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Abstract: With the development of IoT, IoT devices have proliferated. With the increasing demands
of network management and security evaluation, automatic identification of IoT devices becomes
necessary. However, existing works require a lot of manual effort and face the challenge of catastrophic
forgetting. In this paper, we propose IoT-Portrait, an automatic IoT device identification framework
based on a transformer network. IoT-Portrait automatically acquires information about IoT devices
as labels and learns the traffic behavior characteristics of devices through a transformer neural
network. Furthermore, for privacy protection and overhead reasons, it is not easy to save all past
samples to retrain the classification model when new devices join the network. Therefore, we
use a class incremental learning method to train the new model to preserve old classes’ features
while learning new devices’ features. We implement a prototype of IoT-Portrait based on our lab
environment and open-source database. Experimental results show that IoT-Portrait achieves a high
identification rate of up to 99% and is well resistant to catastrophic forgetting with a negligible
added cost both in memory and time. It indicates that IoT-Portrait can classify IoT devices effectively
and continuously.

Keywords: class incremental learning; deep learning; device fingerprint; Internet of Things;
traffic identification

1. Introduction

Over the past few years, the Internet of Things (IoT) has witnessed rapid growth
on a global scale. Various IoT devices, including daily necessities and professional equip-
ment, are becoming increasingly popular and continuously expanding the volume and di-
versity of the entire cyberspace. According to Statista’s forecast, the number of IoT devices
connected worldwide will reach 75.44 billion by 2025 [1].

With the proliferation of IoT devices, smart homes and cities are increasingly equipped
with a lot of IoT devices. Nevertheless, operators of such smart environments may not
know which IoT assets they own, nor can they know in real time whether each IoT device
normally works to defend against cyber attacks. These pose a threat to network security
and device security. When an IoT device is attacked, it may stop working and even leak
personal privacy data. Thus, operators need sufficient visibility of the types of deployed
devices, and device identification is one of the critical methods to enhance system visibility.

Some works utilize machine learning techniques to learn traffic characteristics of de-
vices and identify the device during runtime [2–15]. However, there are some limitations
of existing works as follows:

• Existing works based on machine learning [3–11], such as gradient boosting [5] and ran-
dom forest classification algorithms [3,6], require manual feature extraction and feature
filtering. Some works use deep learning [12–15] to extract features automatically, but
they still need to label samples manually. Due to the amount and diversity of IoT
devices, these manual works will take a lot of time and effort;
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• The classification model can only identify the devices in the training set. When a new
device joins the network, the old classifier cannot recognize it. One solution is to save
all past samples and retrain the model with past samples and new device samples
when needed. However, this will take a lot of memory space to save past samples,
and it will take a long time to retrain the model. Meanwhile, in real task scenarios,
the past samples cannot be fully preserved due to privacy, data storage, and computing
power limitations. Therefore, the new model’s performance in the old classes will drop
catastrophically after learning the new task, which is called catastrophic forgetting.

In this paper, we analyzed the network behaviors of multiple IoT devices and observed
that there are some characteristics in the network traffic that can identify specific devices.
Based on this discovery, we propose IoT-Portrait, an end-to-end automatic IoT device
identification framework that classifies IoT devices by mining critical and unique features
of devices in traffic. IoT-Portrait automatically collects the network traffic information
of various devices and learns the network behavior characteristics through an attention-
based transformer [16] network without feature extraction. In addition, IoT-Portrait uses
a comprehensive active device scanning process to automatically obtain fine-grained non-
traffic information (e.g., operating system, device manufacturer, device type, product
model). This information is then used as labels for our transformer model. After training
the classification model, IoT-Portrait only needs to collect the network traffic of devices. Af-
ter a small number of preprocessing operations, the device details can be obtained through
the classification model. Furthermore, we further investigate how to make our model avoid
catastrophic forgetting [17] on old knowledge when new devices join the network. We
apply the class incremental method to IoT-Portrait, which will learn new knowledge while
retaining old knowledge and strike a balance between the model’s stability and plasticity.

The main contributions of this paper are as follows:

• We propose IoT-Portrait, an automatic IoT device identification framework, using
a transformer network to mine the significant characteristics of the IoT device in the traf-
fic and improve the effectiveness of IoT device identification;

• We consider scenarios where the categories of devices increase after model training,
and we do not save all old class samples. We compare several methods of resisting
catastrophic forgetting and find that IoT-Portrait can achieve a small drop of accuracy
using only a little storage space for old exemplars;

• We implement the IoT-Portrait prototype and evaluate it on our lab environment
and open-source database. The results show that IoT-Portrait achieves a high device
identification rate of up to 99% and is well resistant to catastrophic forgetting with
a negligible added cost both in memory and time.

The rest of the paper is organized as follows. Section 2 discusses the related works
and our novelty. Section 3 analyzes IoT devices’ traffic characteristics. Section 4 presents
the system overview and design details of IoT-Portrait. In Section 5, we evaluate the pro-
posed framework and present the experimental results. Section 6 discusses the limitations
of our work and future works. Section 7 offers some concluding remarks.

2. Novelty and Related Work
2.1. Device Identification

IoT device identification has attracted increasing attention from both academia and industry
since it makes IoT devices visible to the management system. Many efforts have been devoted
to device identification. In this section, we analyze several works on device identification mainly
following two methodologies, scanning-based active fingerprinting and learning-based passive
recognition, and highlight our innovations different from other works.

One of the most popular active scanning tools for OS fingerprinting is Nmap [18].
It sends different probing packets to the target and discovers services on the target by ana-
lyzing the responses. Shodan [19] and Censys [20] are popular Internet-connected device
search engines. They discover connected devices on the Internet using scanning, such
as Nmap, with different protocols (e.g., HTTP, SSH, FTP, and Telnet), and manually gen-
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erate device rules in banner grabbing. ARE [21] retrieves data from the application layer
(HTML) of an IoT device by using traditional intrusive scanning tools, and then generates
descriptions on relevant websites for device annotations with web crawlers. It defines
a transaction as a mapping between a unique response and the product description to iden-
tify IoT devices. However, scanning-based active fingerprinting, as an intrusive solution, may
have a negative impact on the performance of resource-constrained and low-power IoT devices.
Moreover, this approach cannot achieve timely recognition for less-opened IoT devices.

Learning-based passive recognition utilizes machine learning techniques to learn
traffic characteristics of devices, sniff the traffic, and identify the device during runtime.
ProfilIoT [3] is the first work that uses machine learning to learn device network behavior
for device identification. It shows that the type of IoT devices can be recognized based
on the observed traffic characteristics, such as TCP window size and payload length.
IoT-Sentinel [6] implements a recognition scheme based on the random forest algorithm
in classical machine learning. It also includes an SDN-based model, which implements
vulnerable traffic’s interception and filtering mechanism to build a better security system.
IoT-Sense [5] analyzes the behavior of a device and generates its fingerprint from a small
amount of flow data. It also evaluates the impact of different feature combinations on recog-
nition results. Manuel et al. [14] designed a network traffic classifier for IoT devices using
CNN and RNN, and investigated the impact of the features chosen. HomeMole [15] is
a traffic-analysis system that can automatically infer the IoT devices behind a smart home
network. It uses a bidirectional LSTM model that is able to identify IoT devices based
on the sniffed packets. However, the above learning-based solutions require complicated
feature extraction and extensive manual labeling, especially since the dramatic increase
in training data of IoT requires a large number of resources.

2.2. Compare with Previous Works

IoT-Portrait uses a transformer model to learn the network behavior characteristics
of IoT devices. Transformer architecture is based on the attention mechanism, which can
identify relationships between sequence elements so that it can obtain the time-series
correlation on the device packets. In addition, IoT-Portrait acquires comprehensive device
information by active device scanning and uses this information as the traffic’ label without
manual effort. In addition, although there have been proposals to solve the problem
of catastrophic forgetting in class incremental learning, these works are basically in the field
of computer vision. To the best of our knowledge, IoT-Portrait is the first work that applies
the class incremental learning method to IoT device identification, which not only expands
the usage scenarios of our device identification framework but also verifies the feasibility
of class incremental learning in IoT device identification.

3. Analysis of IoT Traffic

Network communication characteristics form another category of device information.
Since attributes of network behaviors include information such as the source and destina-
tion of the data packets, timestamps, and protocols, the behavioral representation of devices
is often complicated and diverse. We analyzed the network behaviors of five representative
IoT devices to identify the statistical properties of specific traffic attributes. The analysis
results are shown in Table 1. From the analysis, we find that the difference between IoT
devices and traditional computers is the regularity in network behaviors of IoT devices,
which can be used to fingerprint them.
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Table 1. The network behavior analysis results.

ID Device Name # of IPs Server Ports

1 SmartThings Hub 12 TCP 433
2 NetGear Station 21 UDP 10001, TCP 80
3 WoShida Cam 4 TCP 44730

4 Xiaobai Cam 6 UDP 32100, UDP
13978

5 Philips Hue 4 TCP 80, TCP 443

3.1. IP and MAC Addresses of Device’s Communication Endpoints

IoT devices usually communicate with limited specific endpoints, such as cloud
servers. Therefore, the address information of the specific communication endpoints
in the traffic data can be used as a feature of the device. As shown in Table 1, SmartThings
Hub and NetGear Station communicate with 12 and 21 IP addresses, respectively. In
addition, the other devices communicate with 4, 6, and 4 IP addresses, while traditional PCs
may communicate with tens of thousands of IP addresses [22]. This shows that IoT devices
have far fewer communication endpoints than traditional PCs, mobile phones, and tablets.
Usually, the same type of IoT devices have the same cloud servers, and server objects
of the same device are often limited to a specific range. This is consistent with a previous
study [23], which finds that most IoT devices communicate with an average of fewer than
ten servers daily, and the number of target cloud servers is entirely consistent among some
IoT devices. Therefore, IP and MAC addresses of the communication endpoints can be
used as a criterion to identify IoT devices.

3.2. Specific Ports

In addition to IP and MAC addresses, communication ports can also be used as an-
other criterion. IoT devices usually use specific ports to communicate with cloud servers.
In contrast, non-IoT devices may use a much more comprehensive range of services with
thousands of infrequent ports [22], so the port number can also be used to identify IoT
devices accordingly. For commonly used ports, we can also infer the services they might
use. For instance, SmartThings Hub primarily connects to the server’s TCP port 433, which
is used by default for HTTPS service. The target port of NetGear Station is mainly UDP
port 10001, which takes more than 98% of all packets. The rest of the packets go to TCP
port 80, indicating the HTTP service. Over 95% of the packets of WoShida Cam go to the
server’s TCP port 44730.

3.3. Specific Use of Protocols

Different from PCs, IoT devices show specific characteristics through the use of pro-
tocols. For example, we find that SmartThings Hub repeatedly queries the domain name
ntp01.alro.com through the DNS protocol and performs time synchronization via the NTP
protocol. NetGear Station queries the DNS server, mainly for domain name gm.iotplatform,
every 300 seconds and sends ten consecutive ping packets every 320 seconds. Moreover,
it also broadcasts MDNS packets every 60 seconds, which are usually used for device
identification in a local area network (LAN).

3.4. Regular Packet Rate

The packet rate can also represent the characteristics of an IoT device. Figures 1 and 2
illustrate the packet rate of SmartThings Hub and NetGear Station. From Figures 1 and 2,
we can see that in a certain period, the packet rate fluctuates steadily most of the time,
and the number of data packets increases several times in a few seconds.
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Figure 1. The packet rate statistics of SmartThings Hub.

Figure 2. The packet rate statistics of NetGear Station.

In summary, the IP addresses and ports that the IoT devices communicate with show
prominent statistical characteristics manifested by the limited number of communication
endpoints and specific frequently used ports. Most of our sample devices demonstrate
a periodical transmission of DNS and ICMP packets. When we analyze the data packets
per unit of time, we can also observe the steady flow pattern of each device. Such features
are usually caused by periodical upload operations or the use of regular operation settings
by the users.

4. System Design
4.1. System Overview

We propose IoT-Portrait, a system to automatically identify IoT devices using trans-
former network without manual labeling. In IoT-Portrait, we gather information on IoT
devices using active scanning and passive traffic collection approaches and then automati-
cally label training data with the collected device information. Furthermore, we leverage
the transformer network to identify device characteristics from network traffic and gen-
erate a multi-classifier. Overall, we provide an end-to-end identification scheme based
on the network traffic of devices. The system architecture is shown in Figure 3, with
three modules, namely the device information collection module, deep learning module,
and real-time identification module. The first two modules are used for collecting device
data and training multi-classifier. The last module primarily works during the device
identification phase.
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Figure 3. The system overview of IoT-Portrait. The orange part represents the process of retraining
the classifier when a new device joins the network.

The device information collection module runs in the early stage of the process.
This module is responsible for passively collecting network traffic from various devices.
For the IP information in traffic collected, we designed a comprehensive active scanning
scheme to scan it. In this scheme, this module automatically obtains basic device informa-
tion, such as the type of operating system and underlying hardware platform. Meanwhile,
it can gather service data by scanning and then extract more detailed device information.
The obtained information is used as the traffic’s label.

The deep learning module first performs traffic preprocessing, including traffic split-
ting, data cutting, and flow cleaning. Then, the preprocessed data are automatically
matched with different labels using the information that was previously collected. Further-
more, this module leverages the transformer network to learn device features in network
traffic and generates a multi-classifier. After training, the exemplars of training data will be
saved in memory, and the generated classifier will be used to identify IoT devices. When
new devices join the network, the old classifier will be retrained with the class incremental
method using past samples and new devices’ data.

The real-time identification module collects the traffic data of devices from a central
router in real time, performs preprocessing on the traffic data, and then sends the data
to a classification model for device identification. The identification result is mapped
to different devices, and then the system can obtain a detailed list of devices and their
information in the domain. The list will be updated according to the identification result.

4.2. Active and Passive Information Collection

We analyze real-world IoT devices and traffic in Section 3. Unlike computers and servers,
IoT devices are more diverse in vendor, type, OS, etc., so the volume of information that can be
collected is quite huge. Since existing active scanning tools cannot obtain much information,
we design a comprehensive active scanning scheme. Moreover, we leverage active intrusive
scanning and passive collection to gather IoT device information as accurately as possible.

For passive collection, we collect device traffic through a central router. Then, the traffic
is forwarded to the deep learning module to train the classifier. We use dumpcap [24], a tool
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for network traffic dumping, to collect packets of IoT devices from the router and store
them together. In the system pre-build phase, we need to collect as much device traffic
as possible.

For active collection, the device information is jointly obtained by Nmap [18], ARE [21],
and cURL [25]. As shown in Figure 4, we use Nmap to perform routine scanning of the IP
obtained from the collected traffic. This will collect basic information about the correspond-
ing device. Then, we extract service-related information from the basic information obtained.
After this, we simulate a client using cURL to send requests to obtain the responses of those
services and forward the response to ARE for further analysis to generate richer device informa-
tion like its manufacturer. The relevant information obtained from the devices will be saved,
used as the traffic’s label, and then displayed to users in the real-time identification phase.

Nmap

client

ARE

ports
OS
platform

brand
device-type
product

⑤response

④service requests

③available 
services

②basic information

①active scanning

Figure 4. The process of active and passive devices information collection.

However, the information collected by the active scanning may not be sufficient since
closing or blocking most ports is quite common in IoT devices. For those devices that active
collection only collects fuzzy operating system information, we should label them manually.

4.3. Multi-Classifier Training

The analysis of device traffic behaviors in Section 3 demonstrates the possibility of uti-
lizing traffic to achieve device recognition. Most of the existing works manually select
the most critical centralized features [14] to classify network traffic. In this work, we
leverage the transformer network to identify IoT devices, which can significantly reduce
the complexity of manual feature selection. The information to distinguish IoT devices
mainly includes protocols, communication targets, and timing statistics (usually the peri-
odicity of messages). Compared with existing solutions that manually extract and convert
the above information into structured feature vectors, our deep learning solution will
perform the above steps with reduced manual intervention on the original information.

4.3.1. Data Preprocessing

Before the training, we need to preprocess the traffic in three steps: traffic splitting,
data cutting, and flow cleaning. First, we use the IP address as the unique identifier
to split network traffic. Second, according to the fixed structure of the traffic file, we can
tailor the collected traffic data from Pcap files. We need to separate data packets, remove
the extra packet headers, and convert them into the training format. Therefore, in the data-
cutting phase, we use editcap [26] to cut the packet data and use tshark [27] to transform
the data format. In order to prevent irrelevant information from causing interference with
the classification results and ensure the accuracy of deep learning, the traffic needs to be
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cleaned. The source IP address is the basis for traffic file division, but on its own, it does
not indicate the type of an IoT device, as does MAC address. In addition, the application
payload is sometimes protected by encryption. Therefore, the source IP address, source
MAC address, and application layer data are cleaned in this phase.

4.3.2. Data Sampling

In the actual training process, we need to specify the number of packets in each
sample, so we divide each traffic file into samples, including the same number of packets.
The sampling process can be modeled as a sliding window-based extraction from a large
file consisting of continuous flow packets. Suppose the number of selected packets for each
sample is n, and the total number of packets in the entire file is m (m is much larger than n).
If the first packet in the file has an index of 1, then the first sample contains the 1st to the nth
packets, sample 2 contains the 2nd to the (n + 1)th packets, and the last sample contains
the (m− n + 1)th to the mth packets.

4.3.3. Training Data Generation

After the data preprocessing phase and data sampling phase, we obtained many
samples, each sample contains a fixed number of consecutive packets, and each packet has
a fixed length. Assume the number of consecutive packets is packet_num, and the length
of each packet is packet_len. We generate the training data by converting the sample into
a packet_num × (packet_len + 1) matrix, where 1 contains information on the packet num-
ber within 100ms, representing the packet rate, and other contains the data of the packet.
The types of features involved are as follows:

• Some obviously important features obtained from the data packet. As analyzed
in Section 3, there are distinguishable patterns between the traffic information of IoT
devices and non-IoT devices, IoT devices and IoT devices (the IP and MAC addresses
of the device’s communication endpoints, communication ports, and the use of proto-
cols). In addition, the data packet length is also an important feature that data packets
of different IoT devices may have different lengths.

• Other features obtained from the data packet. The data packet information (the version
of IP, etc.) designed and used by each device may be different, and it is not easy for us
to find the rules of this information. Therefore, we convert the information in the data
packet within packet_len length into numbers and store them in the matrix.

• Calculated statistical characteristics of multiple packets. As analyzed in Section 3, IoT
devices have regular communication patterns, so the traffic rate characteristic is also
important. We count the number of packets within 100ms to represent the traffic rate
of the device.

For the sample labeling, we use information such as product type and device category,
collected through the device information collection module, as labels. Specifically, we extract
the IP address from the data packet, and actively collect information based on this IP address.
Afterward, the packet undergoes data preprocessing and data sampling, and the information
obtained before is used as the label of this sample. If the collected information is sufficient,
the samples will be automatically labeled. Otherwise, they need to be manually labeled. After
labeling, the samples will be used as the training input of the transformer model.

4.3.4. Model Training

We use a hybrid architecture of the encoders of the transformer and a simple classifier
based on softmax to train the model. There are two main reasons to use the transformer
architecture. First, the traffic of the device is regular in time series, and both the transformer
network and Recurrent Neural Network (RNN) can well mine the regularity of the features
presented in the time series. Second, compared with RNN, which must be calculated
in chronological order, the parallel processing mechanism of the transformer can bring
higher computational efficiency and significantly speed up the training. In addition, RNN
is prone to gradient explosion and gradient disappearance during training, which will
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affect the model training, while the transformer does not have such problems. The encoders
of transformer contain six encoder layers, each of which consists of a self-attention layer
and a fully connected layer. Through the transformer, we hope to find the characteristics
of the adjacent packet groups. Furthermore, the output of the transformer layer is passed
to the fully connected layer, and the softmax function is used to generate the corresponding
probability that the sample corresponds to this label.

The purpose of each layer and the specific parameter settings are depicted as follows:
(1) Input layer: The size of the input layer is packet_num × (packet_len + 1).

For image data processing, the input usually has three dimensions. The first two di-
mensions contain image information, and the last one contains the number of channels,
usually 3, indicating R, G, and B. However, our processed data are a two-dimensional
matrix in which data packets are spliced into time series. Hence, the channel is 1, and we
omit it.

(2) Transformer layer: In the input, we use a (packet_len + 1)-dimensional vector
to represent a packet. For the input sequence, the transformer uses positional encoding
to record the packet order and self-attention mechanism to mine the relationship between
different packet vectors. Since the attention computation involves a parameter calcu-
lated by

√
model_dim/heads_num, and heads_num is 8, model_dim is the vector dimension

of embedding, which is packet_len + 1. So we set the dimension of the packet vector as 32.
(3) Flattening: The flattening operation reduces the data dimension. The flattened

one-dimensional data are then passed to the next layer.
(4) Dense layer: After the transformer layer, the next result is obtained through a fully

connected layer. The size of units corresponds to the total class number.
(5) Softmax layer: The ultimate goal of the neural network is to classify. Hence,

the classification result of the upper layer is optimized by softmax regression. The final
result is a probability distribution for the classification.

After training the classifier, a few exemplars of samples per device will be stored
in memory. When new devices join the network, data packet collection and traffic pre-
processing should be performed again. Then, the multi-classifier will be retrained with
stored samples and new device samples using the class incremental method. The detailed
retraining process and class incremental method we use will be introduced in Section 4.5.

4.4. Runtime Device Identification

After training the model, a multi-classifier is generated. We need to perform device
identification according to the IP range specified by the user. First, we collect real-time traffic
data from the central router according to the specified IP range. These traffic packets will be
arranged in chronological order and divided into individual Pcap files based on IP address.
Then, the data will be preprocessed, including cleaning IP addresses, MAC addresses, and the
application layer payload, and then fed to the multi-classifier for labeling. Suppose that Pcap
file Fi contains data packets of device Di. Since the data packets in Fi will be cut into multiple
samples Si,j and may be predicted as different labels Li,j, we take the most predicted label
as the final device label Li as Equations (1) and (2). According to the relationship between labels
and device information established in the first module, detailed information about the device is
found and integrated to form a final device information result.

Counti,k+ =

{
1, if Li,j = k
0, else

(1)

Li = argmax(Counti,k) (2)

4.5. Class Incremental Learning Method

When a new device joins the network, we need to use all device samples to retrain
the classification model. This will consume much time to retrain and requires much space
to store all samples. At the same time, in real task scenarios, the past samples cannot be fully
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preserved due to issues such as privacy, data storage, and computing power limitations. To
ensure the accuracy of device identification and less training time, we use a little storage
space to save exemplars of old classes and use the Fine Tuning with Distillation Loss (FTDL)
method to retrain the old classifier.

The FTDL method adds the distillation loss into the original cross-entropy loss func-
tion. When training the new model, the distillation loss will calculate the discrepancy
in the output logits between the old model and the new model, which will make the predic-
tions of the new model as close as possible to that of the old model. Compared with the Fine
Tuning (FT) method which preserves the knowledge learned from the old data by fixing
the parameters of the old model and learns new knowledge by retraining the dense layer,
the FTDL method uses distillation loss [28,29] to retrain the classifier and can restore the pre-
diction results of the old model to the greatest extent while learning new data. Compared
with the Multiple Binary Classifiers (MBCs) [30], which train multiple binary classifiers
that each class i has a corresponding binary classifier Ci, the FTDL method only trains
one multi-classifier and retrains it when necessary. Although the MBC method does not
need to retrain existing classifiers and just train a new binary classifier for the new device,
the cost of the memory and prediction time of the FTDL method is much less than the
MBC method.

Suppose that we store a total of Nstored samples, the classifier can currently classify
c1 categories, and c2 new devices join the network. We use distillation loss to retain old
knowledge, and the loss function is shown in Equation (3). Suppose that the output
of the old model can be computed by f (x) and that of the new model corresponds to g(x),
and fy(xi) represents the value corresponding to class y in the output logits of the old
model of xi. The value of δ is 1 when the true label of sample i is y and 0 when not.
For a new class sample, the corresponding label is a vector like {0, 0, 0, 1, 0, ..., 0}, in which
the class number of this sample corresponds to 1 and others correspond to 0. For exemplars
of old classes, we predict these data through the old model, expand the dimension of output
logits { f0(xi), f1(xi), ..., fc1(xi)} to c1 + c2, and regard the result { f0(xi), ..., fc1(xi), 0, ..., 0}
as labels instead of the class number. In this way, we can restore the prediction results
of the old model to the greatest extent while learning new data.

Loss = −∑n
i=1[∑

c1
y=1( fy(xi) log gy(xi) + (1− fy(xi)) log(1− gy(xi))) + ∑c2

y=c1+1(δy=yi log gy(xi) + δy 6=yi log(1− gy(xi)))] (3)

After training the new model, we will randomly select Nstored
c1+c2

exemplars for each class
and store them in memory.

5. Experimental Results and Analysis

In this section, we present our experimental results on the performance of IoT-Portrait.

5.1. Device Identification of Lab Environment

We built a small-scale smart home scene of six IoT devices: three smart cameras, two
central controller devices, and a smart light. These devices are all connected to a central
router via WiFi. We used the information collection module to label these six devices
automatically. After collecting, the Os information and available services of 5 devices are
obtained. Furthermore, in a further step, the type and vendor information of 2 devices are
obtained after using ARE.

We manually labeled the missing device information and collected traffic data for each
device. All the devices operate normally during the traffic collection phase, and none
perform frequent shutdown or startup operations. To complete the collection, all devices
run for three consecutive days. In the model training phase, we selected 31 bytes for each
packet of 20 packets as the initial setup. The training and verification data are selected
from the previous two days, with a ratio of 6:4. The test data are selected from traffic
on the third day, and the prediction accuracy is 99.5%. Compared with the recognition
rate of information search, when the network behavior among devices is sufficiently
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distinguishable, the passive solution using traffic behavior-based identification can address
the limitation of less openness of IoT devices compared with the active scanning method.

5.2. Device Identification of Large Scale

To further prove the effectiveness of the transformer model, we made another per-
formance evaluation on the IoT Trace dataset [22] with more types of devices and a more
comprehensive data volume. In the IoT Trace device network dataset provided by UNSW,
there are 21 IoT devices belonging to different major categories. This dataset’s amount
of single-day data varies from 61 MB to 2 GB and is 365 MB on average.

We observed that six of the IoT devices have too little daily traffic. Hence, we aban-
doned those six devices for their uniform amount of packets and finally selected the re-
maining 15 devices for the following experiment. The list of IoT devices we used is shown
in Table 2. In our experiment, the size of the training mini_batch is set to 128, and the epoch
is set to 20. After each epoch, the training accuracy and loss of both the test and validation
sets can be obtained. This experiment’s training, verification, and test sets are divided
based on a ratio of 6:2:2. For input data specification, we set the packet length to 31 bytes
and the number of packets to 20. After training, we used the epoch number as the variable
and plotted the training process of our model with accuracy and loss.

Table 2. The list of IoT devices used in the experiment includes not only different types of devices
but also devices of the same type from different manufacturers.

IoT Device MAC Address

Amazon Echo 44:65:0d:56:cc:d3
Belkin Wemo Motion Sensor ec:1a:59:83:28:11

Belkin Wemo Switch ec:1a:59:79:f4:89
Dropcam 30:8c:fb:2f:e4:b2

HP Printer 70:5a:0f:e4:9b:c0
Netatmo Weather Station 70:ee:50:03:b8:ac

Netatmo Welcome 70:ee:50:18:34:43
PIX-STAR Photo-frame e0:76:d0:33:bb:85

Samsung SmartCam 00:16:6c:ab:6b:88
Smart Things d0:52:a8:00:67:5e

TP-Link Day Night Cloud Camera f4:f2:6d:93:51:f1
TP-Link Smart Plug 50:c7:bf:00:56:39

Triby Speaker 18:b7:9e:02:20:44
Withings Smart Baby Monitor 00:24:e4:11:18:a8

Withings Smart Scale 00:24:e4:1b:6f:96

As shown in Figures 5 and 6, as the epoch increases, the model’s overall accuracy
continues to improve, and the loss rate decreases. Finally, both of them converge and be-
come stable. In addition, since the target is to evaluate the multi-classifier, we separately
test the data of all 15 devices and generate a confusion matrix, shown in Figure 7. The con-
fusion matrix indicates a good recognition result since most of the elements are gathered
on the diagonal of the matrix, and all devices have an accuracy of over 96%. Even though
there are devices of the same type in the dataset that may have similar network behaviors,
IoT-Portrait can still identify them well.
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Figure 5. The accuracy of training and verification sets.

Figure 6. The loss of training and verification sets.
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Figure 7. The confusion matrix of 15 devices.

5.3. Impact of the Number of Packets

For data sampling, we can choose a different number of packets. Below, we evaluate
its impact on device identification. We use two indicators in the following experiment:
accuracy (acc) and F1. The accuracy acc is computed as:

acc =
TP + TN

TP + FN + FP + TN
(4)

In addition, the recall is calculated as follows:

recall =
TP

TP + FN
(5)

The precision is computed as follows:

precision =
TP

TP + FP
(6)

The F1 value is the harmonic mean of precision and recall, which is a comprehensive
indicator of the two:

F1 = 2× precision× recall
precision + recall

(7)

Since the model is a multi-classifier, to obtain F1, we take each of the 15 categories
as positive samples in turn and the other 14 categories as negative samples. The F1 value is
then calculated as an average.

The experimental results with the number of packets as the variable are shown in
Figure 8. When the number of packets reaches 20, the prediction accuracy can reach
99%. The results show that the prediction accuracy will first increase and then decrease
as the number of packets increases. We believe this is because the features in a single
sample become complete as the number of packets increases, and when a sample con-



Future Internet 2023, 15, 102 14 of 18

tains a packet sequence that is too long, the model cannot obtain features in it well.
Overall, the evaluation shows that the transformer model achieves a high prediction
accuracy for device identification.

Figure 8. The impact of the number of packets. When a sample contains a packet sequence with
a length between 20 and 110, the classifier will achieve a high identification accuracy.

5.4. Impact of Class Incremental Learning Methods

We divided the 15 categories of devices into eight states by setting the class number
of the initial state to 3 and the class number of each incremental state to 2. For old exemplars
selection, we selected 10,000 old class samples and stored them with no more than 2 MB
of memory. We evaluate the effect of different class incremental methods applied to our
transformer model based on the above settings. In addition, we provide Full, which is
training a new model with all data available. After each state, we test the newly generated
model with the total dataset. The experimental result of accuracy is shown in Figure 9.
Since the sample number of each device in the dataset we use is not the same, we provide
the result of the F1 score in Figure 10 to see the model effect more intuitively.

Figure 9. The top-1 accuracy for different methods tested. Full means training a new model with all
data available, and others represent different class incremental learning methods.
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Figure 10. F1 score for different methods tested. Full means training a new model with all data
available, and others represent different class incremental learning methods.

As shown in Figures 9 and 10, with all data available, the accuracy of Full remains
at over 99% as an upper-bound performance. Among the three incremental learning
methods, FTDL is the best at learning new knowledge while retaining knowledge of old
classes, which still have an accuracy of over 85% after seven incremental states. This also
demonstrates the effectiveness of knowledge distillation, that it can avoid old knowledge
being forgotten by learning the prediction of the old model even with little old data
available. Besides FTDL, MBC can maintain an accuracy of 70% after seven incremental
states, but since MBC generates multiple binary classifiers, it requires a longer prediction
time. The top-1 accuracy and F1 Score appear to fluctuate up and down because the sample
size of the new class is large in the fourth incremental state, and this makes the values
higher. It is worth noting that although the accuracy of the FT method eventually drops
to 50%, by choosing the most predicted label of all samples of each device as the final
predicted label, we can still successfully predict 86.7% of the device types.

The memory overhead in storing past samples and the prediction time of IoT-Portrait
are shown in Table 3. If class incremental learning methods are not used, IoT-Portrait needs
to spend 96.1 MB of memory space to store all training samples of 15 devices. Instead,
1.8 MB of memory space is needed to store 10,000 exemplars if class incremental methods
are used. It is worth mentioning that the MBC method needs to spend more memory
space to save all binary classifiers’ weights. When the number of identifiable devices
increases, the models that need to be saved also increase, which will be a considerable
overhead. The prediction time indicts the time predicting 10,000 samples. As we can see,
the prediction time of Full, FT, and FTDL are about the same, while that of MBC is very
long because it needs to obtain the prediction results from 15 binary classifiers and then
obtain the final result.

Table 3. The memory cost and prediction time of different methods.

Method Number of Samples Storage Memory
(MB) Prediction Time (s)

Full 395,037 96.1 15
FT 10,000 1.8 16

FTDL 10,000 1.8 15
MBC 10,000 1.8 251
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5.5. Compare to Other Works

In this section, we compare IoT-Portrait with other IoT device fingerprinting works
in Table 4. As can be seen from Table 4, IoT-Portrait has a high device identification accuracy.
These works usually do not discuss the process of labeling samples and default to manual
labeling. However, manual labeling will be time-consuming as the types of devices increase.
In addition, our active scanning and automatic labeling scheme can obtain more information
than the device name to present to the network administrator. Moreover, these works do
not consider the increase in devices, so when new devices join the network, they have
to retrain the classification model using all old training data.

Table 4. The comparison of IoT-Portrait and other related works.

Name Method Label Prediction Accuracy Class Incremental
Learning Method

IoT-Sentinel [6] Random Forest manually 82% no
PAB [8] KNN manually 93% no

HomeMole [15] BLSTM manually 99% no
IoT-Portrait Transformer automatically 99% yes

6. Limitations and Future Works

Our identification model relies on a stable network. If a system error occurs or the net-
work status fluctuates, the traffic behavior of the device will change, which will affect
the effect of device identification. Considering that network traffic may show diversity
in natural conditions, such as network jitter in a short time, strategies that adapt to the
natural diversity of network traffic need to be investigated to ensure the effectiveness
of the identification model. For example, we can average the traffic data over a certain
time interval. In the future, we can make more attempts at feature engineering to solve this
problem.

There are many studies on class incremental learning. In this paper, we only compare
the effects of three main methods applied to our model. In addition, there are some methods
to learn new knowledge by expanding the model structure or adjusting model parameters.
There is not much research on class incremental learning for IoT device identification,
and we can continue to experiment in this area in the future.

7. Conclusions

In this paper, we design IoT-Portrait, an automatic IoT device identification frame-
work based on a transformer. Compared with previous works, IoT-Portrait leverages
an information acquisition scheme, combining both active and passive approaches to re-
duce the manual effort of labeling. In addition, IoT-Portrait uses a transformer neural
network to mine potential features in the IoT device’s traffic. For the problem of catas-
trophic forgetting, IoT-Portrait applies the class incremental learning method to retrain
the model when new devices join the network. To the best of our knowledge, IoT-Portrait
is the first work that applies the class incremental learning method to IoT device identifica-
tion. The experimental results show that IoT-Portrait achieves high accuracy for IoT device
identification and is well resistant to catastrophic forgetting.

Our results show that IoT devices can be well identified through traffic information,
and also verify the feasibility of class incremental learning in IoT device identification.
We will perform more research to overcome the interference of network fluctuations on IoT
device identification and attempt more class incremental learning methods in the future.
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