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Abstract: Conceptual representations of images involving descriptions of entities and their relations
are often represented using scene graphs. Such scene graphs can express relational concepts by using
sets of triplets 〈subject− predicate− object〉. Instead of building dedicated models for scene graph
generation, our model tends to extract the latent relational information implicitly encoded in image
captioning models. We explored dependency parsing to build grammatically sound parse trees from
captions. We used detection algorithms for the region propositions to generate dense region-based
concept graphs. These were optimally combined using the approximate sub-graph isomorphism to
create holistic concept graphs for images. The major advantages of this approach are threefold. Firstly,
the proposed graph generation module is completely rule-based and, hence, adheres to the principles
of explainable artificial intelligence. Secondly, graph generation can be used as plug-and-play along
with any region proposition and caption generation framework. Finally, our results showed that we
could generate rich concept graphs without explicit graph-based supervision.

Keywords: scene graph generation; weakly supervised deep learning; explainable AI; dependency
parsing; knowledge graphs;

1. Introduction

Human beings are equipped with an amazing neurological system to process visual
stimuli. It takes just a fraction of a second for us to focus on the scene, locate the object of
interest, analyze the interaction between the various objects, infer the concept encoded in
the scene, and take the necessary action as per a certain objective. However, if we take a
moment to slow down and break down this process, we shall notice that every scene that
we see is intrinsically a complex network of entities with various attributes and associated
actions. These entities, attributes, and actions do not just exist in space, but also interact
with each other to create a conceptual web. We can independently describe various parts of
a scene and also combine these descriptions to form a holistic representation consisting of a
dense network of entities, actions, attributes, and relations. While understanding any scene,
we have an innate ability to break it down into smaller chunks. We can easily detect the
different objects that are present. We can identify the various features that describe these
objects. We can identify spatial relations among them and the various actions along with the
entities that are responsible for these actions and the ones that are affected by the same. This
hierarchical information consisting of entities, attributes, actions, and their relations creates
a holistic concept of the scene that allows us to interpret and react accordingly. Typical
deep learning approaches for classification, localization, or segmentation fail to capture
this holistic information. We need a graph consisting of nodes to represent these entities,
attributes, and actions and edges to plot the relations among them. This relational mapping
can reflect several important concepts such as spatial relations, part–whole relations, and
subjects or objects corresponding to actions. In our approach, we attempted to extract such
relational information from images, as shown in Figure 1.
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Figure 1. An example showing generated holistic scene graphs (right) from images (left) using
region-specific dependency parse trees.

1.1. Objective

In this paper, we propose a novel approach for scene graph generation. Our process
consists of two main phases. Firstly, we extracted image captions from local regions of
images using commonly used object localization [1] and image captioning techniques [2].
Secondly, we created a conceptual graph generation algorithm from the image captions,
which can demonstrate the visual aspects of the image region. Thirdly, we implemented
a two-phase approximate maximum common subgraph algorithm [3] for combining the
local concept graphs to create a holistic scene graph. The objectives can be listed as follows:

1. Proposing an explainable rule-based graph generation algorithm from image captions
using dependency parsing;

2. Proposing an efficient graph merging technique based on the approximate maximum
common subgraph based on visual features without using any graph-based supervision;

3. An end-to-end framework that uses a third-party detection and caption generation
framework to create holistic scene graphs by combining graphs generated from
captions corresponding to various regions of interest extracted from images.

1.2. Motivation

Learning relations between entities is a complex problem given the large number
of entity relationship combinations possible. The long-tailed distribution of such triplets
makes straightforward classifications extremely difficult. Furthermore, the creation of
supervised models for these kinds of problems requires datasets containing millions of
images that have graph-based annotations. Graph convolutional networks [4] have been
implemented before, but they operate best on a very restricted set of nodes and edges
and tend to fall apart for larger class problems such as natural language representation,
which can possess large vocabularies and corpora defining the problem space. Throughout
the last decade, we have seen the tremendous performance of deep learning approaches
in several sectors of computer vision that require rich feature extraction. Scene graph
generation also uses this ability of CNNs for building descriptive visual features that
can be used for the prediction of several objects and actions. However, most of the time,
relation detection depends on other techniques such as message passing [5], probabilistic
graphical models [6] or statistical correlations [7] within the datasets. One major issue is
that these approaches are not completely explainable. However, our approach is based on
the hypothesis that the relational representation is already encoded inside CNNs and can
be extracted without other learning techniques. We have already seen how CNNs can be
used for generating image captions, and we know for a fact that natural language captions
demonstrate relational aspects of an image. Thus, CNNs are capable of encoding relational
information in some way that may not be directly represented as graphs, but can be
expressed through sequential outputs such as natural language texts. Our approach aims to
extract relational information from such image captions instead of directly extracting it from
the image. Though the caption generation may not be completely explainable, the proposed
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graph generation from image captions is completely rule-based, hence explainable. As
the image becomes more and more complex, automatically generated image captions fail
to capture all the concepts hidden within the image. In the work of Johnson et al. [8], it
was shown that dense captioning can yield much more extensive information as compared
to standard captions. As compared to normal captions, dense captions are much more
localized in nature. This approach tends to generate several simple captions for different
regions of the image. Finally, for the extraction of relational information from natural
language captions, we used natural language processing concepts such as dependency
graphs. To summarize, instead of building dedicated models for scene graph generation,
our model tends to extract the latent relational information that is inherently encoded in
image captioning models and uses detection techniques for region propositions for creating
dense concept graphs for images. A block diagram of the proposed approach is given in
Figure 2.

XXXX XXX XXXXX XX X XXXXXXXX XXX

XXXXXXX XXX X XXXX XXXXXX XX XXX

XXX XXXXX XXX XX XXXXX XX XXXXXX

XXXX XXX XXXXX XX X XXXXXXXX XXX

XXXXXXX XXX X XXXX XXXXXX XX XXX

XXX XXXXX XXX XX XXXXX XX XXXXXX

INPUT IMAGE

RESHAPED IMAGE
(416 X 416)

ROI DETECTION
USING YOLO-V3

ROI EXTRACTION RESHAPED ROI
(224 X 224)

CAPTION GENERATION USING
SHOW ATTEND AND TELL 

DEPENDENCY GRAPH GENERATION USING 
STANFORD DEPENDENCY PARSER

REGION SPECIFIC SCENE GRAPH CONSTRUCTION

HOLISTIC SCENE GRAPH GENERATION 
USING CONTEXT-SENSITIVE GRAPH MERGING

Figure 2. Block diagram of the proposed approach.

The paper is organized into seven sections. In Section 1, we define the objective of
the work and the motivation that guided the proposed approaches. Following that, in
Section 2, we talk about the various literature that already exists in the domain of scene
graph generation and the respective methodologies and shortcomings. In Section 3, we
define the desired characteristics of the holistic scene graph. In Section 4, we introduce
the first phase of our approach, which is the generation of graphs from image captions. In
Section 5, we discuss the graph merging technique that results in the holistic scene graph.
In Section 6, we provide the statistical characteristics of the generated graphs along with
the qualitative analysis. Finally, we conclude our findings in Section 7 and provide avenues
for future researchers to extend this work.

2. Literature Survey

The first notable data structure proposed to express visual relations was the concept
of scene graphs [9]. Scene graphs are powerful enough to capture the entities present in a
scene [10,11], their attributes, as well as the relations among them that justify the context
of the entities. The task of Scene Graph Generation (SGG) involves the construction of a
graph data structure that maps its nodes and edges with the entities and their relations
in the image. The scene graph, which was proposed by Johnson in [8], was manually
established on the Real-World Scene Graphs Dataset (RW-SGD). However, such manual
generation is very costly. Therein lies the necessity of automatic scene graph generation
techniques. Visual relationships, often expressed as a triplet 〈subject–predicate–object〉,
tend to demonstrate a strong statistical correlation between the subject–object pair and the
predicate. Conditional Random Fields (CRFs) [6,12] are inherently capable of incorporating



Future Internet 2023, 15, 70 4 of 21

such correlations into the discrimination task. CRFs have been used for several graph-
based inference tasks such as image segmentation, Named Entity Recognition (NER), and
Content-Based Image Retrieval (CBIR).

Translation embedding or TransE [13–17] has a different perspective as compared
to other knowledge graph-based approaches. While other methods view relations as a
function of the joint distribution of the the subject and object, TransE defines the object as
the vector sum of the subject and the relation. CNN-based SGG approaches use convo-
lutional neural networks to extract the image’s local and global visual information, then
use classification to predict the relationships between the subjects and objects. The final
characteristics employed for relationship identification in these methods are derived by
examining the local visual features of many objects simultaneously [18] or by performing
feature interactions between local features [19].

A scene graph is typically represented using a graph data structure. Some approaches
involving CNNs [20] focus on generating phrase-level graphs [19] as motifs, while others
consider relationships [21] and feature extractions from multiple levels of images [22]. The
stacked Motif Network (MotifNet) [7] assumes that the strong independence assumption
in the local predictor [5,19,23] actually limits the quality of global prediction. For this goal,
MotifNet uses the recurrent sequential architecture of Long Short-Term Memory networks
(LSTMs) to encode global context information [24].

An intuitive strategy would be to use graph theory to optimize the production of
scene graphs. By transmitting local information [25,26], the Graph Convolutional Network
(GCN) [27–29] can operate on graph structure data. Relational reasoning [30], graph classi-
fication [31–34], node classification in big graphs [4,35], and visual understanding [36–38]
have all been shown to be highly effective using the GCN. As a result, numerous academics
have looked at the GCN-based scene graph generating method [39–46].

Relationships are combinations of items for SGG, and their semantic space is larger
than the objects. Furthermore, exhausting all associations from the SGG training data is
extremely tough. As a result, learning relationship representations from a minimal amount
of training data is especially important. As a result, the use of past information could
considerably aid in the detection and recognition of visual links. Common variations in
this regard include language-based priors [47–49] and statistical priors [7,50–52] or large
databases stored as knowledge graphs [38,53–56].

3. Holistic Scene Graphs

We have used the term holistic scene graphs to describe the output of the proposed
approach. Just like other graphs, holistic scene graphs are composed of nodes and edges,
which are described below.

3.1. Nodes

The nodes primarily refer to visible aspects of the image in terms of the entities, actions,
or their attributes:

• Entity node: Entities refer to subjects of interests in the scene. An entity in the scene
can be any tangible living or non-living matter that contributes to the overall concept
of the scene. For example, entities in a street scene can be “building”, “car”, “person”,
“traffic light”, “sidewalk”, “road”, and so on.

• Action node: Actions refer to the activities related to the entities. An action can either
be performed by an entity or it can be performed on an entity. Depending on that, the
entity would be the agent or patient of the scene. Some common actions of a street
scene would be “walking”, “parked”, “driving”, or “standing”.

• Attribute node: The third type of node is the attribute node, which acts as a modifier
for the entities or actions. Attributes can refer to any qualitative or quantitative mea-
sure for entities or actions that further adds conceptual value to the scene. Examples
of attributes in a street scene can be “red”, “tall”, “leafy”, “dry”, “slowly”, “two”, and
so on.
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3.2. Edges

Edges of the graph refer to a relation that exists between nodes. This dependence
among entities, actions, and attributes is what gives conceptual value to a scene. The edges
can be used to demonstrate different types of relations as described below:

• Entity–entity: Relations among entities can be broadly categories into two types.
Firstly, spatial relations signify the position and orientation of one entity with respect
to another entity. These can be directly extracted from the scene itself. Some examples
of such relations are “car on road” or “dog beside person”. Secondly, meronymic
relations highlight part–whole connections between various objects. Examples of such
relations can be “bike with wheels” or “trees have leaves”.

• Entity–attribute: Relations such as these serve as entity descriptors and mostly corre-
spond to the qualitative or quantitative attributes of the entities such as “red car” or
“tall building”.

• Action–attribute: Attributes can not only describe entities, but also various actions.
Examples of such attributes are “rashly driving” or “jumping high”.

• Entity–action: One of the most-important factors when it comes to scene description
is to associate various entities with related actions. This kind of relation is one of
the hardest to predict because of various complications and dimensional constraints.
Entity–action relations can also be of various types:

– Agent–action relation: This kind of relation connects the action with the entity that
is performing the action. For the sentence “The boy is playing”, “boy” is the
subject or agent who is performing the action of “playing”. In most general cases,
actions are always associated with some implicitly or explicitly defined subject.

– Action–patient relations: It is often seen that various objects are directly affected as
a result of an action. This object or patient of an action can be represented using
this kind of relation. However, the presence of a patient of an action may not
always occur in a scene. A simple example for this can be the sentence: “He is
driving a car”. In this sentence, the person referred to by the pronoun “He” is
the agent causing the action “driving”. However, “car” is the object that is being
affected by the said action. Hence, “car” is the patient of the the action “driving”.

– Spatial relations: Not all entities will directly be associated with an action, but can
still be present in the context. An action can be carried out in a specific location
that also reveals important information about the scene. For example, “driving
on a highway” and “driving on a street” correspond to slightly different visual
stimuli, which can be significantly important for a specific task. In each of these
cases, entities such as “highway” and “street” are not directly involved in the
action of driving, but their spatial context is informative nonetheless.

An example of the desired holistic graph is demonstrated in Figure 1.

4. Graph Conversion from Dependency Tree

To locate regions of interest generating local captions, we drew inspiration from dense
captioning approaches [57]. However, unlike these, we simply made use of pre-trained
models for object detection [1] and automatic image captioning [2] algorithms.

The regional caption generation model consists of two distinct phases. One is an object
detection phase that locates the key objects in the image; we used a pre-trained YOLO-V3
model for this purpose. The second phase, which is the image captioning model, takes as
the input the regions of the original image that are cropped out according to the YOLO-V3
bounding box predictions. This implementation is very straightforward. However, there is
one key factor that must be taken into account: the YOLO-V3 model takes an input image
of size 416× 416, but the bounding box predictions come in a variety of sizes; moreover, the
image captioning model works only for a specific size of image of 224× 224. Based on the
works of [58], our approaches use the centered zero-padding technique. The reasons are that
it is one of the fastest techniques, the aspect ratio of the objects in the scenes is not distorted,
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and, for our purposes, randomized reshaping techniques may lead to different outputs
from the image captioning model. Hence, to ensure consistent high-quality outputs from
the pre-trained image captioning module, the centered zero-padding technique was used.
In this work, we considered a single generated caption per region to avoid unnecessary
redundancies. An example of a set of captions for various regions across the image is
shown in Figure 3.

Figure 3. An example regional caption generation. Regions are detected using YOLO-V3 [1], and
captions are generated using Show, Attend, and Tell [2].

Once we have a set of captions with respect to detected regions of interest in the image,
we can generate rich conceptual graphs using the graph construction method proposed
in Section 4.1. The graph construction first creates the set of primary entities followed by
the edges based on the dependencies; secondary entities are created on an ad hoc basis to
accommodate hanging edges.

The dependency tree provides rich information about relations between the various
words in a sentence. These relations can reveal several aspects relevant to our purposes
such as the dependence between subjects, predicates, and objects, modifiers of various
objects, actions, and spatial relations based on the type of prepositions used to connect
phrases and also demonstrate a hierarchical concept of the scene.

For this work, we used the enhanced++ typed dependencies from the Stanford de-
pendency parser [59] and the default English language model for parsing (https://nlp.
stanford.edu/software/lex-parser.shtml (accessed on: 25 December 2022)). The Stanford
dependency parser was created to provide a simplified depiction of the grammatical links
in a phrase such that persons without linguistic knowledge can understand and use them
to extract the textual relations. It expresses all sentence relationships as typed dependency
relations, instead of the phrase structure representations that have been traditionally used
in the computational linguistic research community. All dependencies are expressed using
specific tags. The basic version of the Stanford dependency parser introduced 55 unique
tags, which were further improved to include more complex grammatical constructs in
future versions, namely the enhanced and enhanced++ dependencies.

For our task, we created a simplified intermediate representation. A sentence S is
defined as a sequence of words {word1, word2, . . . , wordn}. For each word wordi, we have
an intermediate representation hi:

hi = 〈idi, ti, li, pi, LIST[rk, idk, tk, ]〉 (1)

https://nlp.stanford.edu/software/lex-parser.shtml
https://nlp.stanford.edu/software/lex-parser.shtml
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Here, idi, ti, li, and pi refer to the id, token, lemma, and part-of-speech tag of the word,
respectively. The LIST refers to the set of connected parent node ids idk and tokens tk and
also the relation rk through which the parent node (idk) is connected to this node (idi).

4.1. Graph Construction

The graph construction is performed in two phases. Firstly, primary nodes are created
by analyzing the parts-of-speech tags of each of the words from the intermediate represen-
tation. In some special cases, the lemmas are considered for refining the nodes. In the next
phase, the relations or dependencies associated with each word are taken into account for
generating the edges of the graphs. During this phase, additional nodes may be created
to accommodate hanging edges. The secondary nodes’ creation is performed based on
the parts-of-speech tags of the node connected via the dependency. An example of the
generated graph from the dependency tree of captions is shown in Figure 4.

Figure 4. Generating graphs for the generated captions as shown in Figure 3. Left: depen-
dency parse tree generated using Stanford dependency parser. Right: generated Graph using
the proposed approach.

We shall go over the set of conditions that affect the creation of the nodes and edges.

4.1.1. Creating Nodes

As discussed in Section 3, the proposed graph is defined by three types of nodes
as follows:

• Entities: Entities refer to the objects that physically occupy space in a scene, e.g., “car”,
“person”, “dog”.

• Actions: Actions refer to the various events or activities connected to the entities, e.g.,
“drive”, “stand”, “play”;

• Attributes: Attributes generally refer to the various properties that further define the
entities or actions. Attribute nodes are generally connected to either entity or action
nodes via an “attr” edge, e.g., “red”, “tall”, “two”.

All these nodes are represented using tuples 〈id, token, lemma, pos_tags〉. Nodes can
be created in three different nodes:

• Primary nodes: These nodes are created by only observing the POS tags of the words.
The node is defined typically by the actual token and lemma.

• Secondary nodes: These nodes are created by observing a combination of POS tags
along with other factors such as the lemma or the named entity recognition tags. In
these cases, the lemma of the created node is assigned a generic keyword.

• Tertiary nodes: These nodes are created when edges are created by reading the
dependency relations. It may happen that an incoming dependency is coming from a
word for which no primary or secondary node exists.
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Creation of Primary Nodes

Firstly, primary nodes are created by analyzing the parts-of-speech tags of the words.
The properties for the nodes, i.e., the id, token, lemma, and parts-of-speech tags, are taken
directly from the corresponding intermediate representation. The type of node created
depends on the parts-of-speech tag of the word:

• Entity← NN, NNS;
• Action← VB, VBD, VBG, VBN, VBP, VBZ;
• Attribute← JJ, JJR, JJS, RB, RBR, RBS.

Creating Secondary Nodes

Some secondary nodes are also created with refined properties based on some addi-
tional conditions. These are listed below:

• Pronouns: Since pronouns are representative of nouns, they can be used to create
different types of entities as mentioned below. The distinction in this case is made
on the basis of the lemma of the word: it can be used to detect whether the entity
is a person or an object. It can also detect the singular or plural nature of the entity.
Additionally, it can also reflect the gender, which is added as an attribute node named
“masculine” or “feminine”. The type of entity or attribute generated by the lemma of
each pronoun is:

– Object: it, its, itself;
– Person: I, you, my;
– Masculine person: he, him, his, himself;
– Feminine person: she, her, herself;
– People: we, they, them, ’em, themselves.

• Determiners: Some determiners can signify the presence of an object, e.g., “this”,
“that”, “these”, “those”.

• Proper nouns (NNP, NNPS): Proper nouns are also added as entities similar to common
nouns. However, the lemma is updated according to the named entity recognition tag
of the word, e.g., “location”, “person”, “organization”, and so on.

• Auxiliary verbs: Though auxiliary verbs are tagged as VB, they are not added as
action tags.

• In some rare cases, action nodes can exist without a proper subject or entity. In that
case, a dummy entity is created and connected using an “agent” relation.

Creation of Tertiary Nodes

To define an edge in the concept graph, a relational data structure is used consisting of
pointers to two node objects and a textual relationship tag. Each tuple corresponding to the
hidden representation of the words in the sentence contains a list of incoming dependencies
from other nodes. These dependency tags are processed to extract different types of edges
in the concept graph. In certain cases, it may happen that the incoming dependency is from
another word that has not been created as a primary or secondary node. Hence, a tertiary
node must be created on an ad hoc basis. This type of node is defined according to the
parts-of-speech tag of the connected word through the incoming dependency. The different
types of parts-of-speech tags and the types of tertiary nodes are:

• Action nodes: VB, VBD, VBG, VBN, VBP, VBZ, TO, CC.
• Attribute nodes:

IN (prepositions).
CD (lemma = “number”).

• Entity nodes:
EX, RP(lemma = “location”).

A summary of the protocols for creating nodes is given in Table 1.
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Table 1. A summary of the criteria for creating nodes from dependency trees.

Node Type Type of Node Description Node Lemma Criterion

Entity

Primary Nodes Objects that physically occupy space Word Lemma POS Tags: NN, NNS

Secondary Nodes

Pronouns

Object POS Tags: PRP, Lemma: it, its, itself
Person POS Tags: PRP, PRP$, Lemma: I, you, my
Masculine Person POS Tags: PRP, PRP$, Lemma: he, him, his, himself
Feminine Person POS Tags: PRP, PRP$, Lemma: she, her, herself
People POS Tags: PRP, PRP$, Lemma: we, they, them, ’em, themselves

Determiners Object POS Tags: DT, Lemma: this, that, these, those

Proper Nouns
Location POS Tags: NNP, NNPS, NER Tag: LOCATION
Person POS Tags: NNP, NNPS, NER Tag: PERSON
Organization POS Tags: NNP, NNPS, NER Tag: ORGANIZATION

Actions without Subjects Subject NA

Tertiary Nodes Created during edge creation to
account for missing nodes

Location POS Tags: EX
Location POS Tags: RP, Lemma = location

Action

Primary Nodes Events or activities connected with the entities Word Lemma POS Tags: VB, VBD, VBG, VBN, VBP, VBZ

Secondary Nodes Action nodes are NOT created for auxiliary verbs Not Created POS Tags: VB

Tertiary Nodes Created during edge creation to
account for missing nodes Word Lemma POS Tags: VB, VBD, VBG, VBN, VBP, VBZ, TO, CC

Attributes

Primary Nodes Properties that further define the entities or actions. Word Lemma POS Tags: JJ, JJR, JJS, RB, RBR, RBS

Tertiary Nodes Created during edge creation to
account for missing nodes

Word Lemma POS Tags: IN (Prepositions)
Lemma POS Tags: CD, Word Lemma: “number” (Cardinals)

4.1.2. Creating Edges

For edge extraction, various types of edges are added to the knowledge graph by
categorizing several types of dependency tags.

Agents

Edges between subjects and actions are tagged as “agent”. This defines which enti-
ties are responsible for which actions. The agent relationship can be extracted from the
dependencies as follows:

• Nominal subjects (“nsubj”): Nominal subjects primarily refer to the action causing
proto-agents of a phrase. These dependencies can define which entities are responsible
for which actions.

• Oblique agents (“obl:agent”): This type of relation highlights nominal subjects of
passive verbs. The effect is similar to the “nsubj” node.

• Subjects of embedded actions (“nsubj:xsubj”): It is often seen that the scope of one
verb is embedded and controlled by another verb. While the first verb exists as an
open clausal complement (that is, without a direct subject), the controlling verb is
associated with the subject. The “nsubj:xsubj” dependency connects those kinds of
subjects with embedded actions.

• Adnominal clause (“acl”): This type of dependency connects verbs with nominals that
modify the properties or state of the nominal. “acl” dependencies can thus be used to
assign such actions to corresponding entities.

Some examples are demonstrated in Figure 5 regarding these dependencies and how
“agent” edges can be created from them.

Patients

Edges between actions and objects are tagged as “patient”. This defines which entities
are affected by which actions. Patient relationships can be extracted from dependencies
as follows:

• (Direct) Objects (“obj”): Direct objects refer to entities who are the direct objects upon
which the actions are performed. The edges in the graph corresponding to such
dependencies are tagged as “patient”.
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• Indirect objects (“iobj”): Indirect objects are secondary objects that also are affected by
the action along with the direct object. The corresponding edges also mark the entity
as the “patient” of the action.

• Passive object (“nsubj:pass”): When a verb is used in the passive tense, the subject in
the sentence is actually the object upon which the action is performed. The effect is
similar to previous situations.

Some examples regarding these dependencies and how “patient” edges can be created
from them are demonstrated in Figure 6.

Figure 5. Various ways to create “agent” edges from dependencies.

Figure 6. Various ways to create “patient” edges from dependencies.

Attributes

In various situations, entities and actions can be further described on the basis of their
qualitative properties. In cases such as these, “attr” edges are drawn between relevant
nodes. Attribute edges can be extracted directly from the following dependencies:

• Adverbial modifier (“advmod”): Adverbial modifiers are generally used to modify
other verbs or other modifiers. They can be used to generate “attr” edges, which
provide qualitative insights about other actions and attributes.

• Adjectival modifier (“amod”): Adjectival modifiers are used to modify nouns and
pronouns. In the context graph, they are used to define the attributes of entities.

• Numeric modifier (“nummod”): While adjectival modifiers describe an entity qualita-
tively, numeric modifiers define them quantitatively. Numeric modifiers are thus used
to define the attributes corresponding to the number of entities.

Some examples regarding these dependencies and how “attr” edges can be created
from them are demonstrated in Figure 7.



Future Internet 2023, 15, 70 11 of 21

Figure 7. Various ways to directly extract “attr” edges from dependencies.

Under some special circumstances, attributes can also be extracted indirectly from
dependencies as follows:

• Copula (“cop”): Copulas are used in those cases where entities are connected to
an attribute using an auxiliary such as “is”. In the case of copulas, the auxiliary is
connected to the attributes, which are in turn connected to the entity using a “nsubj”
dependency.

• Open clausal complement (“xcomp”): Open clausal complements define the properties
of an object through a verb that corresponds to a sensory action such as “looks
beautiful” or “feels soft”.

Some examples regarding these dependencies and how “attr” edges can be created
from these special dependencies are demonstrated in Figure 8.

Figure 8. Various ways to indirectly extract “attr” edges from dependencies.

Spatial Relations

Relations can also be drawn based on the relative spatial properties of the entities and
actions in the scene. Such edges are primarily drawn between two entities or between an
entity and an action. This type of spatial relation is mostly conveyed through the use of
prepositions. Some ways in which spatial relations can be drawn are:

• Oblique dependencies with preposition (“obl:preposition”): In this case, a verb is
connected to a preposition using an oblique relationship. This type of dependency
can be used to establish the location of an action in a scene.

• Noun modifiers with preposition (“nmod:preposition”): Noun modifiers can also
be used to connect two nouns with a preposition, which reflects the relative spatial
interaction between them. In the concept graph, this dependency can be used to
interpret similar relations among entities.

Some examples regarding these dependencies and how “patient” edges can be created
from them are demonstrated in Figure 9.
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Figure 9. Deriving edges signifying spatial relations from dependencies.

Special Relations

Besides the previous general types of relationships that can be drawn from various
dependencies, there are some more dependencies that can reveal visual concepts:

• Appositional modifiers (“appos”): Appositional modifiers of nouns are used when
one noun acts as a descriptor for another noun. They are used in several situations
such as “President Kalam” or “My brother, Rishi” or an abbreviation of a name of an
entity. This is reflected by an “is” edge in the concept graph to illustrate that one entity
acts as an alias of the other entity.

• Conjunction (“conj”): Conjunctions are used to group together multiple entities, at-
tributes, or actions that exist in a similar environment. Enhanced++ dependencies
automatically share the subjects’ attributes and actions with all members of the con-
juncture. This can be used to group together several entities, attributes, and actions in
an image as well.

• Compound participle (“compound:prt”): Compound participles modify the behaviors
of verbs that emphasize the corresponding action such as “fell down”

Some example of such uses are demonstrated in Figure 10.
All the protocols for creating edges are summarized in Table 2. Using the approach

mentioned above, we generated rich graphs for the captions generated from the located
regions of interest, as shown in Figure 4.

Figure 10. Some more types of dependencies that can represent visual concepts.



Future Internet 2023, 15, 70 13 of 21

Table 2. A summary of the edge creation protocols based on dependency relations.

Edge Type Dependency Description Edge

Agent

A → nsubj → B Nominal Subject B → agent → A
A → obl:agent → B Oblique Agents B → agent → A
A → nsubj:xsubj → B Subjects of Embedded Actions B → agent → A
A → acl → B Adnominal Clause B → agent → A

Patient
A → obj → B Direct Object A → patient → B
A → iobj → B Indirect Object B → patient → A
A → nsubj:pass → B Passive Object A → patient → B

Attributes

A → advmod → B Adverbial Modifier A → attr → B
A → amod → B Adjectival Modifier A → attr → B
A → numeric → B Number Modifier A → attr → B
A → cop → B and A → nsubj → C Copula A → attr → C
A → nsubj → B and A → xcomp → C Open Clausal Complement B → attr → C

Spatial Relations A → obl:preposition → B Oblique Dependencies with prepositions A → preposition → C
A → nmod:preposition → B Noun Modifiers with prepositions A → preposition → C

Special relations
A → appos → B Appositional Modifier A → is → B
A → conj → B Conjunction A → and → B
A → compound:prt → B Compound Participles A → attr → B

5. Combining Regional Graphs to Generate Concept Graphs

While the region graphs provide a dense conceptual description for the images, they
still contain several redundant nodes, which can be combined to create a holistic represen-
tation of the image.

Combination of Region Graphs

The combination of region graphs allows the reduction of the number of nodes and
edges to provide a much more tightly bound image concept graph with dense connections.
The proposed method of graph combination derives inspiration from the approximate
maximal common subgraph computation proposed in [3]. The process is composed of
several phases:

Phase I: Merging entities. The first phase aims to find out which entity nodes from the
different region graphs can be merged. This is performed on the basis of the
following rules:

• Same lemma. If two nodes have the same lemma and have an intersection-over-
min (IOM) ratio above 0.5, they can be merged. The IOM ratio for two bounding
boxes A and B is given by

IOM =
area(A ∩ B)

min(area(A), area(B))
(2)

• Different lemma. Entities with different lemmas may also be merged if they
belong to the same synset in the WordNet hypernym chain. This can be de-
tected when the Wu–Palmer similarity [60] is 1.0. For example, pairs such as
< dog, hound > or < baby, in f ant > belong to the same synset and, hence, can
be merged.

Phase II: Merging actions and attributes. Once we have a pair of entities, one from each
of two different region graphs that can be merged, the matching set of actions and
entities connected to that entity in both regions graphs can also be merged.

Phase III: Drawing special edges. Finally, some entities demonstrate more detail in a spe-
cific region graph. In cases where two regions have an IOM ratio over 0.5 and the
lemma of the two corresponding entities belongs to different generations in the same
WordNet hypernym chain, they can be connected using a special edge. For example,
if we have two entities in two regions such as “furniture” and “table”, then an edge
may be added that states “furniture is table”.
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An example of the holistic scene graph with respect to the previously generated
captions is shown in Figure 11.

Figure 11. After combining the graphs generated from individual regions as shown in Figure 4, we
obtain the holistic scene graph.

6. Results and Analysis

Based on the various graph merging techniques as described in the previous section,
we can produce rich concept graphs for the images with the merging of region graphs,
removing redundancy in the nodes and edges. If we count the total number of graph
elements generated from all region graphs of a single image, we obtain around 18.48 ± 12.47
entities, 3.48 ± 2.87 actions, 5.13 ± 4.84 attributes, and 20.97 ± 15.86 relations. However,
if we count the same statistics after merging the graphs, we obtain around 10.96 ± 6.06
entities, 1.94 ± 1.30 actions, 2.81 ± 2.11 attributes, and 16.23 ± 10.57 relations. This is
visually demonstrated in Figure 12.

Figure 12. A scatter plot showing the number of entities, attributes, actions, and relations, before and
after merging regional graphs. Trends show a below-linear relation for most cases.
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Most related works rely on graph-based ground truths and, hence, do not provide a
suitable ground for fair comparison. For that reason, we provide statistical and qualitative
analyses to demonstrate the abilities and shortcomings of the proposed model.

6.1. Statistical Analysis of Generated Graphs

We applied the graph construction technique on the captions from the validation set
of the MSCOCO captioning database. The results revealed that the proposed approach
can generate about 5.16 ± 1.00 entities, 2.06 ± 0.24 actions, 2.49 ± 0.87 attributes, and
5.73 ± 1.55 relations on average. The average length of the captions was 11.85 ± 2.04. The
detailed breakdown for captions of different lengths is provided in Table 3.

Table 3. A statistical analysis of the number of entities, action, attributes, and relations generated in
the concept graph for captions of various lengths.

No. of Words No. of Captions No. of Entities No. of Actions No. of Attributes No. of Relations

7 3 3.33 ± 0.58 2.00 ± 0.00 2.00 ± 0.00 4.00 ± 0.00
8 339 3.91 ± 0.59 2.02 ± 1.04 2.07 ± 0.96 4.03 ± 1.10
9 1732 4.34 ± 0.76 2.03 ± 0.16 2.26 ± 0.59 4.78 ± 0.89

10 3418 4.67 ± 0.74 2.06 ± 0.23 2.31 ± 0.55 5.19 ± 1.07
11 4437 5.02 ± 0.73 2.05 ± 0.22 2.28 ± 0.59 5.25 ± 1.11
12 4344 5.17 ± 0.88 2.07 ± 0.26 2.49 ± 0.70 5.59 ± 1.12
13 3197 5.57 ± 0.91 2.10 ± 0.30 2.54 ± 0.83 6.03 ± 1.24
14 1745 5.79 ± 0.95 2.06 ± 0.25 2.68 ± 0.99 6.61 ± 1.38
15 959 5.84 ± 1.11 2.05 ± 0.23 3.05 ± 1.32 7.25 ± 1.58
16 553 6.18 ± 1.00 2.04 ± 0.19 3.20 ± 1.28 7.95 ± 1.88
17 257 6.00 ± 1.26 2.05 ± 0.23 3.88 ± 1.68 8.76 ± 2.02
18 118 6.79 ± 1.25 2.03 ± 0.18 3.53 ± 1.51 8.57 ± 1.81
19 49 7.37 ± 1.18 2.16 ± 0.51 3.24 ± 1.36 9.02 ± 1.73
20 21 6.62 ± 1.28 2.10 ± 0.30 4.52 ± 1.97 10.81 ± 2.71
21 12 6.50 ± 2.11 2.08 ± 0.29 5.92 ± 3.03 12.25 ± 2.49
22 5 5.80 ± 0.45 2.00 ± 0.00 7.40 ± 0.89 15.00 ± 0.00
23 5 5.40 ± 2.51 2.00 ± 0.00 8.40 ± 4.45 16.20 ± 3.63
24 3 6.67 ± 1.15 2.00 ± 0.00 6.67 ± 2.52 14.00 ± 2.00
25 1 4.00 ± 0.00 2.00 ± 0.00 12.00 ± 0.00 19.00 ± 0.00
26 1 6.00 ± 0.00 2.00 ± 0.00 9.00 ± 0.00 17.00 ± 0.00
27 1 8.00 ± 0.00 2.00 ± 0.00 8.00 ± 0.00 18.00 ± 0.00

Upon further analysis, as shown in Figure 13, the number of graph elements increased
monotonically along with the number of words in the caption. The number of entities was
highly proportional followed by attributes and then actions. This is logical, as most of the
actions in an image are shared by multiple entities.

6.2. Qualitative Analysis

Figures 14–20 present several examples of the proposed approach. In each figure,
we can see an image in the top left corner: color-coded bounding boxes correspond to
the detection by the YOLO-V3 model; the regions are cropped and passed through Show,
Attend, and Tell to obtain the image captions; the captions are written below the image with
relevant color codes as per the boxes. Below that, we can see the dependency parse trees of
the image captions and regional graph generated by our approach. In the top right corner,
we can see the combined graph generated by merging redundant nodes: each regional
graph is bounded by a rectangle with the same color code as before. Even in the bounding
box, dotted polygons mark which component is obtained from which region. Moreover,
merged nodes are written in bold font with thick borders; these nodes are shared by two or
more region graphs.

Figure 14 demonstrates a simple image with a single object of interest. The caption
corresponding to the full image is enough; however, the regional captions add more
attributes about the shirt and tie.
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Figure 13. Visualization of the dependency between the number of words and the number of
graph elements. The dotted line demonstrates the linear regression of the scatter plot of a specific
graph element.

Figure 14. Holistic scene graph from a simple image with a single object of interest.

Figure 15 demonstrates three very similar captions, thus creating a tightly combined
graph with many merged nodes. Redundant actions, such as “sit”, are also merged, as they
appear in the same phrase in both captions.

Figure 15. Holistic scene graphs showing three very similar captions, hence demonstrating several
merged nodes and several WordNet-based “is” edges.

Figure 16 shows an example of the box overlap principle. There are two captions
with the “plant” word. However, they are not merged in the combined graph as their
corresponding bounding boxes do not overlap, thus signifying that the plants are separate
entities. Moreover, nodes such as the “window” correspond to a specific detection of the
“window”, thus demonstrating that the graph generation module is not limited by the
object detection limits of YOLO_V3.
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Figure 16. Holistic scene graphs showing distinct instances of plants in disjoint bounding boxes.

As we considered multiple regions of interest contributing to multiple region graphs,
it is unlikely for the algorithm to output a completely incorrect holistic graph. However,
partial mistakes are demonstrated in Figures 17–20.

Figure 17 shows an erroneous node detection (“tree”) due to inaccurate captioning.
Additionally, the spatial relation “on_top_of” is not appropriate for this case.

Figure 17. Holistic scene graph showing a captioning error leading to an erroneous node “tree”.

In Figure 18, also, smaller regions incorrectly recognize the wooden carriage as a
wooden bench or wooden fence in different region captions. There is another error as the
person is treated as the agent for the action of drawing the carriage and riding the horses,
possibly due to statistical bias. The correct caption would have been “person ride carriage”
and “horse draw carriage”.

Figure 18. Holistic scene graphs demonstrating statistical bias forcing erroneous edges.

Figure 19 demonstrates how regional captions can mistakenly classify the gender
of the person beyond the frame. Moreover, the “other” node mistakenly detected as the
phrase “each other” is not aptly represented. Here, the action should have been associated
with both the “man” and the “woman” node.
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Figure 19. Holistic scene graph showing caption generator making wrong assumptions about objects
beyond the bounding box.

Finally, Figure 20 shows how partially visible objects can be misclassified. Here, the
“armchair” is recognized as a “bed”.

Figure 20. Holistic graph generation showing misclassification of partially occluded objects.

The proposed algorithm does not utilize any graph-based ground truths to generate
the holistic scene graphs. Hence, a quantitative analysis is not feasible. The accuracy of the
proposed model is highly dependent on the performance of the region-of-interest detection
and image captioning model. The performances of those models on the COCO dataset are
already recorded in their respective works.

7. Conclusions

We implemented a novel scene graph generation technique that exploits modern object
detection and image captioning frameworks to systematically generate region-specific
captions and merge them to create a rich concept graph. This method does not require any
graph-based ground truth for training. The proposed approach uses the YOLO-v3-based
region-of-interest extraction combined with Show, Attend, and Tell-based image caption
generation to generate region-specific captions. We proposed a novel visual-information-
specific graph generation using dependency parse trees generated from sentences. As
it is a rule-based approach, it adheres to the principles of explainable AI. An efficient
graph merging technique using the approximate maximal common subgraph was used to
combine the region graphs and compute the holistic scene graph. The major drawback of
the proposed approach is the bottleneck of the third-party detection and caption generation
framework. However, due to the plug-and-play nature of the approach, these frameworks
may be swapped out with more robust counterparts. It was also not possible to quantify
the correctness of the graph generation as the process is not dependent on any graph-based
supervision. The process of converting region captions to region graphs is deterministic and
is solely dependent on the success of the caption generator. It provides a very different take
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compared to the existing literature, which is either guided by graph-based supervision or by
corpus-based knowledge. The novelty of the work is stabilizing the workflow consisting of
region-of-interest detection, caption generation, dependency parsing, subgraph generation,
and graph combination. The result is a rich graph consisting of nodes corresponding to
objects, actions, and their attributes, while the edges provide insights about various types of
spatial- or action-based relations among the nodes. The proposed holistic scene graph can
be used for various tasks such as content-based image retrieval, visual question answering,
image clustering, data warehousing, search engine optimization, and so on. Future works
can involve the refinement of the holistic scene graphs by mapping nodes and edges to
visual features learned from the image.
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