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Abstract: The constant increase in volume and wide variety of available Internet of Things (IoT)
devices leads to highly diverse software and hardware stacks, which opens new avenues for exploiting
previously unknown vulnerabilities. The ensuing risks are amplified by the inherent IoT resource
constraints both in terms of performance and energy expenditure. At the same time, IoT devices
often generate or collect sensitive, real-time data used in critical application scenarios (e.g., health
monitoring, transportation, smart energy, etc.). All these factors combined make IoT networks a
primary target and potential victim of malicious actors. In this paper, we presented a brief overview
of existing attacks and defense strategies and used this as motivation for proposing an integrated
methodology for developing protection mechanisms for smart city IoT networks. The goal of this
work was to lay out a theoretical plan and a corresponding pipeline of steps, i.e., a development
and implementation process, for the design and application of cybersecurity solutions for urban
IoT networks. The end goal of following the proposed process is the deployment and continuous
improvement of appropriate IoT security measures in real-world urban IoT infrastructures. The
application of the methodology was exemplified on an OMNET++-simulated scenario, which was
developed in collaboration with industrial partners and a municipality.

Keywords: IoT; smart city; open urban platform; machine learning; cybersecurity; methodology;
intrusion detection; toolchain

1. Introduction

In recent years, the number of devices connected to the Internet has increased dramat-
ically. One field that is strongly affected by this trend is the Internet of Things (IoT) domain.
The term IoT describes a group of physical, interconnected devices which interact with each
other over a network without human intervention [1]. The rapid growth in the number
of such devices, market penetration, revenue, and their integration with day-to-day life is
expected to continue in the years to come [1]. More specifically, areas such as healthcare,
smart grid, distributed energy sources (DER), self-driving vehicles (SDV), transportation,
agriculture, smart environments, etc. will continue to experience radical transformation
and improvements thanks to the opportunities provided by various IoT devices [1].

One of the major cornerstones for the successful integration and further growth of IoT
is the implementation of proper security measures. While IoT devices bring various benefits
to our day-to-day life, they can also imply major potential risks that can negatively impact
the safety and well-being of the end users [2]. For instance, compromised healthcare infras-
tructure and hardware, self-driving vehicles, and home security cameras are illustrative
examples for use cases where the lack of IoT security would lead to dire consequences and
privacy violations [2]. By the same token, failing to provide security guarantees reduces
the trust that users have in IoT networks. This can slow down and completely hinder
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further IoT adoption and consequently could shut down the wide variety of benefits that
the field introduces [1,2]. With this in mind, some of the most prevalent security challenges
in the context of IoT are related to privacy, authentication and authorization, access control,
and data storage and processing [1–3]. These areas are not specific to the IoT domain.
However, there is a difference between traditional network security and IoT security. These
differences stem from multiple factors such as the following [1]:

• There are noticeable software and computational resource limitations for IoT devices,
which prevents the utilization of more sophisticated security algorithms;

• The IoT devices are low-powered, which restricts the usage of more energy-intensive
security best practices and also increases the risk for technical failures (e.g., loss
of data);

• The highly heterogenous hardware also leads to the usage of diverse software stacks
and different data formats, which increases the available attack surface.

Challenges such as these introduce major security risks. Therefore, the goal of this
work can be summarized as follows:

1. Analyze and identify the potential risks and available attacks against IoT- based platforms;
2. Present a comprehensive set of steps and measures that aim at providing improved

security and attack prevention for a particular IoT-based platform and the underlying
urban data platform—in this case, the UrbanPulse [4] of [ui!] [ui!] is the abbreviation
for Urban Instutute GmbH—this is the industrial partner, with whom the case studies
are being investigated and researched).

1.1. Open Urban Platforms

Open Urban Data Platforms are used to ease the use and analysis of urban data,
which are mostly collected within an IoT network. The collected data are often combined
with measurements and readings from other sources to produce valued services such as
application or city management systems.

According to the German pre-standard DIN SPEC 91357 [5], an Open Urban Platform
(OUP) is characterized as follows:

• They assist in the implementation of logical reference architecture following design
principles of open APIs that supports data flows within and across city systems as
well as enriching the raw data streams to generate smart data as required by the
consuming entities;

• They exploit modern technologies to harvest, collect, and analyze urban data and
provide the results to citizens and enterprises, e.g., sensor nodes and other IoT devices,
cloud services, mobile connectivity, machine learning for analytics, and publishing
and sharing via social media and APPs;

• They provide the building blocks that enable cities to rapidly shift from fragmented
and isolated operation of individual infrastructures towards an integrated approach
by connecting the systems via a platform, including cross-domain data analytics for
predictions, forecasts, or better insight, and novel ways of engaging and serving city
stakeholders offering smart services, both public and commercial.

1.2. Urban IoT Architectures and OUP

Open urban platforms often exist in certain integrated networks and architectures.
These architectures usually differ within their structure. Therefore, an explanation of the
used architecture and its construction—as depicted in Figure 1—is necessary:

• Data sources and Actors: IoT devices and sensors are utilized for collecting and analyzing
data. The collected and analyzed data are transmitted to explicit gateways via, e.g.,
LoRaWAN or NB-IoT networks;

• IoT Platform and Connectivity: From the gateways, the data are forwarded across the
network through different communication channels (e.g., mobile network cells) to IoT-
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platforms. These platforms support the management of the IoT devices through their
complete operational life cycle and are usually operated by the IoT device vendors;
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• Urban Data Platform (UDP) (Smart City Core Services): Connectors receive the data from
the IoT-platform, normalize them, and usually enrich them by data stored in a UDP
database. For example, a connector can receive a message with an IoT device ID and a
date—in this case, the message on the output of the connector is extended with the
geo-location of the IoT-device. In some cases, the IoT devices are connected directly
to the UDP and are managed by an IoT module on the UDP. From the connectors
the data are sent via a message bus to the storage and to a Complex Event Processing
engine (CEP), which applies rules on the events and produces new messages. By doing
this, the CEP can be considered as a virtual sensor and the new produced messages
are stored in the Storage as well. The Analytics module combines analytic services
and libraries. The analytic services are often machine learning/AI-based services,
e.g., for predictions;

• APP/APIs: The UDP is connected to many APPs or provides outbound APIs. Dash-
boards or Cockpits are the most used APPs and provide information to users. Data
laboratories use analytic services of the UDP and enable experts to perform sophisti-
cated analysis. Marketplaces are used to provide data. Other data are provided by
Open APIs on the outbound layer of the UDP/OUP.

1.3. Smart City Data Based Services

With the ongoing digitalization of cities, open urban platforms can be utilized in vari-
ous fields [6]. The open provisioning of data can be seen as an opportunity to improve the
urban living conditions and provide city services for different topics and areas of relevance:

• Smart Government: The key difference between an e-government and a smart gov-
ernment is the use of intelligently networked objects and cyber–physical systems [7].
Structures such as big data and open data are included in the development strategy.
The change relates either to the resulting product, the process, or the prerequisites for
the creation of the administrative service in question. Smart government therefore
provides the means towards a data-driven digital administration [7];
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• Smart Economy: Within a smart economy, cities are able to provide important data for
new business models and to create conditions for economic development;

• Smart Environment: City data and their analytics provide new terms and conditions
for environmental support. Within a large number of governmental tasks—such as
waste monitoring or energy efficiency in the case of street lighting—data analytics
can help to reduce CO2 emissions and even provide an improved habitat for animals
and humans;

• Smart Urban Society: Smart Urban Society addresses—in a data-based context—topics
such as digital collective urban living and social interaction. Therefore, new incentives
to live in a city can be developed and the social exchange can be supported. Topics
such as smart health and education could also be the focus of this field and can be
supported, e.g., through city data and self-sovereign entities;

• Smart Mobility: Smart mobility increases the use of environmentally friendly mobility
options. Here, data are used to give users more information about the possibilities and
benefits of using cheaper, faster, and environmentally friendly mobility solutions.

1.4. KIVEP Project

The KIVEP project is meant to research how the abovementioned concepts and tech-
nologies can be protected against cyber attacks in a smart city. The goal of the KIVEP project
is to apply protocol anomaly detection techniques to the IoT base stations that connect the
devices to the Internet via low-energy wireless networks such as LoRaWAN (Long-Range
Wide-Area Network) or NB-IoT (NarrowBand IoT). The following problems are in focus:
first, IoT base stations need insight into encrypted protocol packets for deeper protocol
anomaly detection. However, breaking end-to-end encryption would give a successful
attacker access to all traffic between the Internet and the connected IoT devices. This is
why a privacy-preserving solution is being developed to monitor the data packets. On the
other hand, only exemplary validation rules have been described for IoT protocols so far,
which are not sufficient for effective protection against attacks from the Internet. For this
reason, the automatic generation of comprehensive filtering rules for IoT protocols based
on a new World Wide Web Consortium standard called “Web of Things Description” for
describing IoT devices is being researched.

1.5. Contribution

The overall goal and clear contribution of the current paper is characterized by the
following aspects:

• We proposed an integrated methodology for setting up and continuously improving
cybersecurity solutions in urban IoT networks;

• We provided an overview of potential attacks on smart city IoT networks as a motiva-
tion for the abovementioned integrated methodology;

• We exemplified parts of the integrated methodology on an urban IoT network instance,
which was simulated together with industrial partners and a municipality in Germany.

The novelty of our work is characterized by the devised methodology for planning and
continuously improving the setup of cybersecurity solutions for urban IoT networks. Our
approach was developed in close collaboration with industrial partners and a municipality,
which intrinsically increases its relevance for real-world use cases. Furthermore, the
approach was validated in an OMNET++ simulation in order to demonstrate its feasibility
and capture feedback from relevant stakeholders (industry and utility companies) in the
scope of the KIVEP project [8].

1.6. Structure of the Presentation

The rest of this paper is organized as follows. Section 2 presents the problem state-
ment, for which the current work tried to find a solution. Thereby, Section 2 describes the
general hazardous situation and elucidates the potential threats to urban IoT infrastruc-
tures. Section 3 continues with a more detailed discussion of the potential security issues
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and summarizes available approaches to increase the level of IoT cybersecurity in urban
ICT. The general issue that stands out is that all these single approaches do not represent
an overall picture of how cybersecurity should be addressed in the smart city context
for IoT networks. Hence, the following Section 4 defines and proposes such an overall
methodology and process relating to how to initially set up cybersecurity solutions (with a
focus on intrusion detection) in urban IoT and afterwards continuously improve and refine
the installed mechanisms. Finally, Section 5 demonstrates key parts of the methodology
based on a simulated IoT network use case, on which we worked together with a munici-
pality and an industrial partner, whilst Section 6 draws conclusions and presents future
research directions.

2. Problem Statement

This section focuses on briefly describing the general risks to which urban IoT networks
are exposed. Furthermore, it prepares the reader for the possible realities of these risks in
terms of potential attacks on urban IoT networks. These potential attacks are listed and
described together with possible countermeasures in the following Section 3.

2.1. General Hazardous Situation

As mentioned previously, the number of IoT devices and the corresponding networks
in which they participate grow at a rapid rate. The heterogenous nature and increased
volume of devices lead to the development of new, previously unknown attacks and the
uncovering of new attack surfaces. Due to their limited computational resources and
energy capacities, IoT devices are not typically subjected to highly sophisticated security
best practices, and they are often neglected as potential targets for malicious actors.

Nevertheless, the IoT networks still actively communicate with other traditional IP-
based networks, which exposes them to common vulnerabilities and attacks. Furthermore,
IoT sensors are used frequently to collect data in smart cities, healthcare, transportation,
smart energy, and other domains where real-time decision-making is of crucial importance
and can have severe consequences. Therefore, devising security mechanisms that preserve
the privacy of end users while also protecting the critical network infrastructure must be a
primary consideration in the context of urban IoT platforms.

2.2. Potential Attacks in Urban IoT Networks

As mentioned previously, IoT networks are a major target for potential attacks since
they provide a wide attack surface and a highly diverse software stack. The potential
dangers not only stem from commonly used attack vectors, but also from attacks specifically
crafted and shaped against IoT network vulnerability points (e.g., energy capacity).

For instance, one common attack utilized in traditional IP-based networks is the
denial of service (DoS) or distributed denial of service (DDoS) attack. In this case, the
perpetrator floods the victim’s system with a large volume of unwanted requests. This
aims to cause damage in the form of inhibiting the system’s ability to process legitimate
requests or shutting the system down completely, which—depending on the system under
attack—might lead to massive financial losses and in more extreme cases even to the loss
of human life.

An example more specific to the IoT-domain is the so-called “node jamming” attack,
which disrupts and/or completely prevents the transmission of signals generated by the
IoT device. This can also be considered a form of a DoS attack, since it can shut down the
functionality of a particular service and similarly to the DoS attack can have major negative
implications. The examples given in this section are used as an abstract illustration for the
potential dangers and attack vectors that can be exploited by malicious actors. However, a
more comprehensive overview of IoT security’s vulnerabilities and some of the available
security countermeasures are presented in Section 3.
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3. Discussion and Classification of IoT Attacks and Countermeasures

Similar to traditional networks, IoT architectures can be analyzed and evaluated
according to a layer-based approach. There are multiple classification schemes proposed in
the research literature, but most of them have the layers from Figure 2 in common. Based
on these layers, we present different types of attacks and general defense strategies or
architectural measures to protect urban IoT architectures. An overview of this classification
is provided in Table 1. On the left we see the possible approaches/strategies for an attacker
as abstracted from our literature review. These are also mapped to a corresponding layer
in the IoT architecture in Figure 2 and combined with potential defense approaches and
architectural measures.
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3.1. IoT Attacks

A detailed description of each IoT layer with the corresponding attack types and
examples is provided in the following listing, which is followed by elucidations regarding
the various architectural and algorithmic countermeasures—with concrete examples—that
can potentially be applied to protect smart city IoT networks. The presented classification is
based on a literature review, which aimed at finding common ground between the various
classifications in the relatively new field of cybersecurity for smart city IoT devices.
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Table 1. Classification of Attack Types and possible Defenses or Architectural Measures in Urban
IoT Networks.

Attack Type Possible Defenses or
Architectural Measures

IoT Layer Classification

Data Theft Blockchain, Edge and Fog Computing Application Layer
Sniffing Attacks Edge and Fog Computing Application Layer
Malicious Code and Database Injections Edge and Fog Computing Application Layer
Distributed Denial of Service (DDoS) Machine Learning and Deep Learning,

Edge and Fog Computing
Network Layer

Spoofing Attacks Machine Learning and Deep Learning,
Edge and Fog Computing

Network Layer

Man-in-the-middle (MitM) Machine Learning and Deep Learning,
Edge and Fog Computing

Network Layer

Tampering Edge and Fog Computing Perception/Physical/Sensing Layer
Node Jamming or Radio Frequency Interference Edge and Fog Computing Perception/Physical/Sensing Layer
Sleep Deprivation or Denial of Sleep (DoSL) Edge and Fog Computing Perception/Physical/Sensing Layer

Application Layer: The application layer serves as an interface between the end users
and a given platform or service [1,2]. It provides functionalities such as authentication,
authorization, data overview, and data access [2]. For this reason, the most common security
vulnerabilities exploited at this layer are related to data theft and privacy violations [1]. For
instance, some of the attacks performed at the application layer include the following:

• Data theft [1,2]: IoT devices are utilized in a wide range of use cases and, therefore,
are involved in generating, processing, and transferring a variety of data. As pointed
out by Hassija et al. [1], data that are being transferred are more vulnerable to attacks
and consequently they can be stolen. At the same time, some of these data might
include sensitive or private information. Therefore, if the end users cannot trust
the IoT platform’s privacy-preserving capabilities, they are unlikely to store their
data on this platform [2]. Some of the common approaches for providing security
guarantees against data theft comprise using data encryption, isolation, and network
authentication [1];

• Sniffing attacks [2] occur when an attacker monitors the network traffic in an attempt
to acquire sensitive user data [1]. The attack is executed by an attacker that uses
malicious software to intercept and read confidential data flowing through the IoT
network [2]. Similar to data theft, the prevention against such attacks includes the
utilization of secure data transfer protocols [2];

• Malicious code and database injections describe attacks that are performed with the
help of malicious user inputs such as scripts and code snippets. These attacks are
possible due to insufficient code checks or the lack thereof [1]. The standard attack
procedure includes an attacker finding a vulnerable entry point in the application
layer and injecting a harmful piece of code that compromises the system [2]. Some of
the common examples for such attacks include the SQL injection [9] and the cross-site
scripting (XSS) attacks [1,10].

Network Layer: The main responsibility of the network layer is to handle the transmission
of data coming from the physical layer across the IoT network [2]. Some examples of
common network layer attacks include the following:

• Distributed denial of service (DDoS) is an attack that uses multiple devices or systems
to flood a target service with unwanted traffic [1,11]. The main goal of the attack
is to generate a massive number of requests which will either disrupt the normal
functioning of the service or will completely shut it down. As pointed out by Liang
and Kim [2], DDoS attacks are not specific to IoT networks. However, the large number
of poorly secured IoT devices can become easy targets for a motivated perpetrator
who can add the devices as a part of a botnet (e.g., Mirai [2,9,12]);
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• Spoofing attacks take place when an adversary tries to fake their identity and imperson-
ate a legitimate device or a user (e.g., by spoofing an IP address). This can give the
adversary unauthorized access to certain resources or can allow them to observe and
collect sensitive data transmitted over the network [1];

• Man-in-the-middle (MitM) is an attack during which an adversary is able to insert
itself between two nodes in the IoT network. Consequently, the attacker is able to
intercept, capture, modify, and relay data flowing between the two nodes without
their knowledge [2]. More specifically, from the nodes’ perspective it seems as if they
are directly communicating with each other.

Perception/Physical/Sensing Layer: The perception layer is also known as the sensing [1]
or physical layer since it is responsible for handling the physical IoT sensors and actuators.
This layer is responsible for collecting data from the end devices and forwarding them to
the network layer [2]. Some examples for devices that operate here include smoke detectors,
camera sensors, and humidity sensors [1]. Exploiting these devices opens up opportunities
for physical layer IoT attacks such as the following:

• Tampering refers to a physical intervention on the IoT device, through which the
perpetrator modifies the hardware in a way that allows them to obtain sensitive
information such as credentials, encryption keys, etc. [2];

• Node Jamming or radio frequency interference occurs when an attacker is near the location
of the end devices and prevents them from successfully communicating with other
devices on the IoT network [9]. This is achieved by sending noise signals that disrupt
the wireless communication between the IoT devices [13];

• Sleep deprivation or Denial of Sleep (DoSL) is an attack during which the perpetrator
targets low-powered IoT devices and tries to increase their power consumption in
order to shut them down [1,14]. This is a form of DoS attack that can be achieved
by injecting infinite (communication and computational) loops or modifying the
hardware of the IoT device [14].

3.2. Defenses and Countermeasures

Given the importance and impact of the IoT domain on our day-to-day lives, it is
crucial to explore the available defenses against the attack vectors described above. Similar
to the attack classification, the available research literature classifies the defense mechanisms
into one of the following categories.

Edge and fog computing are terms commonly used to describe two additional computa-
tional layers in the context of the cloud computing paradigm as described in Figure 3. Edge
computing refers to computations taking place at the edge of the network, i.e., at the data
source or very close to it instead of executing them in the cloud [11]. The main idea of edge
computing is to reduce the data transfer between the cloud and the end devices. Instead,
since the edge layer is in a very close proximity to and could even include IoT devices, there
are faster data transfer times, low transmission costs, and near-real-time communication.
This is essential for the implementation of well-established security best practices [1,15].
In addition, as pointed out by K. Sha et al. [15], the edge layer has more computational
resources than the IoT end devices, which allows the utilization of more computationally
expensive security mechanisms. These include not only encryption mechanisms such as
homomorphic encryption, but also the implementation of firewalls, intrusion detection,
and intrusion prevention systems at the edge layer, which can analyze and block incoming
malicious traffic [15].
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Furthermore, as discussed by Hassija et al. [1], since there is less data transfer and
more local data processing, edge computing reduces the opportunities for data breaches
and theft during transit. As mentioned above, the reduced data transfer also results in
lower latencies and faster response times, which is not only important for the utilization
of countermeasures, but it is also crucial for life-threatening scenarios such as the ones
encountered in the health sector, automated vehicles, critical infrastructure, etc.

Within this context, the second important layer in the framework of the edge–cloud
computing paradigm is fog computing. Fog computing describes computations taking
place between the edge and the cloud layers (see Figure 3).

The main idea of fog computing is to serve as an additional layer between the edge
and the cloud, which allows intermediate data aggregation, analysis, processing, and
storage [1,16,17]. In this way, only the most essential data are further propagated to the
cloud, which reduces the transmission costs, saves cloud storage space, and helps with
performing real-time and time-sensitive tasks [1,16]. The devices most commonly used in
the fog layer include switches, routers, and others [1,16].

In the context of IoT security, fog computing can address some common security
challenges. For instance, since the fog layer typically aims at analyzing and filtering out
malicious data, it can prevent anomalous traffic to be passed forward to the cloud or
the main backend system [1]. Additionally, fog computing reduces the need for data
transmission across the whole network, which decreases the risks for eavesdropping and
data theft [1]. Finally, the fog provides an environment with higher computational resources
compared with the edge devices. Therefore, fog nodes can implement more advanced
security best practices and attacks targeting the resource-constrained IoT end devices are
therefore harder to perform against the fog layer.
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Machine Learning and Deep Learning: In recent years, the machine learning (ML) and
deep learning (DL) domains have experienced significant growth and advancement and
have become integral parts of a wide variety of industries. The IoT domain is no exception
and ML/DL-based approaches can be applied for preventing and mitigating attacks, as well
as for improving the security and privacy of IoT-based networks [1,10,18–21]. According
to a comprehensive study presented by Al-Garadi et al. [10], some of the ML/DL-based
methods most commonly used in the research literature can be classified as supervised,
unsupervised, semi-supervised, and reinforcement learning methods (RL) [10]. These can
be summarized as follows:

• Supervised learning algorithms are trained on data samples which are labeled and
provide mapping between inputs and outputs. The most widely used supervised
learning methods for IoT security include decision trees, support vector machines,
Naive Bayes, K-nearest neighbors, random forest, deep neural networks (DNN),
convolutional neural networks (CNN), recurrent neural networks (RNN), etc. [10];

• Unsupervised learning approaches try to identify patterns (typically by clustering)
within an unlabeled data set. Common unsupervised learning methods used for im-
proving the security in IoT networks include K-means clustering, principal component
analysis, deep autoencoders (AEs), restricted Boltzmann machines (RBM), and deep
belief networks (DBN) [10];

• Semi-supervised learning methods utilize a data set which typically contains a low volume
of labeled and a large volume of unlabeled data points. Semi-supervised algorithms
use both portions of the data for training, which places them in-between supervised
and unsupervised learning [18]. The main advantage of these methods is that they
can have improved accuracy due to the usage of a small number of labeled samples,
while simultaneously being trained on a large volume of cheap, unlabeled data. Some
of the semi-supervised methods used for IoT security include generative adversarial
networks (GANs) and an ensemble of DNNs [10];

• Reinforcement learning methods train an agent which is supposed to make decisions
based on the conditions present in a given environment. The agent is trained by
interacting with the environment and receiving rewards proportional to the “accu-
racy” of its decision. Based on examples from research literature provided by Al-
Garadi et al. [10], in the context of IoT security RL methods (e.g., Q-learning [1,10]),
they are used primarily for preventing signal jamming attacks.

The methods described above can be utilized to prevent a wide spectrum of attacks
performed at each layer of the IoT network. For instance, at the physical layer, user
authentication strategies can be implemented with the help of DNN-based approaches
that recognize users based on their daily habits [10,22]. As illustrated by the approaches
summarized by Al-Garadi et al. [10], attacks on the network layer can also be detected
with the help of ML/DL methods, e.g., malware and network anomaly detection can
be performed with the help of autoencoders [23], whereas DoS and DDoS attacks can
be detected with the help of deep neural networks [24]. Finally, at the application layer,
various attacks (e.g., malware attacks [25], application layer DDoS attacks [26]) can be also
successfully detected with the help of ML/DL approaches such as CNNs [25] and AEs [26].

Blockchain: The blockchain [27] is a decentralized ledger that stores data entries in a
tamper-proof manner. It consists of blocks that are uniquely identified by so-called “hashes”
and linked with each other with hash pointers. Therefore, modifying information inside
the block (e.g., a transaction) changes its hash identifier, which invalidates all blocks in the
chain that come after. In traditional blockchain implementation, new blocks are added to
the chain by solving a resource-intensive cryptographic challenge called “proof-of-work”.
Since solving the challenge is computationally expensive and the blocks are secured with
cryptographic hash functions, it is very unlikely that an adversary will be able to tamper
with data stored in the blockchain. Additionally, each block stored in the chain is verified
by all participants in the network and there is no central authority that can single-handedly
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alter the transaction history or prevent transactions from executing. This set of properties
makes the blockchain a compelling solution for some of the security challenges present in
the IoT domain [19].

For instance, Dorri et al. [28] proposed a blockchain-based security solution for smart
homes. The utilization of the blockchain for IoT security is challenging due to the low
computational resources, high-latency transaction execution, and lower scalability [28,29].
Therefore, the authors introduced a blockchain-based solution that addresses these chal-
lenges. Additionally, the presented approach was evaluated with regards to multiple
important security requirements: confidentiality, integrity, availability (also known as the
CIA security triad), user control, and authorization. These requirements are fulfilled with
the help of multiple techniques such as transaction logging into the blockchain, hashing,
and symmetric encryption [28]. Furthermore, the proposed approach also serves as a
defense against two common IoT attacks: DDoS and linking attacks (Linking attacks try to
identify users within an anonymous environment by combining partial identifiers (e.g., zip
code, gender, etc.) in an attempt to infer the complete user identity). In addition to this
example, Hassija et al. [1] summarized some of the main benefits of blockchain security for
IoT as follows:

• The blockchain can serve as a secure distributed data storage medium. The data
stored in the blockchain are secured against tampering with the help of cryptographic
hashing algorithms, and there is guaranteed data redundancy due to the absence of a
single point of failure in the blockchain network.

• Nodes in the network are registered on the blockchain and therefore can be authenti-
cated and identified, which prevents spoofing attacks.

• The blockchain serves as a decentralized alternative to traditional cloud servers. Cen-
tralized storage of information is a major target for perpetrators that want to steal
sensitive data. Given that the cloud services provide shared infrastructure to many
users at the same time, cloud storage can be compromised more easily compared
with alternative blockchain-based approaches. Additionally, the data stored in the
blockchain are distributed across all nodes in the network and signed (often also
encrypted), which makes data theft attacks more difficult.

4. Methodology and Toolchain

The current work and the envisioned contributions are part of the BMBF-funded
KIVEP project [8]. The project is carried out in a joined effort between the Urban Institute
(ui!) and Fraunhofer Institute for Open Communication Systems (FOKUS). The main goals
of the project include the research, analysis, and potential implementation of protocol
anomaly detection in urban IoT networks.

In the following sections, we present the structure of a continuous process, see Figure 4,
for achieving the objectives targeted within the scope of the KIVEP project. We also denote
this methodology as KIVEP, which is the German abbreviation for “Prevent and detect compro-
mises of IoT devices through protocol anomaly detection”. (KIVEP stands for “Kompromittierun-
gen von IoT-Geräten vorbeugen und erkennen durch Protokoll-Anomalie-Erkennung”).

The KIVEP methodology is devised as close as possible to the needs and requirements
of real-world deployments. This statement is based on the fact that we work in close
collaboration with key players in the smart city IoT market in Germany as well as with
the utility companies and municipalities, which are their direct clients in the context of
different IoT deployments. As previously mentioned, this approach intrinsically increases
the relevance of the below-presented KIVEP methodology for real-world use cases.
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4.1. Requirements Analysis and Risk Identification

This is the first step of the KIVEP design process described in Figure 4. Within this
phase the various requirements (e.g., protocols, types of sensors, device parameters . . . ) for
a particular urban IoT infrastructure are captured in the form of a requirement catalogue.
Furthermore, the risks and potential threats for the system under design should be analyzed
and captured in a corresponding risk and/or threat model using a tool-based approach.
The captured requirements, risks, and threats should be systematically addressed during
the design of the Smart City IoT infrastructure in question. Moreover, we expect that the
architects, designers, and implementors will continuously gather experiences and lessons
learnt throughout the different phases of the KIVEP methodology and will correspondingly
update the requirements catalog as well as the risk and threat models.

4.2. Network Modelling (e.g., WoT Modelling)

Web-of-Things (WoT) encompasses a standardization scheme presented by the world
wide web consortium (W3C). It provides guidelines that help dealing with the hetero-
geneity of the IoT domain by emphasizing the usage of well-established communica-
tion practices/structures/protocols, which can be utilized by a wide range of IoT and
network devices.

For the purposes of the KIVEP methodology, we plan to utilize a WoT schema, which
could potentially serve as a blueprint for the communication standards/structures utilized
within a particular urban IoT network. The main idea is to create a model of the network
that will help with the analysis of potential security vulnerabilities and possible attack
vectors. The WoT model can be stored as a machine-interpretable file in JSON format that
holds a description of the IoT Network and infrastructure under consideration. This model
can be used for annotating and describing the places at which the security mechanisms
(e.g., anomaly detection) assessed in the scope of KIVEP could be deployed. These are
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theoretical considerations and the applicability of WoT will be further assessed throughout
the course of the KIVEP project.

4.3. Security Rules and Constraints: Access Control List Generation

Access control lists (ACL) comprise a common approach in network and system
management and represent a set of rules and constraints which determine the access
permissions to a given system resource or an object. Resources commonly included in the
ACL encompass routers, gateways, files, databases, etc. In the context of KIVEP, we plan to
utilize an ACL for preventing unauthorized resource access and to filter out potentially
malicious network traffic targeting the sensitive infrastructure of the urban IoT network
in question. This can be achieved by identifying all resources and objects with the help of
the analysis described above (see Sections 4.1 and 4.2). Then, as a next step, we intend to
generate ACL rules for each endangered object or resource.

4.4. Protocol Analysis for Intrusion Detection

In this step of the pipeline, we planned the utilization of state-of-the-art ML and DL
methods. Here, we focus primarily on analyzing the network packets and the correspond-
ing traffic flow properties and not on the packet payload, i.e., DPI (Deep Packet Inspection)
was not performed. The main focus of the protocol analysis conducted herein was placed
on the application of unsupervised learning clustering methods (e.g., local outlier factor
(LOF), autoencoders, etc.) for anomaly detection.

4.5. Network Simulation and Testbed Evaluation

The next step in the envisioned process pipeline is the design and development of
a network simulation environment. As the name suggests, the main purpose of this
simulation is to serve as a virtual representation of the network infrastructure and topology
available in the production environment of a real-world urban IoT platform. In this way,
the research efforts and the corresponding solutions proposed in the scope of this work
can be evaluated with regards to their performance and their ability to provide the desired
security guarantees. More specifically, the network simulation was developed as a testbed
for the anomaly detection solutions examined throughout the KIVEP project, and it is
structured as depicted in Figure 5.

The IoT devices in the diagram in Figure 5 serve as a representation of IoT parking lot
sensors deployed on the premises of an industrial partner providing smart city solutions.
The next important component is the so-called “middlebox” which is envisioned as a virtual
environment that performs the function of intrusion detection (i.e., the protocol anomaly
detection). The final location of the “middlebox” is not strictly established and might
change depending on the needs of the project and the potential deployment challenges
encountered along the way. After performing the protocol anomaly detection, the aim of
the middlebox is to forward the analyzed traffic to back-end servers, where the data will be
further processed and made available to the intended audience through the IoT platform
and the sensor providers.

4.6. Real-World Deployment and Feedback

The final step planned within the continuous process of the KIVEP methodology is the
deployment and evaluation of the proposed solutions in a real-life production environment.
Assuming that the research efforts have resulted in the successful implementation of the
desired anomaly detection method inside the OMNET++-simulated environment, the next
and final step will focus on providing a real-world condition for testing the proposed
solution. For these purposes, the anomaly detection methods implemented in the scope of
KIVEP will be deployed in an urban IoT network, where their real-world performance will
be evaluated.
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The experiences from the real-world deployment and operations are submitted once
again to the initial planning phase of requirements analysis and risk identification (see
Figure 4 and Section 4.1) in order to enable the continuous improvement of the security
solutions in place. Thereby, the process in Figure 4 is restarted, leading to a feedback loop
to be executed during the operation of an urban IoT infrastructure.

5. Demonstrating the Methodology

Within this section, we showcase how the envisioned methodology could be applied
on a real use case involving one of the associated partners in the KIVEP project. Given
the sensitive nature of the data processed by the infrastructure provided by the related
partner, we are not disclosing the exact setup utilized by them, but instead we transfer the
patterns on a scenario which is mapped to the city of Berlin and to the surroundings of the
Fraunhofer FOKUS institute.

5.1. Simulation Setup

Figure 6 shows the overall structure of the IoT network in question with its embed-
ding in a smart city setting. The visualization is obtained after modeling the use case in
OMNET++ [30] and shows 16 sensors as the KIVEP partner deploys them in the real case.
However, the map behind shows a geolocation of Berlin.
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The sensors can be of different types (e.g., LoRaWAN or IEEE 802.15.4) which are
provided by the OMNET++ simulation models and extensions to the corresponding INET
framework [31].

Furthermore, an IoT gateway can be seen in the middle of the network architecture.
This is the component to which all the sensors communicate their measurements. The
gateway aggregates the traffic from the sensors and places it in IP packets that can be
communicated over the Internet to the backend, which would be an IoT platform or an
open urban platform as described above. Right behind the gateway, a middlebox can
be placed, which is meant to provide the means for protecting the overall IoT and OUP
infrastructure and detecting attacks originating from the sensors and gateway towards the
backend or vice-versa.

5.2. Attack Setup

It is important to remark that Figure 6 contains two sensors which are presumed to be
corrupted and to generate malicious IEEE 802.15.4 traffic at a rate of one frame every 10 s
into the IoT infrastructure. A general example of the visualization of the IEEE 802.15.4 IoT
traffic is shown in Figure 7, where one can observe the measured values being sent in
single packets to the IoT gateway and beyond. In this case, the corrupted sensors would
be generating meaningless “measurements” on a rate much higher (This means that the
“normal“ sensors are sending out IEEE 802.15.4 frames on a standard rate, whilst the
corrupted sensors are generating IEEE 802.15.4 frames on an extremely high rate within the
OMNET++ simulation. This leads to the IoT gateway losing a lot of energy and eventually
failing to perform its tasks.)—one IEE 802.15.4 frame every 10 s—than the one of the sane
sensors, i.e., one IEEE 802.15.4 frame every 5 min. This could lead to a DoS attack, for
instance, towards the gateway, in order to drain its energy and deny the other sensors from
the possibility to convey their measurements to the IoT platform or open urban platform in
the backend.
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Figure 8 shows an example from the established simulation, in which the corrupted
sensors are successful in making the gateway work so intensively that its battery—provided
that the gateway is out in the open without an available power line—quickly drops and
degrades the overall performance of the network. Such a situation could have serious
consequences for the operator of a critical infrastructure or a mobility service within a
smart city. In the case a DoS attack towards the gateway is successful and manages to drain
all its energy (thereby effectively shutting it down), then the dependent service or critical
infrastructure will be missing important context data and is likely to perform under the
level of agreed SLAs (service level agreements), leading, potentially, to the loss of revenue
or even compromising the safety of citizens.
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5.3. Intrusion Detection

In order to experiment and test the methods for preventing such DoS attacks, traffic
was recorded from the simulation and various mechanisms were investigated regarding
how to recognize malicious traffic and the corresponding rogue sensors. Such mechanisms
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can be either placed directly in the middlebox (see Figures 6 and 7) or can be executed in
the according NOC (network operations center) or SOC (security operations center) once
the traffic has been monitored and recorded in a real network.

The methods that can be applied for analyzing these data include different autoencoder
and deep neural network architectures as well as the concept of a random forest that was
mentioned before. In this line of thought, Figure 9 shows the current demonstrator that
is based on the DoS recognition utilizing a random forest implemented in Python scikit-
learn [32].

Future Internet 2023, 15, x FOR PEER REVIEW 17 of 20 
 

 

5.3. Intrusion Detection 
In order to experiment and test the methods for preventing such DoS attacks, traffic 

was recorded from the simulation and various mechanisms were investigated regarding 
how to recognize malicious traffic and the corresponding rogue sensors. Such mecha-
nisms can be either placed directly in the middlebox (see Figures 6 and 7) or can be exe-
cuted in the according NOC (network operations center) or SOC (security operations cen-
ter) once the traffic has been monitored and recorded in a real network. 

The methods that can be applied for analyzing these data include different autoen-
coder and deep neural network architectures as well as the concept of a random forest 
that was mentioned before. In this line of thought, Figure 9 shows the current demonstra-
tor that is based on the DoS recognition utilizing a random forest implemented in Python 
scikit-learn [32]. 

 
Figure 9. Visualization of the demonstrator based on random forest. 

The random forest classifier trained in the scope of this work is configured with the 
main hyperparameters listed in Table 2. The first parameter “n_estimators” defines the 
number of decision trees in the forest. By increasing the number of trees, we might be able 
to improve the model accuracy, but this could also lead to longer training time and in-
creased risk of overfitting. Therefore, we used the default value of 100 decision trees which 
provides a good balance between accuracy and computational efficiency. In terms of the 
split/decision criterion, the random forest trained in this work utilizes the so-called gini 
impurity. Gini impurity [33]—a mathematical coefficient determining the degree to which 
a set consists of a particular type of data/labels—is a good split criterion for a decision tree 
because it is a fast and efficient way to measure the quality of a split and is effective at 
identifying the most frequent class in a dataset. The next parameter used for configuring 
the RF is max_depth. This parameter controls the maximum depth of each decision tree in 
the forest. For the purposes of our use case, we set the parameter to “None”, which sets no 
depth limit. The reason is that while maximum depth can help with preventing overfit-
ting, it can also decrease accuracy if the depth is set too low. The final specified parameter 
is min_samples_split, which controls the minimum number of samples required to split an 
internal node. We set the parameter to be equal to two. This means that a node must have 
at least two samples to be split. Increasing this value can help to prevent overfitting, but 
can also lead to a model that is too simple and has lower accuracy.  

  

Figure 9. Visualization of the demonstrator based on random forest.

The random forest classifier trained in the scope of this work is configured with the
main hyperparameters listed in Table 2. The first parameter “n_estimators” defines the
number of decision trees in the forest. By increasing the number of trees, we might be
able to improve the model accuracy, but this could also lead to longer training time and
increased risk of overfitting. Therefore, we used the default value of 100 decision trees
which provides a good balance between accuracy and computational efficiency. In terms of
the split/decision criterion, the random forest trained in this work utilizes the so-called gini
impurity. Gini impurity [33]—a mathematical coefficient determining the degree to which
a set consists of a particular type of data/labels—is a good split criterion for a decision
tree because it is a fast and efficient way to measure the quality of a split and is effective at
identifying the most frequent class in a dataset. The next parameter used for configuring
the RF is max_depth. This parameter controls the maximum depth of each decision tree in
the forest. For the purposes of our use case, we set the parameter to “None”, which sets no
depth limit. The reason is that while maximum depth can help with preventing overfitting,
it can also decrease accuracy if the depth is set too low. The final specified parameter is
min_samples_split, which controls the minimum number of samples required to split an
internal node. We set the parameter to be equal to two. This means that a node must have
at least two samples to be split. Increasing this value can help to prevent overfitting, but
can also lead to a model that is too simple and has lower accuracy.

Table 2. Summary of the used Random Forest Parameter.

Parameter Value
n_estimators 100
criterion “gini”
max_depth None
min_samples_split 2
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5.4. Overall Demonstrator

The belonging classification code is provided and showcased as a Jupyter notebook
(Figure 9) and is complemented by a self-developed visualization on the right in Figure 9.
The visualization shows how the data recorded behind the gateway (e.g., on the middlebox)
are sequentially processed and analyzed. Thereby, the sending patterns of the involved
sensors are classified by the previously trained random forest, leading to the recognition of
erroneous sensors, the packets of which are marked red on the right side in Figure 9.

Indeed, we can observe how the proposed methodology—especially including the net-
work simulation—can be used to model smart city infrastructure (especially IoT network)
in question and to develop specific algorithms that can be finally applied in real urban
environments. Thereby, the methodological structures and guidelines provided in this
paper establish a framework in which urban IoT networks can be systematically protected
and improved in terms of cybersecurity capabilities.

6. Conclusions

The consistent increase in the number of IoT devices and their major involvement in
critical day-to-day tasks (e.g., healthcare, autonomous vehicles, etc.) raises concerns about
the security guarantees that these devices can provide. These concerns are based on the
observation that, because of their hardware limitations and heterogenous software, IoT
devices are vulnerable to both known and unknown attacks.

In this work we presented an overview of the IoT domain and explored some of the
attacks and corresponding defenses in the scope of urban IoT networks. This analysis
motivated the need for deriving KIVEP—an integrated process and toolchain for setting up
and continuously improving cybersecurity solutions in the context of urban IoT networks.
Hence, we described a structured KIVEP process that was exemplified on the development
of an ML-based anomaly detection mechanism, which was demonstrated and validated in
an OMNET++ simulation based on our collaboration with industrial partners and munici-
palities/utilities in a German research project. The envisioned outcome of the execution
of the process laid out in this work assumes that the defense strategies—proposed based
on the conducted research efforts—are not only theoretically tested but also practically
applied in a production IoT network.
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