for worms is 174 compared to the benign data count of 2,218,761.

Oversampling is the process of generating samples to increase the size of the minority
class. Random oversampling involves randomly selecting samples from the minority class,
with replacement, and adding them to the dataset [6]. Random oversampling can also lead
to overfitting the data [3].

Various oversampling techniques are available, including various types of Synthetic
Minority Oversampling Techniques (SMOTE) and ADASYN. SMOTE generates synthetic
samples rather than resampling with replacement. These samples are generated along the
line segment adjoining k-minority class neighbors [7]. In Borderline SMOTE (BSMOTE),
a variant of the original SMOTE, borderline minority samples are identified and then
synthetic samples are generated [8].

ADASYN [9] is a pseudo-probabilistic oversampling technique that uses a weighted
distribution for different minority data points. This weighted distribution is based on the
level of difficulty in learning, and more synthetic data are generated for minority class
examples that are harder to learn than minority examples that are easier to learn [10].

Random undersampling samples the majority class by randomly picking samples with
or without replacement from the majority class [11]. After random undersampling, the
number of cases of the majority class decreases, significantly reducing the model’s training
time. However, the removed data points may include significant information leading to a
decrease in classification results [3].

3. Related Works

For cybersecurity or network intrusion detection analysis, it is difficult to obtain a
good workable dataset; among the few available, most are highly imbalanced due to the
nature of the attacks. Certain attacks are rare in the real world, but measures must be taken
to safeguard against them. The rarer the attack, the lesser the chance of it getting detected
by a machine learning model.

Oversampling and undersampling are standard methods used by researchers to tackle
class imbalance problems [3,7,12]. Oversampling generates synthetic samples from the
existing minority class to balance the data or to have more instances for the classifier.
Undersampling, on the other hand, reduces the majority class instances to bring the
imbalance scale to normalcy. Though both these methods have inherent advantages and
disadvantages, they can be used separately or combined with balancing ratios. It is possible

Future Internet 2023, 15, 130 3 of 24

to selectively downsize only negative examples and keep all positive examples in the
training set [13]. A major disadvantage of undersampling is the loss of data, and hence
possibly critical information.

Oversampling increases the training time due to an increase in the training set [12],
and may overfit the model [14]. Ref. [14] found that oversampling minority data before
partitioning resulted in 40% to 50% AUC score improvement. When the minority oversam-
pling is applied after the split, the actual AUC improvement is 4% to 10%. This behavior is
due to what is termed as data leakage, caused by generating training samples correlated
with the original data points that end up in the testing set [14]. Ref. [15] found that the
synthetic instance creation approach plays a more significant role than the minority instance
selection approach. The critical difference between these two papers is that the first process
creates instances along the line connecting the two minority instances, while the second
approach creates synthetic minority samples in the bounding rectangle created by joining
the two minority instances.

Hence, both oversampling and undersampling can have potential overfitting or under-
fitting, respectively. Studies have been carried out with various combinations of oversam-
pling and undersampling [12,16,17]. Random undersampling was also combined with each
oversampling technique—SMOTE, ADASYN, Borderline, SVM-SMOTE, and random over-
sampling in [18]. Various percentages were used from each of these techniques to study the
effect on minority class predictions. The results of each combination are highly dependent
on the domain and distribution of the dataset [19]. In one domain, undersampling might
help more than oversampling, but in another domain, it may be vice versa.

Some researchers have combined synthetic oversampling with other techniques, such
as Grid Search (GS), to improve the prediction of attack traffic [20].

While the above papers present novel ways to examine the class imbalance classifica-
tion problem, none directly addresses the problem of identifying rare attacks using different
ratios of the sampling methods. The novelty of this research is that it considers different
ratios of majority data to minority data when identifying rare attacks. Additionally, two
different designs are compared—random undersampling before splitting the data and
random undersampling after splitting the data, with different oversampling ratios.

4. The Datasets

Two datasets were used in this study: (i) a well-known network intrusion dataset,
UNSW-NB15 [4] and (ii) a new network intrusion dataset created based on the MITRE
ATT&CK framework, UWF-ZeekData22 [21].

4.1. UNSW-NB15

UNSW-NB15 [4], published in 2015, is a hybrid of real-world network data and simulated
network attacks, comprising 49 features and 2.5 million rows. There are 2.2 million rows
of normal or benign traffic, and the other 300,000 rows comprise nine different modern
attack categories: Fuzzers, Reconnaissance, Shellcode, Analysis, Backdoors, DOS, Exploits,
Worms, and Generic. Some attack categories, such as Worms, Shellcode, and Backdoors, that
comprised only 0.006%, 0.059%, and 0.091%, of the total traffic, respectively, can be considered
rare attacks. These are the three attack categories of particular interest in this research, and the
rare attacks will be considered the minority classes. Table 1 presents the distribution of the
attack families in this dataset, ordered from the smallest category to the largest category.

Future Internet 2023, 15, 130 4 of 24

Table 1. UNSW-NB15: distribution of attack families [4].

Type of Attack Count % of Attack Data % of Benign Data % of Total Data

Worms 174 0.054 0.007 0.006
Shellcode 1511 0.47 0.068 0.059
Backdoors 2329 0.724 0.104 0.091
Analysis 2677 0.833 0.12 0.105

Reconnaissance 13,987 4.353 0.63 0.55
DoS 16,353 5.089 0.737 0.643

Fuzzers 24,246 7.546 1.092 0.954
Exploits 44,525 13.858 2.006 1.752
Generic 215,481 67.068 9.711 8.483

Total attack data 321,283 - - -
Benign data 2,218,761 - - 87.351

Total 2,540,044 - - -

4.2. UWF-ZeekData22

UWF-ZeekData22 [5,21], published in 2022, is developed from data collected from
Zeek, an open-source network-monitoring tool, and labeled based on the MITRE Adversar-
ial Tactics, Techniques, and Common Knowledge (ATT&CK) framework. This dataset has
approximately 9.280 million attack records and 9.281 benign records [22]. The breakdown
of the data, that is, the percent of attack data for each attack type, is presented in Table 2,
ordered from the smallest category to the largest category. For this analysis, two rare tactics
were used: Privilege_escalation and Credential_access. Privilege_escalation and Creden-
tial_access form 0.00007% and 0.00016% of the total network traffic, respectively, and hence
can be classified as rare attacks. These rare attacks will be treated as the minority classes.

Table 2. UWF-ZeekData22: distribution of MITRE ATT&CK tactics [5,21].

Label_Tactic Count % of Attack Data % of Benign Data % of Total Data

Persistence 1 0.00001 0.00001 0.000005
Initial_access 1 0.00001 0.00001 0.000005

Defense_evasion 1 0.00001 0.00001 0.000005
Resource_development 3 0.00003 0.00003 0.00001

Lateral_movement 4 0.00004 0.00004 0.00002
Exfiltration 7 0.00007 0.00007 0.00003

Privilege_escalation 13 0.00014 0.00014 0.00007
Credential_access 31 0.00033 0.00033 0.00016

Discovery 2086 0.02247 0.02247 0.01123
Reconnaissance 9,278,722 99.97686 99.969 49.98646
Total attack data 9,280,869 - - -

Benign_data 9,281,599 - - 50.00196
Total 18,562,468 - - -

5. Experimental Design

The experimental design compares two approaches to solve the problem of having
significantly small samples of minority data: (a) resampling or random undersampling
before a stratified split (Figure 1a) and (b) resampling or random undersampling after a
stratified split (Figure 1b). Since the objective of this work is to identify minority data or
rare attacks, stratified sampling was used to guarantee that the training and testing data
included minority data. However, the question is, when is it best to perform stratified
sampling? In stratified sampling, the data are divided into groups and a certain percentage
of samples are taken randomly from each group. This guarantees that there will be samples
from the minority class in the data. For the purposes of this study, significantly small
minority data are defined as <0.1 % of the total sample.

Future Internet 2023, 15, 130 5 of 24

Future Internet 2023, 15, x FOR PEER REVIEW 5 of 23

percentage of samples are taken randomly from each group. This guarantees that there
will be samples from the minority class in the data. For the purposes of this study, signif-
icantly small minority data are defined as <0.1 % of the total sample.

Basically, the two approaches differ in the preprocessing sequence prior to the ma-
chine learning model execution and have different approaches to creating training and
testing data. In the first design, resampling before splitting, the data are preprocessed, and
then random undersampling is performed. This is followed by a stratified split and over-
sampling using borderline SMOTE (B-SMOTE). Finally, these data were used for training
and testing the machine learning model using random forest.

In the second design, resampling after splitting, after the initial preprocessing steps,
the data are split (using stratified sampling). This method retains the stratified ratio of the
majority to minority class since the stratified split was performed on the whole data. This
is followed by oversampling using BSMOTE and random undersampling. Finally, these
data were used to train and test the machine learning model using random forest.

 (a) (b)

Figure 1. Experimental design: (a) Resampling Before Splitting; (b) Resampling After Splitting.

5.1. The Classifier Used: Random Forest
Random forest (RF) is a highly used machine learning classifier that is basically an

ensemble way of classifying records. In the RF algorithm, the decision of multiple decision
trees taken together is used to come up with the final classification label [23].

The RF algorithm works by first generating each decision tree by randomly selecting
a bootstrap sample. A bootstrap sample is a randomly selected sample from a dataset with
replacement [24]. Each decision tree is trained with a separate bootstrap sample. Hence, if
a random forest has N trees, N bootstrap samples will be required. Randomization is in-
troduced during tree training. Features are randomly selected when a decision tree node
splits, and of the randomly selected features, the best feature is selected based on statistical
measures, such as information gain and Gini index [24]. Once forest training is complete,

Figure 1. Experimental design: (a) Resampling Before Splitting; (b) Resampling After Splitting.

Basically, the two approaches differ in the preprocessing sequence prior to the machine
learning model execution and have different approaches to creating training and testing
data. In the first design, resampling before splitting, the data are preprocessed, and
then random undersampling is performed. This is followed by a stratified split and
oversampling using borderline SMOTE (B-SMOTE). Finally, these data were used for
training and testing the machine learning model using random forest.

In the second design, resampling after splitting, after the initial preprocessing steps,
the data are split (using stratified sampling). This method retains the stratified ratio of the
majority to minority class since the stratified split was performed on the whole data. This
is followed by oversampling using BSMOTE and random undersampling. Finally, these
data were used to train and test the machine learning model using random forest.

5.1. The Classifier Used: Random Forest

Random forest (RF) is a highly used machine learning classifier that is basically an
ensemble way of classifying records. In the RF algorithm, the decision of multiple decision
trees taken together is used to come up with the final classification label [23].

The RF algorithm works by first generating each decision tree by randomly selecting a
bootstrap sample. A bootstrap sample is a randomly selected sample from a dataset with
replacement [24]. Each decision tree is trained with a separate bootstrap sample. Hence,
if a random forest has N trees, N bootstrap samples will be required. Randomization is
introduced during tree training. Features are randomly selected when a decision tree node
splits, and of the randomly selected features, the best feature is selected based on statistical
measures, such as information gain and Gini index [24]. Once forest training is complete,
N-trained decision trees are created. A classification is made on one or more samples.
RF classifies samples by querying each decision tree with the sample. A tally is kept to
aggregate all classifications made by the decision trees [24]. Once all trees have voted with

Future Internet 2023, 15, 130 6 of 24

a classification, the label with the most votes is chosen. Hence, RF is basically an ensemble
technique based on decision trees.

5.2. Preprocessing

With regard to preprocessing, each dataset was handled differently, but information
gain was used on both datasets to identify the relevant features. First, the information gain
algorithm is explained, and then the preprocessing performed in each dataset is presented.

5.2.1. Information Gain

Information gain (IG) is used to assess the relative relevance of features in a dataset
and is useful for classification. Information gain is calculated by removing the randomness
in the dataset, which is measured by a class’s entropy [23].

The following calculations were performed on each feature to produce information
gain values for ranking purposes [23].

Gain(A) = In f o(D)− In f oA(D) (1)

where

In f o(D) = −
m

∑
i=1

pilog2(pi) (2)

In f oA(D) =
V

∑
j=1

∣∣Dj
∣∣

|D| × In f o
(

Dj
)

(3)

where:

• Info(D) is the average amount of information needed to identify the class level of a
tuple in the data, D;

• InfoA(D) is the expected information required to classify a tuple from D based on the
partitioning by attribute A;

• pi is the nonzero probability that an arbitrary tuple belongs to a class;
• |Dj|/|D| is the weight of the jth partition;
• V is the number of distinct values in attribute A.

5.2.2. Preprocessing UNSW-NB15

For preprocessing UNSW-NB15, first, the following columns were dropped:

• ct_flw_http_mthd and is_ftp_login;
• Unique identifiers and time stamps;
• IP addresses.

Other preprocessing that was performed:

• The attack categories, NaN, were filled with zeros;
• Categorical data were turned into numeric representation: protocol, state, and at-

tack category;
• A normalization technique was used on continuous data for all numeric variables:

X =
xi − µ

s
(4)

where µ is the column mean and s is the column standard deviation.
Finally, IG was calculated on the remaining columns of this dataset, and columns with

low information gain were not used. Columns dropped due to low information gain were
service, dloss, stepd, dtcpb, res_bdy_len, trans_depth, and is_sm_ips_ports.

5.2.3. Preprocessing UWF-ZeekData22

For UWF-ZeekData22, the following preprocessing was performed following [22]:

Future Internet 2023, 15, 130 7 of 24

• Continuous features, duration, orig_bytes, orig_pkts, orig_ip_bytes, resp_bytes, resp_pkts,
resp_ip_bytes, and missed_bytes were binned using a moving mean;

• Nominal features, that is, features that contain non-numeric data, were converted
to numbers using the StringIndexer method from MLib [25], Apache Spark’s scalable
machine learning library. The nominal features in this dataset were proto, conn_state,
local_orig, history, and service;

• The IP address columns were categorized using the commonly recognized network
classifications [26];

• Port numbers were binned as per the Internet Assigned Numbers Authority (IANA) [27].

Following the binning, IG was calculated on the binned dataset. Attributes with low
IG were removed and not used for classification.

6. Hardware and Software Configurations

Tables 3 and 4 present the hardware and software configurations and python libraries,
respectively, used in this research.

Table 3. Hardware and software configurations.

Random Undersampling
before Stratified Splitting

Random Undersampling
after Stratified Splitting

Processor AMD Ryzon 7 5700 Intel Core i7 1165G7
RAM 32 GB 16 GB

OS Windows 11 Home Windows 11 Home
OS Version 22 H2 21 H2
OS Build 22621.819 22000.1219

GPU RTX 3060 NA

Table 4. Python library versions.

Random Undersampling
before Stratified Splitting

Random Undersampling
after Stratified Splitting

Python 3.9 3.10.4
Anaconda 2022.1 2021.5

Pandas 1.5.2 1.5.0
Scikit-learn 1.9.3 1.0.2

Numpy 1.23.5 1.23.4
Imblearn 0.10.0 0

6.1. Hardware and Software Used in Random Undersampling before Stratified Splitting

Random undersampling before stratified splitting simulations was run on an x64-
based processor with a 64-bit operating system. This Windows Home machine was running
version 22H2 build 22621.819 and had an AMD Ryzen 7 5700 with 32 GB of RAM and an
RTX 3060 Video card. CUDA for Python was installed; however, none of the trials used the
parallel processing abilities of the machine.

6.2. Python Libraries Used in Random Undersampling before Stratified Splitting

Python version 3.9 was used with Jupyter Notebooks on Anaconda version 2022.10.
Packages included pandas 1.5.2, scikit-learn 1.9.3, NumPy 1.23.5, and imblearn 0.10.0.
The random forest machine learning algorithm was implemented using the scikit-learn
RandomForestRegressor module. Borderline SMOTE was implemented using the Borderli-
neSMOTE module of the imblearn.over_sampling package.

Future Internet 2023, 15, 130 8 of 24

6.3. Hardware and Software Used in Random Undersampling after Stratified Splitting

Random undersampling after stratified splitting simulations was run on a machine
with Windows Home version 21H2 with OS build 22000.1219 run by an Intel Core i7 1165G7
processor and 16 GB RAM.

6.4. Python Libraries Used in Random Undersampling after Stratified Splitting

Python version 3.10.4 was used with Jupyter Notebooks on Anaconda version 2021.05.
Packages included pandas 1.5.0, scikit-learn 1.0.2, NumPy 1.23.4, and imblearn 0.0.

6.5. Stratified Sampling

Scikit-learn in Python was used to generate the training and testing stratified splits.

7. Metrics Used for the Assessment of Results

The objective of this research is to show how a combination of undersampling and
oversampling techniques helps build a model which classifies minority classes more accu-
rately. Two approaches were taken for preparing the data: random undersampling before
splitting and random undersampling after splitting, and different proportions of oversam-
pling were used (from 0.1 to 1.0, incremented at intervals of 0.1), while the undersampling
was maintained at a constant of 0.5 (50%).

7.1. Classification Metrics Used

For evaluating the classification of the random forest runs, the following matrices
were used: accuracy, precision, recall, F-Score, and macro precision.

Accuracy: Accuracy is the number of correctly classified instances (i.e., True Positives
and True Negatives) divided by the total number of instances [28].

Accuracy = [True Positives (TP) + True Negatives (TN)]/[TP + False Positives
+ TN + False Negatives]

(5)

Precision: Precision is the proportion of predicted positive cases that are correctly
labeled as positive [29]. Precision by label considers only one class and measures the
number of times a specific label was predicted correctly, normalized by the number of times
that label appears in the output.

Precision = Positive Predictive Value = [True Positives]/[True Positives +
False Positives]

(6)

Recall: Recall is the ability of the classifier to find all the positive samples, or the
True Positive Rate (TPR). Recall is also known as sensitivity, and is the proportion of Real
Positive cases that are correctly predicted as Positive (TP) [29].

All Real Positives = [True Positives + False Negatives]
All Real Negatives = [True Negatives + False Positives]

Recall = True Positive Rate = [True Positives]/[All Real Positives] (7)

F-Score: The F-score is the harmonic mean of a prediction’s precision and recall metrics.
It is another overall measure of the test’s accuracy [29].

F-Score = 2 ∗ [Precision ∗ Recall]/[Precision + Recall] (8)

Recall, sensitivity, and TPR connate the same measure.
Macro Precision: Macro precision finds the unweighted mean of the precision values.

This does not take label imbalance into account [30].

Future Internet 2023, 15, 130 9 of 24

7.2. Welch’s t-Tests

Welch’s t-tests were used to find the differences in the means of the different over-
sampling percentages. When comparing metrics across two successive percentage runs,
the increase or decrease in the metric being evaluated has to be determined, and hence a
one-tailed Welch’s t-test was used. Welch’s t-test is calculated using the formula:

(
−
x1 −

−
x2)/

(√
s2

1/n1 + s2
2/n2

)
(9)

where
−
x1 and

−
x2 are sample means of the metrics, s1

2 and s2
2 are sample variances, n1 and

n2 are sample sizes, and the df v is calculated using Satterwaite approximation.
The mean of the individual runs for each metric for one oversampling percentage

is compared with another, for example, 0.1 vs. 0.2. If the t-score value is high, there is
more difference between the two means. In order to determine whether this difference
is significant, the p-value was calculated for each t-score. The significance level was kept
at 0.1, making the test more sensitive to results and increasing the significance zone. If
the p-value is less than the threshold, then the increase or decrease in the t-score value is
significant between the two means.

8. Results and Discussion

This section presents the statistical results, followed by a discussion. Since several
oversampling techniques are available, the first step was to perform a study to select an
oversampling technique. Then, the results of the random undersampling before strati-
fied splitting are presented, followed by the results of the random undersampling after
stratified splitting.

8.1. Selection of an Oversampling Technique

An initial analysis was conducted to determine the best synthetic oversampling tech-
nique among a few commonly used oversampling techniques, SMOTE, Borderline SMOTE,
and ADASYN.

Traditionally, a 70-30 training-testing split is performed on the data. However, in this
case, since the occurrences of the minority class are minimal, there is no guarantee that
samples from the minority class will be present in both the training data and the testing
data without sample stratification by category. Hence, stratified sampling was used to split
the data into a 70-30 training-testing ratio.

From the evaluation metrics shown in Figure 2, it is evident that BSMOTE performs
better than the other resampling techniques in terms of precision, F-score, and macro
precision. SMOTE and ADASYN had better recall than BSMOTE, but the latter performed
better overall.

Hence, all future analyses in this work use BSMOTE as the primary oversampling
technique, combined with random undersampling. Several researchers have confirmed
that neither oversampling nor undersampling alone can successfully classify imbalanced
datasets [12,19], let alone identify rare attacks. Hence, this study looks at the effects of
varying oversampling percentages.

Future Internet 2023, 15, 130 10 of 24
Future Internet 2023, 15, x FOR PEER REVIEW 10 of 23

Figure 2. Comparison of oversampling techniques

8.2. Resampling before and after Splitting
For random undersampling before stratified splitting, as well as random under-

sampling after stratified splitting, the percent of undersampling was kept at 0.5 (50%) and
the percent of oversampling varied from 0.1 (10%) of the data to 1.0 (100%) of the data, at
increments of 0.1 (10%). That is, 50% of the instances were selected at random from the
majority class, and from the minority class, first 0.1 (10%) oversampling was used, then
0.2 (20%), then 0.3 (30%), and so on, until 1.0 (100%).

For UNSW-NB15, the three most minor attack categories, Worms, Shellcode, and
Backdoors, were used. Worms, Shellcode, and Backdoors comprise 0.006%, 0.059%, and
0.091% of the total data, respectively. For UWF-ZeekData22, two tactics were used: cre-
dential access and privilege escalation. Privilege escalation and credential access were
contained in 0.00007 and 0.00016% of the total data respectively.

For each of the attack categories, for random undersampling before stratified split-
ting, as well as random undersampling after stratified splitting, an average of ten runs
were performed. Values are presented for accuracy, precision, recall, F-score, and macro
precision for random undersampling of the majority data at 0.5 (50%), and oversampling
the minority data using BSMOTE varied from 0.1 (10%) to 1.0 (100%), at increments of 0.1
(10%). The standard deviations (SDs) are also presented. Since only binary classification
is performed in this study, the majority of the data were the benign or non-attack data and
the minority of the data were the respective attack category, for example, worms or cre-
dential access.

8.2.1. Random Undersampling before Stratified Splitting
Table 5 presents the classification results for Random Undersampling Before Strati-

fied Splitting for Worms (UNSW-NB15) for the various oversampling percentages (0.1 to
1.0, at intervals of 0.1). The best results are highlighted in green.

Figure 2. Comparison of oversampling techniques.

8.2. Resampling before and after Splitting

For random undersampling before stratified splitting, as well as random undersam-
pling after stratified splitting, the percent of undersampling was kept at 0.5 (50%) and
the percent of oversampling varied from 0.1 (10%) of the data to 1.0 (100%) of the data, at
increments of 0.1 (10%). That is, 50% of the instances were selected at random from the
majority class, and from the minority class, first 0.1 (10%) oversampling was used, then 0.2
(20%), then 0.3 (30%), and so on, until 1.0 (100%).

For UNSW-NB15, the three most minor attack categories, Worms, Shellcode, and Back-
doors, were used. Worms, Shellcode, and Backdoors comprise 0.006%, 0.059%, and 0.091%
of the total data, respectively. For UWF-ZeekData22, two tactics were used: credential
access and privilege escalation. Privilege escalation and credential access were contained
in 0.00007 and 0.00016% of the total data respectively.

For each of the attack categories, for random undersampling before stratified splitting,
as well as random undersampling after stratified splitting, an average of ten runs were
performed. Values are presented for accuracy, precision, recall, F-score, and macro precision
for random undersampling of the majority data at 0.5 (50%), and oversampling the minority
data using BSMOTE varied from 0.1 (10%) to 1.0 (100%), at increments of 0.1 (10%). The
standard deviations (SDs) are also presented. Since only binary classification is performed
in this study, the majority of the data were the benign or non-attack data and the minority
of the data were the respective attack category, for example, worms or credential access.

8.2.1. Random Undersampling before Stratified Splitting

Table 5 presents the classification results for Random Undersampling Before Stratified
Splitting for Worms (UNSW-NB15) for the various oversampling percentages (0.1 to 1.0, at
intervals of 0.1). The best results are highlighted in green.

To determine the best results among the various oversampling percentages, Welch’s t-
tests were performed. Results of Welch’s t-tests for UNSW-NB15, Worms Random Sampling
before Stratified Splitting (Table 5), are presented in Table 6. The results presented in Table 6
show the t-test comparisons between the results of various oversampling runs. In the first
row of comparison between 0.1 and 0.2, we observed that the p-values across all metrics
are above 0.1, the significance level. Hence, there is no statistical difference between the
compared results. However, in the second row of comparison between 0.1 and 0.3, the

Future Internet 2023, 15, 130 11 of 24

recall and F-score had significant differences, and both the t-score values were positive.
This implies that 10% oversampling performed better than 30%.

Table 5. UNSW-NB15: Worms—classification results for random undersampling before splitting.

Oversampling % Accuracy Precision Recall F-Score Macro Precision

0.1
Avg 0.9999 0.769 0.794 0.778 0.884
SD 0.056 0.063 0.034 0.028

0.2
Avg 0.99991 0.806 0.779 0.789 0.902
SD 0.065 0.09 0.058 0.032

0.3
Avg 0.9999 0.799 0.717 0.752 0.899
SD 0.059 0.075 0.047 0.029

0.4
Avg 0.99991 0.802 0.783 0.787 0.901
SD 0.068 0.076 0.043 0.034

0.5
Avg 0.999 0.836 0.871 0.852 0.918
SD 0.051 0.037 0.033 0.026

0.6
Avg 0.999 0.828 0.851 0.838 0.914
SD 0.057 0.057 0.042 0.029

0.7
Avg 0.999 0.849 0.88 0.862 0.924
SD 0.053 0.051 0.026 0.027

0.8
Avg 0.999 0.847 0.851 0.847 0.924
SD 0.056 0.051 0.039 0.028

0.9
Avg 0.999 0.807 0.892 0.845 0.903
SD 0.056 0.043 0.034 0.028

1.0
Avg 0.999 0.818 0.75 0.782 0.909
SD 0.069 0.051 0.055 0.034

Averages 0.8161 0.8168 0.8132 0.9078

Table 6. Welch’s t-test results: UNSW-NB15: Worms—random undersampling before splitting.

Welch’s t-Test
Results (p < 0.10) Precision t-Value Recall t-Value F-Score t-Value Macro Precision

t-Value Analysis

0.1 vs. 0.2 −1.366 0.441 −0.451 −1.366 0.1 and 0.2 are
statistically equal

0.1 vs. 0.3 −1.167 2.489 1.423 −1.167 0.1 is better

0.1 vs. 0.4 −1.179 0.368 −0.516 −1.180 0.1 and 0.4 are
statistically equal

0.1 vs. 0.5 −2.793 −3.315 −4.955 −2.795 0.5 is better than 0.1

0.5 vs. 0.6 0.326 0.949 0.863 0.326 0.5 and 0.6 are
statistically equal

0.5 vs. 0.7 −0.551 −0.423 −0.722 −0.551 0.5 and 0.7 are
statistically equal

0.5 vs. 0.8 −0.467 1.022 0.291 −0.466 0.5 and 0.8 are
statistically equal

0.5 vs. 0.9 1.213 −1.130 0.442 1.213 0.5 and 0.9 are
statistically equal

1 vs. 0.5 0.649 6.075 3.451 0.651 0.5 is better than 1.0

Hence, based on the analysis in Table 6, the best results were obtained at 0.5 oversam-
pling for Worms (highlighted in green in Table 5). There are, however, sampling ratios that
are statistically equivalent to using 0.5, as shown in Table 6. However, an oversampling of
0.5 was chosen as the best since it has the smallest amount of oversampled data and thus
would take the least computational time.

Table 7 presents the classification results for Random Undersampling Before Split-
ting for Shellcode (UNSW-NB15) for the various oversampling percentages (0.1 to 1.0, at
intervals of 0.1). The best results are highlighted in green.

Future Internet 2023, 15, 130 12 of 24

Table 7. UNSW-NB15: Shellcode—classification results for random undersampling before splitting.

Oversampling % Accuracy Precision Recall F-Score Macro Precision

0.1
Avg 0.9996 0.849 0.941 0.892 0.924
SD 0.013 0.014 0.012 0.006

0.2
Avg 0.9997 0.889 0.969 0.927 0.944
SD 0.015 0.01 0.007 0.007

0.3
Avg 0.9997 0.896 0.962 0.927 0.948
SD 0.013 0.012 0.007 0.006

0.4
Avg 0.9997 0.898 0.958 0.927 0.949
SD 0.008 0.008 0.007 0.004

0.5
Avg 0.9996 0.887 0.964 0.924 0.944
SD 0.014 0.007 0.007 0.007

0.6
Avg 0.9996 0.876 0.964 0.918 0.938
SD 0.012 0.014 0.008 0.006

0.7
Avg 0.9995 0.844 0.925 0.883 0.922
SD 0.012 0.013 0.009 0.006

0.8
Avg 0.9995 0.846 0.932 0.887 0.923
SD 0.012 0.013 0.005 0.006

0.9
Avg 0.9995 0.849 0.929 0.887 0.924
SD 0.013 0.01 0.007 0.006

1
Avg 0.9996 0.855 0.939 0.895 0.928
SD 0.014 0.014 0.008 0.007

Averages 0.9996 0.8689 0.9483 0.9067 0.9344

Results of Welch’s t-tests for UNSW-NB15 Shellcode Random Undersampling before
Splitting (Table 7) are presented in Table 8. Based on the analysis in Table 8, the best results
were obtained at 0.4 oversampling for Shellcode (highlighted in green in Table 7).

Table 8. Welch’s t-test results: UNSW-NB15: Shellcode—random undersampling before splitting.

Welch’s t-Test
Results (p < 0.10) Precision t-Value Recall t-Value F-Score t-Value Macro Precision

t-Value Analysis

0.1 vs. 0.2 −6.530 −5.250 −8.049 −6.537 0.2 is better than 0.1
0.2 vs. 0.3 −1.093 1.438 −0.107 −1.092 0.2 better than 0.3
0.2 vs. 0.4 −1.613 2.616 −0.005 −1.609 0.2 has better recall
0.4 vs. 0.5 2.015 −1.784 0.888 2.012 0.5 has better recall
0.4 vs. 0.6 4.557 −1.176 2.507 4.553 0.4 is better than 0.6
04. vs. 0.7 11.157 6.763 11.799 11.163 0.4 is better than 0.7
0.4 vs. 0.8 11.097 5.620 13.965 11.110 0.4 is better than 0.8
0.4 vs. 0.9 10.104 7.201 12.712 10.113 0.4 is better than 0.9
0.4 vs. 1 8.290 3.908 9.362 8.296 0.4 is better than 1.0

Table 9 presents the classification results for Random Undersampling Before Splitting
for Backdoors (UNSW-NB15) for the various oversampling percentages (0.1 to 1.0, at
intervals of 0.1). The best results are highlighted in green.

Table 9. UNSW-NB15: Backdoors—classification results for random undersampling before splitting.

Oversampling % Accuracy Precision Recall F-Score Macro Precision

0.1
Avg 0.9998 0.962 0.96 0.961 0.981
SD 0.006 0.006 0.003 0.003

0.2
Avg 0.9998 0.969 0.964 0.966 0.984
SD 0.009 0.007 0.006 0.004

0.3
Avg 0.9997 0.962 0.95 0.956 0.981
SD 0.005 0.01 0.005 0.003

Future Internet 2023, 15, 130 13 of 24

Table 9. Cont.

Oversampling % Accuracy Precision Recall F-Score Macro Precision

0.4
Avg 0.9998 0.97 0.956 0.963 0.985
SD 0.007 0.009 0.005 0.003

0.5
Avg 0.9998 0.97 0.951 0.961 0.985
SD 0.007 0.008 0.005 0.003

0.6
Avg 0.9998 0.965 0.954 0.96 0.982
SD 0.007 0.009 0.005 0.003

0.7
Avg 0.9997 0.968 0.946 0.957 0.984
SD 0.006 0.011 0.006 0.003

0.8
Avg 0.9998 0.966 0.95 0.958 0.983
SD 0.005 0.01 0.006 0.002

0.9
Avg 0.9998 0.967 0.957 0.962 0.983
SD 0.008 0.006 0.004 0.004

1
Avg 0.9998 0.968 0.952 0.96 0.984
SD 0.009 0.01 0.008 0.004

Averages 0.99978 0.9667 0.954 0.9604 0.9832

Results of Welch’s t-tests for UNSW-NB15 Backdoors Random Undersampling before
Splitting (Table 9) are presented in Table 10. Based on the analysis in Table 10, the best
results were obtained at 0.2 oversampling for Backdoors (highlighted in green in Table 9).

Table 10. Welch’s t-test results: UNSW-NB15: Backdoors—random undersampling before splitting.

Welch’s t-Test
Results (p < 0.10) Precision t-Value Recall t-Value F-Score t-Value Macro Precision

t-Value Analysis

0.1 vs. 0.2 −1.813 −1.602 −2.697 −1.818 0.2 is better than 0.1
across all metrics

0.2 vs. 0.3 1.955 3.627 4.492 1.970 0.2 is better than 0.1
across all metrics

0.2 vs. 0.4 −0.404 2.338 1.491 −0.397 0.2 is better than 0.4
in recall and F-score

0.2 vs. 0.5 −0.474 3.866 2.359 −0.464 0.2 is better than 0.5
in recall and F-score

0.2 vs. 0.6 1.070 2.621 2.861 1.079 0.2 is better than 0.6
in recall and F-score

0.2 vs. 0.7 0.189 4.415 3.563 0.206 0.2 is better than 0.7
in recall and F-score

0.2 vs. 0.8 0.829 3.661 3.254 0.842 0.2 is better than 0.8
in recall and F-score

0.2 vs. 0.9 0.524 2.378 2.136 0.531 0.2 is better than 0.9
in recall and F-score

0.2 vs. 1.0 0.180 3.043 2.149 0.189 0.2 is better than 1.0
in recall and F-score

Table 11 presents the classification results for Random Undersampling Before Splitting
for Credential Access (UWF-ZeekData22) for the various oversampling percentages (0.1 to
1.0, at intervals of 0.1). The best results are highlighted in green.

Future Internet 2023, 15, 130 14 of 24

Table 11. UWF-ZeekData22: credential access—classification results for random undersampling
before splitting.

Oversampling % Accuracy Precision Recall F-Score Macro Precision

0.1
Avg 0.999 0.742 0.889 0.801 0.871
SD 0.134 0.165 0.126 0.067

0.2
Avg 0.999 0.885 0.911 0.891 0.942
SD 0.05 0.139 0.075 0.024

0.3
Avg 0.999 0.847 0.867 0.849 0.923
SD 0.101 0.147 0.107 0.05

0.4
Avg 0.999 0.836 0.856 0.83 0.918
SD 0.106 0.165 0.107 0.053

0.5
Avg 0.999 0.936 0.911 0.919 0.968
SD 0.069 0.109 0.072 0.034

0.6
Avg 0.999 0.906 0.867 0.87 0.953
SD 0.103 0.163 0.094 0.052

0.7
Avg 0.999 0.882 0.922 0.894 0.941
SD 0.067 0.122 0.06 0.033

0.8
Avg 0.999 0.826 0.911 0.853 0.913
SD 0.143 0.097 0.084 0.071

0.9
Avg 0.999 0.829 0.967 0.889 0.915
SD 0.079 0.071 0.054 0.04

1
Avg 0.999998 0.832 0.911 0.864 0.916
SD 0.109 0.097 0.076 0.054

Averages 0.9991 0.8521 0.9012 0.866 0.926

Results of Welch’s t-tests for UWF-ZeekData22 Credential Access Random Undersam-
pling before Splitting (Table 11) are presented in Table 12. Based on the analysis in Table 12,
the best results were obtained at 0.5 oversampling for credential access (highlighted in
green in Table 11).

Table 12. Welch’s t-test results: UWF-ZeekData22: credential access—random undersampling
before splitting.

Welch’s t-Test
Results (p < 0.10) Precision t-Value Recall t-Value F-Score t-Value Macro Precision

t-Value Analysis

0.1 vs. 0.2 −3.162 −0.322 −1.941 −3.155
0.2 is better than 0.1
in precision, F-score,
and macro precision

0.2 vs. 0.3 1.066 0.688 1.016 1.083 0.2 and 0.3 are
statistically the same

0.2 vs. 0.4 1.322 0.806 1.476 1.304 0.2 is better than 0.4
in F-score

0.2 vs. 0.5 −1.893 0.000 −0.852 −1.976
0.5 is better than 0.2

in precision and
macro precision

0.5 vs. 0.6 0.765 0.710 1.309 0.763 0.5 and 0.6 are
statistically equal

0.5 vs. 0.7 0.113 −0.188 −0.099 0.077 0.5 and 0.7 are
statistically equal

0.5 vs. 0.8 2.191 0.000 1.886 2.209
0.5 is better than 0.8
in precision, F-score,
and macro precision

0.5 vs. 0.9 3.226 −1.361 1.054 3.193
0.5 is better than 0.9

in precision and
macro precision

0.5 vs. 1.0 1.398 0.000 0.800 1.391
0.5 is better than 1.0

in precision and
macro precision

Future Internet 2023, 15, 130 15 of 24

Table 13 presents the classification results for Random Undersampling Before Splitting
for Privilege Escalation (UWF-ZeekData22) for the various oversampling percentages (0.1
to 1.0, at intervals of 0.1). The best results are highlighted in green.

Table 13. UWF-ZeekData22: privilege escalation—classification results for random undersampling
before splitting.

Oversampling % Accuracy Precision Recall F-Score Macro Precision

0.1
Avg 0.9999 0.902 0.775 0.81 0.951
SD 0.125 0.236 0.156 0.063

0.2
Avg 0.999996 0.904 0.8 0.828 0.952
SD 0.138 0.232 0.165 0.069

0.3
Avg 0.999996 0.895 0.825 0.841 0.947
SD 0.15 0.243 0.185 0.075

0.4
Avg 0.999996 0.9 0.794 0.824 0.95
SD 0.147 0.249 0.185 0.074

0.5
Avg 0.999996 0.908 0.815 0.839 0.954
SD 0.139 0.244 0.177 0.069

0.6
Avg 0.999996 0.907 0.846 0.857 0.954
SD 0.136 0.233 0.169 0.068

0.7
Avg 0.999996 0.905 0.843 0.853 0.952
SD 0.139 0.24 0.175 0.07

0.8
Avg 0.999996 0.906 0.834 0.848 0.953
SD 0.139 0.247 0.182 0.069

0.9
Avg 0.999996 0.899 0.844 0.851 0.95
SD 0.14 0.24 0.178 0.07

1
Avg 0.999996 0.899 0.848 0.852 0.949
SD 0.14 0.242 0.181 0.07

Averages 0.9999959 0.9025 0.8224 0.8403 0.9512

Results of Welch’s t-tests for UWF-ZeekData22 Privilege Escalation Random Under-
sampling before Splitting (Table 13) are presented in Table 14. Based on the analysis
in Table 14, the best results were obtained at 0.1 oversampling for privilege escalation
(highlighted in green in Table 13). Though there are sampling ratios that are statistically
equivalent to 0.1 (as shown in Table 14), 0.1 was chosen as the best since 0.1 has the smallest
amount of oversampled data, thus taking the least computational time.

Table 14. Welch’s t-test results: UWF-ZeekData22: privilege escalation—random undersampling
before splitting.

Welch’s t-Test
Results (p < 0.10) Precision t-Value Recall t-Value F-Score t-Value Macro Precision

t-Value Analysis

0.1 vs. 0.2 −0.042 −0.239 −0.252 −0.042 0.1 and 0.2 are
statistically equal

0.1 vs. 0.3 0.108 −0.467 −0.411 0.108 0.1 and 0.3 are
statistically equal

0.1 vs. 0.4 0.034 −0.173 −0.178 0.034 0.1 and 0.4 are
statistically equal

0.1 vs. 0.5 −0.102 −0.373 −0.387 −0.102 0.1 and 0.5 are
statistically equal

0.1 vs. 0.6 −0.100 −0.675 −0.644 −0.100 0.1 and 0.5 are
statistically equal

0.1 vs. 0.7 −0.056 −0.638 −0.587 −0.056 0.1 and 0.7 are
statistically equal

0.1 vs. 0.8 −0.074 −0.550 −0.502 −0.074 0.1 and 0.8 are
statistically equal

Future Internet 2023, 15, 130 16 of 24

Table 14. Cont.

Welch’s t-Test
Results (p < 0.10) Precision t-Value Recall t-Value F-Score t-Value Macro Precision

t-Value Analysis

0.1 vs. 0.9 0.037 −0.652 −0.555 0.037 0.1 and 0.9 are
statistically equal

0.2 vs. 1.0 0.048 −0.678 −0.556 0.048 0.1 and 1.0 are
statistically equal

After analyzing the classification results using Welch’s t-tests, for Random Under-
sampling Before Stratified Splitting, it appears that a random undersampling of 0.5 of
the majority data before stratified splitting gives the best results when the BSMOTE over-
sampling is also at 0.5 for two datasets: Worms and credential access. The best results
for Shellcode were achieved at a random undersampling at 0.5 and a BSMOTE oversam-
pling of 0.4, and at a BSMOTE oversampling of 0.2 and 0.1 for Backdoors and privilege
escalation, respectively.

8.2.2. Random Undersampling after Stratified Splitting

Table 15 presents the classification results for Random Undersampling After Splitting
for Worms (UNSW-NB15) for the various oversampling percentages (0.1 to 1.0, at intervals
of 0.1). The best results are highlighted in green.

Table 15. UNSW-NB15: Worms—classification results for random undersampling after splitting.

Oversampling % Accuracy Precision Recall F-Score Macro Precision

0.1
Avg 0.999 0.608 0.737 0.665 0.804
SD NA 0.067 0.044 0.0495 0.034

0.2
Avg 0.999 0.601 0.712 0.646 0.8
SD NA 0.108 0.089 0.083 0.054

0.3
Avg 0.999 0.566 0.773 0.651 0.783
SD NA 0.066 0.059 0.051 0.033

0.4
Avg 0.999 0.566 0.781 0.654 0.783
SD NA 0.035 0.063 0.026 0.018

0.5
Avg 0.999 0.581 0.738 0.65 0.791
SD NA 0.078 0.082 0.079 0.039

0.6
Avg 0.999 0.587 0.76 0.656 0.793
SD NA 0.097 0.044 0.061 0.049

0.7
Avg 0.999 0.62 0.753 0.679 0.81
SD NA 0.053 0.046 0.041 0.026

0.8
Avg 0.999 0.54 0.719 0.614 0.77
SD NA 0.081 0.036 0.041 0.018

0.9
Avg 0.999 0.573 0.711 0.629 0.787
SD NA 0.117 0.097 0.089 0.058

1
Avg 0.999 0.601 0.75 0.666 0.801
SD NA 0.062 0.081 0.06 0.031

Averages 0.999 0.5843 0.7434 0.651 0.7922

Results of Welch’s t-tests for UNSW-NB15, Worms for Random Undersampling after
Splitting (Table 15), are presented in Table 16. Consider the t-test comparison between 0.1
vs. 0.3 in Table 16. It was found that the t-values of precision, recall, and macro precision
have statistical significance. Since precision and macro precision have positive t-values, it
implies that 0.1 oversampling performed better in these two metrics. However, the recall
value was negative, which means that 0.3 had better true positive predictions than 0.1. If
the p-value is higher than 0.1, then there is statistically no significant difference between
the two means. This is the case in the comparison of 0.1 vs. 0.2 oversampling in Table 16.

Future Internet 2023, 15, 130 17 of 24

Table 16. Welch’s t-test results: UNSW-NB15: Worms—random undersampling after splitting.

Welch’s t-Test
Results (p < 0.10) Precision t-Value Recall t-Value F-Score t-Value Macro Precision

t-Value Analysis

0.1 vs. 0.2 0.183 0.799 0.612 0.183 No significant
difference

0.1 vs. 0.3 1.413 −1.563 0.592 1.413

0.1 is better than 0.3
in precision and

macro precision, but
0.3 is better in recall

0.1 vs. 0.4 1.773 −1.826 0.628 1.773

0.1 is better than 0.4
in precision and

macro precision, but
0.3 is better in recall

0.1 vs. 0.5 0.836 −0.065 0.506 0.836 0.1 and 0.5 are
statistically equal

0.1 vs. 0.6 0.451 −0.957 0.264 0.451 0.1 and 0.6 are
statistically equal

0.1 vs. 0.7 −0.431 −0.859 −0.706 −0.431 0.1 and 0.7 are
statistically equal

0.1 vs. 0.8 2.052 0.959 2.5 2.826

0.1 better than 0.8
except for recall,

where both of them
are statistically equal

0.1 vs. 0.9 0.821 0.745 1.131 0.821 0.1 and 0.9 are
statically equal

0.1 vs. 1 0.219 −0.746 −0.033 0.302 0.1 and 1 are
statically equal

Based on the analysis in Table 16, the best results were obtained at 0.1 oversampling
for Worms (highlighted in green in Table 15). Though there are sampling ratios that are
statistically equivalent to 0.1 (as shown in Table 16), 0.1 was chosen as the best since it has
the smallest amount of oversampled data, thus taking the least computational time.

Table 17 presents the classification results for Random Undersampling After Split-
ting for Shellcode (UNSW-NB15) for the various oversampling percentages (0.1 to 1.0, at
intervals of 0.1). The best results are highlighted in green.

Table 17. UNSW-NB15: Shellcode—classification results for random undersampling after splitting.

Oversampling % Accuracy Precision Recall F-Score Macro Precision

0.1
Avg 0.999 0.698 0.906 0.788 0.849
SD NA 0.016 0.017 0.010 0.008

0.2
Avg 0.999 0.694 0.907 0.786 0.847
SD NA 0.016 0.015 0.011 0.008

0.3
Avg 0.999 0.691 0.911 0.786 0.846
SD NA 0.017 0.015 0.011 0.008

0.4
Avg 0.999 0.686 0.905 0.780 0.843
SD NA 0.014 0.011 0.010 0.007

0.5
Avg 0.999 0.678 0.906 0.776 0.839
SD NA 0.011 0.014 0.008 0.005

0.6
Avg 0.999 0.699 0.908 0.790 0.849
SD NA 0.020 0.003 0.013 0.010

0.7
Avg 0.999 0.699 0.908 0.790 0.849
SD NA 0.021 0.016 0.016 0.011

0.8
Avg 0.999 0.692 0.911 0.787 0.846
SD NA 0.011 0.021 0.013 0.006

Future Internet 2023, 15, 130 18 of 24

Table 17. Cont.

Oversampling % Accuracy Precision Recall F-Score Macro Precision

0.9
Avg 0.999 0.688 0.901 0.780 0.844
SD NA 0.021 0.010 0.015 0.011

1.0
Avg 0.999 0.688 0.888 0.775 0.844
SD NA 0.018 0.015 0.016 0.009

Averages 0.999 0.6913 0.9051 0.7838 0.8456

Results of Welch’s t-tests for Random Undersampling after Splitting for Shellcode
(UNSW-NB15) (Table 17) are presented in Table 18. Based on the analysis in Table 18,
the best results were obtained at 0.1 oversampling for Shellcode (highlighted in green in
Table 17). Though there are sampling ratios that are statistically equivalent to 0.1 (as shown
in Table 18), 0.1 was chosen as the best since it has the smallest amount of oversampled
data, thus taking the least computational time.

Table 18. Welch’s t-test results: UNSW-NB15: Shellcode—random undersampling after splitting.

Welch’s t-Test
Results (p < 0.10) Precision t-Value Recall t-Value F-Score t-Value Macro Precision

t-Value Analysis

0.1 vs. 0.2 0.566 −0.276 0.386 0.566 0.1 and 0.2 are
statistically equal

0.1 vs. 0.3 0.874 −0.706 0.442 0.874 0.1 and 0.3 are
statistically equal

0.1 vs. 0.4 1.805 0.07 1.702 1.806
0.1 better than 0.4 in

precision, F-score,
and macro precision

0.1 vs. 0.5 3.349 −0.128 3.104 3.349
0.1 better than 0.5 in

precision, F-score,
and macro precision

0.1 vs. 0.6 −0.084 −0.489 −0.284 −0.084 0.1 and 0.6 are
statistically equal

0.1 vs. 0.7 0.684 −0.73 0.293 0.683 0.1 and 0.7 are
statistically equal

0.1 vs. 0.8 1.62 0.52 1.48 1.62
0.1 better than 0.8 in

precision, F-score,
and macro precision

0.1 vs. 0.9 1.202 2.814 2.187 1.204 0.1 is better than 0.9
in recall and F-score

0.1 vs. 1 2.101 0.246 1.832 2.101
0.1 is better than 1 in

all metrics
except recall

Table 19 presents the classification results for Random Undersampling After Splitting
for Backdoors (UNSW-NB15) for the various oversampling percentages (0.1 to 1.0, at
intervals of 0.1). The best results are highlighted in green.

Results of Welch’s t-tests for UNSW-NB15 Backdoors for Random Undersampling
after Splitting (Table 19) are presented in Table 20. Based on the analysis in Table 20, the best
results were obtained at 0.1 oversampling for Backdoors (highlighted in green in Table 19).
Again, although there are sampling ratios that are statistically equivalent to 0.1 (as shown
in Table 20), 0.1 was chosen as the best since it has the smallest amount of oversampled
data, thus taking the least computational time.

Future Internet 2023, 15, 130 19 of 24

Table 19. UNSW-NB15: Backdoors—classification results for random undersampling after splitting.

Oversampling % Accuracy Precision Recall F-Score Macro Precision

0.1
Avg 0.999 0.939 0.951 0.945 0.969
SD NA 0.01 0.005 0.004 0.005

0.2
Avg 0.999 0.938 0.948 0.943 0.969
SD NA 0.013 0.008 0.006 0.006

0.3
Avg 0.999 0.936 0.945 0.941 0.968
SD NA 0.009 0.011 0.007 0.004

0.4
Avg 0.999 0.939 0.95 0.944 0.969
SD NA 0.01 0.008 0.007 0.005

0.5
Avg 0.999 0.938 0.948 0.943 0.969
SD NA 0.01 0.007 0.006 0.005

0.6
Avg 0.999 0.941 0.945 0.943 0.97
SD NA 0.006 0.011 0.005 0.003

0.7
Avg 0.999 0.946 0.948 0.947 0.973
SD NA 0.007 0.003 0.003 0.003

0.8
Avg 0.999 0.946 0.943 0.944 0.973
SD NA 0.012 0.009 0.01 0.006

0.9
Avg 0.999 0.94 0.949 0.944 0.97
SD NA 0.007 0.011 0.003 0.003

1
Avg 0.999 0.944 0.943 0.943 0.972
SD NA 0.012 0.007 0.005 0.006

Averages 0.999 0.9407 0.947 0.9437 0.9702

Table 20. Welch’s t-test results: UNSW-NB15: Backdoors—random undersampling after splitting.

Welch’s t-Test
Results (p < 0.10) Precision t-Value Recall t-Value F-Score t-Value Macro Precision

t-Value Analysis

0.1 vs. 0.2 0.013 0.812 0.555 0.013 0.1 and 0.2 are
statistically equal

0.1 vs. 0.3 0.493 1.461 1.579 0.495 0.1 better than 0.3 in
recall and F-score

0.1 vs. 0.4 −0.036 0.225 0.097 −0.036 0.1 and 0.4
statistically equal

0.1 vs. 0.5 0.102 0.978 0.68 0.103 0.1 and 0.5
statistically equal

0.1 vs. 0.6 −0.676 1.296 0.657 −0.675 0.1 and 0.6
statistically equal

0.1 vs. 0.7 −1.738 1.318 −1.316 −1.738 0.1 and 0.7
statistically equal

0.1 vs. 0.8 −1.389 2.264 0.063 −1.387

0.8 is better than 0.1
in precision and

F-score while recall is
better in 0.1

0.1 vs. 0.9 1.336 −1.37 −0.011 1.334
0.8 and 0.9 are

statistically equal but
0.9 has better recall

0.1 vs. 1 0.353 0 0.282 0.353 0.8 and 1 are
statistically equal

Table 21 presents the classification results for Random Undersampling After Splitting
for Credential Access (UWF-ZeekData22) for the various oversampling percentages (0.1 to
1.0, at intervals of 0.1). The best results are highlighted in green.

Future Internet 2023, 15, 130 20 of 24

Table 21. UWF-ZeekData22: credential access—classification results for random undersampling
after splitting.

Oversampling % Accuracy Precision Recall F-Score Macro Precision

0.1
Avg 0.999 0.822 0.878 0.833 0.911
SD NA 0.176 0.116 0.112 0.088

0.2
Avg 0.999 0.732 0.900 0.788 0.867
SD NA 0.141 0.168 0.123 0.071

0.3
Avg 0.999 0.799 0.911 0.847 0.899
SD NA 0.112 0.120 0.101 0.056

0.4
Avg 0.999 0.744 0.911 0.804 0.872
SD NA 0.162 0.097 0.100 0.081

0.5
Avg 0.999 0.770 0.944 0.835 0.885
SD NA 0.154 0.075 0.085 0.077

0.6
Avg 0.999 0.696 0.944 0.793 0.848
SD NA 0.116 0.102 0.092 0.056

0.7
Avg 0.999 0.713 0.922 0.793 0.857
SD NA 0.155 0.122 0.116 0.0777

0.8
Avg 0.999 0.639 0.933 0.749 0.820
SD NA 0.067 0.133 0.058 0.034

0.9
Avg 0.999 0.722 0.922 0.800 0.861
SD NA 0.110 0.100 0.052 0.055

1.0
Avg 0.999 0.742 0.889 0.789 0.871
SD NA 0.146 0.131 0.083 0.073

Averages 0.999 0.7379 0.9154 0.8031 0.8691

Results of Welch’s t-tests for UWF-ZeekData22 Credential Access for Random Un-
dersampling after Splitting (Table 21) are presented in Table 22. Based on the analysis in
Table 22, the best results were obtained at 0.5 oversampling for credential access (high-
lighted in green in Table 21). Again, although there are sampling ratios that are statistically
equivalent to 0.5 (as shown in Table 22), 0.5 was chosen as the best since it has the smallest
amount of oversampled data, thus taking the least computational time.

Table 22. Welch’s t-test results: UWF-ZeekData22: credential access—random undersampling
after splitting.

Welch’s t-Test
Results (p < 0.10) Precision t-Value Recall t-Value F-Score t-Value Macro Precision

t-Value Analysis

0.1 vs. 0.2 1.252 −0.344 0.858 1.252 0.1 and 0.2 are
statistically equal

0.1 vs. 0.3 0.348 −0.632 −0.286 0.348 0.1 and 0.3 are
statistically equal

0.1 vs. 0.4 1.023 −0.697 0.611 1.023 0.1 and 0.4 are
statistically equal

0.1 vs. 0.5 0.704 −1.528 −0.047 0.704

0.1 and 0.5 are
statistically equal,
but 0.5 has better

recall

0.1 vs. 0.6 1.204 0 1.06 1.204 0.5 and 0.6 are
statistically equal

0.1 vs. 0.7 0.814 0.49 0.936 0.814 0.5 and 0.7 are
statistically equal

0.1 vs. 0.8 2.461 0.23 2.653 2.461 0.5 is better than
0.8 except for recall

0.1 vs. 0.9 0.786 0.563 1.112 0.786 0.5 and 0.9 are
statistically equal

0.1vs. 1 0.408 1.162 1.22 0.408 0.5 and 1.0 are
statistically equal

Future Internet 2023, 15, 130 21 of 24

Table 23 presents the classification results for Random Undersampling After Splitting
for Privilege Escalation (UWF-ZeekData22) for the various oversampling percentages (0.1
to 1.0, at intervals of 0.1). The best results are highlighted in green.

Table 23. UWF-ZeekData22: privilege escalation—classification results for random undersampling
after splitting.

Oversampling % Accuracy Precision Recall F-Score Macro Precision

0.1
Avg 0.999 0.900 0.750 0.779 0.949
SD NA 0.213 0.273 0.226 0.106

0.2
Avg 0.999 0.813 0.725 0.712 0.906
SD NA 0.203 0.343 0.260 0.101

0.3
Avg 0.999 0.820 0.825 0.768 0.909
SD NA 0.130 0.275 0.147 0.065

0.4
Avg 0.999 0.800 0.800 0.788 0.899
SD NA 0.322 0.331 0.316 0.161

0.5
Avg 0.999 0.843 0.825 0.811 0.921
SD NA 0.253 0.275 0.238 0.126

0.6
Avg 0.999 0.745 0.899 0.804 0.872
SD NA 0.091 0.135 0.068 0.045

0.7
Avg 0.999 0.704 0.911 0.785 0.852
SD NA 0.121 0.147 0.107 0.060

0.8
Avg 0.999 0.707 0.888 0.781 0.853
SD NA 0.094 0.157 0.099 0.047

0.9
Avg 0.999 0.738 0.855 0.778 0.869
SD NA 0.138 0.131 0.087 0.069

1.0
Avg 0.999 0.759 0.966 0.843 0.879
SD NA 0.131 0.071 0.087 0.065

Averages 0.999 0.7833 0.845 0.7853 0.8915

Results of Welch’s t-tests for UNSW-NB15 Backdoors for Random Undersampling
after Splitting (Table 23) are presented in Table 24. Based on the analysis in Table 24, the
best results were obtained at 0.1 oversampling for privilege escalation (highlighted in green
in Table 23). Again, although there are sampling ratios that are statistically equivalent to
0.1 (as shown in Table 24), 0.1 was chosen as the best since it has the smallest amount of
oversampled data, thus taking the least computational time.

Table 24. Welch’s t-test results: UWF-ZeekData22: privilege escalation—random undersampling
after splitting.

Welch’s t-Test
Results (p < 0.10) Precision t-Value Recall t-Value F-Score t-Value Macro Precision

t-Value Analysis

0.1 vs. 0.2 0.929 0.179 0.611 0.929 0.1 and 0.2 are
statistically equal

0.1 vs. 0.3 1.012 −0.611 0.118 1.012 0.1 and 0.3 are
statistically equal

0.1 vs. 0.4 0.817 −0.367 −0.08 0.817 0.1 and 0.4 are
statistically equal

0.1 vs. 0.5 0.541 −0.611 −0.307 0.541 0.1 and 0.4 are
statistically equal

0.1 vs. 0.6 2.1 −1.552 −0.344 2.1 0.1 is better than
0.6 except for recall

0.1 vs. 0.7 2.52 −1.638 −0.086 2.52 0.1 is better than
0.7 except for recall

0.1 vs. 0.8 2.606 −1.391 −0.027 2.606 0.1 is better than
0.8 except for recall

Future Internet 2023, 15, 130 22 of 24

Table 24. Cont.

Welch’s t-Test
Results (p < 0.10) Precision t-Value Recall t-Value F-Score t-Value Macro Precision

t-Value Analysis

0.1 vs. 0.9 1.999 −1.098 0.011 1.999
0.1 is better than

0.9 in precision and
macro precision

0.1 vs. 1 1.77 −2.421 −0.834 1.77 0.1 is better than 1
except for recall

After analyzing the classification results using Welch’s t-tests, for Random Undersam-
pling After Stratified Splitting, it can be seen that an undersampling of 0.5 for the majority
of the data after stratified splitting gives the best results when the oversampling is at 0.1, for
four of the five datasets. All the UNSW-NB15 datasets performed better at an oversampling
of 0.1 and one of the UWF-ZeekData22 datasets, privilege escalation, also performed better
at 0.1. Credential access, however, performed better at 0.5. This means that, for four out
of the five datasets, generating more synthetic minority class samples beyond 0.1 will not
result in a better prediction by the model.

9. Conclusions

In this paper, two different designs that address the issue of class imbalance in net-
work intrusion or cybersecurity datasets were compared using resampling techniques.
The objective was to see how combinations of undersampling and oversampling help to
better predict the minority classes in highly imbalanced datasets. Comparing both design
approaches, we found that the ratio of 0.5 random undersampling to 0.1–0.5 oversampling
using BSMOTE works best (based on the dataset) for random undersampling before strati-
fied splitting of the training and testing data. On the other hand, the ratio of 0.5 random
undersampling to 0.1 oversampling using BSMOTE works best (in most cases) for ran-
dom undersampling after stratified splitting of the training and testing data. Random
undersampling after oversampling using BSMOTE allows for the use of lower ratios of
oversampled data. However, although the average accuracy would appear comparable for
both methods, the average precision, recall, and other measures were higher in the random
undersampling before splitting. This can be attributed to stratified train/test splitting
before random undersampling, ensuring that the train/test samples mimic the actual ratios
of the majority to minority classes.

10. Future Work

For future work, we plan to look at the following. We fixed random undersampling to
0.50% of the original data and varied the percentages of oversampling. Future work would
vary both undersampling and oversampling. Additionally, we would like to extend this to
other data with small minority classes and compare them against other classifiers.

Author Contributions: This work was conceptualized by S.B. (Sikha Bagui), D.M., S.B. (Subhash Bagui),
S.S. and D.W.; methodology was performed by S.B. (Sikha Bagui), D.M., S.B. (Subhash Bagui), S.S. and
D.W.; validation was performed by S.B. (Sikha Bagui), S.B. (Subhash Bagui), S.S. and D.W.; formal
analysis was performed by S.S. and D.W.; investigation was performed by S.S. and D.W.; resources
were provided by S.B. (Sikha Bagui), D.M., S.S. and D.W.; data curation was performed by S.S. and
D.W; original draft preparation was performed by S.B. (Sikha Bagui), S.S. and D.W., reviewing and
editing was performed by S.B. (Sikha Bagui), D.M., S.B. (Subhash Bagui), S.S. and D.W.; visualizations
were performed by S.B. (Sikha Bagui), S.S. and D.W., supervision was performed by S.B. (Sikha Bagui),
D.M. and S.B. (Subhash Bagui); project administration was performed by S.B. (Sikha Bagui), D.M., S.B.
(Subhash Bagui), S.S. and D.W.; funding acquisition was performed by S.B. (Sikha Bagui), D.M. and S.B.
(Subhash Bagui). All authors have read and agreed to the published version of the manuscript.

Funding: The research was funded by 2021 NCAE-C-002: Cyber Research Innovation Grant Program,
grant number H98230-21-1-0170.

Future Internet 2023, 15, 130 23 of 24

Data Availability Statement: UWF-ZeekData22 is available at datasets.uwf.edu (accessed on
1 March 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zippia, How Many People Use the Internet? Available online: https://www.zippia.com/advice/how-many-people-use-the-

internet/ (accessed on 1 March 2023).
2. CSO, Up to Three Percent of Internet Traffic is Malicious, Researcher Says. Available online: https://www.csoonline.com/article/

2122506/up-to-three-percent-of-internet-traffic-is-malicious--researcher-says.html (accessed on 15 February 2023).
3. Bagui, S.; Li, K. Resampling Imbalanced Data for Network Intrusion Detection Datasets. J. Big Data 2021, 8, 6. [CrossRef]
4. Moustafa, N.; Slay, J. UNSW-NB15: A Comprehensive Data Set for Network Intrusion Detection Systems (UNSW-NB15 network

data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, ACT,
Australia, 10–12 November 2015; pp. 1–6. [CrossRef]

5. UWF-ZeekData22 Dataset. Available online: Datasets.uwf.edu (accessed on 1 February 2023).
6. Machine Learning Mastery Random Oversampling and Undersampling for Imbalanced Classification. Available online:

https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.under_sampling.RandomUnderSampler.html#
imblearn.under_sampling.RandomUnderSampler (accessed on 12 December 2022).

7. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

8. Han, H.; Wang, W.-Y.; Mao, B.-G. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In
Proceedings of the International Conference on Intelligent Computing, Hefei, China, 23–26 August 2005. [CrossRef]

9. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning. In Proceedings of
the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong
Kong, China, 1–8 June 2008; pp. 1322–1328.

10. Abdi, L.; Hashemi, S. To Combat Multi-class Imbalanced Problems by Means of Over-sampling Techniques. IEEE 2016, 28,
238–251. [CrossRef]

11. Imbalanced-Learn, RandomUnderSampler. Available online: https://imbalanced-learn.org/stable/references/generated/
imblearn.under_sampling.RandomUnderSampler.html (accessed on 5 January 2023).

12. Shamsudin, H.; Yusof, U.; Jayalakshmi, A.; Akmal Khalid, M. Combining Oversampling and Undersampling Techniques for
Imbalanced Classification: A Comparative Study Using Credit Card Fraudulent Transaction Dataset. In Proceedings of the 2020
IEEE 16th International Conference on Control & Automation, Singapore, 9–11 October 2020.

13. Barandela, R.; Sánchez, J.S.; García, V.; Rangel, E. Strategies for Learning in Class Imbalance Problems. Pattern Recognit. 2003, 36,
849–851. [CrossRef]

14. Vandewiele, G.; Dehaene, I.; Kovács, G.; Sterckx, L.; Janssens, O.; Ongenae, F.; De Backere, F.; De Turck, F.; Roelens, K.;
Decruyenaere, J.; et al. Overly Optimistic Prediction Results on Imbalanced Data: Flaws and benefits of Applying Over-sampling.
Artif. Intell. Med. 2020. preprint. [CrossRef] [PubMed]

15. Bajer, D.; Zonć, B.; Dudjak, M.; Martinović, G. Performance Analysis of SMOTE-based Oversampling Techniques When Dealing
with Data Imbalance. In Proceedings of the 2019 International Conference on Systems, Signals and Image Processing (IWSSIP),
Osijek, Croatia, 5–7 June 2019; pp. 265–271. [CrossRef]

16. Bagui, S.; Simonds, J.; Plenkers, R.; Bennett, T.A.; Bagui, S. Classifying UNSW-NB15 Network Traffic in the Big Data Framework
Using Random Forest in Spark. Int. J. Big Data Intell. Appl. 2021, 2, 39–61. [CrossRef]

17. Koziarski, M. CSMOUTE: Combined Synthetic Oversampling and Undersampling Technique for Imbalanced Data Classification.
In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021;
pp. 1–8. [CrossRef]

18. Liu, A.Y. The Effect of Oversampling and Undersampling on Classifying Imbalanced Text Datasets. Ph.D. Thesis, The University
of Texas at Austin, Austin, TX, USA, 2004.

19. Estabrooks, A.; Jo, T.; Japkowicz, N. A Multiple Resampling Method for Learning from Imbalanced Data Sets. Comput. Intell.
2004, 20, 18–36. [CrossRef]

20. Gonzalez-Cuautle, D.; Hernandez-Suarez, A.; Sanchez-Perez, G.; Toscano-Medina, L.K.; Portillo-Portillo, J.; Olivares-Mercado, J.;
Perez-Meana, H.M.; Sandoval-Orozco, A.L. Synthetic Minority Oversampling Technique for Optimizing Classification Tasks in
Botnet and Intrusion-Detection-System Datasets. Appl. Sci. 2020, 10, 794. [CrossRef]

21. Bagui, S.S.; Mink, D.; Bagui, S.C.; Ghosh, T.; Plenkers, R.; McElroy, T.; Dulaney, S.; Shabanali, S. Introducing UWF-ZeekData22:
A Comprehensive Network Traffic Dataset Based on the MITRE ATT&CK Framework. Data 2023, 8, 18. [CrossRef]

22. Bagui, S.; Mink, D.; Bagui, S.; Ghosh, T.; McElroy, T.; Paredes, E.; Khasnavis, N.; Plenkers, R. Detecting Reconnaissance and
Discovery Tactics from the MITRE ATT&CK Framework in Zeek Conn Logs Using Spark’s Machine Learning in the Big Data
Framework. Sensors 2022, 22, 7999. [CrossRef] [PubMed]

23. Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2022.
24. Brieman, L. Random Forests. Mach. Learn. 2001, 45, 1.

datasets.uwf.edu
https://www.zippia.com/advice/how-many-people-use-the-internet/
https://www.zippia.com/advice/how-many-people-use-the-internet/
https://www.csoonline.com/article/2122506/up-to-three-percent-of-internet-traffic-is-malicious--researcher-says.html
https://www.csoonline.com/article/2122506/up-to-three-percent-of-internet-traffic-is-malicious--researcher-says.html
http://doi.org/10.1186/s40537-020-00390-x
http://doi.org/10.1109/MilCIS.2015.7348942
Datasets.uwf.edu
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.under_sampling.RandomUnderSampler.html#imblearn.under_sampling.RandomUnderSampler
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.under_sampling.RandomUnderSampler.html#imblearn.under_sampling.RandomUnderSampler
http://doi.org/10.1613/jair.953
http://doi.org/10.1007/11538059_91
http://doi.org/10.1109/TKDE.2015.2458858
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler.html
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler.html
http://doi.org/10.1016/S0031-3203(02)00257-1
http://doi.org/10.1016/j.artmed.2020.101987
http://www.ncbi.nlm.nih.gov/pubmed/33461687
http://doi.org/10.1109/IWSSIP.2019.8787306
http://doi.org/10.4018/IJBDIA.287617
http://doi.org/10.1109/IJCNN52387.2021.9533415
http://doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x
http://doi.org/10.3390/app10030794
http://doi.org/10.3390/data8010018
http://doi.org/10.3390/s22207999
http://www.ncbi.nlm.nih.gov/pubmed/36298351

Future Internet 2023, 15, 130 24 of 24

25. SparkApache StringIndexer. Available online: https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.
feature.StringIndexer.html. (accessed on 1 March 2023).

26. Understand TCP/IP Addressing and Subnetting Basics. Available online: https://docs.microsoft.com/en-us/troubleshoot/
windows-client/networking/tcpip-addressing-and-subnetting (accessed on 1 March 2023).

27. Service Name and Transport Protocol Port Number Registry. Available online: https://www.iana.org/assignments/service-
names-port-numbers/service-names-port-numbers.xhtml (accessed on 2 March 2023).

28. Scikit Learn 3.3 Metrics and Scoring: Quantifying the Quality of Predictions. Available online: https://scikit-learn.org/stable/
modules/model_evaluation.html#accuracy-score. (accessed on 12 February 2023).

29. Powders, D.M.W. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation. J. Mach.
Learn. Technol. 2011, 2, 37–63.

30. sklearn.metrics.precision_recall_fscore_support. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.precision_recall_fscore_support.html (accessed on 12 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.StringIndexer.html.
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.StringIndexer.html.
https://docs.microsoft.com/en-us/troubleshoot/windows-client/networking/tcpip-addressing-and-subnetting
https://docs.microsoft.com/en-us/troubleshoot/windows-client/networking/tcpip-addressing-and-subnetting
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://scikit-learn.org/stable/modules/model_evaluation.html#accuracy-score.
https://scikit-learn.org/stable/modules/model_evaluation.html#accuracy-score.
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html

	Introduction
	Background
	Related Works
	The Datasets
	UNSW-NB15
	UWF-ZeekData22

	Experimental Design
	The Classifier Used: Random Forest
	Preprocessing
	Information Gain
	Preprocessing UNSW-NB15
	Preprocessing UWF-ZeekData22

	Hardware and Software Configurations
	Hardware and Software Used in Random Undersampling before Stratified Splitting
	Python Libraries Used in Random Undersampling before Stratified Splitting
	Hardware and Software Used in Random Undersampling after Stratified Splitting
	Python Libraries Used in Random Undersampling after Stratified Splitting
	Stratified Sampling

	Metrics Used for the Assessment of Results
	Classification Metrics Used
	Welch’s t-Tests

	Results and Discussion
	Selection of an Oversampling Technique
	Resampling before and after Splitting
	Random Undersampling before Stratified Splitting
	Random Undersampling after Stratified Splitting

	Conclusions
	Future Work
	References

