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Abstract: Satellite image compression technology plays an important role in the development of space
science. As optical sensors on satellites become more sophisticated, high-resolution and high-fidelity
satellite images will occupy more storage. This raises the required transmission bandwidth and
transmission rate in the satellite–ground data transmission system. In order to reduce the pressure
from image transmission on the data transmission system, a spaceborne target detection system
based on Yolov5 and a satellite image compression transmission system is proposed in this paper.
It can reduce the pressure on the data transmission system by detecting the object of interest and
deciding whether to transmit. An improved Yolov5 network is proposed to detect the small target
on the high-resolution satellite image. Simulation results show that the improved Yolov5 network
proposed in this paper can detect specific targets in real satellite images, including aircraft, ships, etc.
At the same time, image compression has little effect on target detection, so detection complexity can
be effectively reduced and detection speed can be improved by detecting the compressed images.

Keywords: target detection; image compression; Yolov5; remote sensing

1. Introduction

With the rapid development of remote sensing space technology, the transmission
bandwidth and data rate of remote sensing images continue to increase, resulting in a surge
in the amount of image data, which puts pressure on data transmission bandwidth and
spaceborne storage. Therefore, remote sensing image compression has become a necessary
means to reduce the amount of data and relieve the pressure on transmission bandwidth
and storage [1–4]. At present, lossy compression is widely used for high-rate compression
coding of remote sensing images. Although this method reduces the amount of image
data to a large extent, it also causes a loss of key information in the area of interest of the
image. At present, the most commonly used static image compression algorithms are JPEG,
JPEG2000, and JPEG-LS [5,6].

JPEG2000 adopts the discrete wavelet transform and EBCOT encoding mechanism
and supports lossy and lossless compression. In general, its compression performance is an
improvement of 20~40% when compared with JPEG, and in the case of high compression
ratios, JPEG2000 has obvious advantages in this regard [5]. It is possible for JPEG2000 to
maintain a relatively intact image quality without Mosaic distortion, and it allows users
to specify the compression quality of any region and which part of the decompression
processing should be given priority. However, its disadvantage is the high complexity of
its algorithm. Following the development of the JPEG2000 special compression chip, image
data can now be compressed and transmitted by JPEG2000 on board.

On the other hand, the ocean occupies 70% of the Earth’s area and in most cases
does not contain useful information. Valuable targets in remote sensing images are mainly
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airplanes, ships, offshore beaches, and islands. For such targets, the main mission require-
ments are location annotation and mask segmentation of ships, ports, islands, and aircraft
in the image, against the background of a sea surface, a lake surface, or the ground. Aircraft
and ship images are different from natural images in scale and resolution, and ports and
islands are not obvious because of their rugged contours.

The compression is usually used to decrease the image size and the pressure on the
communication link between the satellite and the ground. We can use target detection to
further decrease the pressure on the communication link and let the satellite only transmit
the image we are interested in.

Traditional target detection generally adopts a rotating target detection method, which
can be divided into two main technical routes: one-stage and two-stage detection [7–9].

The one-stage rotating target detection method is based on one-stage horizontal target
detection methods such as Yolo [10] and SSD [11]. The target expression in the probe head
is replaced by the rotating target expression, and the design for the characteristics of the
rotating target is added. For example, TextBoxes++ uses a 3 × 5 convolution kernel with a
larger aspect ratio to extract the features of a rotating target with a larger aspect ratio in
the feature extraction stage [12]. Because of the large length and width ratio, the rotation
target is arranged more closely than the ordinary target, so TextBoxes++ implements a
denser prior box. In RSR [13], the rotation-sensitive convolution layer is used to replace
the common convolution layer, and the features with rotation are extracted, which is more
suitable for the changeable characteristics of the rotating target. Moreover, an inception
module is added to deal with rotating targets with large aspect ratios.

The two-stage rotating target detection method is based on two-stage horizontal target
detection methods, such as Faster R-CNN. The traditional methods, such as RR-CNN [14],
directly increase the angle prediction in the final regression stage to predict the rotation
of the target box. For example, the RRPN [15], R2PN [16], and RR-CNN methods have
similar technical routes. Angle parameters are generally added to anchor the frame design,
and rotating candidate frames are proposed in the stage of the candidate frame. Then, the
features of the rotating candidate frames are extracted by the pooling of the rotating RoI
(region of interest). Finally, the regression target boxes and categories are utilized.

Most of the late two-stage rotating target detection methods are based on an RoI
transformer [15]. Based on the horizontal anchor frame, the rotating anchor frame is
obtained by full connection learning in the candidate frame stage. Unlike RRPN and other
methods that set a large number of rotating anchor frames, the RoI transformer greatly
reduces the total number of anchor frames, thus reducing the complexity.

Aiming to solve problems such as small targets, unclear identification masks, and
fuzzy input images in remote sensing images, we propose a modified Yolov5 network for
small target detection. Yolov5 is an excellent neural network in face recognition scenarios
with different rotations and sizes. After modifications are made to the Yolov5 network, it
can be used to detect small targets with different rotations on a satellite image.

Based on Yolov5 and JPEG2000, an on-board target detection and compression trans-
mission system is designed by combining remote sensing target detection technology with
compression storage transmission technology. According to the target set, the system can
recognize the image data on the satellite, compress and store the regional images in the
target set, and feed back to the ground through the telemetry link, effectively improving
the transmission efficiency of high-value remote sensing images between the satellite and
the ground.

2. System Design

Figure 1 shows the procedure of the image compression and target detection system
on the satellite. The high-data-rate image information is sent to the FPGA for compression
using the camera link interface and then the target detection is undertaken on the machine
learning platform. Images containing the intended targets are selected and sent to the
ground station using the data transmission system. The target detection with the Yolov5
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network is implemented on the Jetson Xavier NX, which is produced by NDIVIA and is a
popular platform for machine learning [16]. The image compression is undertaken using
ADV212, which is produced by ADI [17,18]. ADV212 is a single-chip JPEG2000 codec for
video and high-bandwidth image compression applications, enabling it to benefit from the
enhanced picture quality and capabilities provided by the JPEG2000 image compression
standard. When the camera resolution is high, multiple ADV212 chips can be used in
parallel to compress the original image. ADV212 can connect directly to a wide variety of
host processors and ASICs using an asynchronous SRAM-style interface, DMA accesses, or
streaming mode (JDATA) interface. The ADV212 supports 16- and 32-bit buses for control
and 8-/16-/32-bit buses for data transfer. The power consumption of one ADV212 is less
than 0.5 W which is very suitable for a satellite with limited energy.

1 
 

 
Figure 1. The procedure of an image compression and target detection system on a satellite.

In our design, the original image is compressed before the target detection occurs,
which can reduce the complexity and the image size. The original image is first compressed
according to the JPEG2000 standard, which can reduce the requirements for the data rate
on the interface between the Jetson Xavier NX and the camera. Then, the JP2 image is
converted and resized to a JPG image to undergo target detection by the Jetson Xavier NX.
An alternative method is detecting the intended targets in the original image data and
sending the intended original data to the ADV212 chip to generate the compressed image,
which can reduce the task of ADV212, especially in a high-resolution scenario. Although
compressed images may affect the detection accuracy, this method can still achieve a high
detection rate, which is shown in the simulation results.

The platform based on FPGA and ASIC is the best solution after considering the
speed, hardware resources, development cycle, and other factors. As a highly customized
chip, ASIC can meet some specific user needs and solve the most difficult core algorithm
problems with minimal cost. Therefore, Xilinx 690T and ADV212 are adopted as hardware
platforms for image compression in the proposed system.

3. Remote Sensing Target Detection

The existing Yolov5 target detection system is developing rapidly, but there are still
some bottlenecks in the detection of small targets, such as in satellite images that have a
large field of view and a large size.

This section shows the Yolov5 network and the process of detecting small targets on
satellite images.
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3.1. Yolov5 Network

Figure 2 is the network structure diagram of Yolov5. The network structure is divided
into four parts: input, backbone, neck, and prediction.
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Figure 2. The network structure diagram of Yolov5. 

Figure 2. The network structure diagram of Yolov5.

3.1.1. Input Layer

(1). Mosaic data augmentation

The author of the Mosaic data enhancement proposal is also a member of the Yolov5
team. The data enhancement using a stitching effect is created from random zoom, random
cropping, and random arrangement, and the detection effect is good for small targets.

(2). Adaptive anchor box calculation
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In Yolo’s algorithm, there is an anchor box with an initial length and width for different
data sets.

In the network training, the network outputs the prediction box on the basis of the
initial anchor box, and then compares it with the real box, calculates the gap between the
two, and then updates it in reverse to iterate the network parameters. The anchor setting in
the model file is the initial anchors box, as shown in Table 1.

Table 1. The anchor setting of Yolov5.

Anchors Size

8 [10,13,16,30,33,23]

16 [30,61,62,45,59,119]

32 [116,90,156,198,373,326]

(3). Adaptive picture zoom

In the commonly used target detection algorithms, different pictures are different in
length and width, so the usually implemented method is to uniformly scale the original
pictures to a standard size, such as the widely used 640×640, and to then send them into
the detection network.

For rectangular pictures with a different length and width, Yolov5 is processed by
minimizing the filling, using gray to fill the scaled picture to scale it to the standard size,
and it is then input into the neural network.

3.1.2. Backbone Module

(1). Focus structure

The structure of the focus layer is shown in Figure 3. Taking the structure of Yolov5s
as an example, the original 640×640×3 image is input into the Focus structure, using the
slice operation, which first becomes a feature map of 320×320×12, and then goes through
a convolution operation of 32 convolution cores, and finally becomes a feature map of
320×320×32. The number of convolution kernels for the other models will increase with
the model depth.
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Batch normalization (BN) converts the distribution of data in each layer so that
it has a zero mean and a variance of 1, so that the distribution of data in each layer
is roughly the same, and the training will be easier to converge and prevent overfit-
ting. If only the output data of layer A of the network is normalized and then sent
to the next layer (layer B) of the network, the features learned by the network A of
the layer will be affected. BN also uses transformation reconstruction and introduces
the learnable parameters γ and β, so that the network can learn to restore the original
features of the target. The batch normalization is processed as shown in Algorithm 1.



Future Internet 2023, 15, 114 6 of 17

Algorithm 1 The procedure of batch normalization.

Input: Values of x over a mini-batch: C = {x1, x2, · · · , xm};
Parameters to be learned: γ, β

Output:
{

yi = BNγ,β(xi)
}

1. Calculate the mini-batch mean according to µC = 1
m

m
∑

i=1
xi;

2. Calculate the mini-batch variance according to σ2
C = 1

m

m
∑

i=1
(xi − µC)

2;

3. Normalize the input according to x̂i =
xi−µC√

σ2
C+ε

;

4. Scale and shift the input according to yi = γx̂i + β , BNγ,β(xi)

The Leaky ReLU function is a variant of the classical (and widely used) ReLU acti-
vation function whose output has a small slope to the negative input. As the derivative
is always non-zero, this reduces the emergence of silent neurons, allowing for gradient-
based learning.

LeakyReLU(x) =
{

x, x > 0
ax, x ≤ 0

(2). CSP structure

CSPnet (cross stage partial network) is proposed to reduce the calculation of very
large networks, mainly from the perspective of network structure design. The CSP mod-
ule first divides the feature mapping of the base layer into two parts, and then merges
them across the stage hierarchy, which can guarantee the accuracy while reducing the
calculation amount.

There are two kinds of CSPnet structures in the Yolov5 network. CSP 1 structure is
applied to the backbone network, as shown in Figure 4.
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Additionally, the other CSP 2 structure is applied in the Neck, as shown in Figure 5.
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Figure 5. The structure of CSP 2.

The benefits of adopting CSPnet include enhancing the learning ability of CNN, which
adopts a lightweight structure to reduce memory cost while maintaining detection accuracy.

3.1.3. Neck

An FPN and PAN structure is used to combine the characteristics of the target on
different layers, as shown in Figure 6. The FPN structure delivers strong semantic features
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from top to bottom, whereas the PAN structure delivers strong positioning features from
the bottom upwards. It is beneficial for improving the accuracy of target identification.
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3.1.4. Prediction

In Yolov5, CIOUs_Loss is used to create the loss function of the bounding box. In the
post-processing procedure during target detection, screening for many target boxes usually
requires NMS operation. The weighted NMS in Yolov5 can improve the recognition of the
target to be detected.

In the official description, there are four versions of the target detection networks,
namely Yolov5s, Yolov5m, Yolov5l, and Yolov5x, as shown in Table 2.

Table 2. The parameters of different Yolov5 networks.

Yolov5s Yolov5m Yolov5l Yolov5x

Depth multiple 0.33 0.67 1.00 1.33

Width multiple 0.50 0.75 1.00 1.25

The four structures are used to control the depth and width of the network through
the above two parameters, where depth multiple controls the depth of the network and
width multiple controls the width of the network. All four networks have the same frame
structure, with only the depths and widths differing.

3.2. Small Object Detection in Remote Sensing

We analyzed the principle of Yolov5 image recognition, taking the commonly used
640×640×pixel network input as an example (Yolov5s). After several iterations of down-
sampling, the largest feature image is 80×80, and each field of vision is only 8×8. If an
image of more than 5000 pixels is input, the smallest object pixel width or height the
network can identify is around 62.5. However, the size of many objects on the satellite
remote sensing images are smaller than this pixel width limit, making them difficult to
identify. If the input image size of the network is forcibly increased, it is easy to exceed the
GPU’s memory, and this also greatly increases the detection time. More effective methods
are required to run the algorithm under the limitation of the device.

Based on the above analysis, we made the following improvements to enhance
Yolov5′s capabilities for detecting small targets:

1. Modification of the model: we added a small detection anchor box, reduced the
multiple of the sampling layer as much as possible within the GPU’s memory limit,
and added a small target feature extraction layer. On this basis, we used a large
number of real satellite images for training.
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2. Image segmentation: we developed an image segmentation program that is similar
to manually cutting large images into several small pieces, and merges the model’s
outputs after recognition.

As shown in Figure 7, our proposed model is modified on the basis of Yolov5m. An
initial detection anchor box has been added, and the corresponding novel structure has
been modified to make an additional sampling and fusion layer.
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The image segmentation algorithm is implemented as follows: first, we divide the
original large-sized image into multiple small slices. The size of a slice should be 640 pixels
(as the neural network input is 640 × 640), with a 20% overlap reserved between each small
slice, to prevent small targets from being missed. Each small image is resized to 640 × 640
as a prediction input. We obtain the detection results from the network and concatenate
the output of multiple slices into the detection results of the original large-sized image.
Figure 8 shows a simple example of the image segmentation detection method.
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4. Image Compression

The basic structure of JPEG2000 compression is shown in Figure 9. First, the original
image data are preprocessed, and then the results are transformed by a discrete wavelet.
Before the formation of the output bit stream, the transformation coefficient should be
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quantized and the embedded block should be coded using EBCOT with optimized trunca-
tion. The decoder uses the inverse process of the encoder. After the compressed image data
flow is stored or transmitted, the data stream is first unpacked and the entropy decoded,
and then the reverse quantization and inverse wavelet transform are carried out [19]. The
result of the reverse transform is processed and synthesized in the post process to obtain
the reconstructed image data.
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The general steps of the JPEG2000 coding process are as follows:

(1). The original image is decomposed into each color component. As there is a certain
correlation between components, the redundancy between data can be reduced and
the compression efficiency can be improved by decomposing the related components.

(2). The image and each component image are decomposed into rectangular image slices,
which are the basic processing units of the original image and the reconstructed image.

(3). Wavelet transform is applied to each image slice to generate multi-level coefficient
images, which can be reconstructed into images with different resolutions.

(4). The decomposed wavelet coefficients are quantized to form the code block of the
rectangular array.

(5). Entropy coding is carried out for the coefficient bit plane in the code block.
(6). The region of interest can be encoded at a higher quality compared with the image

background region.
(7). Fault tolerance is increased by adding corresponding identifiers to the bit stream.
(8). A header structure is added to the first section of each stream to describe the attributes

of the source image. According to the header structure, the positioning operation, extrac-
tion operation, decoding operation and image reconstruction can be completed, so that
it has the characteristics of reproduction accuracy and an operation-of-interest region,
and can use an optional file format to describe the image and its various components.

The decoding algorithm for JPEG2000 is as follows. First, read the JPEG2000 image
format file header information and file the header logo from the JPEG2000 code stream
in order to extract the decoding parameters, such as image size, image block number,
wavelet transform mode, and other information, and then unpack to obtain the code word.
In the decoding data, each bit plane contains three processes: the cleaning process, the
amplitude refining process, and the importance propagation process, which are combined
with inverse arithmetic encoding to decode together. Each process will output the decoded
bit stream, and carry out inverse quantization, inverse discrete wavelet transforms, and
inverse multicomponent transform according to the sequence of decoding in each process,
and finally output the decoded data. The decoder can extract the required part from the
compressed code stream for decoding, such as extracting only a certain component or
parsing only to a certain quality layer. The JPEG2000 standard gives the decoder a lot of
flexibility because of its multiple decoding characteristics [20].

JPE2000 compression has the following features.
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(1). High compressibility

JPEG2000 can achieve relatively higher compression multiples than other methods
while ensuring higher fidelity of the reconstructed images.

(2). Compatible with lossy compression and lossless compression

It is compatible with lossy compression and lossless compression implementations.
This can avoid format problems caused by inconsistent lossy and lossless compression algo-
rithms and facilitate processing and conversion. Particularly in the field of remote sensing
information, lossless compression and lossy compression are often used for comprehensive
processing, so as to make operational processing more convenient.

(3). Measurability

Measurability refers to gradual transmission by image quality, resolution, component,
or spatial locality. Specifically, it can realize the transmission of the overall outline, and
then gradually insert pixels into it to improve the image resolution. This makes it easy to
quickly scan the image without considering the details of the image.

(4). Support area-of-interest coding

We can freely choose the region of interest, arbitrarily access and process this region,
and realize the priority display of this region. It is possible to compress the selected area of
interest and other areas in different proportions to achieve a low pressure ratio and even
lossless compression in some areas to ensure the appropriate roles of image details and
other information.

(5). Good error code robustness

Robust coding technique refers to preserving some redundant information in the
process of encoding the original image information. This redundant information is used to
resist errors in transmission [19].

5. Simulation Results
5.1. Detection Performance Based on the Original Image

In this section, we used the proposed Yolov5m network to test the detection perfor-
mance on real satellite images. The detection accuracies of the small objects on the satellite
images were different under different settings. First, we used the DOTA1.0 data set as
the training set to obtain a good target detection network [21], and we used the original
Yolov5s as the detection algorithm. Then, we used this model to detect the images taken
by satellite. The recognition results were not very good as the original images were of
poor quality without any preprocessing. The images in Figures 10 and 11 are the detection
results of real satellite images.

Few planes and ships could be detected when we used the model trained by Yolov5m;
the model needed to be revised to better detect small targets. Therefore, we used our
new model trained by the modified Yolov5, along with the image segmentation detection
procedure. The outputs are shown in Figures 12 and 13; the detection results were much
better compared with the previous outputs, with both detection accuracy and recall rate of
small targets significantly improved.

The detection performance of the proposed model on the DOTA set was also evaluated,
with some results shown in Figures 14 and 15. As the image quality in the DOTA set was
good, the detection performance remained excellent.
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5.2. Compression Performance Analysis

An image of the Shanghai area was used as the analysis set. In the compression, the
small image size was 1536×256 pixels, which was the smallest input unit for the ADV212
in our design. There were 9744 small images in total in the analysis set, and except for three
pictures whose compression ratios were lower than 4:1, the rest were consistent with 4:1.
When the compression ratio was 10:1, there were 4558 images with a fixed compression
ratio of 9.931:1 and the remaining images were the same, with ratios of 4:1 and 2:1. The real
average compression ratio was 11.46:1 when the ADV212 ratio was settled as 2:1 and 4:1
and the real average compression ratio was 12.64:1 when the ADV212 ratio was settled as
10:1.

When the compression ratio of ADV212 was settled as 2:1, the maximum real com-
pression ratio was 100.17:1. There were 17 images whose compression ratio was larger
than 50:1 and 37 images whose compression ratio was larger than 40:1. The image with
the maximum compression ratio was the sea surface at the estuary of the Yangtze River,
and the actual compression ratio was 100:1. Most areas in the image were smooth with low
contrast as shown in Figure 16.
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Figure 16. The image with the maximum compression ratio (smooth Yangtze River).

The image with the minimum compression ratio was the sea surface at the estuary of
the Yangtze River, and the actual compression ratio was 3.59:1. Most areas of the image
were rough with high contrast as shown in Figure 17.
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Figure 17. The image with the minimum compression ratio (dynamic Yangtze River).

Table 3 shows the main indices of image compression, and we chose the buildings
image in Figure 18 as an example to test the JPEG2000 performance with different com-
pression rates. Note that the compression rate in ADV212 was not the final compression
rate; ADV212 merely guaranteed that the SINR of the compressed image was larger than a
particular threshold. This means that the compression rate set in ADV212 was the lower
bound of the real compression rate. The least significant bit in the image was 12 bits. From
Table 4, we can see that PSNR was larger than 50 dB when the compression ratios were 2:1
and 4:1, which means the compressed image was nearly the same as the original image.
When the compression ratio was 10:1, the PSNR was reduced to 46.7 dB as the size was
reduced. In addition, SSIM and MUSSIM, which are used to value the similarity of different
images, were both larger than 0.99 with different ratios. Thus, ADV212 can deal with
spaceborne image compression.
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Table 3. The main indices of the image compression.

Abbreviation Full Name

MSE Mean Square Error

RMSE Root Mean Square Error

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity

UQI Universal Quality Index

MSSSIM Multi-scale Structural Similarity

SCC Spatial Correlation Coefficient

RASE Relative Average Spectral Error

VIFP Visual Information Fidelity
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Table 4. The compression indices’ comparison with different compression rates.

Compression Rate Set in ADV212 2:1 4:1 10:1

Size after compression 82 KB 82 KB 59 KB

MSE 38,508.815755208336 38,508.815755208336 91,708.72526041667

RMSE 196.2366320420536 196.2366320420536 302.8344849260346

PSNR 50.473864443709296 50.473864443709296 46.70535950680697

SSIM 0.9966228304307309 0.9966228304307309 0.9934589782137567

UQI 0.9999321996609332 0.9999321996609332 0.9998540667907824

MSSSIM (0.9993673349222898 + 0j) (0.9993673349222898 + 0j) (0.9986344999440212 + 0j)

ERGAS 291.1348285608546 291.1348285608546 426.4397995898409

SCC 0.7612884162903569 0.7612884162903569 0.6717694464656159

RASE 72.78370714021365 72.78370714021365 106.60994989746023

VIFP 0.3912624911023905 0.3912624911023905 0.3430493507692442

5.3. Effect of Compression on Target Detection

Figures 19 and 20 show the target detection results based on the original image and
the compressed image, respectively. The original image shows the Shanghai Pudong
International Airport. We can see that most of the aircraft in the original image can be
detected correctly. The detection results with a compressed image with a compression ratio
of 12 were nearly the same as those for the original image, except for few false detections
and missed detections. We marked the false detections and missing detections in Figure 20.
Therefore, it was better to compress the original image before target detection, as this could
reduce the detection complexity and achieve a similar detection performance.
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6. Conclusions

In this paper, we proposed a spaceborne target detection and compression storage
system that can detect intended targets and send data to the ground. It can improve
transmission efficiency, especially for high-resolution satellite image transmission systems.
We proposed an FGPA and ASIC method to realize image compression and used the
Jetson Xavier NX to realize target detection. We modified the Yolov5 algorithm to improve
detection performance for small targets. In order to restore the real application scenario,
raw satellite images were used for tests, instead of an open-source dataset that has been pre-
processed at high quality. The experimental results showed that Yolov5 performs well in
real satellite image detection with appropriate revisions and is feasible for implementation
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on a satellite with few hardware additions. In addition, image compression has little effect
on target detection, enabling the detection of targets on compressed images, which can
reduce the data rate requirement of the interface and increase efficiency. In the future,
we will try to use the neural network to detect a large target on a satellite image with
low-resolution, such as an airport.
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