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Abstract: We evaluate analysis results and approximations for the performance of basic caching
methods, assuming independent requests. Compared with simulative evaluations, the analysis re‑
sults are accurate, but their computation is tractable only within a limited scope. We compare the
scalability of analytical FIFO and LRU solutions including extensions for multisegment caches and
for caches with data of varying sizes. On the other hand, approximations have been proposed for
the FIFO and LRU hit ratio. They are simple and scalable, but their accuracy is confirmed mainly
through asymptotic behaviour only for large caches. We derive bounds on the approximation errors
in a detailed worst‑case study with a focus on small caches. The approximations are extended to
data of different sizes. Then a fraction of unused cache space can add to the deviations, which is
estimated in order to improve the solution.

Keywords: FIFO; RANDOM; LRU; LFU; clock‑based and multisegment caches; Markov analysis;
hit ratio approximations; deviation bounds; variable data size

1. Introduction: Basic Caching Methods and Their Evaluations
Caching strategies are essential for the performance of local caches in CPU, GPU and

database systems [1] as well as for content delivery on the Internet [2,3]. A set of basic
caching strategies, such as first‑in‑first‑out (FIFO), least recently/frequently used
(LRU/LFU) and clock‑based caching [1,4–9], were studied in early caching approaches al‑
most 50 years ago, and they are still preferably applied today. Other caching methods
that include detailed properties, caching costs and values per data object can optimize the
efficiency on the basis of score rankings [10,11] or machine‑learning approaches [12,13].
However, FIFO and LRU are still attractive caching principles because of their simple and
fast data management [3,14–16].

We compare analysis and approximationmethods for the FIFO and LRUhit ratio eval‑
uation, where RANDOM and clock‑based caches are included, because their performance
is partly equivalent to FIFO [6]. Moreover, simulation is a usual performance evaluation
approach for caches. Simulations are flexibly applied for many caching methods and vari‑
ants [2,11,17–19], but they are subject to random deviations, which require long runs for
accurate results in narrow confidence intervals.

Exact analytic hit ratio solutions were derived long ago by W.F. King [8] and E. Ge‑
lenbe [6] for the independent reference model. In the past decade, the state of the art has
advanced towards solutions for multisegment/multilevel caches [20], and for LRU caches
with data objects of different sizes, including the cache startup or filling phase [21,22].
However, those exact solutions are tractable only for small caches.

In addition to exact analysis and simulation, approximation formulas form a third
pillar for a simpler evaluation of basic caching methods, as proposed by Fagin [23] and
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Che et al. [24] for LRU as well as by Dan and Towsley [25] for FIFO. Recent research has
approved asymptotical exactness of both LRU variants for large caches [26–29].

The motivation and purpose of this work is to present a complete picture of the cur‑
rently available analysis and approximation results for FIFO and LRU. Our focus is mainly
on FIFO results [14,16], which are only sparsely addressed in the literature, in contrast
to LRU [9,18,21,22]. The product form solution of the FIFO hit ratio for independent re‑
quests [6,8] is scalable for large caches and applicable to clock‑based caching (CpR: clock
per request), in contrast to LRUanalysis results. We show that the FIFO approximation [25]
has similar properties, as confirmed for LRU [26–29] for data of unit size, and we extend
the approaches for data of variable sizes as required for web content delivery.

An overview of the similarities and differences in the results for FIFO and LRU is
provided in Table 1. The scope of the analysis methods is clarified in the main part, and
the accuracy of the approximations is studied in an extensive quantitative investigation.
On the basis of detailed insights and a comparison of the alternative cache performance
evaluation methods, we finally recommend the most appropriate evaluation options for
the considered caching use cases.

Table 1. Overview of analytical and approximate cache performance results.

Solution Type and References Applies to Scalable
Computation

Different Object
Sizes

Maximum
Deviations

Analytic
Cache Hit

Ratio Results

Product Form [8]
Equations (1)

and (2)

FIFO, Clock p.R.,
RANDOM
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As new contributions of this work,

• product form solutions are extended to clock‑based methods and combinations of
those methods, with FIFO and RANDOM for single and multilevel caches,

• the scope of analytical solutions is clarified regarding scalable computation as well as
the solutions’ applicability for data of different sizes, and

• quantitative evaluations of the accuracy of approximations identify the worst cases
and error bound extensions for varying data sizes in caches.

We start with exact analysis results for the FIFO, CpR and RANDOM hit ratio and
assess their scalability, in Section 2. The precision of approximations for FIFO and LRU
caching strategies is evaluated in Sections 3 and 4. Extensions to multisegment caches are
addressed in Section 5. Section 6 focuses on FIFO solutions for objects of different sizes in
comparison to LRU. Section 7 summarizes the main results and their limitations.

2. Markov Analysis Results for Basic Caching Strategies
W.F. King 8 provided steady state FIFO and LRU hit ratio formulas, assuming a lim‑

ited cache size forM objects of unit sizes and an independent reference model (IRM). The
latter is characterized by a fixed catalogue of N objects O1, . . . , ON, which are referenced
with probabilities p1, . . . , pN in each request. The IRM request pattern with the Zipf‑
distributed popularity of the data has been confirmed manifold as a realistic model for
web request traces [17,31,32]. Moderate correlation among requests and changes in the
working set of relevant data are also relevant [31–33].
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2.1. Common Hit Ratio Analysis of FIFO, RANDOM and Clock‑Based Caching
FIFO caches replace the object that is present in the cache for the longest time with

the requested object in the case of a cache miss. W.F. King [8] showed that FIFO caching
follows a Markov process under IRM with a transition per request, whose steady state
content distribution has a product form solution. The probability pFIFO(Ok1, ···, OkM) to
find the objects Ok1, ···, OkM in positions 1, . . . ,M of a FIFO cache is given by

pFIFO(Ok1, ···, OkM) = c pk1 · ··· · pkM (∀ j ̸= l: Okj ̸= Okl;M: cache size; c: norm. constant).

Gelenbe [6] proved the same product form solution to be valid also for a RANDOM
caching strategy, which randomly chooses the eviction candidate with probability 1/M
among the objects in the cache. Moreover, we confirm a broader scope of product form
solutions, including clock‑based caching and combinations of FIFO/RANDOM/clock.

Clock methods indicate an eviction candidate by a clock hand, which steps one po‑
sition forward per request (CpR). Upon a cache miss, the requested object replaces the
eviction candidate. Corbato [4] proposed several variants of the basic CpR method. Score‑
gated clock [11] is a clock scheme which admits new content only if it has a higher score
than the eviction candidate. The steady state probabilities pCpR(Ok1, ···,OkM) of CpR cache
content follow the same product form as for FIFO and RANDOM:

pCpR(Ok1, ···, OkM) = pFIFO(Ok1, ···, OkM) = pRANDOM(Ok1, ···, OkM) = c pk1· ··· ·pkM (1)

As the main step of a proof, we insert this solution into the equilibrium equations of
the underlying Markov chain for CpR cache content. Figure 1 illustrates which transitions
are possible from previous states to the content Ok1, ···, OkM.

Figure 1. State transitions for CpR and FIFO to the cache content Ok1, ···, OkM.

For a cache hit, a cyclic clock shift leads from contentOk2, ···,OkM,Ok1 toOk1, ···,OkM
with a corresponding transition probability pk1 + ··· + pkM. Otherwise, a cachemiss leads to
Ok1, ···,OkMifOk1 is requested as an external object, i.e., with transition probability pk1 from
a previous content state Ok2, ···, OkM, Ol. We obtain the following equilibrium equations
corresponding to one‑step transitions per request to Ok1, ···, OkM:

pCpR(Ok1 , . . . , OkM ) = pCpR(Ok2 , . . . , OkM , Ok1)
M

∑
j=1

pkj
+ pk1

N

∑
l = 1

l /∈ {k1, . . . kM}

pCpR(Ok2 , . . . , OkM , Ol)

The product form solution is substituted and verified for those equilibrium equations:

cpk1 . . . pkM = cpk2 . . . pkM pk1

M
∑

j=1
pkj

+ pk1

N
∑

l = 1
l /∈ {k1, . . . kM}

cpk2 . . . pkM pl ⇔

1 =
M
∑

j=1
pkj

+ pk1

N
∑

l = 1
l /∈ {k1, . . . kM}

pl
pk1

=
M
∑

j=1
pkj

+
N
∑

l=1
pl −

M
∑

l=1
pkl

= 1

This main step for proving the CpR steady state solution applies to FIFO and RAN‑
DOM strategies in a similar way [6,8]. Transitions in steady state are encountered only
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between content states representing a full cache, while states with less thanM objects are
transient. The proof of the product form solution, Equation (1), is completed by checking
whether the Markov chain is ergodic; i.e., a transition path must lead from each content
state Ok1, . . . , OkM to each other with nonzero probability. The underlying IRM Markov
processes for the RANDOM and CpR strategies are generally ergodic if ∀k: pk > 0, whereas
FIFO has a nonergodic exception if and only if N = M + 1. These results are covered by
general criteria for ergodic caching networks derived by Rosensweig et al. [34].

Finally, the product form solution implies a common steady state hit ratio for the next
request as the sum of request probabilities of all data objects stored in the cache [6,8]:

hFIFO
IRM = hCpR

IRM = hRANDOM
IRM =

N

∑
k1,k2,...kM=1

pk1
pk2 . . .pkM

M

∑
j=1

pk j
/

N

∑
k1,k2,...kM=1

pk1
pk2 . . . pkM (2)

Moreover, the common solution extends to a broader class of variants and combined
schemes. For example, when we alternate between FIFO, RANDOM and CpR in subse‑
quent requests either in a periodic pattern or in a randomized pattern, the previous core
verification step still applies per request. Variants of the clock‑handmovement by skipping
several objects per requests again leave the steady state solution unchanged, provided that
the Markov process is still ergodic [34]. The FIFO product form solution has been derived
in alternative ways via reversibility properties of the underlyingMarkov process byMarin
et al. [35] and via fluid flow approximation by Tsukada et al. [36].

2.2. Scalable Iterative Evaluation of the Product Form Solution
An iterative evaluation of the product form (2) with scalable complexity O(MN) was

proposed by Fagin and Price [30], which makes the FIFO hit ratio computations tractable
even for large caches, in contrast to the LRU analysis formula of Equations (11)–(13). Equa‑
tion (2) is evaluated in an extended format of intermediate results s(m, n) and h(m, n):

s(m, n) = ∑n
k1,k2,...km=1 pk1 . . .pkm∀m = 1, . . . , M and ∀ n = m, . . . , N; (3)

h(m, n) = ∑n
k1,k2,...km=1 pk1 . . .pkm∑m

l=1 pkl
; hFIFO

IRM = h(M, N)/s(M, N)

Next, the following scheme can be used to compute hFIFO
IRM , etc. via Equation (3) [30]:

s(m, n + 1) = s(m, n) + s(m − 1, n) pn+1 with initialization s(0, n) = p1 + . . . + pn ;

h(m, n + 1) = h(m, n) + h(m − 1, n) pn+1 + s(m − 1, n)p2
n+1; andh(0, n) = p2

1+ . . . + p2
n.

However, a direct implementation of this scheme is subject to numerical instability
for largem, n, because the components s(m, n), h(m, n) of Equation (3) are partly extremely
small, in a range below 10−100, 10−1000, etc. and thus below the usual CPU number repre‑
sentation. In order to improve numerical accuracy for largem, n, we sort the objects accord‑
ing to their request probabilities p1 ≤ p2 ≤ . . . ≤ pn and start summations with the smallest
values. Moreover, we add a factor 10−20k (k ∈N) to the real number representations of s(m,
n) and h(m, n), such that the representation of y in the range
(10−20(ky+1), 10−20ky) has an integer component ky ∈N and a real component ry ∈ (10−20, 1),
such that y = ry · 10−20ky. Thereafter, 10−1000 is included for (ry , ky) = (1, 50), etc. In this way,
we finally achieve an accurate and scalable computation of the product form solution, as
confirmed by a comparison with the simulation results of numerous examples, including
the results in Figure 2 and Table 2.

3. Approximation of the IRM Hit Ratio for FIFO
Because the analytical FIFO solution of Equations (2) and (3) needs an extended num‑

ber representation for large caches and the LRU solution of Equations (11)–(13) is not scal‑
able, simpler approximations have been proposed. The FIFOhit ratio approximation refers
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to the time spans that an object Ok spends inside the cache (TInCache) and outside (TExtern,k),
which are measured by the number of requests in both time spans. For independent re‑
quests, the external phase TExtern,k is geometrically distributed with mean TExtern,k = 1/pk
until the next request to Ok.

When an object enters the cache, it starts from the top FIFO position and steps down
by one place per cache miss. We assume a constant cache miss probability 1 −hFIFO

IRM , in‑
dependent of the current cache content. Next, the mean number of requests that an object
spends in a FIFO cache is the same for all objects: T InCache ≈ M/(1 −hFIFO

IRM ). Finally, we
obtain the hit ratio per object Ok: hFIFO

k = pkT InCache/(T InCache + TExtern,k). In total,

hFIFO
IRM =

N

∑
k=1

hFIFO
k =

N

∑
k=1

pk
T InCache

T InCache + TExtern,k
=

N

∑
k=1

pkT InCache

T InCache + 1/pk
(4)

This leads to the following iterative computation scheme for T InCache:

T InCache = M/(1 − hFIFO
IRM ) = M/(

N

∑
k=1

pk −
pkT InCache

T InCache + 1/pk
) = M/

N

∑
k=1

1
T InCache + 1/pk

(5)

Starting from hFIFO
IRM = 0 ⇒ T InCache = M, T InCache is monotonously increasing in each

iteration step of Equation (5). There is a unique solution, and the iteration is converging
towards this solution. The computation effort of Equation (5) is O(N) per iteration round.

The FIFO (RANDOM, CpR) hit ratio approximation of Equation (5) is equivalent to
the approach by Dan and Towsley [25]. Based on a slightly more restrictive assumption of
Poisson request processes per object, Garetto et al. [37] provide an alternative derivation
by using queueing theory and Dehghan et al. [10] by using time‑to‑live caching.

3.1. Precision of the FIFO Approximation for Zipf‑Distributed IRM Requests
We compare the exact FIFO hit ratio analysis with the approximation for cases of Zipf‑

distributed IRM requests [31]with pk = α k −β for k = 1, . . . ,N; α = 1/Σ k k −β. Zipf‑distributed
request pattern has been reported manifold in content distribution on the Internet for the
popularity of files, videos, etc. [31–33]. Figure 2 shows results for β = 1 and for varying
object catalogue sizes N = 10, . . . , 106, with cache sizesM over the entire range [1, . . . , N].
The largest deviations of up to 1.7% are encountered for the smallestM,N. For largeN,M,
the deviations are often tiny, going down to the range of 10−6–10−7, where asymptotical
exactness can be expected due to a statistical multiplexing effect. As a general trend, we ex‑
perience the deviations to decrease with the variance of the popularity distribution. Thus,
for independent Zipf‑distributed requests, the deviations are increasingwith the shape pa‑
rameter β and decreasing withM, N.

Figure 2. Deviations of FIFO approximations of Equations (4) and (5) from exact results of
Equations (2) and (3).
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3.2. Maximum Error Cases of the FIFO Approximation for Small Cache Size M
The FIFO hit ratio approximation is highly accurate for large caches, but larger errors

are encountered for small caches. In order to identify maximum error cases, the following
approach aims to cover the entire range of IRM popularity distributions for smallM, N.

In particular, we checked all 204 266 popularity distributions whose request prob‑
abilities are multiples of 1/50 = 2%, such that pk = ik/50 with integers ik for k ≤ N ≤ 50.
The approximation of Equations (4) and (5) is compared to the product form analysis of
Equation (2) for all those distributions and for all cache sizesM <N, yielding over a million
deviation results. The computation required 2 days on a usual PC, but an exponential in‑
crease in the number of distributions will soon impede extensions to a finer raster of 1/51,
1/52, etc.

We separated the results for each cache sizeM and sorted them according to decreas‑
ing deviations. Finally, we obtained lists of the top‑K largest deviations of the FIFO ap‑
proximation for all popularity distributions in the 2% raster. They strongly suggest that
maximum deviations are encountered for popularity distributions of the following type:

p1 = p2 = ··· = pn = p/n; pn+1 = ··· = pN = (1 − p)/(N − n)→ 0 for N → ∞, (6)

i.e., there are n data objects with the same popularity among many more objects with neg‑
ligible request probabilities. The parameters n, p specify extreme distributions of the type
(6) for different cache sizes M. In our study of popularity distributions in the 2% raster,
a sorted list of the largest deviations starts with hundreds of cases which are closest to a
specific case of the format of Equation (6).

The same behaviour has also been experienced by Fagin [23] and Che et al. [24] for
maximum deviations of approximations to the LRU hit ratio; see Section 4. An example of
the top‑10 maximum error cases of approximations in the 2% raster is shown in Figure 4,
which are all near the corresponding maximum error case of the format (6).

The distribution type (6) leads to simple direct solutions for the approximation
Equation (5) and for the exact approach of Equation (2). A substitution of Equation (6)
into Equations (4) and (5) results in a quadratic equation for T InCache and an explicit solu‑
tion for hFIFO

IRM :

hFIFO
IRM ≈ n(p/n)T InCache/(T InCache + n/p); hFIFO

IRM ≈ 1 − M/T InCache ⇒

T InCache ≈ M(T InCache + n/p)/(T InCache + n/p − pT InCache);⇒
T InCache ≈ (M − n/p ±

√
(M + n/p)2 − 4Mn)/(2 − 2p)

The special format of Equation (6) also allows for computing the probabilities qm that
we find m out of n popular objects in the cache for m = 0, . . . , min(n, M). In this way, we
obtain the exact hit ratio result hFIFO

IRM = Σm qm·m·p/n, especially for the format (6). We derive
qm by collecting all the corresponding components from Equation (2):

qm = c
(

n
m

)(
N − n
M − m

)( p
n

)m
(

1 − p
N − n

)N−m

A further evaluation of this expression in the limit N → ∞ yields the following
simple scheme:

qm+1/qm = (n − m)(M − m)p/[n(m + 1)(1 − p)],

which leads to a direct evaluation of q0,···, qM and finally of hFIFO
IRM .

In Table 2, the worst FIFO error cases are listed forM = 1, . . . , 10. The parameters p, n
specify the probabilities p1 = ··· = pn = p/n of the extreme format (6). The approximation is
exact for uniform distributions, as confirmed by substituting hFIFO

IRM =M/N and pk = 1/N into
Equation (5). Moreover, we observe without proof that the errors are always negative, i.e.,
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the approximation of Equations (4) and (5) seems to establish a lower bound. The main
conclusions from Table 2 on the accuracy of the FIFO approximation are as follows:
• Considerable errors of up to 16.5% are encountered for small cache sizeM.
• They are reduced towards a fair accuracy with errors below 3% forM ≥ 10.

Table 2. Maximum deviations of FIFO approximations of Equations (4) and (5) for cache sizeM.

Maximum Deviations of the FIFO, RANDOM& CpR Approximation for
Cache SizeM: Worst Cases Are Request Distributions of the Type (6) with n =M

M p1= ··· = pn (n =M) Exact Result hFIFO
IRM

of Equation (2)
Approximation of

Equations (4) and (5)
Maximum
Deviation

1 0.8838 78.11% 61.62% –16.49%
2 0.4705 84.13% 73.30% –10.83%
3 0.3213 87.49% 79.45% –8.04%
4 0.2440 89.75% 83.37% –6.38%
5 0.1965 91.35% 86.07% –5.28%
6 0.1645 92.51% 88.00% –4.51%
7 0.1414 93.41% 89.48% –3.93%
8 0.1240 94.10% 90.62% –3.48%
9 0.1104 94.69% 91.57% –3.13%
10 0.0995 95.14% 92.30% –2.84%

4. Approximations of the LRU Hit Ratio
Because the exact LRU result of Equation (12) is tractable only for small caches, the

proposed LRU approximations by Fagin [23] and Che et al. [24] are even more relevant.
Both approaches are similar: each starts from an equation to determine the mean number
of requests RLRU until an objectO is handed over from the top LRU position to the bottom
and leaves the cache if there are no further request to O. RLRU also characterizes the cache
startup and LRU convergence time until an empty cache of fixed sizeM is filled [21].

RLRU can be determined from a coupon collection process until a series of requests
has addressed M different objects. The exact computation of the probability distribution
of this process for IRM requests is again scalable only for small caches [21,22,29]. Instead,
Che’s approximation first determines RLRU and then the LRU hit ratio [24,28,37]:

• RLRU is approximated by the unique solution of the equationM =∑N
j=1 1 − e−pjRLRU .

• Thereafter, the LRU hit ratio is obtained per object (hChe (Oj)) and in total (hChe):

hChe(Oj) = 1 − e−pj RLRU ; hChe = ∑N
j=1 pjhChe(Oj) = ∑N

j=1 pj(1 − e−pRLRU ) (7)

Fagin’s earlier approach differs from Che’s by substituting e−pj with 1 – p :

M = ∑N
k=1 1 − (1 − pk)

RLRU ; hFagin (Ok) = 1 − (1 − pk)
RLRU ;

hFagin = ∑N
k=1 pkhFagin(Ok) = ∑N

k=1 pk(1 − (1 − pk)
RLRU ) (8)

Both approximations yield asymptotically exact results for large M, N, as shown
in [26–29]. We complement the best‑case analysis with a study of the worst‑case errors of
both approaches [21], similar to Section 3.2 for FIFO. All 204 266 popularity distributions
in a 2% raster are checked with pk = ik/50 for integers ik (k ≤ N ≤ 50). The approximations
hFagin and hChe are compared with the analysis results via Equation (12) and/or simula‑
tions for all cache sizes M < N. The study once more strongly suggests the format (6) for
distributions with maximum errors of ∆hFagin = hFagin − hLRU and ∆hChe = hChe − hLRU.
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Table 3 provides a list of the maximum deviations ∆hFagin and ∆hChe forM ≤ 10, sim‑
ilar to Table 2 for the FIFO deviations. We checked both parameters n, p of Equation (6) for
extreme cases and adapted n, p for eachM to maximize ∆hFagin and ∆hChe [21].

Table 3. Maximum LRU approximation errors of Equations (7) and (8).

Maximum Errors of Che’s and Fagin’s Approximation for Cache SizesM ≤ 10
Worst Case Request Distributions Are of the Type (6) with p1= ··· = pn = p/n

Max. Error
|∆hChe|

Worst Case (6)
hLRU

IRM|| hChe
Max. Error
|∆hFagin|

Worst Case (6)
hLRU

IRM|| hFaginM
n || p/n n || p/n

1 8.25% 1 || 0.845 0.7055 || 0.6230 Fagin’s approximation is exact forM = 1
2 4.48% 2 || 0.455 0.7971 || 0.7523 5.20% 1 || 0.675 0.6041 || 0.6561
3 2.97% 3 || 0.310 0.8247 || 0.7950 3.53% 1 || 0.540 0.4876 || 0.5229
4 2.18% 4 || 0.235 0.8523 || 0.8305 2.82% 2 || 0.360 0.6655 || 0.6937
5 1.71% 5 || 0.192 0.8818 || 0.8647 2.31% 2 || 0.315 0.5867 || 0.6098
6 1.39% 6 || 0.160 0.8922 || 0.8783 1.99% 3 || 0.247 0.6894 || 0.7093
7 1.17% 7 || 0.139 0.9046 || 0.8929 1.72% 3 || 0.227 0.6342 || 0.6514
8 1.03% 6 || 0.155 0.9055 || 0.9158 1.54% 4 || 0.187 0.7033 || 0.7187
9 0.97% 7 || 0.134 0.9188 || 0.9285 1.39% 5 || 0.158 0.7500 || 0.7639
10 0.91% 8 || 0.119 0.9314 || 0.9405 1.26% 5 || 0.150 0.7043 || 0.7169

Note that Fagin’s approach [23] is exact forM = 1 and that Che et al. [24] report max‑
imum errors of 2% for their approach compared with simulations. We conclude from
Table 3:
• Themaximumdeviations∆hChe of Che’s approximation are decreasingwith the cache

sizeM from 8.25% forM = 1 down to less than 1% forM ≥ 10.
• The maximum deviations ∆hFagin of Fagin’s approximation are decreasing with the

cache sizeM from 5.2% forM = 2 down to less than 1.3% forM ≥ 10.
Figure 3 summarizes the encountered maximum errors forM = 1, . . . , 10:

Figure 3. Maximum errors of FIFO and LRU hit ratio approximations.

The LRU results in Table 3 are again based on the evidence from the check of 204
266 popularity distributions in a 2% raster. However, a proof that the distribution type (6)
generally maximizes the errors of Fagin’s and Che’s approaches is open for future study.

We illustrate the evidence in the result max(|∆hChe|) ≈ 2.97% for M = 3. The top‑10
error cases out of more than 2 × 105 popularity distributions in the 2% raster are shown
in Figure 4. These cases are all in a close surrounding of the extreme case of the type (6),
which is shown at the bottom of Figure 4. The top‑100 error cases of the list are again in an
extended surrounding of the same extreme case. A similar behaviour is observed for all
maximum error cases forM = 1, . . . , 10 in Tables 2 and 3.
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Figure 4. Top‑10 error cases forM = 3 in a 2% raster and extreme case ∆hChe ≈ −2.97%.

5. Extended Product Form Solution for Multisegment Caches
The product form solution (1–2) can be extended to caches composed of several levels

(lists, partitions, segments) L1, . . . , LK. A requested object on cache level Lj (j ≥ 2) is then
forwarded to level Lj−1 in exchange for an evicted object moving from Lj−1 to Lj, as illus‑
trated in Figure 5. Cache segmentations can improve the hit ratio by collecting the most
popular objects on high cache levels on account of slower adaptation to content changes.
Many proposed caching strategies make use of two or more segments, such as ARC [18],
segmented LRU [1], k‑LRU [38], LRU(m) [12,38], half rank exchange [11], FB‑FIFO [39],
transposition relocation or CLIMB [7,40]. Distributed architectures also include spreading
multilevel storage structures over several cache servers [41].

Garetto et al. [37] and Li et al. [12] include an LRU(K) variant with LRU on the first
level L1. Themixing time is estimated [12] for adaptation to a changing request pattern. An
extended product form solution is derived [20] for FIFO(K) and RANDOM(K) strategies
when either FIFO or RANDOM is used on all levels. This solution extends to clock per
request (CpR) and all variants, whichwere already included in the single‑segment product
form of Equations (1) and (2). The solution still remains valid when different strategy
variants of the set {FIFO, RANDOM, CpR} are applied on different levels.

Figure 5. Multisegment caches with FIFO, RANDOM or CpR strategy per segment.

Next, we confirm the generalized product form in an example of two‑level caches
where FIFO is applied on the first and RANDOM on second level. External objects enter
the cache on the second level. Let p*(k1, . . . , km, km+1, . . . , km+n) denote the steady state
IRM probability for content Ok1 , . . . , Okm+n in the cache, where the first cache level ranges
from positions 1, . . . , m, and the second from m + 1, . . . , m + n. Thereafter, we obtain

p∗(k1, . . . km+n) = c∗(pk1 , . . . pkm)
2(pkm+1 , . . . pkm+n) (9)

For a proof, we set up and check the solution (9) in Markovian equilibrium equa‑
tions. All preceding states are considered on the right, which lead to the cache content
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Ok1 , . . . , Okm+n in the next request. A request to an object in the first level keeps the state
unchanged according to the FIFO rule. A request to an object on second level moves an
object from a positionm + i to the top; i.e., Ok1 is renewed by such a request with probabil‑
ity pk1, as illustrated in Figure 5. In exchange, the object on the bottom of level 1 moves to
position m + i on level 2. Upon a cache miss, the requested external object replaces a RAN‑
DOMeviction candidateOkj in positionm+ i on the second levelwith transition probability
pkm+i/n. We obtain (∀ j ̸= l: kj ̸= kl)
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A check of the ergodicity preconditions is omitted, which would require more space,
as well as a proof of the general result: the steady state IRM content distribution for
K‑level caches with arbitrary combinations of the strategies FIFO, RANDOM and CpR be‑
ing applied on the levels follows the product form [20] (∀ j ̸= l: kj ̸= kl):

p∗(k1, . . . , kM) = c∗
K
∏
j=1

(pk
1+∑

j−1
i=1 li

. . . pk
∑

j
i=1 li

)K+1−j;
K
∑

i=1
li = M;

hK−Level Cache
IRM =

N
∑

k1,...kM=1
p∗(k1, . . . , kM)

M
∑

j=1
pkj

/
N
∑

k1,...kM=1
p∗(k1, . . . , kM)

(10)

This result includes half rank exchange [11] as a special case with segment sizes
lj = 2 j and M = 2K+1 − 1. As an extreme case, Climb [7,41] is covered by the multilevel
LRU solutions [12,20] and by Equation (10), where ∀j: lj = 1. Climb is denoted as transposi‑
tion relocation in a study byMcCabe [7], who compared Climbwith LRU in one of the first
Markov analysis approaches for caching. Equation (10) still applies when the cache size
covers k≤ K levels, such thatM = l1 + ··· + lk, and the K − k virtual levels are added outside
of the cache. The result (10) can be evaluated via a recursive scheme with computational
complexityO(N K 2(l1 + 1) ··· (lK+ 1)) [20]. Moreover, a mean‑field approximation has been
derived by Gast and Van Houdt [20] for simpler and faster evaluations.

6. FIFO and LRU Caching Analysis with Data of Different Sizes
The previous results apply to the cache support of CPU/GPU processing in a fixed,

unit size data format, whereas web caches are storing files or data chunks of varying sizes.
Therefore, we finally regard data objects Ok of different sizes sk. Then, the cache size M
does not refer to the number of objects, but it is measured in bytes, and there is no 1:1
replacement of the data. Often, the caching strategy must perform several evictions until
enough space for the new object becomes available. Small objects may be inserted without
eviction into free cache space, or several evictions may be required to insert a large object.

To the best of the authors’ knowledge, hit ratio solutions for objects of varying sizes
are rarely addressed in the literature and are thus open for future study. An extended Che
approximation for LRU caches is proposed in Section 3.2 of [28] without further evalua‑
tion. We first summarize extended exact solutions for LRU and for the product form in
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Sections 6.1 and 6.2. In Sections 6.3–6.5, we extend the FIFO approximation for varying
data sizes with regard to unused cache space (UCS) as an additional source of deviations.

6.1. LRU Cache Hit Ratio Solution for Objects of Different Sizes
The IRM steady state probabilities pLRU (Ok1, . . . , OkM) of the LRU cache content and

the LRU hit ratio hLRU
IRM have been derived by King [8] in the following format [12,25]:

pLRU(Ok , . . . OkM ) =
M

∏
j=1

pkj
/

M−1

∏
j=1

(1 −
j

∑
i=1

pkj
) (∀j ̸= l : k j ̸= kl ; ∀j : k j ̸= n) (11)

hLRU
IRM =

N

∑
k1 ,...kM=1

pLRU(Ok1 , . . . OkM )
M

∑
j=1

pkj =
N

∑
n=1

pn(pn +
M−1

∑
m=1

N

∑
k1 ,...km=1

pLRU(Ok1 , . . . , Okm , On)) (12)

The same result also characterizes cache‑filling phases [21]. However, there is no
scalable evaluation known for Equations (11) and (12), unlike the computation scheme
for the FIFO product form of Section 2.2. Therefore, the solution can be applied only to
small caches.

In the format (12), each term of the sum overm refers to hits contributed by the object
On in LRU stack position m + 1. In addition, pn

2 covers the hits for On in the top position.
The solution with differentiation of LRU cache content per stack position is still valid for
objects of different sizes, as far as they fit into the cache. This leads to a direct extension of
Equation (12) for objects On of sizes sn (∀ j ̸= l: kj ̸= kl ; ∀ j: kj ̸= n) [21]:

hLRU
IRM =

N
∑

n=1
pn(pn +

N−1
∑

m=1

N
∑

k1, . . . km = 1
sk1 + . . . + skm + sn ≤ M

pLRU(Ok1 , . . . , Okm , On))

=
N
∑

n=1
pn

2(1 +
N−1
∑

m=1

N
∑

k1, . . . km = 1
sk1 + . . . + skm + sn ≤ M

m
∏
j=1

pkj

1−∑
j
i=1 pki

)
(13)

6.2. No Common FIFO, RANDOM and CpR Solution for Objects of Different Sizes
In contrast to LRU, the common IRM product form solution of Equation (2) is re‑

stricted to a unit data size. Because we did not find an explicit statement on this limitation
in the literature, we show that hit ratios of FIFO, RANDOM and CpR can differ already in
a simple example for N = 3 objects A, B, C with sizes sA = 1; sB = 2; and sC = 3 and a cache
size ofM = 4. Then two objects fit together in the cache, except for B and C (sB + sC = 5 >M).

In this example, the IRM hit ratios of LRU, FIFO, RANDOM and CpR can be analysed
byMarkov chains, with states for the relevant cache content and state transitions according
to the replacement principles of each strategy, as shown in Figure 6. There are six states
with one (B or C) or two (A and B, A and C, B and A, C and A) objects as cache content
in steady state. Other content states are ignored as transient states (A) or when they ex‑
ceed the cache size (B and C, A and B and C). The top and bottom cache positions are not
distinguished for random evictions, such that four states are sufficient for RANDOM.

Figure 6. Markov chains for steady state hit ratio analysis of the caching strategies.
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The IRM hit ratio analysis first determines the steady state probabilities from equi‑
librium equations. State‑specific hit ratios are given by the sum of the request proba‑
bilities of the objects in the cache. The total hit ratio is the sum of state‑specific hit ra‑
tios weighted by their steady state probabilities. In the case of FIFO, we finally obtain
hFIFO

IRM = 1 − 2 pB pC/(pB + pC) − pA pB pC/(pA pB + pA pC + pB pC). In the case of LRU, the
direct computation of the hit ratio via Equation (13) is simpler and equivalent.

The exact analysis shows differences in the hit ratios of the four caching strategies. In
the example pA = 0.2, pB = 0.7 and pC = 0.1 we obtain the following:

hLRU
IRM =

1373
1800

≈ 76.28% < hFIFO
IRM =

703
920

≈ 76.41% < hCpR
IRM =

10139
13240

≈ 76.58% < hRANDOM
IRM =

3109
4040

≈ 76.96%

The differences in the IRM hit ratio results are not large, but they indicate that several
well‑known results for unit object size do not hold for data of different sizes:
(1) The FIFO, RANDOM and CpR hit ratios are different for variable data sizes. Their

common product form solution (2) [6] is restricted to unit‑size objects.
(2) The proven “LRU is better than FIFO under IRM” result [40] is also restricted to unit

data size and again violated in the previous example.
(3) Moreover, a monotonous increase in the LRU, FIFO, RANDOM and CpR hit ratio

curves (HRC) with the cache sizeM again holds only for unit data size.
Simulations of large caches with objects of different sizes still show results close to

the unit size properties, with negligible differences between FIFO, RANDOM and CpR.
However, LRU performance can largely deviate from FIFO, etc. for objects of different
sizes. The LRU preference for popular objects leads to a higher hit ratio when those objects
are small or to a lower hit ratio when they are large.

Value and Byte Hit Ratio

Steady stateMarkov results are usually derived for the object hit ratio. We can include
a caching value vk per object for the benefit of serving the object from the cache. vk may
refer tomeasures for reduced link load and energy consumption on a transport network or
to reduced delay, improved throughput and other QoS aspects from the user’s perspective.
The value hit ratio (VHR) of a cache is defined as (∀ j ̸= l: kj ̸= kl)
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where p (Ok1, . . . , OkM) again denotes the steady state probability of cache content for
a considered strategy. This includes the byte hit ratio (BHR), i.e., the fraction of bytes
delivered from the cache when the data size represents the caching value (vk = sk). In the
example of Figure 6, we obtain

BHRFIFO
IRM ≈ 60.61% < BHRLRU

IRM ≈ 61.16% < BHRCpR
IRM ≈ 61.22% < BHRRANDOM

IRM ≈ 61.68%

6.3. Extended Approximations for Objects of Different Sizes
We can straightforwardly extend the FIFO approximation (4) and (5) to data of differ‑

ent sizes sk:

hFIFO
IRM = 1 − ∑N

k=1 1/(T InCache + 1/pk); T InCache = M/∑N
k=1 sk/(T InCache + 1/pk) (14)

In the fixed size case of Equations (4) and (5), the mean sojourn time T InCache of an
object in a FIFO cache is determined by a step down of one position per cache miss in the
FIFO queue when a new object enters on top. The extension of Equation (14) accounts for
a shift down by the size sk when an objectOk enters the cache. The probability pEnter(k) that
Ok is the next object to enter the cache is still assumed to be constant per request:

pExtern(k) = pkTExtern,k/(T InCache + TExtern,k) = 1/(T InCache + 1/pk) (15)
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where TExtern,k/(T InCache + TExtern,k) represents the probability that Ok is outside of the
cache. An iterative evaluation of T InCache in Equation (14) has similar properties of a
monotonous convergence towards a unique solution, as in the unit size case of Equation (5).

The extended approximation of Equation (14) can be used for RANDOM and CpR as
well. Their hit ratio slightly differs from FIFO for varying object sizes, where we encounter
only minor differences between FIFO, RANDOM and CpR hit ratios, as in the example in
Section 6.2, and it is even smaller for large caches.

Che’s and Fagin’s approximations for the LRU hit ratio are also extensible to objects
of different sizes. Again, we have tomodify only the iterative equations to determine RLRU
in Equations (7) and (8) in order to account for object sizes sk, analogously to the FIFO case
of Equation (14) with unchanged formulas for hChe and hFagin [21,28]:

M = ∑N
k=1 sk(1 − e−pk RLRU ); hChe =∑N

k=1 pk(1 − e−pk RLRU ) (16)

M = ∑N
k=1 sk(1 − (1 − pk)

RLRU ); hFagin =∑N
k=1 pk(1 − (1 − pk)

RLRU ) (17)

6.4. Oversize Objects and Unused Cache Space (UCS)
When the cache is small, there may be oversize objects with sk > M, which cannot

enter and therefore should be excluded from the set of relevant data objects in the compu‑
tations of Equations (14)–(17). A fraction of unused cache space is another factor that is
not regarded in those approximations. We estimate its mean value E[UCS] and then apply
Equations (14)–(17) with a reduced cache sizeM* =M − E[UCS] = E[F], as the mean cache
fill level E[F]. We transfer an UCS estimation scheme for LRU [21] to the FIFO approxima‑
tion case. The concept of the estimation scheme is summarized in the next section.

6.5. Approximation Scheme for the Mean Unused Space in FIFO Caches
Let Fm denote the cache fill level before them th request. The fill level stays unchanged

for a cache hit: Fm+1 = Fm. In the case of a cache miss, Fm is increasing by the size of the
requested object and decreasing by compensating evictions. We obtain

Fm+1 = Fm + sR
m − ∑K

k=1 sE
m,k (18)

where sR
m denotes the size of the object of the m th request and sE

m,k are the sizes of eviction
candidates. K is the number of required evictions until the requested object fits into the
cache, where K = 0 if it fits into the currently empty space, i.e., if Fm +sR

m ≤M. The size sR
m of

objects that enter the cache has a discrete distribution s(j) for the number of bytes or kbytes,
with a maximum size smax. We obtain s(j) = Σk pEnter(Ok) Prob(sk = j), where the probability
pEnter(Ok) that an objectOk (re‑)enters the cache is computed via Equation (15) on the basis
of the FIFO approximation. We assign the same discrete distribution s(j) also as the size to
the eviction candidates. Finally, the fill level Fm can be evaluated in the format of discrete
distributions fm(j) = Prob(Fm = j), whereM − smax ≤ Fm ≤ M.

The mean fill level E[F] is iteratively computed via Equation (18) until steady state is
approached when the difference |E[Fm+1] − E[Fm]| < ε is becoming negligibly small:

E[F] = lim m → ∞E[Fm]; E[UCS] =M − E[F].

The entire computation scheme for the mean fill level E[F] versus unused cache space
E[UCS] is described in detail in [21] for LRU caches. As the main difference in a transfer
to FIFO, the probability pEnter(Ok) is obtained via Equation (15), with an impact also on the
distribution of the object sizes s(j).

We compare FIFO approximations in the basic format (14) with the previously de‑
scribed scheme forUCS correction. Therefore, we consider an example withN = 50 objects
with a uniform size distribution, i.e., s1 = 1, . . . , s50 = 50, and with independent and Zipf‑
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distributed requests pk = αk−β for k = 1, . . . , 50, where α = 1/Σ k k−β [31]. Figure 7 shows
the hit ratio curves (HRCs) for three examples:
1. β = 0, i.e., for uniform requests among all data objects (p1 = . . . = p50 = 2%),
2. β = 0.8with a preference for small objects (p1≈ 15.3%, p2≈ 8.8%, . . . , p50≈ 0.67%), and
3. β = 0.8 with a preference for large objects (p50 ≈ 15.3%, . . . , p1 ≈ 0.67%).

The mean object size per request is E(S) = 25.5 for uniform requests, and it is
E(S) ≈ 14.1 or E(S) ≈ 36.9, respectively, when small or large objects are preferred. A pref‑
erence for small objects yields the highest hit ratio, whereas uniform requests lead to the
lowest hit ratio for cache sizes M ≥ 50. For M < 50, the caching efficiency is reduced be‑
cause of oversize objects if sk = k > M, with the highest drawback in the third case. The
three FIFO HRCs in Figure 7 are obtained via simulation, being accompanied by a curve
for the basic FIFO approximation of Equation (14) as FIFO Approx.‑1, marked with circles,
and the approximation with UCS correction as FIFO Approx.‑2, marked with triangles.

Figure 7. FIFO approximation deviations for a case of uniform data‑size distribution.

We conclude that the FIFO approximation can be subject to significant deviations
when the cache size M is small in the starting part of the HRC and some popular data
objects have a size close to M or larger. The UCS correction can only partly improve the
basic FIFO approximation but indicates the extent of corresponding deviations.

We have evaluated the scenario of Figure 7 also for LRU with the basic extended Che
approximation [28] and a variant with UCS compensation [21]. The results are very similar
to the FIFO results in Figure 7. In the case of β = 0, the FIFO and LRUHRCs are identical, as
are the HRCs for both approximation variants. In the third case with a preference for large
objects, LRU and its approximations achieve a slightly higher hit ratio. Up to 6% higher
LRU hit ratios are observed for the second case, with the same shape of relative deviations
for the approximation variants for LRU as for FIFO.

Although LRU and FIFO caches are frequently applied, it has often been
observed [2,17,18] that their web caching performance can be far below the optimumwhen
compared with score‑ or utility‑based methods [10,15]. The latter can use specific informa‑
tion about data items in their caching decisions. Then objects can be preferred in the cache
with the highest ratio of popularity to size pk/sk as a score to maximize the IRM hit rate
according to a knapsack solution.
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7. Conclusions
For the exact hit ratio analysis of a cache of fixed size under independent (IRM) re‑

quests, the product form (1)–(2) provides the most general solution, which applies to FIFO,
RANDOM and clock‑based strategies, as well as to combinations of those methods. The
product form solution can be computed by the scalable scheme of Equation (3) [30], but it
needs an extended number representation, when there are many objects in the cache.

The solution extends tomultilevel/multisegment caches [20]with the same set ofmeth‑
ods (FIFO, RANDOM, CpR) being applied on each level. However, the hit ratio results
differ for those methods if data in a cache is varying in size. The analytic solution 7 for
LRU caches even extends to data of different sizes in the form of Equation (13). However,
the LRU solutions are not scalable for large caches.

As an alternative, IRM hit ratio approximations have been proposed for LRU by Fa‑
gin [23] and Che et al. [24] as well as for FIFO by Dan and Towsley [25]. Those approaches
were proven to be asymptotically exact for large cacheswith data of unit size [26–29]. More‑
over, our quantitative analysis identifies the format of Equation (6) for request probabilities
with maximum approximation error. The results of the quantitative evaluation lead to er‑
ror bounds which are summarized as follows:
• The maximum absolute deviations |∆hChe| of Che’s approximation are decreasing

with the cache sizeM from 8.25% forM = 1 down to less than 1% forM ≥ 10.
• Themaximum absolute deviations |∆hFagin| of Fagin’s approximation are decreasing

with the cache sizeM from 5.2% forM = 2 down to less than 1.3% forM ≥ 10.
• The maximum deviations of the FIFO approximation [25] are decreasing with the

cache sizeM from 16.5% forM = 1 down to less than 3% forM ≥ 10.
Extensions of those approximations for data of different sizes are provided [21,28],

which are still expected to yield asymptotic exact results for large caches. However, a
fraction of unused cache space contributes to larger errors for small caches. Therefore, an
exact analysis is recommended to avoid the largest approximation errors for small caches,
as far as Markovian and other exact solutions are scalable.

The presented framework of analysis and approximation results provides a basic tool
set for a performance evaluation of content delivery in current CDNs and cloud architec‑
tures, as well as in ICN, CCN and NDN concepts towards a future Internet. The limited
scope of exact solutions and insufficient accuracy of approximations for varying data sizes
are major challenges for future research.
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