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Abstract: In recent years, radio frequency identification (RFID) technology has been utilized to
monitor product movements within a supply chain in real time. By utilizing RFID technology, the
products can be tracked automatically in real-time. However, the RFID cannot detect the movement
and direction of the tag. This study investigates the performance of machine learning (ML) algorithms
to detect the movement and direction of passive RFID tags. The dataset utilized in this study was
created by considering a variety of conceivable tag motions and directions that may occur in actual
warehouse settings, such as going inside and out of the gate, moving close to the gate, turning
around, and static tags. The statistical features are derived from the received signal strength (RSS)
and the timestamp of tags. Our proposed model combined Isolation Forest (iForest) outlier detection,
Synthetic Minority Over Sampling Technique (SMOTE) and Random Forest (RF) has shown the
highest accuracy up to 94.251% as compared to other ML models in detecting the movement and
direction of RFID tags. In addition, we demonstrated the proposed classification model could be
applied to a web-based monitoring system, so that tagged products that move in or out through a
gate can be correctly identified. This study is expected to improve the RFID gate on detecting the
status of products (being received or delivered) automatically.

Keywords: RFID; IoT; machine learning; tag direction; outlier detection; data balancing

1. Introduction

Industry 4.0 allows for the digitalization of industrial machinery, operations, and
assets, which offers new understandings and effectively addresses current challenges [1].
IoT (Internet of Things) is a key technology driving the fourth industrial revolution, also
known as Industry 4.0. Industry 4.0 is the incorporation of cutting-edge technologies, such
as IoT, Artificial Intelligence, big data, and cloud computing, into the manufacturing and
industrial sectors. By connecting and communicating physical objects to the internet using
IoT, large amounts of data can be gathered and analyzed, resulting in enhanced automation,
efficiency, and decision-making in industrial procedures. For example, IoT-enabled sensors
can be used for monitoring the environmental temperature of server rooms [2,3], network
monitoring systems [4,5], monitoring automotive manufacturing [6,7], and healthcare
monitoring systems [8,9].

RFID, or Radio-Frequency Identification, is a technology that uses radio waves to
communicate between a reader and a tag attached to an object. RFID is considered a part of
the Internet of Things (IoT) because it allows for the identification and tracking of physical
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objects over the internet, enabling them to connect and communicate with other devices
and systems. This enables real-time monitoring, automation, and remote control of the
objects. RFID tags can be placed on products and used to monitor their movement in and
out of a warehouse by installing RFID readers at the gates. However, the reader cannot
determine the direction of the tags, whether they are entering or exiting the warehouse.
Previous studies have shown that using the received signal strength (RSS), timestamps, and
machine-learning algorithms can be used to determine false positive tags [10–14]. However,
these studies have not evaluated different types of tag movement that may occur in real-
world scenarios. Therefore, it is important to use machine-learning models to identify the
direction of tags by considering different types of tag movement to improve the efficiency
of the RFID gate [15–18].

Random Forest is an ensemble machine learning method that combines multiple
decision trees to improve classification and regression predictions by reducing overfitting
and providing an estimate of feature importance. RF models have been effectively used for
classification problems and have improved system performance [19–24]. However, machine
learning algorithms often face difficulties such as outliers and imbalanced datasets, which
can decrease accuracy. Studies have shown that by removing outliers using the Isolation
Forest (iForest) method [25–28] and balancing imbalanced data with Synthetic Minority
Over Sampling Technique (SMOTE) [29–32], the performance of the prediction system can
be improved.

Despite this, there is no study on integrating the iForest-based outlier detection,
SMOTE, and RF classifiers to improve the performance of RFID gates. Therefore, this study
proposes a prediction model that combines iForest-based outlier detection, SMOTE, and
RF to predict the movement and direction of RFID tags based on RSS and timestamps.
Furthermore, implementing the proposed predicted model into a web-based monitoring
system could detect the direction of the tagged product automatically. The contributions of
the present study can be summarized as follows:

• We proposed a combined method of iForest outlier detection, SMOTE data balancing
and Random Forest to classify movements and directions of RFID tags, which has
never been done before.

• We evaluated the performance of the proposed prediction model on our dataset by
considering more complex movements and directions of RFID tags that can happen in
real warehouse environments.

• We improved the performance of the proposed model by removing the outlier and
balancing the training-set.

• We conducted extensive comparative experiments on the proposed model with other
prediction models and previous study results.

• We provided the impact analysis of outlier detection and data balancing method with
or without iForest and SMOTE toward model’s accuracy performance.

• Finally, we demonstrated the practicability of our proposed model by designing and
developing the web-based RFID monitoring system.

• In addition, implementing the proposed predicted model into a web-based RFID
monitoring system could be applied in warehouse to detect the direction of the tagged
product automatically.

The rest of this study is organized as follows: In Section 2, we present machine
learning models, including iForest, SMOTE, and RF. In Section 3, we explain the proposed
prediction model for tag movement and direction. In Section 4, we report the results of our
experiments and the implementation of our model. Lastly, in Section 5, we provide the
conclusion, including any limitations of the study and potential areas for future research.

2. Literature Review
2.1. Tag Movement and Direction

RFID technology can be applied in a warehouse to identify items with RFID tags
within the reader’s range. While RFID readers can be used to track products as they are
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loaded onto trucks for transportation to other supply chain partners, the reader cannot
differentiate between tags that are intentionally moving through the gate and those that
happen to be in the reading range by chance. Several techniques have been suggested to
tackle this problem, including using RSS and timestamps.

Previous studies have examined the use of RSS information to detect false positive
tags. Keller et al. [10] looked at the characteristics of both static and moved tags from
low-level reader data, including RSS. They explored the optimal threshold for separating
static (false positive) and moved (true positive) tags. They developed a classifier based on
a single RSS feature and achieved an accuracy of 95.69%. Ma et al. [11] recently addressed
false positive detection based on RSS. They used several machine learning algorithms (DT,
support vector machines (SVMs), and LR) to classify RFID readings using features related
to RSS and phase shift. The SVM-based approach outperformed all other models, achieving
the highest accuracy (up to 95.5%).

Zhu et al. [12] propose an algorithm to address the problem of false positive readings
from supply chain radio frequency identification (RFID) systems. They extend the scenario
to more complex access control systems, where detecting false-positive and false-negative
data is critical to improving security and user satisfaction. The RFID data was divided into
70% training and 30% test data. Four training methods were used: ASOINN, SVM, LR, and
DT, and the results show that all methods performed well. To improve prediction accuracy,
Alfian et al. [13] proposed false positive detection based on RF and Inter Quartile Range
(IQR) outlier detection. By removing the outlier, the prediction accuracy can be improved.
The result shows that the integrated model successfully detects moving tags up to 97.496.
Furthermore, Motroni et al. [14] proposed a model to classify the tags that move statically
and pass-through portals. Sample data collected from an RFID reader and an array antenna
are classified using SVM and LSTM. The results showed that SVM has an accuracy of more
than 99%, while LSTM has an accuracy of around 95%. This result can be applied to RFID
readers at the entrance of fashion stores as anti-theft systems.

Previous studies on false positive detection have not fully evaluated various types of
tag movement that may occur in real-world scenarios. To improve the efficiency of RFID
gates, it is necessary to use machine-learning models to identify tag direction while taking
into account different types of tag movement. Motroni et al. [15] presented a classification
method for monitoring forklifts in Industry 4.0 scenarios. The proposed method uses
machine learning techniques to analyze sensor data from forklifts and accurately classify
their actions, such as moving, loading, and unloading. The implementation uses a UHF-
RFID Smart Gate with a single reader antenna and asymmetrical deployment, thus allowing
the correct action classification with reduced infrastructure complexity and cost. The results
show that the proposed method improves efficiency and safety in warehouse operations by
enabling real-time monitoring and intervention when necessary. In addition, movement
and direction detection for objects attached with RFID tags using machine learning was
also presented in [16]. The detection of the position and orientation of moving objects
was modeled as a classification problem and solved using a Light Gradient Boosting
Machine. The proposed method was verified to have high accuracy in detecting the
position and orientation of moving target boxes on a conveyor belt. Further experiments
were conducted utilizing the robot to grip the moving object with a high success rate as
the results. Alfian et al. [17] utilized XGBoost to classify the movement and direction of
tagged products. Several movement types such as move in, move out, move close, static
and turn back were considered in this study. The statistical features were extracted from
RSS and timestamps of the single reader with two antennas. The result showed that the
proposed model outperformed other machine learning models with an accuracy of up to
93.5%. Finally, Mizuno et al. [18] propose the state detection of multiple RFID tags using
a single antenna placed at a certain angle. The states detected are stay still, forward, and
backward movement. The purpose of the angled placement of the antenna is to obtain
different values of received signal strength indication (RSSI) and phase angle according to
the state of RFID tags. Those values are then evaluated using a random forest algorithm
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to define the state. The proposed method was evaluated through the experiment with
70 RFID tags and the better performance was shown by the angled antenna compared to
the normal placement (without angle).

2.2. iForest Outlier Detection

Previous studies mostly concentrate on enhancing the precision of models, rather than
the significance of preparing data. Identifying inconsistencies or outliers in data by using
outlier detection techniques during the pre-processing stage can lead to the creation of
better classifiers, resulting in better decision-making. Removing outliers from the training
data will increase classification accuracy. Isolation Forest (iForest) is an algorithm for
detecting outliers or anomalies in a dataset [33]. The algorithm uses the concept of isolation
to separate outliers from normal observations. iForest is efficient and easy to use and can
be applied to high-dimensional datasets.

Many studies have been conducted and have demonstrated that iForest outlier de-
tection can significantly improve classification accuracy. Heigl et al. [25] introduce PCB-
iForest, a new framework for outlier detection in streaming data. Based on F1 scores and
trade-off with average runtime, PCB-iForest clearly outperformed nine competitors on
multi-disciplinary ODDS in about 50% of the data set and achieved comparable results
in 80%. Chang et al. [26] proposed three steps for training a classification model: signal
segmentation, LOF-based anomaly score, and then isolation forest modeling. Signal sensors
in the diffusion process of semiconductor manufacture capture both normal and abnormal
data, but it is challenging to classify the anomalies since they only exist in a particular region.
According to the experiment results, the proposed method outperforms other algorithms.
Hu et al. [27] proposed a preprocessing method to improve the accuracy of hourly water
demand forecasting models. This method reduced the RMSE of the SVR, ANN, and GRU
models by 57.5%, 27.8%, and 30.0%, respectively. The local outlier detection and correction
method effectively identifies global outliers and corrects them. GRU-based models perform
better than ANN and SVR-based models, with the IF-CEEMDAN-GRU model being the
most accurate. The proposed method also improves the accuracy of conventional models
like SVR with a lower computational load. Finally, Chen et al. [28] compared five anomaly
detection algorithms and found BS-iForest to be the best performing. Its AUCs on the
BreastW dataset and campus CRS dataset were 0.9947 and 0.989, respectively, higher than
the traditional forest method. The accuracy rates were also higher, at 0.9653 and 0.9896,
respectively. BS-iForest screens sub-sampling sets before training and uses sets that are
more likely to have outliers. However, compared to the standard iForest algorithm, iForest
has a higher AUC index regardless of the proportion of outliers.

2.3. SMOTE

Dealing with imbalanced datasets, where one class is significantly more represented
than the other, is a challenging task in supervised learning as traditional classification
algorithms are designed to work with balanced class distributions. One solution is over-
sampling, which artificially increases the number of samples in the minority class to balance
the class distribution. One popular oversampling technique is SMOTE, which generates
new synthetic samples of the minority class by interpolating the feature space between
existing minority class samples and their closest neighbors [29]. This allows for a more
balanced dataset and can improve the performance of machine learning models.

There have been numerous studies that have proven that using SMOTE can signifi-
cantly enhance the precision of classification. Sun et al. [30] proposed a model that utilizes
SMOTE to tackle the problem of imbalanced datasets, to be used as a tool by banks to
evaluate enterprise credit. When tested using financial data from 552 Chinese listed com-
panies, the proposed model outperformed traditional models. Le et al. [31] used various
oversampling techniques to address imbalance issues in a financial dataset collected from
Korean organizations between 2016 and 2017. The results showed that a combination of
SMOTE and Edited Nearest Neighbor (SMOTE + ENN), as well as RF, achieved the highest
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accuracy in predicting bankruptcy. In another study, a method that combines SMOTE with
SVM was proposed to enhance the prediction accuracy for identifying old banknotes [32].
The findings revealed that the proposed method could improve performance by as much
as 20% compared to the standard SVM algorithm.

2.4. Random Forest

The ensemble approach, which combines different classifiers, has been proposed to
improve the performance and accuracy of diabetes analysis and prediction. Random Forest
is one such ensemble technique that combines the findings of individual decision trees [34].
It is made up of an ensemble of classifiers, each of which is a decision tree with nodes
representing attributes. Random Forest typically works by using the bagging method to
generate subsets of training data. Previous studies have shown that Random Forest has
been used in many areas and has produced significant results.

Mani et al. [19] utilized machine learning models such as Gaussian Naive Bayes,
Logistic Regression, K-nearest neighbor, Classification and Regression Trees (CART), and
Random Forest to predict type 2 diabetes for the next six months to one year based on
electronic medical records (EMR) data. The results showed that RF outperformed other
models in predicting diabetes. Lopez et al. [20] used Random Forest to identify the most
important attributes related to diabetes. The proposed model was compared to other
machine learning models such as Support Vector Machines and Logistic Regression (LR)
and produced significant results. RF outperformed other models in terms of prediction
accuracy and estimated relevance of the attributes. Alam et al. [22] used a Random Forest
classifier for disease classification and tested it on 10 medical benchmark datasets. A feature
ranking-based approach was developed and implemented for medical data classification
and the proposed RF model produced promising results. Finally, Sun et al. [21] used a
random forest (RF) classifier to model changes in hypertension control in 1294 patients at
Vanderbilt University Medical Center. They found that the RF model was able to accurately
predict changes in hypertension control status. This research could be used to develop
personalized hypertension management plans.

Previous studies have shown that using a random forest (RF) model can be applied
to prediction models in many areas. However, these studies have also revealed that the
presence of outliers and imbalanced data in the training set can negatively impact the
performance of the RF model. By removing outliers and balancing the training set, the RF
model is expected to have improved classification accuracy.

3. Methodology

The proposed model in Figure 1 uses RSS and timestamps to predict tag movement
and direction. Data pre-processing was done to remove inconsistent data and missing
values were replaced with the mean. Outlier detection based on iForest has been applied to
the RFID readings dataset so that the outliers can be eliminated. Statistical features were
extracted from RSS and timestamps and the SMOTE technique was applied to generate new
instances of the minority class. The RF algorithm was used for prediction and performance
was evaluated by comparing the proposed model to other machine-learning models. The
trained model was then integrated into a web-based application for easy use by end users.
The evaluation of the model was done using stratified 10-fold cross-validation, a variation
of k-fold cross-validation where each subset contains the same proportion of class labels as
the original dataset.

3.1. Dataset

We proposed a prediction model based on RF to improve the prediction performance
for tag movement and direction. We used a dataset from a previous study [17,35] which
consists of five (5) types of tag movements, they are moving in, moving out, moving close,
static, and turning back. There are 180 unique data generated for each move in, move out,
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move close and turn back, while for static tag 310 unique data were collected. In total, our
study uses 1030 unique RFID movement data.
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The dataset was collected using the RFID reader ALR-9900+ from Alien Technology
and two linear antennas, ALR-9610-AL with 5.90 dbi Gain. The reader operates at a
frequency of 902–928 MHz and supports EPC Class1 Gen2 (18000-6C). Passive RFID tags
were attached to one side of each product box, using the model 9662 with a frequency range
of 860–960 MHz, IC type Alien H3 and EPC Class1 Gen2 (ISO 18000-6C) protocol.

The dataset in [17,35] was gathered by considering various possible movements and
directions of tags that can happen in real warehouse environments such as moving in
and out through the gate, moving near the gate, turning back, and static tags (Figure 2).
The setup used for this scenario was a single reader with two antennas, one installed
outside and the other inside the warehouse gate. This allows for the recording of tagged
products moving in and out of the warehouse. However, the RFID reader may also pick up
false positive readings like when the product is moved near the gate, during a turn-back
movement, or from static tags. These static tags occur when tags are located within the
nominal read range or when the range is extended accidentally by metal objects within the
field. The prediction model in this study is utilized to record the products that move in or
out through the gate and filter out false positive readings. Figure 3 illustrates an example
of tagged products moving in through the gate in a real warehouse.

3.2. iForest Outlier Detection

iForest works by constructing an ensemble of isolation trees (iTrees) for each dataset,
where outliers are defined as instances with short average lengths in the iTrees [33]. The
iTrees are recursively built by dividing the dataset until all instances are isolated or a specific
tree height is reached.

Algorithm 1 provides pseudocode for iForest. Given D (input data), MaxSample
(subsample size), and NumTree (number of trees to build), the algorithm generates many
iTrees and returns a Forest. The iTree is generated by using sample data from D.

Algorithm 1 Isolation forest -

Input D, NumTree, MaxSample
Output Set of iTrees
1: Initialize Forest
2: set height limit h = ceiling(log2(MaxSample))
3: for i = 1 to NumTree do
4: D′ ←− sample(D, MaxSample)
5: Forest←− Forest ∪ iTree (D′, 0, h)
6: end for
7: return Forest
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During iTrees generation, the next process is randomly select a feature q from each iTree
and select a random value p within the range. The data is then split into two parts, they are
left branch (data points q < p) and right branch (data points q ≥ p). This process is iterated
until there is only one data point in the branch or the iTree has reached the maximum depth.
This process is repeated many times for each iTree and finally, a Forest is produced. The last
step is finding data points from each iTree which has a shorter path length and is labeled
as an outlier. We used the Scikit-learn Python library to implement iForest. We found
120 outliers’ data and eliminated them from the RFID readings dataset and retained the
remaining data for further analysis.

3.3. Feature Extraction

RSS attributes, which are used to distinguish between moving and stationary tags,
have been used in previous studies [10,11,13,17]. The strength of the RSS signal is deter-
mined by the distance between the antenna and the tag, with closer tags producing stronger
signals. The timestamp information, which is used to determine the direction of the tags,
is also an important parameter [10,13,17]. Table 1 shows our statistical features extracted
from a single antenna. Since this study utilizes two antennas, 36 attributes (including RSS
and Timestamps) are extracted in total from both antennas. The statistical attributes were
generated from the RFID readings dataset after outlier data were removed by iForest. We
used all statistical features in [17] and add other features such as median, kurtosis, skewness,
and count for both RSS and timestamps.

Table 1. Attributes extracted from RSS and TimeStamp.

Feature Type Attribute Name Description

RSS

RSS_Min Minimum signal strength
RSS_Max Maximum signal strength

RSS_Mean The average signal strength
RSS_Std Standard deviation signal strength

RSS_Med The median signal strength
RSS_Diff Difference between the highest and lowest signal strengths

RSS_Kurt Indication of whether the RSS distribution is heavy- or light-tailed
relative to normal

RSS_Skew Distribution asymmetry of signal strengths
RSS_Count Total number of reads for the tag

Timestamp

Time_Min Timeframe (seconds) of tag read at the first time.
Time_Max Timeframe (seconds) of tag read at the last time.

Time_Mean The average value for the timeframe (seconds)
Time_Std Standard deviation value for the timeframe (seconds)

Time_Med The median value for the timeframe (seconds)
Time_Diff Total period (seconds) for a tag between the first and last read time

Time_Kurt Indication of whether the timeframe distribution is heavy- or
light-tailed relative to normal

Time_Skew Distribution asymmetry of timeframe
Time_Count Total number of seconds for the tag

Finally, the extracted features from the dataset were used as input X, while the label
of tag movement was used as output y. Machine-learning algorithms are utilized to learn
from this pair of X and y in the training set, thus generating predictions. In our study, we
use RF to detect the direction of RFID tags.

3.4. SMOTE

The SMOTE (Synthetic Minority Over-sampling Technique) is a method used to in-
crease the number of minority class instances in a dataset by generating new synthetic
instances of the minority class [29]. This is done by randomly selecting the nearest neigh-
bors of each minority class sample and creating new synthetic samples between them
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(see Figure 4). In this study, SMOTE was applied to our training set during Stratified
10-Fold CV in order to balance the training set, so that could improve prediction accuracy.
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3.5. Random Forest

The RF (random forest) algorithm is a classification method that combines decision
trees [34]. Previous research has shown that using a randomization approach, such as bag-
ging or the random space method, can improve the performance of RF. This randomization
is achieved by using bootstrapped sampling of the original data and randomly selecting a
subset of features at each node to determine the best split. The process of generating each
tree in an RF model is described in Algorithm 2.

Algorithm 2 Random forest

Input : training dataset D, ensemble size T, subspace dimension d
Output : majority votes from tree models
for t = 1 to T do

Build a bootstrap sample Dt from D
Select d features randomly and reduce the dimensionality of Dt accordingly
Train a tree model Mt on Dt
Split on the best feature in d
Let Mt grow without pruning

end

In the random forest method, individual decision trees are generated by randomly
selecting a subset of features at each node to determine the split. The algorithm works
as follows: given a training dataset (D), the number of trees (T) in the model, a subspace
dimension (d), and the available features (F), then a bootstrapped sample (Dt) of the original
dataset (D) is taken. This sample includes some records from the original dataset multiple
times and excludes others. Then, a subset (d) of features is randomly selected from the
bootstrapped sample (Dt) to use as candidates for the split at each node. The decision
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tree classifier is trained on the bootstrapped sample (Dt) and the selected features (d) and
grown to their maximum size without pruning. This process is repeated for all the trees in
the forest. During the classification phase, each tree votes, and the most popular class is
chosen as the prediction result.

Random forests (RFs) can address several issues that affect decision trees, such as
avoiding overfitting and generating low variance. In this study, data from RFID tags that
were identified by iForest as outliers were removed. The SMOTE method was then used
to balance the training set. Finally, a random forest model was trained to learn from five
classes (moving in and out through the gate, moving near the gate, turning back, and static
tags) on the prepared training set and its prediction results were compared to the testing
set to evaluate the model’s accuracy. In this study, the input features are the statistical
information from RSS and timestamps of RFID tags and the output is the movement types.
The random forest model has 100 trees (T), and 36 features (F), and uses the Gini index for
splitting the reduced number of features (d).

Machine learning models were used to classify the different types and directions of
movement for tagged products. The classification models were implemented in Python,
XGBoost, and Scikit-learn and used default parameters provided by Scikit-learn [36]. The
models were evaluated using stratified 10-fold cross-validation and their performance
was measured using true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) rates [37]. TP and TN represent correctly classified instances, while FP and
FN represent incorrectly classified instances (see Table 2).

Table 2. Measures for multi-class classification. tpi, f pi, f ni, and tni are true positive, false positive,
false negative, and true negative for class Ci, respectively. M indices represent macro-averaging.

Metric Formula

Average accuracy ∑l
i=1

tpi+tni
tpi+ f ni+ f pi+tni

l

PrecisionM
∑l

i=1
tpi

tpi+ f pi
l

Speci f icityM
∑l

i=1
tni

tni+ f pi
l

RecallM
∑l

i=1
tpi

tpi+ f ni
l

FscoreM
(β2+1)PrecisionM RecallM

β2PrecisionM+RecallM

4. Results and Discussion

This section discusses the performance of the proposed model and how outlier detec-
tion and the oversampling impact it. We also demonstrate the usefulness of the model by
applying it to a web-based monitoring system.

4.1. Performance of Machine Learning Models

We examined the performance of machine learning models and the effect of iForest
outlier detection and SMOTE data balancing on the model’s accuracy. We compared a
model based on a random forest with iForest and SMOTE to other classification models
for predicting five types of movement and direction of tags. We used several Machine
Learning algorithms, including multi-layer perceptron (MLP), logistic regression (LR),
K-nearest neighbor (KNN), decision tree (DT), naïve bayes (NB), eXtreme Gradient Boosting
(XGBoost), and adaptive boosting (AdaBoost), as models for predicting tag movement
and direction. The results in Table 3 show the performance of different models in terms
of accuracy, precision, recall, and f-score, using both RSS and Timestamp features. Our
findings showed that the proposed model outperformed the other models by up to 94.251%,
93.751%, 98.612%, 93.502%, and 93.332% for accuracy, precision, specificity, recall, and
f-score, respectively.
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Table 3. Performance evaluation results.

Method
Performance Evaluation (%)

Accuracy Precision Specificity Recall F-Score

MLP 71.165 ± 5.745 70.001 ± 7.665 92.923 ± 1.388 67.699 ± 6.106 65.728 ± 6.537
LR 63.301 ± 3.998 60.646 ± 4.426 90.711 ± 0.959 58.978 ± 4.241 58.402 ± 4.106

KNN 66.699 ± 3.336 64.346 ± 3.521 91.844 ± 0.827 62.355 ± 3.368 62.316 ± 2.960
DT 86.699 ± 4.343 86.477 ± 3.881 96.713 ± 1.075 85.570 ± 3.887 85.519 ± 4.084
NB 81.262 ± 3.475 80.395 ± 7.628 95.200 ± 0.914 79.022 ± 4.134 78.467 ± 5.869

XGBoost 93.592 ± 2.983 93.363 ± 3.028 98.434 ± 0.730 92.900 ± 3.207 92.726 ± 3.322
AdaBoost 93.107 ± 3.174 92.963 ± 3.161 98.312 ± 0.772 92.624 ± 3.139 92.418 ± 3.289

RF + iForest + SMOTE 94.251 ± 3.267 93.751 ± 3.547 98.612 ± 0.786 93.502 ± 3.510 93.332 ± 3.617

The proposed model was found to be highly accurate in detecting the movement and
direction of tags. If tags moving in through the gate are wrongly classified as moving
out, the management will think the products have been shipped to other supply chain
partners. On the other hand, if tags moving out the gate are wrongly classified as moving
in, the management will believe the products have been stored in cold storage. This shows
that using the RF with iForest and SMOTE model will significantly improve warehouse
management accuracy.

4.2. Impact of Outlier Detection and Data Balancing Method

In this study, we examined the effect of iForest outlier detection and SMOTE on the
accuracy of classification models. We found that the implementation of these techniques
slightly improved the accuracy of the models. After removing noisy or outlier data and bal-
ancing the training set, the average accuracy of the classification models increased by about
0.13% compared to conventional machine learning models. Figure 5 shows the detailed
impact of outlier detection and oversampling on classification accuracy. In our dataset,
removing outliers and increasing the distribution of minority cases generally improved
classification model accuracy, except for logistic regression. In conclusion, integrating
iForest-based outlier detection and SMOTE for balancing the dataset into classification
models can improve model accuracy.
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4.3. Comparison with Previous Studies

In this study, we compared our study with previous studies related to the predic-
tion model for detecting the movement and direction of RFID tags. Table 4 presents a
comparison of the findings between our study and earlier research.

Table 4. Comparison of our study with previous work.

Author Purpose Architecture Feature Method Accuracy (%) Practical Application

[10] Detecting
movement

One reader
4 antennas

Statistical features
from RSS and
timestamps

Information Gain 95.69 Not reported

[11] Detecting
movement Two readers

Statistical Features
from RSS and phase

readings
SVM 95.3 Not reported

[13] Detecting
movement

One reader,
one antenna

Statistical Features
from RSS

RF with IQR
outlier detection 97.496 Yes

[17]
Detecting

movement and
direction

One reader,
two antennas

Statistical Features
from RSS and

Timestamp
XGBoost 93.5 Yes

Our study
Detecting

movement and
direction

One reader,
two antennas

Statistical Features
from RSS and

Timestamp

RF with iForest
Outlier Detection

and SMOTE
94.251 Yes

Keller et al. [10] applied Information Gain to find possible split points for moved and
static tags. By utilizing RSS and timestamps as features, the proposed model could achieve
an accuracy of up to 95.69%. Ma et al. [11] utilized two readers to detect the movement of
tags. The SVM model was utilized as a classifier to detect the moving tags. Alfian et al. [13]
proposed false positive detection based on RF and Inter Quartile Range (IQR) outlier detection.
The integrated model successfully detects moving tags up to 97.496.

In addition, a recent study considered not only tag movement but also tag direc-
tion [17]. The statistical features were extracted from the RSS and timestamps, while
XGBoost was utilized as a classifier. Our study utilized a dataset from [17] and showed
improvement in prediction accuracy. We proposed a prediction model based on RF with
iForest outlier detection and SMOTE data balancing. Furthermore, our study offered practi-
cal application by developing a web-based monitoring system. By embedding a trained
prediction model into a web-based system, the direction of the tagged product can be
presented easily to management.

Table 4 should not be considered as strong evidence regarding model performance,
but it provides a general comparison and allows discussions regarding the proposed
model and previous approaches. We used dataset from [17] for the current study, which
considered more complex scenarios (tag movement and direction) as compared to dataset
from [10,11,13], where they considered tag movement only. Dataset used in [10,11,13]
considered two classes (binary), they are moving and static tag, while in [17] and our study
considered five classes (multiclass) such as going inside and out of the gate, moving close
to the gate, turning around, and static tags. Multi-class classification is more complex than
binary classification, as the result our prediction model generated lower accuracy than
the models for binary classification in [10,11,13]. However, for same dataset our model
generated higher classification accuracy compared to previous study in [17].

In addition, the number of reader and antennas used in experiment could influence
the model performance as presented in [38]. However, in our study to detect the direction
of the tags at least required single reader with two antennas. The first antenna could be
installed outside and the other inside the warehouse gate. The purpose of our study was to
try to minimize amount of hardware without reducing the system performance.

4.4. Practical Application

The goal of this study is to create a web-based system that uses a machine learning
model to accurately track tagged products and assist management in decision-making.
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Previous research has shown that this type of system can be useful in web-based trace-
ability [13,17] and disease prediction [39,40]. By employing a prediction model based on
machine learning, RFID tags crossing the gate and static or other types of tags movement
can be detected accurately.

The web-based monitoring system was built using the PHP programming language
and a MySQL database on the server side, Java for the capturing application, and Python
for the tag movement and direction module on the client side (Client PC). The prediction
model was implemented using the Flask web framework and Scikit-learn library on the
client side and was used to filter out noise (false positive RFID tags) and detect the direction
of the RFID tags as they moved through the gate. Figure 6 illustrates how the tag products
moved by forklift through the RFID gate and the sensor data was sent to the Client PC
where the prediction model was employed. The system received sensor data from an
RFID reader and used the last six seconds of data as input to extract statistical features,
which were then sent to an API based on Flask. The trained model was used to predict
the direction of the tagged product, whether it was moving in or moving out, and the
result was presented to management through a web-based interface. Figure 7 showed the
interface displayed a history of the tagged products, allowing management to monitor their
location in the warehouse in real time.
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5. Conclusions and Future Works

The proposed RF model with iForest outlier detection and SMOTE was able to identify
the movement and direction of tags using RFID technology. It was tested on various types
of tag movement, including entering and exiting the gate, moving close to the gate, turning
back, and remaining stationary. The results showed that the proposed model outperformed
other models, such as MLP, LR, KNN, DT, NB, RF, XGBoost, and Adaboost, by up to
94.251%, 93.751%, 98.612%, 93.502%, and 93.332% in terms of accuracy, precision, specificity,
recall, and f-score, respectively. The trained model can be used in an RFID gate to detect
whether a product is entering or leaving and can also filter out false positive readings like
static tags, tags turning back, and tags moving close to the gate. This information can be
combined with product information and stored in a database.

In the future, the performance of readers, tags, and IoT sensors will be evaluated under
various conditions. It is also possible that the comparison with other classification models
and the use of machine learning to identify miss-reads will be presented in the near future.
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