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Abstract: Concerns about cybersecurity and attack methods have risen in the information age. Many
techniques are used to detect or deter attacks, such as intrusion detection systems (IDSs), that help
achieve security goals, such as detecting malicious attacks before they enter the system and classifying
them as malicious activities. However, the IDS approaches have shortcomings in misclassifying novel
attacks or adapting to emerging environments, affecting their accuracy and increasing false alarms.
To solve this problem, researchers have recommended using machine learning approaches as engines
for IDSs to increase their efficacy. Machine-learning techniques are supposed to automatically detect
the main distinctions between normal and malicious data, even novel attacks, with high accuracy.
However, carefully designed adversarial input perturbations during the training or testing phases
can significantly affect their predictions and classifications. Adversarial machine learning (AML)
poses many cybersecurity threats in numerous sectors that use machine-learning-based classification
systems, such as deceiving IDS to misclassify network packets. Thus, this paper presents a survey
of adversarial machine-learning strategies and defenses. It starts by highlighting various types of
adversarial attacks that can affect the IDS and then presents the defense strategies to decrease or
eliminate the influence of these attacks. Finally, the gaps in the existing literature and future research
directions are presented.

Keywords: adversarial machine learning; intrusion detection systems; adversarial attacks; machine
learning; deep learning; network security

1. Introduction

Machine learning (ML) approaches are changing our perceptions of the world and
affecting every aspect of our lives in the age of technology, such as autopilot, facial recog-
nition, and spam detection. A distinctive feature of ML is that instead of designing the
solution with coding, the programmer creates a method to discover the key to a problem
using samples of other issues that have been solved. ML techniques can produce satisfac-
tory results in many situations since machine-generated features are typically more reliable
and representative than hand-crafted features [1]. Furthermore, ML procedures’ training
and evaluation phases are generally constructed assuming they are executed in a secure
environment [1]. Therefore, the use of ML has expanded drastically, especially in cybersecu-
rity, depending on providing a secure environment for users and institutions. Furthermore,
due to the efficiency of ML in automatically extracting useful information from massive
databases, the use of ML in cybersecurity meets the development of cyberattacks [2].

Various network attacks affect the users’ or institutions’ network systems, such as
denial of service (DoS), distributed denial of service (DDoS), and SQL injection. Thus,
cybersecurity specialists propose and utilize various types of defensive methods against
network attacks, such as firewalls, intrusion detection systems (IDS), and intrusion pre-
vention systems (IPSs). Such defense methods are used to detect or deter unauthorized
network attacks that may affect network users in a harmful way.
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Furthermore, to serve cybersecurity specialists and beneficiaries, researchers proposed
building their defenses based on ML techniques to improve the defense methods since a
variety of network security techniques are increasingly using ML approaches for enhance-
ments [1], for example, an IDS. Figure 1 shows some network security applications that can
be improved with ML to protect the network against cyberattacks.
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IDS is one of the cybersecurity domains where machine learning is suitable. It is a
type of computer security software that seeks to identify a wide range of security breaches,
from attempted intrusions by outsiders to system penetrations by insiders [2]. In addition,
the IDS evaluates the information from many sources and produces alerts when specific
criteria are met [3].

In order to improve the IDS and make it more reliable against network attacks, the
cybersecurity specialists suggested building it with ML, which achieves an effective result in
classification and assists in resolving malware detection issues. ML-based IDSs can identify
system anomalies with high precision, according to [4]. Consequently, ML-based IDSs
yield several benefits, including increased accuracy and the detection of new attacks [5].
Furthermore, according to [6], an ML-based IDS produces superior results, recommending
a filtering approach based on a support vector machine (SVM) classifier and the NSL-KDD
intrusion detection dataset to detect suspicious network intrusion.

ML systems are increasingly trusted in cyber-physical systems [7], including factories,
power plants, and the oil and gas industries. In such complex physical surroundings,
a threat that manages to get through a weak system could be harmful [8]. Despite the
dependence on and faith in ML systems, attackers who want to avoid ML-based system
discovery processes may use the inherent nature of ML, learning to recognize patterns,
as a possible attack component [9]. As a result, attackers craft malicious inputs called
“adversarial samples.” Adversarial samples are constructed by intentionally adding mi-
nor perturbations to initial inputs, which results in the misclassification of the ML/DL
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models [10]. Adversarial machine learning (AML) based on the National Institute of Stan-
dards and Technology (NIST) is divided into four attacks, which are: evasion, extraction,
poisoning, and inference [11].

Hence, the misclassification of ML initially appeared approximately two decades ago
and has piqued researchers’ interest. The researchers in [12] deceived spam classifiers into
injecting some changes into an email. Moreover, it is even older than 38 years, according
to the authors in [13], when they showed that false fingerprints might be made with
plastic-like materials to deceive biometric identity recognition systems.

Along with ML technology’s significant advancement in network security, it exposes a
new attack surface for attackers. Accordingly, the IDS is susceptible to adversarial attacks
since it is built on ML, which could be compromised by crafting adversarial input against
ML/DL models such as the artificial neural network (ANN), the deep neural network
(DNN), and the support vector machine (SVM), affecting its accuracy and robustness.
Furthermore, research has also demonstrated that adversarial samples could affect ML-
based IDSs [10,14]. As a result, ML can also be fooled, necessitating some protection
mechanisms. Additionally, the system becomes susceptible due to communication on the
open network, which also gives enemies a massive attack surface [15].

In contrast, the adversarial sample inputs to ML deceive the model, causing the
model to provide an incorrect result. Thus, IDSs based on ML may be harmed, affecting
classification. Consequently, the ML classifier in cybersecurity is used to defend against
and detect malicious attacks, but the big issue here is who will protect the defenders and
how ML can withstand these attacks and provide correct categorization.

Therefore, this challenge drives researchers to improve the resilience of ML algorithms.
This paper presents an overview of ML methods and clarifies adversarial attacks on IDSs.
Additionally, it provides a thorough literature review on the security and robustness of
ML/DL models when applied to the development of IDSs. Above all, it is essential to
emphasize that this study aims to provide a thorough overview of the impact of adversarial
samples raised by using ML and DL in IDSs and to present potential solutions to these
problems. To sum up, the particular contributions of this paper are as follows:

• We analyze related surveys in the field of AML.
• We present a general overview of the use of ML on an IDS in order to enhance its

performance.
• We clarify all types of adversarial attacks against ML and DL models and the differ-

ences between them, in addition to the challenges that face the launch of adversarial
attacks.

• We display the adversarial attacks launched against ML/DL-based IDS models
in particular.

• We present the different types of defense strategies to address adversarial attacks.
• We investigate the gaps in the related literature and suggest some future research

directions.

The remainder of this paper is structured as follows: Section 2 discusses related
existing surveys. Then, an overview of ML is presented in Section 3. Next, adversarial ML
is introduced in detail in Section 4.

Next, the studies that implemented the adversaries against IDSs are presented in
Section 5. Then, the benchmark dataset is shown in Section 6. Next, the defense strategies
against adversarial attacks in the two domains of computer vision and network security
are presented in Section 7. After that, the challenges and future directions are given in
Section 8. Finally, this paper is concluded in Section 9.

2. Related Surveys

Many surveys present AML in various domains, such as computer vision, which
recently received much attention, and network security. Major previous studies focused on
adversarial attacks against ML and DL in various domains or the computer vision domain,
such as in [16–18]. Additionally, other surveys take this topic from a game perspective,
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making it more straightforward for the reader, such as [19], which presented a general view
of the arms race between adversarial attacks and defense methods and how they constantly
try to defeat each other. In addition, [20] presented more details about adversarial attacks
and defense methods from a cybersecurity perspective.

Furthermore, ML security has received much attention, with many researchers men-
tioning the dangers of adversarial attacks on ML and the defense methods described in [21].
This survey clarified the various types of adversarial attacks and the defense methods to
protect ML. However, this study highlighted the ML adversaries and primary defenses; it
was not specialized in specific ML methods in cybersecurity, such as malware detection.

On the other hand, the authors of [22] had to dig deeper into the network security
domain. This study has more than the original view. It presents detailed information for
network security applications in ML and adversarial attacks against them, in addition to
defense methods against these attacks. However, it is not connected to something special
such as phishing or spam detection. The research in [9] presented adversarial attacks in
cybersecurity, such as intrusion detection, which provided a more detailed perspective,
discussed attacks, and offered some defense strategies. In general, the researchers found
this study helpful in providing the basis for the issue of adversaries and defenses against
ML-based network applications. Despite this study’s insightful ideas, its main focus is on
keeping adversarial attacks functioning so they can continue avoiding ML classifiers.

To our knowledge, no prior survey reviewed adversarial attacks against ML/DL-
based IDSs. Therefore, this survey highlights adversarial attacks made particularly against
IDS and earlier research that created adversaries for ML-based IDSs. It also describes the
benchmark datasets used in most of these studies. Additionally, it analyzes state-of-the-art
defense strategies to improve the robustness and accuracy of ML-based IDSs and suggests
using defenses applied to computer vision on ML-based IDSs. Finally, it clearly describes
these adversarial attacks so that it is simple for the researchers to choose one to defend the
IDS. Table 1 demonstrates the main differences between the previous surveys.
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Table 1. Comparison between related surveys.

Ref. Year Highlights Domain General Contribution Applications of ML in
Network Security

Adversarial
Attack’s Methods

Solutions For
Adversarial Attacks

Open Research
Issues

[21] 2018
It examined ML system threat

models and outlined alternative
attack and defense strategies.

ML/DL methods in
various domains.

- Attacks capabilities
- Defense methods 6 3 3 6

[18] 2018
It thoroughly overviewed

adversarial assaults on deep
learning in computer vision.

ML/DL methods in
computer vision.

- It examined the possibility of
adversarial attacks against
deep learning and offered
countermeasures.

- It presented articles that
crafted adversarial attacks in
the physical world.

6 3 3 3

[17] 2018

It explored some of the
state-of-the-art adversarial

attacks and suggested
countermeasures.

ML/DL methods in
various domains.

- It presented a taxonomy of
adversarial-learning-related
issues.

- It reviewed alternative attack
and threat models.

6 3 3 3

[23] 2018

It provided a thorough
introduction to various

topics related to adversarial
deep learning.

ML/DL methods in
various domains.

- It provided theoretical
underpinnings for AML.

- Typical offensive and
defensive tactics.

6 3 3 3

[16] 2019

It gave a thorough summary of
the research on the security

characteristics of ML algorithms
in hostile environments.

ML/DL methods in
various domains.

- It analyzed the ML
security model.

- It presented adversarial
attack techniques.

- It also suggested potential
future research that will be
important for creating safer
ML models.

6 3 3 3

[19] 2019 It provided a thorough overview
of all game theory in AML.

Adversarial
game-theoretic model
in various domains.

- It thoroughly analyzed
various game-theoretic
models utilized in
adversarial learning.

- It also discussed creating
learning algorithms that
are impervious to
active adversaries.

6 3 6 3
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Table 1. Cont.

Ref. Year Highlights Domain General Contribution Applications of ML in
Network Security

Adversarial
Attack’s Methods

Solutions For
Adversarial Attacks

Open Research
Issues

[20] 2019

It presented the current and
recent methods used to

strengthen an ML system
against adversarial attacks
utilizing the computational
framework of game theory.

ML/DL methods in
cybersecurity tasks.

- It concentrated on
game-theory-based methods
for enhancing the resistance of
ML systems against
adversarial attacks.

- It discussed open research
issues related to the
capabilities of attacks,
such as transferability.

6 3 6 3

[22] 2019

It introduced the taxonomy of
ML in network security

applications. In addition, it
presented several adversarial

attacks on ML in network
security and provided two

categorization algorithms for
these assaults.

ML/DL methods in
network security

applications.

- It offered a novel technique for
categorizing adversarial
attacks in network security.

- It described the adversarial
risk in terms of computer and
network security.

- In addition, it provided
defense strategies based on
attack methods.

3 3 3 3

[5] 2019

It discussed building
IDS with the ML and DL

models, potentially improving
IDS performance.

ML/DL methods in IDS.

- It defined the taxonomy and
concept of IDSs.

- Measurements and benchmark
datasets were provided, along
with the ML methods often
employed in IDSs.

3 6 6 3

[23] 2021

It briefly outlined the obstacles
involved in using ML/DL

approaches in various healthcare
application domains from a

security and privacy perspective.

ML/DL methods
in healthcare.

- It provided potential
approaches for ML security
and privacy protection in
healthcare applications.

- It offered insight into the
future directions for future
research and the existing
research obstacles.

6 3 3 3

[9] 2022
It presented the AML with an
adversary’s perspective in the

cybersecurity domain and NIDS.

ML/DL methods in
cybersecurity tasks.

- It provided the basis for the
issue of adversaries and
defenses against ML-based
network applications.

3 3 3 3
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3. Intrusion Detection System Based on ML

In general, machine learning techniques can be divided into two categories [5].

3.1. Supervised Machine Learning

Supervised learning depends on meaningful information in labeled data. The most
common goal in supervised learning (and, therefore, in IDS) is classification. Nevertheless,
manually labeling data is costly and time-intensive. As a result, the fundamental barrier to
supervised learning is the lack of adequate labeled data.

3.2. Unsupervised Learning

Unsupervised learning recovers useful feature information from unlabeled data, mak-
ing training material much more straightforward. On the other hand, unsupervised learn-
ing approaches often perform worse in terms of detection than supervised learning methods.
Figure 2 shows the most prevalent ML techniques used in IDSs.
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IDS is a type of computer security software that seeks to identify a wide range of secu-
rity breaches, from attempted break-ins by outsiders to system penetrations by insiders [2].
Furthermore, the essential functions of IDSs are to monitor hosts and networks, evaluate
computer system activity, produce warnings, and react to abnormal behavior [5]. Moreover,
one of the significant constraints of typical intrusion detection systems (IDS) is filtering and
decreasing false alarms [24]. In addition, many IDSs improve their performance by utilizing
neural networks (NN) for deep learning. Furthermore, deep neural network (DNN)-based
IDS systems have been created to improve tremendous data learning, processing, and a
range of assaults for future prediction [25].
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Various machine learning techniques have been used to build intrusion detection
models; the following paragraphs summarize the most commonly used techniques.

3.3. Artificial Neural Network (ANN)

An ANN is designed to function in the same way as human brains. An ANN com-
prises numerous hidden layers, an input layer, and an output layer. Units in neighboring
strata are interconnected. Furthermore, it has an excellent fitting ability, particularly for
nonlinear functions.

3.4. Deep Neural Network (DNN)

The parameters of a DNN are initially learned using unlabeled data in an unsupervised
feature learning stage, and then the network is tweaked using labeled data in a supervised
learning stage. The unsupervised feature learning step is mainly responsible for DNN’s
remarkable performance.

Furthermore, DNN plays a crucial role in cybersecurity; therefore, DNN could under-
stand the abstract, high-level properties of APT assaults even if they use the most complex
evasion strategies [26].

3.5. Support Vector Machine (SVM)

In SVMs, the goal is to locate a hyperplane of maximum margin separation in the
n-dimensional feature space. Because a small number of support vectors control the
separation hyperplane, SVMs can produce satisfactory results even with small-scale training
data. SVMs, on the other hand, are susceptible to noise around the hyperplane. SVMs excel
at solving linear problems. Kernel functions are commonly used with nonlinear data. The
original nonlinear data can be split using a kernel function that transfers the original space
into a new space. SVMs and other machine-learning algorithms are rife with kernel trickery.

3.6. Generative Adversarial Network (GAN)

A GAN model has two subnetworks, one for the generator and one for the discrimina-
tor. The generator’s goal is to create synthetic data that looks like actual data, whereas the
discriminator’s goal is to tell the difference between synthetic and natural data. As a result,
the generator and discriminator complement each other [5,27].

Furthermore, GANs are a trendy study area at present. They are being utilized to
augment data in attack detection, which helps alleviate the problem of IDS dataset scarcity.
GANs, on the other hand, are adversarial learning algorithms that can improve model
detection accuracy by including adversarial samples in the training set.

A comprehensive survey of supervised and unsupervised learning techniques used in
IDS can also be found in [5].

4. Adversarial Machine Learning

In AML, an opponent tries to trick the system into selecting the incorrect course of
action. In other words, it causes the ML model to misclassify the data, producing inaccurate
results. The adversarial sample is a critical element of an adversarial attack. An input to an
ML model that has been altered constitutes an adversarial sample. An adversarial sample
is a single data point that, for a given dataset containing attributes x and a label y, leads a
classifier to predict a different label on x’ from y even if x’ is almost identical to x. One of the
various optimization techniques referred to as “adversarial attack techniques” is used to
produce adversarial samples. To create adversarial samples, an optimization problem must
be solved to identify the minimal perturbation that maximizes loss for the neural network.

The adversary’s optimization objective is to calculate a perturbation with a tiny norm
that would change the classifier’s output.

Where the disturbance is δ [22].
Furthermore, the whole process of AML and the adversaries’ samples are illustrated

in Figure 3.
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This paper covers AML in two components: the adversarial game-theoretic and
adversarial threat models. The adversarial threat model is detailed in three components:
adversaries’ capabilities, adversaries’ challenges, and potential threats, as demonstrated in
Figure 4.
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4.1. Adversarial Game-Theoretic

Adversarial learning is a type of ML in which two entities, the learner and the adver-
sary, try to develop a prediction mechanism for data relevant to a specific problem but with
various goals. The goal of learning the prediction mechanism is for the learner to predict or
classify the data accurately. On the other hand, the adversary’s goal is to force the learner
to make inaccurate predictions about inputs in the future [19,28].

Game theory is an attractive technique for adversarial learning because it allows the
mathematical representation of the behavior of the learner and the adversary in terms of
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defensive and attack methods, as well as figuring out how to reduce the learner’s loss from
adversarial examples [28].

In general, the exciting objective of this game theory is to figure out how to achieve
equilibrium between the two players (classifier and adversarial). To put it another way,
how can we keep the adversary from influencing the classification? As a result, the fight
between opponents and ML is never-ending, similar to an ‘armed race’ [20].

In contrast, the learner in this work, for example, is an IDS-based ML classifier that
classifies traffic as “benign” or “malicious.” On the other hand, the attacker creates adver-
sarial samples to influence the IDS’s accuracy, allowing it to misinterpret benign traffic as
malicious and vice versa. Moreover, AML, based on a game theory perspective, is divided
into two categories: simultaneous and sequential games.

In the simultaneous game, each player selects his or her approach without knowing
what the other player seems to be doing. In the other game, one player takes on the role of
leader and decides on a plan before the other players, who then play optimally against the
leader’s approach. In summary, the attacker will know what affects the model most based
on recognizing the model first, i.e., manipulating the features. This type can be divided
into Stackelberg games, where the adversary acts as a leader. In this game, the classifier is
the follower; for example, the IDS classifier will follow the leader, which is the adversary.
The classifier (follower) attempts to discover the adversary features to enhance the ability
to discover the adversarial methods.

In addition to Stackelberg games, the other category is a learner as a leader. In this
game, the adversary is the follower; for example, in the ML-based IDS, the adversary will
follow the IDS classifier to discover its strategies to craft a suitable adversarial sample that
could affect the ML-based IDS model.

In the Sequential game theory, the attacker attempts to learn about the model before
crafting his attacks, which is an analogy to a white-box attack since it is based on the
attacker’s knowledge of the model [28].

4.2. Adversarial Threat Model
4.2.1. Adversary Capabilities

If an attacker has direct or physical access to the defense system, any cybersecurity
protection can ultimately be defeated [29]. Thus, five particular things are under the
attacker’s control to implement adversarial attacks against the ML/DL model [30]:

Training Data:
It denotes the availability of the dataset used to train the ML models. It can be

read-only, write-only, or completely inaccessible.
Feature Set:
It seeks to understand the features of the ML models used to carry out its detection. It

might take the shape of complete, limited, or no knowledge.
Moreover, it is worth noting that the size of an ML model’s feature set can be abused

as an attack surface. The fact that an enemy can alter any feature analyzed by a model is a
significant challenge [9].

The authors of [31] pointed out that large feature sets have more features, giving an
adversary more opportunities to manipulate them. As a result, larger feature sets may be
perturbed more quickly than smaller feature sets, which have fewer modifiable features
and require more perturbation.

Detection Model:
The trained ML model included in the IDS and utilized to carry out the detection was

described in detail. There may be zero, some, or all of this knowledge.
However, the detection model (ML-NIDS) demands high administrative rights. In

other words, it can be allowed for a small number of carefully chosen devices [32]. Therefore,
assuming that an infected host will grant the attacker access to the NIDS that holds its
detection model is unreasonable [10,29]. Therefore, it is difficult for an attacker to access
the detection models.
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Oracle:
This component indicates the potential for receiving feedback from an attacker’s input

to the ML output. This input may be small, limitless, or nonexistent.
Depth Manipulation:
It represents adversary manipulation that may change the traffic volume or one or

more features in the examined feature space.
As a result, these capabilities clarify that implementing the black-box attack is within

reach. It is expected that it will not have the same impact as the white-box attack. Indeed, it
is considered a weak attack [33].

4.2.2. Adversaries Challenges

The authors of [34] mentioned three challenges faced by creating adversarial instances:

a. Generalizable Method

Some adversarial attacks are only suited for specific ML or DL models, which means
they do not fit other models.

b. Regulating the Size of the Perturbation

The adversary’s size should not be too small or too large since this would impact their
actual purpose.

c. Maintaining Adversarial Stability in Real-World Systems

Certain adversarial instances cannot be transformed, such as blurring.

4.2.3. Potential Threats

a. Security Threats

The following security threats in ML can be classified as adversarial attacks based on
their intent to attack the ML/DL model [21,35]:

b. Influence Attack

There are two sorts of influence attacks: (1) causative, which seeks to gain control over
training data, and (2) exploratory, which exploits the ML model’s misclassification without
interfering with the model’s training.

c. Adversaries’ Goals in Network Security

In this situation, the CIA triad and privacy were used because they are more appropri-
ate for hostile categorization of the enemy’s aims in the network security sector [22].

i. Confidentiality

This attack aims to acquire confidential information shared by two parties, A and B,
by intercepting communication between them. This occurs in the context of AML, in which
network security tasks are performed using ML algorithms.

ii. Integrity

This attack aims to affect the ML model and lead it to misclassification by implement-
ing malicious activities without interfering with regular system functions, but the attacker
chooses the model’s output, increasing the false-negative rate. This includes a poisoning
attack that affects the training data.

iii. Availability

During operations, the adversary compromises the system’s functioning to deny
service to users. One method is to increase the misclassification or dramatically alter the
model’s output to decrease its performance and cause it to crash, increasing the false-
positive rate.
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iv. Privacy

The adversary attempts to acquire sensitive user data and essential knowledge about
the model architecture from the ML model. For example, equation-solving attacks [36]
may be used against cloud services that offer ML through APIs and models such as
multilayer perceptrons, binary logistic regression, and multiclass logistic regression. The
attacker should be able to learn about the model and its architecture as a result of these
attempts. Moreover, privacy attacks can be categorized as “model inversion attacks”
and “membership inference attacks.” Furthermore, inversion attacks are divided into two
categories. The first attack uses the person’s unique label generated by a facial recognition
system to rebuild a face image. The second assault can obtain the victim’s identity by
extracting a clean image from a blurred image by attacking the system [37,38].

The membership inference attack has access to the model as a black-box attack (this
attack will be presented in the following section). It is determined only if a data point is
part of the training data for a learning model. Furthermore, in [39], the authors were able
to create membership inference attacks against the Google prediction API and Amazon ML
to identify whether a data point belonged to the training set.

d. Attack Specificity

An attack’s specificity may be described in two ways. First: targeted assault, this attack
is aimed at a single input sample or a group of samples, and an adversary attempts to
impersonate an authenticated person in a facial recognition/biometric system [40]. Second:
not-targeted attacks, the ML model in this attack fails randomly. Additionally, nontargeted
assaults are more straightforward to execute than targeted attacks because they offer more
options and room to reroute the output [35]. Moreover, Figure 5 clarifies a categorization of
the potential threats against ML.
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e. Adversarial Attacks

Attacks based on the Level of Knowledge
Adversarial samples can be created using a variety of approaches. These approaches

vary in complexity, speed of creation, and performance. Manual perturbation of the in-
put data points is a crude method of creating such samples. On the other hand, manual
perturbations of massive datasets are time-consuming to create and may be less pre-
cise. Automatically assessing and finding characteristics that best differentiate between
target values is one of the more complex ways. These characteristics are discretely dis-
turbed to reflect values comparable to those representing target values different from
their own [28]. Moreover, adversaries may fully understand the ML system or have a
limited understanding.

i. White-Box Attack

This is frequently the case when the ML model is open source, and everyone has
access. Thus, in this attack, there is a thorough understanding of the network architecture
and the parameters that resulted from training. Furthermore, four of the most well-known
white-box assaults for autonomously creating perturbed samples are [37]:

• Fast Gradient Sign Method (FGSM)

The fast gradient sign method (FGSM) was proposed by [41] as a fast method for
producing adversarial samples. At each pixel, they perform a one-step gradient update
in the direction of the gradient sign. However, this attack includes changing the value of
each feature in the input concerning the neural networks. Its focus is on rapidly generating
adversarial samples; therefore, it is not regarded as a powerful assault [42].

• Jacobian-Based Saliency Map Attack (JSMA)

The authors in [43] devised a Jacobian-based saliency map attack (JSMA), which is an
excellent saliency adversarial map under L0 distance. The most influential characteristics
are used when modest input variances cause substantial output changes.

• CW Attack

Carlini and Wagner [40] devised a tailored approach to avoid defensive distillation.
Most hostile detection defenses are vulnerable to CW attacks. The details of this attack can
be found in [37,44].

• DeepFool

Moosavi-Dezfooli suggested DeepFool in [45] to discover the shortest distance between
the original input and the judgment boundary of adversarial cases.

• Basic Iterative Method (BIM)

This method is responsible for carrying out gradient calculations repeatedly in small
steps; it expands the FGSM. To prevent significant changes in traffic characteristics, the
value of the perturbation is trimmed [46].

Furthermore, an experimental study presented these methods utilized in crafting
adversaries in detail; it can be found in [47]. Generally, when deciding on an adversarial
attack, the authors in [48] stated there is a trade-off. JSMA, for example, uses more comput-
ing resources than FGSM but alters fewer features. In addition, DeepFool-based techniques
can be considered potent adversaries [49].

ii. Black-Box Attack

In this attack, assume no prior knowledge of the paradigm and analyze the paradigm’s
vulnerability using information from the settings or previous inputs.

Furthermore, two ways are utilized to learn more about the classification algorithm.
Firstly, the attacker might alter the malicious samples several times until they are misclas-
sified to identify the model’s parameters to differentiate between malware and benign
samples. The attacker can also create a substitute model of the detection system and
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then use the transferability aspect of ML to create adversarial samples that fool both the
substitute classifier and the actual detector [30,50].

Furthermore, the authors in [51] implement a black box attack against an ML model by
developing a different model to take the place of the target ML model. Thus, the substitute
model crafts adversarial samples based on understanding the substitute model and the
migration of adversarial samples. Moreover, black-box attacks include [52,53]:

• Zeroth-Order Optimization (ZOO)

ZOO does not compute the gradient directly. Instead, ZOO used the symmetric
difference quotient approach to estimate the gradient, which resulted in a higher computing
cost. To estimate the gradient, knowledge of the structure of the DNN network is not
necessary [37].

• OnePixel

This attack deceives a DNN without understanding its network topology by modifying
the value of only one pixel of a clear picture. DNN is vulnerable to very-low-dimension
attacks with minimal information [37].

iii. Gray-Box Attack

To grow from the black box to the white box, the adversary undergoes an iterative
learning process that uses inference processes to gather additional understanding of the
model. Thus, it may have partial knowledge of the model.

When knowledge is restricted, such as in gray-box and black-box scenarios, privacy
attacks might be performed to learn more about the targeted ML classifier [54]. Figure 6
demonstrates adversarial attacks that depend on the level of knowledge.
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f. Evasion vs. Poisoning Attacks

• Evasion Attack

Avoid the system by injecting adversarial samples, which do not affect the training
data [17]. Thus, the objective is to misclassify malware samples as benign while the model
operates [30,55]. Furthermore, evasion attacks can be classified as (1) error-generic evasion
attacks, in which the attacker is interested in deceiving classification regardless of what the
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classifier predicts as the output class. (2) error-specific evasion attacks; the attacker seeks to
deceive classification but misclassifies the adversarial samples as a specific class [54].

• Poisoning Attack

In cybersecurity, adversarial assaults are created using a thorough grasp of computer
systems and their security rules. One of the six types of attacks against intrusion detection
systems is poisoning [56]. Thus, in this attack, the enemy seeks to contaminate the training
data by introducing precisely planned samples, ultimately jeopardizing the learning pro-
cess [17]. Furthermore, poisoning attacks can be classified as (1) error-generic poisoning
attacks, in which the attacker attempts to cause a denial of service by causing as many
classification errors as possible. (2) Error-specific poisoning attacks: in this situation, the
attacker’s goal is to produce certain misclassifications. Figure 7 illustrates these two attacks
and their ways of affecting ML [54].
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5. Machine Learning Adversaries against IDS

Accordingly, we concluded that ML could also be fooled, necessitating some protection
mechanisms. Thus, the research on AML is divided into two categories. One category is
the continuous development of new attacks to counter existing ML algorithms and systems.
On the other side, the second category strives to dramatically increase ML techniques’
ability to withstand adversarial attacks. Therefore, this section focuses on the first category.
Thus, related works on adversarial attacks against IDS are presented in this section. In
addition, we discuss the various types of perturbations and how they affect IDS.
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5.1. White-Box Attacks against IDS
5.1.1. A White-Box Attack against MLP

In [14], the authors presented an application of an evasion attack in a white-box setting
by using a Jacobian-based saliency map attack (JSMA) against an MLP (multilayer percep-
tron) model, which is considered an IDS-ML by using two different datasets: CICIDS [57]
and TRAbID [58] to classify network traffic. Furthermore, the adversary creates hostile
samples with minor differences from the actual testing samples to deceive the MLP model
during testing and to prove that the attackers can exploit the vulnerabilities to escape
intrusion detection systems and misclassification. Moreover, the MLP model achieved an
accuracy of almost 99.5% and 99.8% in detecting malware intrusions. Despite this success,
the precision was down by about 22.52% and 29.87% for CICIDS and TRAbID, respectively,
after applying an evasion attack.

5.1.2. A White-Box Attack against DNN

The research in [59] crafted adversarial attacks against DNN-based intrusion detection
systems to evaluate the robustness of the DNN against these attacks. Furthermore, the
authors used SDL-KDD datasets containing standard and Five-categorized attack samples.
Moreover, comparing the DNN performance in classification with SVM resulted in similar
performances. As a result, the authors concluded that the attacks designed by FGSM and
projected gradient descent (PGD) could notably affect the DNN model.

5.1.3. A White-Box Attack against IDS in Industrial Controlling Systems (ICS)

The authors of [60] presented experimental research about adversarial attacks against
IDS in industrial control systems (ICS). First, they crafted adversarial samples by using a
Jacobian-based saliency map. Second, they evaluated the IDS (Random Forest, J48) after
exposure to these adversarial samples. Finally, they suggested some solutions for enhancing
the robustness of IDSs against adversarial attacks in the practical module of adversarial
attacks against IDS methods. Furthermore, the authors’ dataset used in this research was
initiated based on a power system.

Additionally, this attack was crafted by insiders, for instance, administrators. As a
result, the attacker was already aware of the classifier system. According to the authors,
the random forest and J48 performance had decreased. In addition, the J48 achieved a
lower level of robustness than the random forest model, which achieved a high level of
robustness in facing these adversarial attacks. The authors applied these adversarial attacks
on two IDSs, which may not affect other MLs. The authors recommend that these attacks
be used on other IDS-ML systems.

5.1.4. Monte Carlo (MC)

Researchers in [11] simulated a white-box assault named a Monte Carlo (MC) simu-
lation for the random generation of adversarial samples and compared their samples to
several machine-learning models to clarify performance across a wide range of platforms
and detect the vulnerability in NIDS, which assists the organizations in protecting their net-
works. Moreover, this research used three adversarial attack methods, which are: particle
swarm optimization (PSO), genetic algorithm (GA), and generative adversarial network
(GAN). In addition, the researchers used the NSL-KDD and UNSW-NB15 datasets for
evaluation. Then, they confirmed that these two techniques could deceive 11 ML models.
Based on their findings, the MLP model has the best accuracy under adversarial attacks
with an 83.27% classification rate, followed by the BAG at 80.20% and the LDA at 79.68%
with the NSL-KDD dataset. In particular, attackers with knowledge of a target network
NIDS may use the most efficient perturbation process to attack that network.
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5.2. Black-Box Attacks against IDS
5.2.1. FGSM, PGD, and CW Attacks against GAN

The research in [61] presented the contribution of generated adversarial network
(GAN) attacks against black-box IDS. GAN’s main contribution is misclassifying between
actual and adversarial samples. Furthermore, this research compared the impact of the
GAN attack with the fast gradient sign method (FGSM), project gradient descent (PGD),
and the CW attack (CW). According to the authors, a GAN attack achieved a high rate of
compromise and misclassification on IDS. Moreover, they evaluated the research using the
NSL-KDD [62] dataset. Moreover, the experiments resulted in a higher rate of GAN attacks:
about 87.18% against NB compared to other attack algorithms.

5.2.2. Deceiving GAN by Using FSGM

A research paper [63] proposed crafting adversarial attacks to deceive network in-
trusion detection systems. They trained the GAN classifier and made it robust against
adversarial attacks. This research used GAN for two reasons. First, to generate adversarial
samples. Second, to train the neural network and improve its performance by increasing
accuracy.

Furthermore, the GAN discriminator was evaluated for distinguishing the samples
generated from the generator and classifying them as “attack” or “non-attack.” Then,
GAN was deceived by using the fast-sign gradient method (FSGM). As a result, the GAN
classifier had been deceived by adversarial attacks and misclassified the “attack” samples
as “non-attack.” As a limitation, the authors did not mention how to address these attacks
and defend against them.

5.2.3. A Black-Box Attack Using GAN

The authors in [64] crafted black-box attacks using GAN to improve the performance
of IDS in detecting adversarial attacks. This experimental research used the KDD99 dataset.
Furthermore, they trained the IDS models to detect all kinds of attacks by using GAN since
IDSs have difficulty facing new attacks. Moreover, they compared the IDS’s performance
before the attacks, during the attacks, and after the GAN training. As a result, the GAN
training increased the performance of the IDS. As a limitation, this GAN training worked
only for IDSs and did not evolve for other networks.

5.2.4. IDSGAN

Researchers in [65] devised a black-box attack against an IDS to evade detection. The
model’s objective is to provide malicious feature records of the attack traffic that can trick
and evade defensive system detection and, ultimately, direct the evasion assault in real
networks. The IDSGAN evaluation demonstrated its effectiveness in producing adversarial
harmful traffic records of various attacks, effectively lowering the detection rates of various
IDS models to near zero.

5.2.5. DIGFuPAS

The DIGFuPAS module was presented in [66] that crafted adversarial samples using a
Wasserstein GAN (WGAN) attack to deceive an IDS in SDN (software-defined networks)
in a black-box manner. In addition, they compared nine ML/DL algorithms using two
datasets: NSL-KDD and CICIDS-2018. If the detection capability of IDS in SDN deterio-
rates, they propose adding DIGFuPAS. More specifically, DIGFuPAS-generated assaults
were used to repeatedly train the IDS to tackle new threats in SDN-enabled networks
preemptively and to evaluate the resilience of the IDS against altered attack types. DIG-
FuPAS might easily fool the IDS without revealing the classification models’ information,
according to this experimental research.
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5.2.6. Anti-Intrusion Detection AutoEncoder (AIDAE)

A research work [67] presented a novel scheme named anti-intrusion detection autoen-
coder (AIDAE) for adversarial features to deceive an IDS by using GAN. This experimental
research used three datasets: NSL-KDD, UNSW-NB15, and CICIDS-2017. Furthermore,
this research evaluated the performance of the IDS facing adversarial attacks and enhanced
its robustness. According to the authors, the AIDAE model crafted adversarial attacks
that evaded IDSs. Furthermore, the authors did not mention a defense method against
this attack.

5.2.7. DDoS Attack by Using GAN

To highlight the IDS vulnerabilities, the authors of [68] devised a DDoS attack using
GAN to fool the IDS and determine the robustness of the IDS in detecting DDoS attacks. Ad-
ditionally, they improved the training of the IDS for defense. Thus, the authors conducted
their experiment in three stages. First, they deceived the black-box IDS by generating
adversarial data. Then, they trained the IDS with the adversarial data. Finally, they created
adversarial data in order to deceive the IDS.

Moreover, this research was evaluated using the CICIDS2017 dataset [57]. According
to the experiment results, transmitting attack data without being detected by an IDS was
quite successful. As a limitation, it must be used in various attacks to fool any IDS.

Table 2 demonstrates the previous studies in nine columns: reference, year, adversarial
generating method, objectives, (ML/DL) technique, dataset, evaluation metrics, limitations,
and results. Moreover, most of these studies focused on applying GAN to create some
adversarial attacks against an IDS, then evaluating the classification accuracy of the IDS in
detecting cyberattacks. Additionally, almost all these works used the known evaluation
metrics in an IDS, which are accuracy (ACC), precision rate (PR), recall rate (RR), and
F1-score. These studies provided a decent overview of the subject by describing various
well-known adversarial attacks and their effectiveness against an IDS.
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Table 2. Summary of Adversarial attacks against IDS.

Ref. year Adversarial
Generating Method Objectives (ML/DL) Technique Dataset Evaluation Metrics Limitations Results

[67] 2019 AIDAE

It evaluated the
performance of the

IDS facing adversarial
attacks and enhanced

its robustness.

- Logistic regression (LR).
- K-nearest neighbor.
- Decision tree.
- Random forest.

- NSL-KDD [62]
- UNSW-NB15
- CICIDS2017

- Detection
rate (DR).

- Evasion
increase
rate (EIR).

The authors did
not mention a

defense method
against this attack.

The AIDAE model
crafted adversarial

attacks that evade IDSs.

[64] 2019 GAN

It made the
performance of the IDS

more robust in detecting
adversarial attacks.

- Logistic regression (LR).
- Support vector

machine (SVM).
- K-nearest

neighbor (KNN).
- Naïve Bayes (NB).
- Random forest (RF).
- Decision trees (Dt).
- Gradient boosting (GB).

- KDD99

- Accuracy.
- Precision.
- Recall.
- F1 score.

This GAN training
worked only for IDSs
and did not evolve
for other networks.

The GAN training
increased the

performance of IDSs.

[63] 2020 FSGM

Training the GAN
classifier and making it

robust against
adversarial attacks.

- GAN

- BigData 2019 Cup:
Suspicious Network
Event Recognition
challenge [69].

- Precision.
- Recall.
- F1 score.

The authors did not
mention how to

address and defend
against these attacks.

The GAN classifier had
been deceived by

adversarial attacks and
misclassified the “attack”
samples as “non-attack.”

[14] 2020
Jacobian-based
saliency map

attack (JSMA).

It proved that the
attackers could exploit
the vulnerabilities to
escape from intrusion

detection systems.

- MLP - CICIDS2017 [57]
- TRAbID [58]

- Precision.
- Recall.
- F1 score.

There were no
experiments on

defense methods
implemented by
the researchers.

The accuracy of the IDS
classifier dropped to

22.52% and 29.87% for
CICIDS [57] and TRAbID

[58] datasets.

[68] 2020 GAN To highlight the
IDS vulnerabilities.

- Decision tree (DT).
- Random forest (RF).
- Naive Bayes (NB).
- Logistic regression (LR).

- CICIDS2017 [57]
- Precision.
- Recall.
- F1 score.

It is required to be
used in a variety of
attacks in order to

fool any IDS.

Transmitting attack
data without being
detected by the IDS

was quite successful.

[59] 2020
- FGSM
- BGD

Evaluating the
robustness of
DNN against

adversarial attacks.

- DNN - SDL-KDD [62] - Accuracy
(ACC).

It lacked extract
comprehensive

information.

The attacks could notably
affect the DNN model.
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Table 2. Cont.

Ref. year Adversarial
Generating Method Objectives (ML/DL) Technique Dataset Evaluation Metrics Limitations Results

[11] 2021
- PSO.
- GA.
- GAN.

Detecting the
vulnerability in

NIDS which
assists organizations

in protecting
their networks.

- NIDS. - -NSL-KDD [62]
- -UNSW-NB15

- Accuracy
(ACC).

In the NIDS
scenarios, it was

unclear why some
were more resilient

than others.

The MLP model
had the best accuracy

under adversarial
attacks with an 83.27%

classification rate.

[61] 2021 -GAN.

Proving that using GAN
to attack IDS can achieve

a higher rate of
compromission and

misclassification.

- Support vector
machine (SVM).

- Decision tree (DT).
- Random forest (RF).
- Naive Bayes (NB).
- Deep neural

network (DNN).

- -NSL-KDD [62]

- Detection
Accuracy.

- Attack
success Rate.

- Evade
increase rate.

It lacked defense
mechanisms.

The experiments resulted
in a higher rate of GAN
attacks: about 87.18%.

[66] 2021 -DIGFuPAS

Evaluating the
resilience of the IDS

against altered
attack types.

- Support vector
machine (SVM)

- Naive Bayes (NB)
- Multilayer

perceptron (MLP)
- 50 logistic

regression (LR)
- Decision tree (DT)
- Random forest (RF)
- K-nearest neighbor

(KNN)
- Convolutional neural

networks (CNN)
- Recurrent neural

networks (RNN)

- NSL-KDD
- CICIDS2018

- Detection
rate (DR).

- Evasion
increase
rate (EIR).

The IDS robustness
issues were

not addressed.

DIGFuPAS might
easily fool the IDS
without revealing
the classification

models’ information,
according to this

experimental research.

[60] 2021 (JSMA)

Presenting the
practical module of
adversarial attacks

against IDS methods.

- Random forest (RF)
- J48 - Power system.

- Precision
rate (PR).

- Recall
rate (RR).

- F1-score.

The authors applied
these adversarial

attacks on two IDSs,
but it might not
affect other ML.

The random forest
and J48 performance

decreased.
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Table 2. Cont.

Ref. year Adversarial
Generating Method Objectives (ML/DL) Technique Dataset Evaluation Metrics Limitations Results

[65] 2022 GAN

Providing malicious
feature records

of the attack traffic
that can trick and
evade defensive

system detection.

- Support vector
machine (SVM)

- Naive Bayes (NB)
- Multilayer

perceptron (MLP)
- Logistic regression (LR)
- Decision tree (DT)
- Random forest (RF)
- K-nearest

neighbor (KNN)

- NSLKDD

- Detection
rate (DR).

- Evasion
increase
rate (EIR).

_

The assessment of
IDSGAN demonstrated

its efficiency in
producing adversarial
harmful traffic records

of various assaults,
bringing down the

detection rates of various
IDS models to almost 0%.
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6. Benchmark Datasets

This section clarifies the datasets that were frequently used in previous studies. Since
the distribution, quality, quantity, and complexity of dataset training samples impact the
trust and quality of a model, it is essential to think about the dataset on which models
are trained [70]. In virtually all previous studies, the NSL-KDD dataset [62], the UNSW-
NB15 dataset [71], and the CICIDS2017 dataset [57] were used to evaluate IDS models.
Furthermore, NSL-KDD contains 148,517 samples, UNSW-NB15 has 2,540,044 samples,
and CI- CIDS2017 has 2,827,829 samples. Table 3 demonstrates these datasets, including
their features and classes.

Table 3 below demonstrates the IDS’s datasets that contain an imbalanced number
of records in each class. In contrast, this imbalance may impact how the ML-based IDS
model classifies all classes since the model’s accuracy may have reduced after training on
the imbalanced dataset. This restriction might be overcome through adversarial training by
using GANs to increase the number of cyberattacks [72].

Table 3. Datasets used for IDS studies [73–75].

Dataset Features Classes Number of Records

NSL-KDD [62]

- Basic features of
network connections.

- Content-related traffic.
- Time-related traffic.
- Host-based traffic.

- Normal.
- Denial of service (DoS).
- Probe.
- User to root (U2R).
- Remote to local (R2L).

- 77,054
- 53,385
- 14,077
- 3749
- 252

UNSW-NB15 [71]

- Basic features of
network connections.

- Content-related features.
- Time-related features.
- General-purpose features.
- Connection-based features.

- Normal
- Fuzzers
- Analysis
- Backdoors
- DoS
- Exploits
- Generic
- Reconnaissance
- Shellcode
- Worms

- 2,218,761
- 24,246
- 2677
- 2329
- 16,353
- 44,525
- 215,481
- 13,987
- 1511
- 174

CICIDS2017 [57]

- Basic features of
network connections.

- Features of network packets.
- Features of network flow.
- Statistic of network flows.
- Content-related traffic features.
- Features of network sub-flows.
- General-purpose traffic features.

- Normal
- DoS Hulk.
- PortScan.
- DDoS.
- DoS GoldenEye.
- FTP-Patator.
- SSH-Patator.
- DoS slow loris.
- DoS slowhttptest.
- Bot.
- Web attack—brute force.
- Web attack—XSS.
- Infiltration.
- Web attack—SQL

injection.
- Heartbleed.

- 2,359,087
- 231,072
- 158,930
- 41,835
- 10,293
- 7938
- 5897
- 5796
- 5499
- 1966
- 1507
- 652
- 36
- 21
- 11

7. Defense Strategies

Several research papers [14,65,67] have mentioned many types of adversarial attacks
against IDSs. On the one hand, the authors have presented such attacks and their impact
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on IDS-ML, which meets the first category of AML research. On the other hand, some
researchers have mentioned some methods for hardening the ML-based IDS against these
attacks, but there are no experiments on these defenses in the adversarial attacks against the
IDS section. Therefore, this section tackles the second category, which is defense methods.

In general, these studies provided a great perspective on IDS cybersecurity, which is
a critical topic. To sum up, all the studies in the adversarial attacks against IDS section
focused on generating some attacks and then clarifying the impact of adversarial attacks
on IDS accuracy. Thus, this section clarifies the most state-of-the-art defense strategies used
to protect the ML/DL algorithms from adversaries. The defense strategies can be divided
into many primary categories, and here we present some of them in detail [18].

7.1. Changing the Training Procedure and Input Data

Continuously inputting various types of hostile data and undertaking adversarial
training improve the robustness of a deep network [76].

7.1.1. Adversarial Training

The fundamental goal of adversarial training is to increase the regularity and ro-
bustness of a DNN [37]. Moreover, in training, adversarial samples are used, and fresh
adversarial samples are generated at every stage of the process [41,77,78]. More precisely,
the adversarial training that is accomplished on some models can improve the accuracy of
pre-trained models.

The researchers in [79] suggested a solution for AML detection. This paper measured
the performance of intrusion-detecting algorithms after being exposed to four different
attack methods: the fast gradient sign, the primary iterative method, the Carlini and
Wagner attacks, and the projected gradient descent created by the researchers by putting
five different ML classifiers under the test. Then, they implemented a method for detecting
such attacks as a new way of dealing with adversarial attacks on artificial neural networks
(ANN). As a result, this study recalled 0.99 for adversarial attacks using random forest and
the nearest neighbor classifier. Nevertheless, significant reductions in the false positive rate
are critical for the method’s future development.

Moreover, we have listed a few defensive techniques that fall under the adversarial
training scope as follows:

1. ZK-GanDef

The authors in [33] proposed a defense strategy called zero-knowledge adversarial
training defense (ZK-GanDef) to defend against adversarial attacks in neural networks
(NN). Additionally, this approach enhanced the accuracy by 49.17% against adversarial
attacks compared to other attacks.

2. AFR

To assess the resilience of ML-based NIDS, the authors in [80] performed the first com-
prehensive investigation of gray-/black-box traffic-space adversarial assaults. Moreover,
they implemented an attack on NIDS and suggested an adversarial feature reduction (AFR)
method, which reduced the attack’s efficacy by reducing adversarial feature development.
This study also demonstrated the need to consider an attacker’s capacity to mutate traffic.
To sum up, the attackers can affect NIDS even if they do not have a precise understanding of
the characteristics utilized by them. The findings of this experimental research clarified that
the creation of adversarial features could be reduced via adversarial feature development
(AFR). Moreover, the attack achieved a rate of more than 97% in half of the cases, and the
proposed defense technique might successfully minimize such attacks. In addition, AFR
could not prevent attackers from exploiting the vulnerable feature during traffic mutation.
According to the authors, this attack technique was intended to evade NIDS without paying
attention to the payload. Therefore, it was ineffective for systems that use payload-based
detection. Additionally, this attack is now unavailable online.
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3. APE-GAN

A study [81] presented a new idea for defense against eliminating adversarial pertur-
bations in deep neural networks (DNNs) named APE-GAN. Furthermore, there were two
ways to defend against adversaries: first, training the data to strengthen the model, and
second, replacing the learning strategies. Thus, this research focused on training using
GAN, which includes a generator and discriminator. First, they generated adversarial
samples and then used the discriminator to discriminate those samples. The main goal of
this research was to use a trained network to remove the adversarial perturbation before
feeding the processed sample to classification networks. Moreover, the researchers inferred
that the APE-GAN has many applications because it works despite no understanding of
the model on which it is based.

There is no mechanism to prevent the model from generating confident judgments.
Thus, the first defense approach was to enrich the training set with samples altered using
Gaussian noise to diminish the confidence of doubtful regions. Additionally, inserting
random scaling of training photos can lower the severity of assaults, according to [82].

7.1.2. Preprocessing

Carefully planned preprocessing processes were also developed to limit the influence
of adversarial perturbations. In this regard, a study [83] presented feature squeezing by
spatial smoothing or pixel color bit depth reduction. In addition, picture modifications,
such as total variance reduction and image quilting, were revealed to assist in removing
adversarial perturbations, according to [84]. Additionally, in [85], the authors recommended
that adversarial samples be denoised before being fed into a classifier using a GAN.

Furthermore, we have also included a list of defensive tactics that fall under the
preprocessing umbrella as follows:

4. ME-Net

The research in [86] presented a defense technique named matrix estimation (ME-Net)
to deal with the adversarial samples in deep neural networks (DNNs). This was achieved
by taking incomplete or damaged images and eliminating the noise from these images to
eliminate the adversarial examples from the original pictures affecting the classification
performance. Thus, there were two stages for the image before it was processed: first,
arbitrary pixels were discarded from the picture, and then the picture was rebuilt using ME.
According to the authors, the results showed that the ME-Net had made the deep neural
networks more robust against adversarial attacks than other methods.

5. DIPDefend

A research work in [87] presented a defense technique named “deep image prior
driven defense” (DIPDefend) to remove adversarial examples from the image before pass-
ing the image into the classifier. Furthermore, this method was distinct for its adaptability
to different types of attacks. Thus, it examined the internal prior of the image and then
divided it into two steps: robust feature learning and non-robust feature learning. Addi-
tionally, it reconstructed the image by beginning with robust features and then non-robust
features to make them stronger against adversarial attacks. According to the authors, the
DIPDefend strategy yielded better visual results by eliminating adversarial disturbance
while preserving picture information. It is worth noting that the DIPDefend technique can
be applied without pretraining, making it useful in various situations.

6. Stochastic Transformation-based Defenses

The authors in [88] proposed an improved method based on transformation to extract
the features of the clean images. Moreover, they employed two transformation-based
approaches that are already in use: pixel deflection (PD) [89] and the image random resize
and pad (RRP) [90]. Furthermore, they investigated the impact of random image alterations
on clean pictures to understand better how accuracy deteriorates. They trained a unique
classifier to identify distinguishing characteristics in the distributions of softmax outputs of
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converted clean pictures and predict the class label. Additionally, untargeted assaults on
CNN have been studied, and it would be interesting to compare their distribution classifier
approach with targeted attacks.

7.2. Adding an Extra Network

This defense idea utilizes specific external models as network add-ons while identify-
ing samples that have not been shown yet [76].

Researchers in [91] developed a methodology for defending against adversarial as-
saults utilizing universal perturbations. The basic concept behind this strategy is to combine
the original model with a second trained network to create a solution that does not require
adjustment measures and cannot impact the sample.

Detection

Many detection methods have been proposed to detect adversarial attacks. Conse-
quently, in [49], the authors advocated employing a subnetwork as a detector. In contrast,
the authors in [92] used a confidence score to identify antagonistic and out-of-class data. In
addition, to find adversarial samples that differed from the clean picture distributions, the
authors in [93] applied statistical hypothesis testing. In addition, here, we mention a few
defensive techniques that rely on an additional model’s detection as follows:

7. Def-IDS

A study in [94] proposed Def-IDS, which includes two models, multiclass generative
adversarial network (MGAN) and multisource adversarial retraining (MAT). It is a defense
strategy against known and unknown adversarial attacks against NIDS to enhance the
robustness of NIDS accuracy through training. Moreover, they used CSE-CIC-IDS2018
datasets to evaluate the effectiveness of the frameworks that had been proposed. Further-
more, this research used four methods to generate the adversarial attacks: the fast gradient
sign method (FGSM), the basic iterative method (BIM), DeepFool, and the Jacobian-based
saliency map attack (JSMA). The experiments showed that the Def-IDS could increase the
robustness of NIDS by enhancing the accuracy of detecting adversarial attacks.

8. ASD

The research outcome in [95] presented the adversarial sample detector (ASD) module,
which is considered a defense algorithm based on the bidirectional generative adversarial
network (BiGAN) to classify the adversarial samples of NIDS-ML. It successfully reduced
adversarial attacks and influenced NIDS performance. Moreover, the researchers used
attack methods such as the fast gradient sign method (FGSM), projected gradient descent
(PGD), and momentum iterative–fast gradient sign method (MI- FGSM). Furthermore, the
generative adversarial network (GAN) framework and NSL-KDD dataset were used for
evaluation. As a result, ASD discovered the adversarial samples before the samples were
input into the NIDS.

Additionally, the accuracy improved by 26.46% in the PGD adversarial environment
and by 11.85% in the FGSM adversarial environment. However, the influence of ASD on
MI-FGSM is not apparent, necessitating more research. Notwithstanding, by using ASD,
normal data were stripped of adversarial samples, and the remaining normal samples were
fed into the classification model.

9. APE-GAN++

According to the authors in [96], the defense method that had been presented in [81]
had some shortcomings, which were: (1) its training procedure was insecure and suffered
from a vanishing gradient issue; (2) it could boost its efficiency even further. Thus, they
proposed an improved method named APE-GAN++. In comparison to the APE-GAN, the
APE-GAN++ has a generator, a discriminator, and a recently added third-party classifier in
its design. As a result, APE-GAN++ achieved a better performance than other defenses,
including APE-GAN.
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10. Dropout

Most adversarial attack implementations rely on knowledge of the model’s architec-
ture. Consequently, dropout is a random process that perturbs the model’s architecture [97].
The researchers in [98] used dropout with neural networks. As a result, it makes neural
networks resistant to various inputs [99]. Dropout can, thus, be used to detect adversarial
samples. Adversarial samples tend to be transcribed as wrong or garbled sentences when
inference is performed with dropout turned on. This study focused on the ability to apply
CW attacks in this field as well as the ability to detect them. Additionally, this defense can
detect adversarial examples effectively [97].

11. Adversary Detection Network

The research in [49] suggested training a binary detector network to distinguish be-
tween samples from the original dataset and adversarial instances. Furthermore, DeepFool
adversary-specific detectors perform admirably compared with all other adversarial at-
tacks. As a result, transferability is not perfect for the detectors. It typically works between
comparable opponents and from a stronger to a weaker adversary.

12. GAN-Based Defense

The study [44] presented a model of a defensive approach to improve the IDS robust-
ness against the CW attack. This defense is based on GAN; thus, it aims to classify the data
that the IDS receives as an attack or normal. Furthermore, they used the CSE-CIC-IDS2018
dataset to evaluate their model. As a result, the IDS’s performance and accuracy improved.

Figure 8 illustrates the defense strategies presented in this paper. Moreover, Table 4
illustrates a summary of these strategies.
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Table 4. Summary of Defense Methods.

Year Method Description Result

[49] 2017 Adversary Detection
Network

The authors suggested training a binary
detector network to distinguish between

samples from the original dataset and
adversarial instances.

DeepFool adversary-specific
detectors performed admirably

compared to all other
adversarial attacks.

[81] 2017 APE-GAN

This method was based on training the
model to remove the adversarial

perturbation before feeding the processed
sample to classification networks. Then,
they generated adversarial samples and
used the discriminator to discriminate

those samples.

The researchers might infer that
the APE-GAN has a wide range of

applications because it works
despite no understanding of the

model on which it is based.

[98] 2017 Dropout

Dropout is a random process that
perturbs the model’s architecture [98].

Furthermore, this study focused on the
ability to apply CW attacks in this field as

well as the ability to detect them.

This defense detected adversarial
examples effectively [97].

[86] 2019 ME-Net

This method takes incomplete or
damaged images and eliminates noise

from these images. Furthermore, there are
two stages for the image before being
processed; first, arbitrary pixels are

discarded from the picture, and then the
picture is rebuilt using ME.

The ME-Net made deep neural
networks more robust against

adversarial attacks than
other methods.

[87] 2020 Stochastic transformation-
based defenses

In the first place, the researchers
investigated the impact of random image

alterations on clean pictures to
understand better how accuracy

deteriorates. They trained a unique
classifier to identify distinguishing

characteristics in the distributions of
softmax outputs of converted clean
pictures and predict the class label.

Untargeted assaults on CNN have
been studied, and it would be
interesting to compare their

distribution classifier approach
with targeted attacks.

[80] 2021 AFR

This method implemented an attack on
NIDS and then suggested adversarial

feature reduction (AFR), which decreased
the attack’s efficacy by reducing

adversarial feature development.

The implemented attack achieved
more than a 97% rate in half cases,

and the proposed defense
technique (AFR) successfully

minimized such attacks.

[87] 2021 DIPDefend

This method examined the internal prior
of the image and then divided them into

two steps: robust feature learning and
non-robust feature learning. It

reconstructed the image by beginning
with a robust feature and then a

non-robust feature to make them stronger
against adversarial attacks.

It can be applied without
pretraining, making it useful in

various situations.

8. Challenges and Future Directions

Generally, the process of creating an adversarial example entails adding the necessary
amount of perturbation to the model’s direction. Thus, the defense strategies section
has presented many studies that can protect the models against adversaries in the two
significant areas of computer vision and IDS by detecting or eliminating the adversaries.
Equally important the following questions: Are these solutions effective in addressing our
problem? Which of these defenses is the best fit for our problem? Thus, in light of this, this
section lists some of the gaps and challenges in this domain.
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8.1. Key Research Challenges and Gaps

• In adversarial situations, the competition between attacks and defenses becomes an
“arms race”: suggested defenses against one assault were later shown to be vulnerable
to another, and vice versa [100,101].

• The adversarial examples have transferability properties, indicating that adversarial
examples created for one model will most likely work for other models [102,103]. This
can be utilized as the basis for various black-box attacks in which a substitute model
generates adversarial instances that are then presented to the target model [9].

• The successful attacks in one circumstance could fail in another; for example, the
attacks that had success in the computer vision domain may fail or have fewer effects
when implemented on IDS [40,104].

• Some defenses demonstrated their ability to repel a particular attack but later fell
victim to a minor modification of the attack [98,105].

• Defenses are sometimes tailored to a specific assault strategy and are less suitable as a
generic defense [34]. For example, the authors in [79] suggested a method to detect
adversarial attacks even though it is not compared to other techniques. Because it is
considered a relatively new topic, it is not easy to evaluate this research. However, in
our opinion, it is considered helpful research since it covers a new topic with solutions
based on experiments and presents the results.

• Each domain has unique features; therefore, it is more challenging to spot disturbances
when modifications are performed on the network traffic data [30].

• A critical component of defensive tactics is their ability to withstand all attacks. Never-
theless, most defense techniques are ineffective against black-box attacks [95] or need
more experimentation, as in [44]. In addition, some of the strategies are ineffective,
such as adversarial training, which has flaws and may be evaded [77].

• The research [9] praised the dropout as a perfect defense technique. However, even
with this defense, the adversary can defeat it if they know the dropout rate and try to
break it by training with dropouts but with a meager success rate [97].

• The AML term is widespread in image classification, but it is relatively new and
shallow in the cybersecurity area, especially in IDSs. Thus, some defense methods
ensured their effectiveness in protecting IDS specifically. On the other hand, the
rest had successfully applied defense strategies in the computer vision field, such as
APE-GAN++.

• In detection strategies, in the worst situation, it is possible to attack the detector that
the ML and DL models employ to identify their adversaries [49].

• Some of the defense ideas are repeated, such as using GAN in various research forms,
demonstrating its efficacy to the reader. Unfortunately, using GAN is not always the
best choice; for example, in [48], the authors mentioned that it might lead the model to
misclassification.

• To address white-box attacks, the defender can impede the transferability of adversar-
ial examples. However, a comprehensive defense method could not be used for all
ML/DL applications [35].

• Most studies demonstrated how to improve a model’s accuracy rather than its re-
silience and robustness [44].

• The datasets must reflect current traits because network traffic behavior patterns
change over time. Unfortunately, the majority of publicly accessible IDS datasets lack
modern traffic characteristics. According to the authors in [44], there is a shortcoming
in the IDS’s datasets; thus, the IDS lacks a dataset that can include all types of network
attacks. However, using the GAN-IDS will offer a high volume of attacks in training
since it can generate more attack types. Then, we can use the discriminators to
distinguish new attacks [27]. Furthermore, in [106], the authors also presented research
on handling this shortage.
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8.2. Future Directions

• There is no way to evaluate something without experimentation, but we may draw
some conclusions from the experiment’s owners. These defense strategies, for example,
had been used against white-box attacks, but what about black-box attacks? Thus,
there is a need for techniques to counter the black-box attack in the future. In contrast,
in [103], the authors presented an approach to address transferable adversarial attacks.
We believe it to be a promising defense approach with excellent efficiency against
black-box attacks, although it has been examined using a white-box attack.

• In the future, there will be a demand for a solution that handles all types of adversaries
that affect the robustness of an IDS.

• Various models may necessitate several defenses [9]. Thus, they need to measure their
effectiveness in protecting ML and DL based on IDS.

• Some researchers have stated that their technique may be used in other ML/DL
models or is available online for experimentation. Therefore, we suggest increasing
the effectiveness of the dropout strategy to make it more reliable and suitable for
additional domains such as IDS.

• In this paper, we focus on IDSs; generally, we think that protecting ML/DL-based IDSs
is easier to preserve since it is difficult to deceive IDSs because the features contain
discrete and non-continuous values [107]. Therefore, we believe that enhancing the
GAN defense strategies such as APE-GAN++ will make them more reliable for IDSs,
which will be a valuable technique for handling adversaries in the future. Moreover,
Table 5 demonstrates a comparison between these strategies.

Table 5. Defense Strategies Using GAN.

Ref. Year Defense
Approach Attack Type Dataset ML/DL Model

Can Address
New Types
of Attacks?

Defense Category Result

[32] 2019 ZK-GanDef White-box
- MNIST
- Fashion-MNIST
- CIFAR10

NN Yes

Changing
the training

procedure and
input data

ZK-GanDef enhanced the
accuracy by 49.17%
against adversarial

attacks compared to
other attacks.

[95] 2020 ASD White-box - NSL-KDD DNN Not apparent Adding an
extra network

ASD improved the
accuracy by 26.46% in the

PGD adversarial
environment and 11.85%
in the FGSM adversarial

environment, but the
influence of ASD on some
attacks was not apparent.

[94] 2021 Def-IDS White-box - CSE-CIC-IDS2018 DNN Yes Adding an
extra network

The experiments showed
that the Def-IDS could

increase the robustness of
NIDS by enhancing the
accuracy of detecting
adversarial attacks.

[96] 2021 APE-GAN++ White-box
- MNIST
- CIFAR10 CNN Yes Adding an

extra network

APE-GAN++ achieved an
outstanding performance

than other defenses,
including the APE-GAN.

[44] 2022 GAN-based
defense White-box - CSE-CIC-IDS2018

- DT
- RF
- SVM

Not apparent Adding an
extra network

The IDS performance
improved, and its

accuracy increased.

Despite the threats that face the ML and DL when using them as an engine for IDS,
it is a powerful technique that has served cybersecurity in general and IDSs in particular.
Therefore, this paper highlighted various attacks and defense techniques to improve the
precision of ML-based IDSs and the IDSs’ robustness.

9. Conclusions

In cybersecurity, using ML algorithms takes much attention, especially in intrusion
detection systems (IDS). Therefore, significant research has been conducted to improve
the speed, accuracy, precision, and other essential metrics of ML-based IDS. Moreover,
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adversarial attacks can have a significant impact on ML algorithms. Hence, the ML-based
IDS is vulnerable to adversarial attacks that spark security concerns.

For example, the IDS classification accuracy is affected by identifying a “malicious”
input as “benign” or vice versa. In this situation, the IDS will be unreliable in defense,
posing a severe threat to our networks. Thus, this paper presented a general overview of
the ML methods in IDSs to improve their performance. Furthermore, it clarifies the various
types of adversarial attacks that can affect the IDS based on ML to evaluate its robustness.
In addition, we mentioned the benchmark datasets for IDSs and some state-of-the-art
defense strategies that improved IDS accuracy. Finally, we discussed the open issues facing
implementing defensive methods to improve ML-based IDSs.
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