o~
L]

a .
— “‘J future internet

Article

Optimal Mobility-Aware Wireless Edge Cloud Support for

the Metaverse

Zhaohui Huang * and Vasilis Friderikos

check for
updates

Citation: Huang, Z.; Friderikos, V.
Optimal Mobility-Aware Wireless
Edge Cloud Support for the
Metaverse. Future Internet 2023, 15,
47. https://doi.org/10.3390/
£i15020047

Academic Editor: Yuk-Ming Tang

Received: 20 December 2022
Revised: 23 January 2023
Accepted: 24 January 2023
Published: 26 January 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

Center of Telecommunication Research, King’s College London, London WC2R 2LS, UK
* Correspondence: zhaohui.huang@kcl.ac.uk

Abstract: Mobile-augmented-reality (MAR) applications extended into the metaverse could provide
mixed and immersive experiences by amalgamating the virtual and physical worlds. However,
the consideration of joining MAR and the metaverse requires reliable and high-quality support for
foreground interactions and rich background content from these applications, which intensifies their
consumption of energy, caching and computing resources. To tackle these challenges, a more flexible
request assignment and resource allocation framework with more efficient processing are proposed
in this paper through anchoring decomposed metaverse AR services at different edge nodes and
proactively caching background metaverse region models embedded with target augmented-reality
objects (AROs). Advanced terminals are also considered to further reduce service delays at an
acceptable energy-consumption cost. We, then, propose and solve a joint-optimization problem
which explicitly considers the balance between service delay and energy consumption under the
constraints of perceived user quality in a mobility event. By also explicitly taking into account the
capabilities of user terminals, the proposed optimized scheme is compared to a terminal-oblivious
scheme. According to a wide set of numerical investigations, the proposed scheme has wide-ranging
advantages in service latency and energy efficiency over other nominal baseline schemes which
neglect the capabilities of terminals, user physical mobility, service decomposition and the inherent
multimodality of the metaverse MAR service.

Keywords: metaverse; beyond 5G (B5G); augmented reality; mobility; structural similarity (SSIM);
energy consumption

1. Introduction

Recently, the metaverse, which could be described as an endless virtual world where
users interact with their avatars, has become popular in both academic and commercial
areas [1]. Augmented reality manages to combine digital information with the real world
for real-time presentation, and such experiences can be regarded as a continuum ranging
from assisted reality to mixed reality, according to the level of local presence [2,3]. Mobile
augmented reality (MAR), which further provides artificial perceptual information to
augment the physical world during a mobility event, could be extended and enhanced in
the wireless edge-supported metaverse with today’s available technologies, such as digital
twin and head-mounted display rendering [4,5]. In addition, compared to existing MAR
applications, users could seamlessly mix their experience of the metaverse and physical
world through various metaverse MAR applications, such as massively multiplayer online
video games and virtual concerts [4]. Users equipped with MAR devices can upload
and analyze their environment through AR customization to achieve appropriate AR
objects (AROs) and access the metaverse in mobile edge networks [6]. AR marketing is
regarded as having potential in metaverse, and can be seen as a typical example of a more
forward-looking metaverse AR application because it replaces physical products with
AR holograms and enables direct foreground interactions between the customer and the
digital-marketing application interface in the background environment [2,7]. Rendering
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three-dimensional (3D) AROs with the background virtual environment and updating in
the metaverse consume significant amounts of energy and could be highly demanding in
terms of required caching and computing resources [6,8]. Hence, such applications are
delay- and energy-sensitive and face challenges in ensuring the quality of user experience
and providing reliable and timely interactions with the metaverse [4,6].

Generally speaking, a metaverse scene will, in essence, consist of a background view
as well as many objects in foreground interactions. The background view at a defined
amalgamated virtual and physical location can be deemed as static or slowly changing [6,9].
A typical background scene can be the 3D model of the metaverse, a presentation of a related
background virtual environment based on a certain user viewport [9,10]. Its size can reach
tens of MB and the corresponding complexity of rendering related functionalities measured by
computation load is also large (e.g., 10 CPU cycles/bit) [9,11]. On the other hand, objects (such
as, for example, avatars) in foreground interactions which are embedded in the metaverse
scene change much more frequently; however, they are significantly less complex than the
background scene (e.g., 4 CPU cycles/bit) [8,9]. Howeve, even though those objects are less
complex than the background scene, due to their frequent changes they also require rendering
in a timely manner to avoid a considerable degradation in the quality of user experience.
Thus, in this paper, rendering for both foreground and background are deployed at the edge
clouds (ECs) rather than only at the terminals, to make full use of caching and computing
resources. Notice that uploaded information is focused in foreground interactions, while
background content checking consumes not only computing resources but also a significant
amount of local cache to match and integrate AROs and related models of the metaverse.
Hence, similar to our previous work in [12], the metaverse MAR application could also be
decomposed into computational- and storage-intensive functions, which serve as a chain for
improved assignment and resource allocation.

The general work flow of a metaverse MAR application supported by ECs is shown
in Figure 1. A metaverse region is a fraction of the complete metaverse and is assumed
to be located on a server geographically close to its corresponding service region in the
mobile network (not necessarily running within an EC). The metaverse MAR service could
be triggered by certain behavior including foreground interactions [6,9,13]. Then, content
related to background content, such as, for example, pre-cached 3D models and AROs, are
first searched in the EC cache to check if they are what the user requires. If the target AROs
or model information cannot be found in the cache, then this case is labelled as a “cache
miss” and the request is redirected to the original metaverse region stored in a cloud deeper
in the network. Finally, according to the user’s physical mobility and virtual orientation
extracted from foreground interactions, the matched AROs and model are integrated into a
final frame and transmitted back to the user [6,9]. At the same time, updated information
is also sent to the metaverse region for synchronization. Thus, the user could be aware of
changes caused by other participants if they share the same metaverse region during the
service. Based on the above discussion, it is becoming apparent that the overall quality of
metaverse MAR applications depends on communication delays and the capabilities of the
above-mentioned network entities, which participate in service creation.

Figure 2 further reveals the difference between cases with consideration, or not, of
user mobility with service decomposition to render requirements by metaverse MAR
applications. Clearly, when neglecting user mobility and service decomposition, as shown
in case (a), models, target AROs and metaverse MAR applications are all cached as close
as possible to the user’s initial location. This might leave a heavy burden for the adjacent
server when there are multiple users at the same cell and cause a “hot-spot” area [12].
However, when user mobility and service decomposition are enabled, as shown in case (b),
decomposed functions can spread over ECs between user’s initial location and potential
destination. Hence, the service delivery becomes more flexible and efficient in terms of
assigning requests and allocating network resources. In case (a), although user A only needs
wireless communication in the initial location, it takes two hops after moving to the middle
cell. However, when taking mobility and local resources into consideration, the same user,
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A, in case (b) could experience a shorter delay in the after-mobility event by allowing two
more hops before the mobility event. Hence, in a high-mobility scenario, it might not
always be ideal to allocate requests and services as close as possible to the user’s initial
location. As shown in the figure for users A and B in case (b), the AR contents in the model
might be similar in terms of the viewport of different users. Hence, participating users
should be aware of each other’s updates and could share rendering functions to reduce
the consumed resources. In this paper, we apply structural similarity (SSIM), proposed
by [14], for user perception experience. It is a widely accepted method which measures
the user perception quality of an image by comparing to its original version [14]. Caching
more models and AROs also causes more processing and transmission delays, with energy
consumption [4,6]. Hence, the joint optimization has to accept some potential loss due to
constraints of computing and storage resources.
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Figure 1. The general work flow of metaverse AR applications with delay in each stage (6 EC,
30 requests, weight y is 1, EC Capacity is 14 and total mobility probability is 1).

@ Computation Intensive Function
Storage Intensive Function

1
[] Final Rendered Frames
r=o

Metaverse
(Region)

Figure 2. Cont.



Future Internet 2023, 15, 47

4 0f 20

Metaverse
(Region)

C
Model 2
A @D =

@
Model 1 & 3

Figure 2. Illustrative toy examples of caching by a metaverse MAR application. (a) Traditional

caching without user mobility and service decomposition. (b) Proactive caching with user mobility

and service decomposition.

Figure 3 further reveals the difference among cases which allocate MAR service on
either terminals or ECs. Note that when neglecting the EC support and service decom-
position, the whole MAR application should run on the terminal and could be a heavy
burden; this is shown in case (i). According to [6,15], MAR applications on terminals take
up around 47% of the available power consumption and could also affect the performance
of other (potentially critical) functionalities on the terminal when this service becomes
more complex, such as in the metaverse. In case (ii), the processing time is significantly
reduced through enabling EC support with the cost of an increased transmission delay [16].
Although the terminals are still limited in computing resources and more sensitive to energy
consumption, neglecting their capabilities is not an optimal configuration, especially when
recent technical improvements showcase their computing and caching potential. Noticing
that the foreground interactions are much less complex than background scenes and are
more suitable to terminals, we further consider terminals in the scenario, as shown by case
(iii), and execute only computationally intensive functions. Hereafter, the optimization of
the integration of terminals and ECs becomes the scheme OptimT and is compared to the
previous case, (ii), which neglects the terminals (OptimNT). To maintain a fair comparison
and focus on energy consumption and service latency, the overall energy consumption is
measured explicitly (in Joules) instead of the power, as in [16], and the user perception

quality is accepted as a given boundary.

In this paper, by explicitly considering the terminals, user mobility, service decomposi-
tion and models of metaverse regions with embedded AROs, a joint optimization frame-
work (OptimT) is constructed for the metaverse MAR application in the edge-supported
network. The proposed optimization framework seeks a balance between energy consump-
tion and service delay under a given level of user perception quality. To reveal the influence
of capacity and cost of terminals on the metaverse MAR application, this OptimT scheme is
further compared with another optimized framework (OptimNT) proposed in our previous

work [16], which only focuses on ECs and neglects terminals.
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Figure 3. Illustrative toy examples of different activated nodes in metaverse.
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2. Related Work

Herealfter, a series of closely related works in the area edge/cloud support of metaverse-
type applications over 5G and beyond wireless networks are discussed and compared with
the approach proposed in this paper.

Noticing that, despite their limitations, MAR terminals have witnessed a series of
technical improvements, their joint utilization with ECs for network optimization can
bring significant benefits. In [17], the authors aim to minimize the energy consumption of
multicore smart devices, which are usually applied for AR applications. Through tracking
the response process of an AR application, they manage to measure the terminal’s energy
consumption using Amdahl’s law. Although the law and a similar framework for the
terminal energy consumption are also applied in this paper, we consider a broader use-case
scenario which includes edge servers and a more complex balance between energy and
latency. The work in [18] shares a similar target to this paper, which relates to achieving a
balance between latency and energy consumption under a level of acceptable image quality.
However, ref. [18] brings in local sensors to MAR devices for recognizing and tracking
AROs, so that their scheme can realize selective local visual tracking (optical flow) and
selective image offloading. The object-recognition stage is more focused in [18], with four
AR applications requiring different types of AROs. Without support from ECs, they utilize a
further cloud server as a heavy database for 3D AROs and leave most tasks to the terminals,
whilst cloud offloading is only triggered when confronted with a calibration. However,
in this work, we consider an EC-supported network and compare the difference between
schemes explicitly utilizing the MAR terminals, or not. In [19], the energy efficiency is
optimized under required service latency for MAR in an EC-supported network. Similarly,
the authors consider proactively caching and propose a tradeoff between energy and latency
in terms of cache size. However, their mobile cache and power-management scheme still
focuses the energy consumption on terminals. Clearly, the above-mentioned works do not
explicitly consider user mobility, perception quality, service decomposition and metaverse
application features, like ours.

The problem of efficient resource allocation for supporting metaverse-type applica-
tions is starting to attract significant amount of attention and a plethora of aspects have
already been considered. In [20], the emphasis is placed on the synchronization of Internet-
of-Things services, in which they employ IoT devices to collect real-world data for virtual
service providers. Through calculating maximum awards, users can select the ideal virtual
service provider. Researchers then propose the game framework, which considers such a
reward allocation scheme and general metaverse sensing model [20]. In [21], the authors
also adopt a game theoretical framework by considering tasks offloading between mobile
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devices based on coded distributed computing in a proposed vehicular metaverse envi-
ronment. Another framework, proposed by [22], manages and allocates different types of
metaverse applications so that common resources among them can be shared through a
semi-Markov decision process and an optimal admission-control scheme. The work in [23]
applies a set of proposed resource-optimization schemes in a virtual education metaverse.
More specifically, a stochastic optimal resource-allocation scheme is developed with the
aim of reducing the overall cost incurred by a service provider. Similar to the service
decomposition in this paper, they only upload and cache some parts of the data or services,
to achieve reduced levels of delay and offer better privacy [23]. The work in [5] is closely
related, since, in that paper, not only latency but also energy consumption is considered, as
is the case for our proposed model, which uses a multi-objective optimization approach.
For ultra-reliable and low-latency communication services, researchers bring in digital
twins and deploy a mobility management entity for each access point, to determine proba-
bilities of resource allocation and data offloading [5]. Then, by applying a deep-learning
neuronetwork, the proposed scheme tries to identify a suitable user association and an
optimized resource-allocation scheme for this association. However, in this paper, the core
idea is to decompose the service and allow a flexible allocation across edge clouds by taking
also into account user mobility. The work in [4] considers virtual-reality applications in
the metaverse and regards the service delivery as a series of events in the market, in which
users are buyers and service provides are sellers. Hence, they apply double-dutch auction
to achieve a common price through asynchronous and iterative bidding stages [4]. They
emphasize the quality of user perception experience by structural similarity (SSIM) and
video multi-method assessment fusion. In our proposed framework, we also utilize the
SSIM metric to determine the frame quality after integrating background-scene and AR con-
tents [4]. The work in [4], further, brings in a deep reinforcement-learning-based auctioneer
to reduce the information-exchange cost. While, in this paper, a multi-objective optimiza-
tion approach is adopted, where we aim to balance different objective functions using the
scalarization method, whilst considering the inherent user mobility in an explicit manner.

3. System Model
3.1. Multirendering in Metaverse AR

For a given wireless network topology with the set Ml = {1,2,..., M}, we denote the
available locations, including available edge clouds and terminals. Assuming that each user
makes a single request, the corresponding MAR service requests defined by » € R in the
metaverse region generated by mobile users could be equipped with MAR devices. Request
r emerges from network location f(r). It represents the initial access router, to which this
user is firstly connected. For each request, the user terminal could also be viewed as a valid
location to cache or to process information locally. Thus, we define with j, € M the terminal
sending the request r. The terminals are brought into consideration in the following
formulation. Defining the location with constraint j € M, j # jr could only enable the ECs.
Clearly, for the OptimNT scheme, this works for all locations. However, in the following
formulation for the OptimT scheme, we force the storage-intensive functions to be executed
only on the ECs, while the computing-intensive ones could also be hosted at the end
terminals. During the mobility event, a user could move to different potential destinations
k € K (i.e., changing of the anchoring point). Hereafter, and without loss of generality, we
only accept adjacent access routers as available destinations in the mobility event. A series
of metaverse regions are set on ECs to interact with users. The corresponding metaverse
region serving the user can be found through functions A(f(r)), A(k). As explained earlier,
each metaverse region is pre-deployed on a server close to the mobile network and its
distance to an EC is also predefined. In this paper, as already suggested, a set of AROs is
assumed to be embedded across the different background metaverse region models and is
definedas N = {1,2,...,N}. AsetS, = {1,2,...,S} is defined for the multiple rendering
of the available metaverse region model to each user. Thus, we denote the decision variable
psj for pre-caching a metaverse region model s € Sy at the EC j (j € M, j # j;). The subset
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L;s represents the target AROs required by the user r in the related model s € S, and the
size of each target ARO[ € s is denoted as O;. Lastly, the decision variable /3, is brought
in for proactively caching an ARO required by a request, r. Based on the above, the decision
variables p;; and &}, can be defined as follows

4 1, if rendering the related model s at node j,
pl = . )
0, otherwise.
1, if ARO I required by request r embedded
o= in the model s is cached, ()
0, otherwise.
Furthermore, the additional set of constraints needs to be satisfied,
Z hf’l < 1, VJ S M,] ;é j’r‘/ Vs € Sr, VIl € Lrs (3)
reR
Y. Y By >1,VreR @)
SES; I€Ls
Z psj = B, Vr € R, Vs € Sy, VI € Ly ®)
JEMj#jr
by <Hjp Y psj, VreR, Vs €8y, VI € Ly ©)

JEMj#]r

Constraints in (3) force each ARO to be pre-cached at most once in a related model.
Constraints (4) ensure that a valid request consists of at least one model and an embedded
ARO. Constraints in (5) guarantee that the allocation of an ARO happens in conjunction
with the decision to undertake proactive caching, whilst constraints in (6) further certify that
the rejection of the model’s proactive caching causes any ARO planned to be embedded in
this model to also not be pre-cached. Thus, (5) only accepts an ARO in an pre-cached model
and (6) rejects all related ones when failing to cache a model, which, together, can ensure
the model and corresponding AROs cannot be handled separately during the formulation.

3.2. Wireless Resource Allocation and Channel Model

With B;, we express the bandwidth of the resource block and 7y,; denotes the signal
to interference plus noise ratio (SINR) of the user r at node j. With Prt]f””, we denote the
transmit power of user r at node j, and P; is the transmission power at the base station.
Furthermore, H,; is the channel gain, N; is the noise power and a is the path loss exponent,
whilst d,; is the distance between the user and the base station. Finally, a nominal Rayleigh
fading channel is used to capture the channel between the base stations and the users [24].
More specifically, the channel gain H,; can be written as follows [25],

H,j = \E(Ht’]) @)

where J2 = —1, tand t are random variables following the standard normal distribution.
Based on the above, the SINR 7,; can be expressed as follows [25,26],

2 —
_ Prt]‘mnH’]‘d”/a (8)
Nj + Liem,izj PiHZ,"

riri

Vrj
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The data rate is denoted as ¢ € G and the binary decision variable erg decides whether
to select the data rate g for user r,

©)

re {1, if data rate g is selected for user 7,
e =

0, otherwise.

Noticing that the chosen data rate can also be written as B;log, (1 + 7,;), after choosing
a data rate as gey, for the user, the transmit power Pf}”” can be written as follows,

Nj + Liem,izj PiHEA," 2% 1
H2.4-° ( - ) (10)
rjrj

tran __
P =

sag g
Note that2 %/ = (1 — erg) + €rg2 %/ and should satisfy the following constraint to
ensure that a single data rate is selected per user,

gg}erg = l,Vr eR (11)

3.3. Latency, Energy Consumption and Quality of Perception Experience

Similar to our previous work in [12], the MAR service can be decomposed into
computational-intensive and storage-intensive functionalities and are defined as # and o,
respectively. For these functionalities, their corresponding execution locations are then
denoted as x,; and v,;, respectively [12]. In a mobility event, the user’s moving prob-
ability from the starting location to an allowable destination can be known to mobile
operators through learning from the historical data and, hence, is defined as u¢(,); € [0,1]

({f(r),k} C M). The size of foreground interactions is denoted as F,{f ", the size of pointers
used for matching AROs is denoted as Fy, and the size of the related model s used for
background content checking is F4%k [9,12]. During the matching and background-content
validation process, the target AROs and/or the background content are possibly not pre-
cached in the local cache, and such a case is known as a “cache miss” (otherwise there is
a “cache hit”). A cache miss in the local cache inevitably triggers the redirection of the
request to the metaverse region stored in a core cloud deeper in the network and this extra
cost in latency is defined as the penalty D. After rendering, the model and target AROs
are integrated into a compressed final frame for transmission and its compressed size is
denoted as FJ°.

In this section, a joint optimization scheme is proposed which aims to balance the
service delay and the energy consumption under the constraint of the user perception
quality of the decomposed metaverse AR services in the EC supported network. The cache
hit/miss is expressed by the decision variable z,; and can be written as follows,

1/ if Z Z pS]hil 2 L}’Sr
€Ly SESy (12)

0, otherwise.

er =

The cache capacity of an EC and the cache hit/miss relation can be written as follows,

Yo Y il 01 <O,V EM, j# i (13)

r€RIELs SESy

Z Z h§1+€ < Lrs+u(1 7qrj)
IEN s€S; (14)

VieM,j#j,reR
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where ©; denotes the cache available memory at node j. In (14), to transfer the either-or
constraint (i.e., }jen Yses, 15 < Lys or z,; = 1) into inequality equations, we bring in € as
a small tolerance value, U as a large arbitrary number and 4,; as a new decision variable
satisfying 1 — q,; = z,; [12]. Undoubtedly, increased levels of pro-caching decisions related
to the background models and embedded AROs in a request inevitably brings about an
extra execution burden for the matching function. Taking the above into account, the actual
processing delay of the computational-intensive function can be expressed as follows,

fore
wy Fyy
fj
14

Similarly, the processing delay of the matching and background-content checking
function is assumed to happen only at servers, and can be written as

(15)

rj =

o wQ(FQT + Vel Lses, psjhizol + Yses, FsbraCkpsj)

where wy and w, (cycles/bit) represent the computation load of foreground interaction

(16)

and background matching, f{, is the virtual CPU frequency (cycles/sec), and F, is the size
of uploaded pointers of AROs in foreground interactions [9,12]. When finding the target
AROs during matching, their pointers, included in foreground interactions, should also be
transferred to the metaverse for updating. Finally, the final frame integrating the model
and target AROs are transmitted back to the user. Hence, the overall transmission delay for
each user after processing using the functions can be written as

Y X (G + Ciaw)psit
s€Sy jEM,j#jy

(Cagrenfm + X Cagrttsrr)
keK

(17)

Note that the product of decision variables, psih};, psjy,j and ps;hy,y,;, creates a non-
linearity. Observe that ps;h}; and ps;y,; appear directly while the product ps;h;,y,; appears
in W;;y,j, which represents the execution of the matching function at the location j (j €
M, j # jr). To express the optimization problem in a nominal linear programming setting,
we linearize the above expressions via new auxiliary decision variables. To this end, a
decision variable a,; is introduced as a,s; = ps;y,; and the constraints should be added,
as follows

yrjr (18)
psityrj—1

Similarly, a new decision variable f,; is introduced as B,5;; = psjh;; and the constraints
should be added as follows

" (19)

The constraints in (6) can be rewritten as follows,

hf‘l < Z ﬁrslj, VT’ e R, VS E Sr, Vl G Ll‘S

jEM (20)
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In addition, it is worth pointing out that for the decision variable p;;, the following
holds: ps; = pfj. Therefore, we have p;h}y,j = arsjBysij- Hence, a decision variable A,g; is
defined as A, = aysjBys1j and the following set of constraints are added

/\rslj < Kysjs
/\rslj < ,Brsljr (21)
/\rsl] > Kysj + ﬁrslj -1

Hence, the product W,;y,; can be rewritten as follows,

wQ(FQVyrj + EZELrs Zsesr )\rsljol + ZSESr FsbraCkD‘TSj)
fu
By checking whether users share the same metaverse regionby A(f(t)) = A(f(r)), {t,r} C
R, we can ensure the user could also view other updates happening in the same metaverse region.

Based on the previous modelling of the wireless channel, the wireless transmission delay in a
mobility event can be written as follows,

(22)

y Ej" + Tier Ar(9)=A((0)) ocs, Pj N

R 8erg
A ore (23)

DT B+ YteR A(H)=A(K) Lses, PsiFet

reRkeK 8erg

Noticing that with constraint (11), % can be replaced with e, for linearization by

8
introducing a new decision variable ¢,s; with the following constraints,

Prsg < erg,
Qbrsg < Psj» (24)
Prsg = erg + Psj 1

Thus, the previous Formula (23) can be updated as follows,

1
- Z(l + Z uf(r)k)(F;{free,g+
g reR keK (25)

2 Z Prsg o)

LR, A(f(1) =A(f(r)) €8x

Based on the above derivations and in-line with [12], the overall latency can be written
as follows,

L =(25)+ Z Z (Cf(r)z + Vri)xri+

reRieM
Lo b, (@ Gl Cagionsio + D)+
rerieMieM 7
(26)

Y. 2 (Cuagr) + Ciapw)rsit
s€Sy jeM,j#j,

Yo Y (Cagor + Crixri) gk
reRkeK

where V,; is the processing delay of a computational-intensive function [12]. L;ax, here,
denotes the maximum allowed service latency and has ﬁ € [0,1].
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The energy efficiency of the system during each service time slot is measured by
the production of its total power and running time. The server total power consists of
the transmission power and CPU processing power at target ECs. Denote the required
CPU processing power of the user r at the node j as P:jp " and the CPU-chip architecture

coefficient as kg (e.g., 10~18) [5]. Then, the power at the EC can be achieved through ko( f{,)2
(J/s), based on measurements in [27,28]. Noticing that for both conditions, the background
contents are processed at servers, the consumed processing time of the server is

Tou=Y, Y Vixi+ Y Y Wy, 27)

reR jeM,j#£m, reRjeM

The wireless transmission happens regardless of whether foreground interactions are
being executed at terminals. Since the selected data rate is Serg, the wireless transmission
time is

fore FQT

T=Y ¥ iy ¥

reR jeM,j#j, 878 reR jeM,j=j, 868

(28)

Finally, the total consumed energy at the server side can be written as follows,

_ tran cpu
Eserver - 2 Z (Prj Ttran + P,]- Tcpu)
reRjeM

Nj + Liem,izj PHEA" S
= Z Z( HZ.d*” (2 / 71))

reR jeM rjorj
fore

(Y By + i)

=~ gey = ge,

j#ir €718 j=my S8

+Y ) kO(f{/)2<er]/rj + 2 Vyixrj)

reR jeM iZir

(29)

Regarding the terminal side, in this paper, we follow the Amdahl’s law to model the
energy consumption, in which the potential speedup of potential parallel computations is
considered in the function [29]. In this paper, the metaverse AR functions work by serial and,
for simplicity, the parallel portion is assumed to be zero like in [17]. As mentioned earlier, the
dynamic foreground interactions, including some highly used AROs, could be proactively
cached at terminals with the matching function. The 3D background model, on the other hand,
is much larger and might serve multiple users in a region. Hence, it is not recommended
to store or process this at the terminal. In addition, the metaverse application should not
exceed a certain portion of the whole terminal CPU resources, so that other functionalities
can work properly [17]. Denoting the consumed portion as I’y € [30%, 50%] [17], then, Vrlif’j
means processing metaverse AR functions at the terminal requires a longer time. The energy
consumption of terminals can be written as follows,

Eterminal :Pterminul Tterminal

. Vr i
= ¥ ¥ ko) 0

reR j=j,

Finally, the overall system energy consumption is E = Eserver + Eterminal- Emax repre-
sents the maximum possible energy consumption of the system. It also has ¢-— € [0, 1].

SSIM is applied to reveal the quality of perception experience. In this paper, the
video coding scheme (e.g., H.264) and frame resolution (e.g., 1280 x 720) are assumed as
pre-defined [10]. Then, SSIM is mainly affected by data rate and a concave function can be
applied to reveal the relation between them [10]. Hence, the set of SSIM values for each
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ARO under corresponding data rates can be denoted as SSIM, ! € L,. The overall quality
of perception experience, Q, can be written as follows,

Q=3 Y. ) ) e (31)

reRI€L, g€G ceSSIM;

To maintain the user experience above an acceptable level, the perception-quality
constraint can be added, as follows,

Q
Qmax > Qbound (32)

where Qjay is the maximum quality through selecting max allowable data rate and storing
as many AROs as possible.

Using a weighting parameter i € [0, 1], the bi-opbjective optimization problem can be
written as follows,

min " — +(1—p) E (33a)
st.z,j=1-4q,,VjEM,r€R (33b)
Yo (x+yr) ALV EM,j# (330)
reR
Y xj=1VreR (33d)
jeEM
Y yi=1LVreR (33e)
JEM,jFjr
Erij < Xy, Vr ERi,j € M, # jr (33f)
Erij < Yrj) Vr ERi,JEM,j # i (33g)
Crij =2 Xri +Yrj— 1L, Vr €Ri,jEM,j #jr (33h)
i <2y, Vr €R,j EM, ] # (331)
Vrj < yyj, Vr €RjEM,j # (33))
Yri >z Yy~ 1L, Vr €RjEM,j £y (33k)

xrj/]/rj/ psj/ h;sfllzrjr q] S {0/1}/
Rysj, ﬁrslj/ /\rsljrﬁbrslgz wrj/ grij € {01 1}/
VreR,jeEM,] €Ls,s €8S, (331)

(3), (4), (), (20), (11), (13), (14),
(18), (19), (21), (24), (32)

As mentioned earlier, any assignment relating to the storage-intensive functions (y,;)
is limited to only ECs and, hence, should apply the constraint j # j,. The constraint (33b),
together with constraints (3) to (20), express the interrelationship between the pre-caching
decisions and the cache miss/hit for each request [12]. The constraint (33c) reflect the limitation
of a virtual machine, whilst constraints (33d) and (33e) guarantee that each function should
only be executed once at a single server [12]. Finally, the constraints (18) to (21) and (33f)
to (33k) relate to the auxiliary variables that have been used for linearization.

4. Numerical Investigations

In this section, the effectiveness of the proposed optimization scheme, which is referred
to as Optim in the following, is investigated and is compared with a number of nominal
(baseline) mechanisms.
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A nominal tree-like network topology, as shown in Figure 4, was applied with 20 ECs
in total, 6 ECs being activated for the current metaverse AR service and 30 requests being
sent by MAR devices. The remaining available resources allocated for metaverse AR
support within an EC were assumed to be CPUs with frequencies of 4 to 8 GHz, CPU-
chip architecture coefficient of 1078 (affected by the chip’s design and structure) [5], 4 to
8 cores and [100,400] MBytes of cache memory [12]. Similarly, the mobiles AR devices
were assumed to have a CPU with 1 GHz frequency, 4 cores and [0, 100] M Bytes available
cache memory for metaverse AR applications [17]. According to [15], the power of AR
applications should not exceed 50% of the mobile device’s CPU total power (2-3 W),
so that other functionalities can operate efficiently. Hereafter, a nominal frame rate of
15 frames/second is assumed and the rendering takes place every other frame (133.2 ms
interval) [30-32]. Thus, the service delay of the aforementioned work flow within the
above time interval could be regarded as acceptable. Each request requires a single free
resource unit for each service function, such as, for example, a virtual machine (VM) [33].
Up to 14 available VMs are assumed in each EC, with equal splitting of the available CPU
resources [12]. Note that different view ports lead to different models of the metaverse [9]
and up to four different models can be cached. All target AROs must be integrated into the
corresponding model and rendered within the frame before being streamed to the end user
based on a matched result. After triggering the metaverse MAR service, pointers to identify
AROs such as a name or index are usually a few bytes [34] and, hence, their transmission
and processing are neglected in the following simulations. The set of available data rates is
{2,3,...,8} Mbps and its corresponding SSIM values set are {0.955,0.968, ...,0.991} [10].
We require the acceptable average SSIM above 0.97 (Qpoy,4)- For a nominal 5 G base station,
we assume its cell radius to be 250 m, its carrier frequency 2 GHz, its transmit power
20 dBm, the noise power 10~ W, the path loss exponent to be 4, its maximum resource
blocks 100 and, without the loss of generality, each user can utilize only one resource
block [35-37]. As mentioned earlier, we accept a predefined video coding scheme H.264
with a fixed frame resolution of 1280 x 720 [10] in RGB (8 bits per pixel). Based on the
given resolution, the size of foreground interactions after decoding and compressing can
be calculated through multiplying the coefficients g and 1073 [9]. Matlab on a personal PC
with a CPU of intel i7, 6500U and 2 cores was employed for the simulation. Key simulation
parameters are shown below, in Table 1.

A a

,‘
A

A A A A1 A
Figure 4. A typical tree-like designed network topology.

A 2 .

In the following figures and discussion, the optimized scheme considering terminals is
denoted as OptimT, while the other onem which does not include the terminals, is denoted
as as OptimNT. The OptimNT scheme could be regarded as a natural extension of our
previous work [16]. Two other baseline schemes sharing same caching decisions as the
proposed Optim scheme were also implemented for comparison. Those are the random
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selection scheme (RandS) and the closest EC first scheme (CEC) [38]. The RandS scheme
operates a random EC selection while the other two both select the closest EC to the user’s
initial location. The CEC scheme also accepts the second closest EC as a back up choice [38].

Table 1. Simulation parameters.

Parameter Value
Number of available ECs 6
Number of available VMs per EC (EC capacity) 14
Number of requests 30
Number of available models per user 4
AR object size (0,10] MByte
Total moving probability [0,1]
Cell radius 250 m
Remained cache capacity per EC [100,400] MByte
EC CPU frequency [4,8] GHz
EC CPU cores [4,8]
EC CPU core portion per VM 0.25-0.5
Remained cache capacity per terminal [0,100] MByte
Terminal CPU frequency 1GHz
Terminal CPU cores 4
CPU architecture coefficient 1018
Foreground-interaction computational load 4 cycles/bit
Background-contentichecking computational 10 cycles/bit
oad
Carrier frequency 2 GHz
Transmission power 20 dBm
Path loss exponent 4
Noise power 10~ 1w
Number of resource blocks 100
Frame resolution 1280 x 720
Average latency per hop 2ms
Cache miss penalty 25 ms

According to Figure 5, the service delay for each request of the proposed schemes
decreases, as expected, with an increasing weight . With a larger weight, the proposed
schemes tend to select a larger data rate and direct the service to more powerful ECs, which
naturally leads to a smaller overall delay. Compared to the OptimNT scheme, for example,
the gain in delay of the OptimT scheme ranges from 1.9% to 10.4%. When seeking the
best energy efficiency (u = 0), since the CPU resources at the terminals are also shared by
other functionalities, the OptimT scheme also tries to avoid the occupation of terminals.
Hence, in this case, these two schemes share similar solutions and approaches. Noticing
that the proposed schemes do not care about latency cost, they could choose a further away
and busy EC, which even causes the OptimNT scheme to perform worse than the CEC
scheme. Afterwards, as the weight y increases and the emphasis is placed on latency rather
than energy, the OptimT scheme allocates some foreground interactions to terminals and
becomes better than OptimNT. Since the baseline schemes neglect energy consumption,
service decomposition and mobility, their gaps in relation to the proposed scheme become
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larger with increasing weight. However, such a gain in delay comes with an extra cost
in energy consumption. As shown in Figure 6, the energy consumption per request of
the proposed scheme increases with a larger weight. Compared to the OptimNT scheme,
the OptimT scheme consumes 2.9% to 23.0% more energy under different weights. Thus,
it might not always be worth enduring lots of energy consumption for narrow gains in
delay. By selecting a suitable weight, a balance could be achieved with the OptimT scheme
between delay and energy consumption. Through the utilization of terminals, the OptimT
scheme becomes the most sensitive to energy consumption and there could be instances in
which it might consume more energy than the RandS scheme.

70 -
~ 3 - OptimNT
—¥—OptimT
—8—CEC
65 - —A—RandS
M A A A
60 -

Overall delay {(msec)

40 ; : ; ; ‘
0 0.2 0.4 0.6 0.8 1
Weight
Figure 5. Overall delay with weight 1 (6 EC, 30 requests, EC capacity is 14 and total mobility
probability is 1).
045 -
— k- OptimNT
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—8—CEC
—£—Rand$
0.4r
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2
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Figure 6. Average energy consumption with weight .
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Clearly, the user experience could be elevated through viewing more AROs in fore-
ground interactions or more delicate scenes from background models. Figure 7 reveals
the variation in delay with the increasing foreground-interaction size. When the average
foreground interaction size is not too large and there are still enough resources at target
ECs, OptimNT and baseline schemes increase almost linearly at a similar speed. When the
size keeps increasing and resources become limited, the CEC scheme becomes the most
sensitive because it only targets the several closest ECs and it is easier to trigger the penalty.
The OptimT scheme, on the other hand, maintains the least latency and the least increasing
tendency. To this end, it could save up to 13.8% and 51.7% delay compared, respectively, to
the OptimNT scheme and the CEC scheme. Figure 8 further reveals the variation in energy
in this case. Baseline schemes process foreground interactions at ECs without considering
energy. Hence, their decisions are not obviously affected by the size of foreground inter-
actions and their energy consumption increases almost linearly. The OptimNT scheme
keeps finding more suitable ECs according to current foreground-interaction size and
remaining resources, while the OptimT schemes further enables terminals to process some
tasks. Compared to the CEC scheme, they could save over 14.3% energy. It is necessary
to point out that the energy consumption will not be taken into account when redirecting
the request to the farther core cloud and triggering the penalty. According to Figure 9, the
background model size is much larger and could cause a significant increase in delay. Note
that the terminals could take charge of some foreground interactions and, hence, could
make room for background models in the OptimT scheme. It is still the best scheme in
terms of delay, which could be up to 9.8% less than the OptimNT scheme. As mentioned
earlier, the proactive caching and processing of background models only happen at ECs;
these schemes share a similar level of increased energy consumption until triggering the
overloading penalty.

100

— - -OptimNT
—¥—OptimT
—8—CEC

90 | |-&—Rands

Overall delay (msec)

4 5 6 7 8 9 10 11 12
Foreground Interaction Size (MB)

Figure 7. Overall delay with foreground interaction size (6 EC, 30 requests, = 0.5, EC capacity is 14
and total mobility probability is 1).
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04r
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Figure 8. Average energy consumption with foreground interaction size (6 EC, 30 requests, u = 0.5,
EC capacity is 14 and total mobility probability is 1).
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Figure 9. Overall delay with background model size (6 EC, 30 requests, y = 0.5, EC capacity is 14
and total mobility probability is 1).

The number of available VMs activated in an EC is known as the EC capacity. For
a given EC capacity (e.g., 14), the ratio between the different number of requests (e.g.,
[30,40]) and the EC capacity could be applied to represent the average EC utilization in the
network. Then, this rate was normalized into [0, 1] for better presentation. As shown in
Figures 10 and 11, the increasing EC utilization rate indicates a more congested network
and, hence, as expected, the delay and energy consumption increase as well. Compared to
the OptimT scheme, the OptimNT scheme is still more sensitive in terms of energy but better
in terms of delay. Thus, its consideration of terminals benefits delay at the cost of energy.
Observe from Table 2, that even when there is no mobility event, the proposed OptimT
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scheme is still slightly better than other baseline schemes because its flexibility of terminals
can better avoid potential EC overloading. Therefore, the proposed OptimT and OptimNT
schemes have an obvious advantage over baseline schemes and are recommended in a
congested network and a high-user-physical-mobility scenario. Especially when the MAR
terminal still has enough energy capacity, its computing resources should not be neglected
and, hence, the OptimT scheme is more suitable in this case.

70

- -OptimNT
—¥—OptimT
—8—CEC
—A—RandS

65

@
4

Overall delay (msec)
(4]
(3]

(3]
o
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\
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0 0.2 0.4 0.6 0.8 1
EC Utilization Ratio

Figure 10. Overall delay with average EC utilization rate (6 EC, ¢ = 0.5 and total mobility probability
is 1).
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Figure 11. Energy consumption with average EC utilization rate (6 EC, u = 0.5 and total mobility
probability is 1).
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Table 2. Overall delay in no-mobility event (1 = 1, 6 ECs, 30 requests and EC capacity is 14).

Scheme OptimT OptimNT CFs RandS
Delay (ms) 38.8 40.1 40.7 60.8

5. Conclusions

Extending MAR applications into the metaverse is expected to incorporate the render-
ing and updating of high-quality AR metadata in order to provide a more realistic experi-
ence. Hence, such forward-looking applications are highly delay- and energy-sensitive and
are significantly demanding in terms of caching and computing resources. In this paper,
a joint optimization scheme is proposed by explicitly considering the model rendering
performance, user mobility and service decomposition to achieve a balance between en-
ergy consumption and service delay under the constraint of user perception quality for
metaverse MAR applications. Recent technical improvements in AR devices allow them
to process more tasks locally. To this end, we explore their potential in the metaverse and
compare the performance with terminal-oblivious schemes which reside on cloud sup-
port. A wide range of numerical investigations reveals that the proposed terminal-aware
framework provides improved decision making compared to baseline schemes for energy
consumption and resource allocation for metaverse MAR applications, especially under a
congested network and high-mobility scenario.
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