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Abstract: Software-Defined Networking (SDN) stands as a pivotal paradigm in network implementa-
tion, exerting a profound influence on the trajectory of technological advancement. The critical role
of security within SDN cannot be overstated, with distributed denial of service (DDoS) emerging
as a particularly disruptive threat, capable of causing large-scale disruptions. DDoS operates by
generating malicious traffic that mimics normal network activity, leading to service disruptions. It
becomes imperative to deploy mechanisms capable of distinguishing between benign and malicious
traffic, serving as the initial line of defense against DDoS challenges. In addressing this concern,
we propose the utilization of traffic classification as a foundational strategy for combatting DDoS.
By categorizing traffic into malicious and normal streams, we establish a crucial first step in the
development of effective DDoS mitigation strategies. The deleterious effects of DDoS extend to the
point of potentially overwhelming networked servers, resulting in service failures and SDN server
downtimes. To investigate and address this issue, our research employs a dataset encompassing
both benign and malicious traffic within the SDN environment. A set of 23 features is harnessed
for classification purposes, forming the basis for a comprehensive analysis and the development
of robust defense mechanisms against DDoS in SDN. Initially, we compare GenClass with three
common classification methods, namely the Bayes, K-Nearest Neighbours (KNN), and Random
Forest methods. The proposed solution improves the average class error, demonstrating 6.58% error
as opposed to the Bayes method error of 32.59%, KNN error of 18.45%, and Random Forest error of
30.70%. Moreover, we utilize classification procedures based on three methods based on grammatical
evolution, which are applied to the aforementioned data. In particular, in terms of average class
error, GenClass exhibits 6.58%, while NNC and FC2GEN exhibit average class errors of 12.51% and
15.86%, respectively.

Keywords: SDN; DDoS; genetic algorithm; grammatical evolution; packet classification

1. Introduction

Recent advancements in Information and Communication Technology (ICT), encom-
passing big data, cloud computing, mobile technologies, and multimedia, have prompted a
growing need for enhanced service management, an increased user bandwidth, and im-
proved Internet accessibility. To address these evolving demands, Software-Defined Net-
working (SDN) has emerged as a promising solution. A comprehensive overview of SDN,
including its essential features, is provided by [1,2]. This summary underscores two key
characteristics of SDN: the programmability of the control plane and the separation of
control and data planes. However, it is emphasized that these aspects, as elaborated in the
subsequent discussion, are not entirely novel in the realm of network architecture.

In the domain of SDN, its distinctive feature lies in providing programmability through
the clear separation of the control and data planes. This approach fundamentally transforms
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the way network devices are programmed, offering a user-friendly alternative to the intri-
cacies of active networking. SDN advocates for the separation of control and data planes
within the network’s architectural framework, enabling the autonomous management of
network control on the control plane without disrupting the data flow. This configuration
facilitates the extraction of network intelligence from switching devices, relocating it to
controllers. Simultaneously, it empowers external software to manage switching devices
without necessitating embedded intelligence.

The decoupling of the control plane from the data plane not only establishes a sim-
plified, programmable environment but also provides increased flexibility for external
software to shape the network’s behavior. This transformation signifies a pivotal shift in
network management and control, streamlining the process and creating opportunities for
a more adaptable and responsive network infrastructure in the context of SDN.

1.1. Motivation

In recent years, there has been a growing interest within the scientific community
to explore the realm of SDN security, aiming to overcome barriers hindering widespread
SDN adoption. This research domain has a dual focus: one facet aims to harness SDN
features to enhance security, while the other endeavors to establish a secure architecture
for SDN systems. As outlined in [3], the paper offers an overview of security threats
that pose risks to SDN and enumerates various attacks exploiting vulnerabilities and
misconfigurations in the constituent elements of SDN. Additionally, the paper delves into a
discussion highlighting the duality between utilizing SDN for security improvement and
securing SDN itself. SDN security in IoT networks has emerged as well and it is presented
in [4].

A distributed denial of service (DDoS) attack constitutes a malicious attempt to disrupt
the regular flow of data to a specific server, service, or network by inundating the target or
its surrounding infrastructure with an overwhelming surge of Internet traffic [5]. These
attacks achieve their objectives by harnessing multiple compromised computer systems,
encompassing both traditional computers and networked resources, such as Internet of
Things (IoT) devices or SDN devices [6,7], to generate attack traffic. In a broader context,
visualizing a DDoS attack is akin to an unexpected traffic bottleneck on a network, ob-
structing the regular flow of traffic to its intended destination. The impact is analogous to
an overwhelming surge of vehicles congesting a road, preventing smooth passage to the
intended locations.

DDoS attacks present a significant and escalating threat to the Internet [8]. Attackers
continually adapt their tactics to evade security systems, prompting researchers to con-
sistently refine their approaches to counter new attack strategies. As a result, the DDoS
landscape has become increasingly advanced, making it challenging to attain a compre-
hensive understanding of the situation. On one hand, this complexity impedes a clear
comprehension of the DDoS phenomenon, given the multitude of known attack types
that create the impression of a vast and challenging problem. On the other hand, the di-
verse strategies employed by existing defense systems further complicate matters, making
it challenging to identify their commonalities and differences and assess their effective-
ness [5]. Previous works in the literature have explored the intersection of DDoS and SDN,
as evident in [9–12].

There exist very interesting pieces of research that highlight workflow scheduling in
SDN-based IoT and Fog networks [13,14] and mitigation strategies in IoT systems [15].
Leveraging SDN enables the routing of diverse network traffic through a unified physical
network infrastructure while maintaining the desired level of isolation. To counter undesir-
able malicious traffic, an SDN-based IoT access control application is deployed on the SDN
controller. This application meticulously examines each incoming/outgoing connection to
IoT domains in accordance with predefined security policies. Approved connections trigger
the SDN controller to issue relevant forwarding rules in the physical/virtual SDN switches
along the specified networking path. Conversely, malicious traffic from cybercriminals is
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thwarted by implementing specific network access lists. Moreover, it has the capability
to dynamically segregate malicious or suspicious network flows. SDN-based separation
solutions, in this context, can provide varying levels of network abstractions. This allows
for the effective separation of network traffic and the presentation of network views aligned
with the desired security properties [16].

Additionally, the SDN controller possesses extensive visibility into the supervised
data planes and, via the control plane, gathers network status information by dispatching
statistics query messages to the switches. This enables the SDN controller to provide real-
time updates on the underlying infrastructure and relay flow request messages to network
applications operating on the control plane. Such an approach significantly streamlines the
development of strategies for implementing anomaly network analysis and the detection of
network-wide attacks. A critical facet of SDN lies in the dynamic installation and updating
of forwarding rules by the SDN controller in network elements, facilitating efficient traffic
flow management. This increased manageability markedly amplifies the potential for
network applications to implement tailored and effective security mechanisms [16]. As such,
we require a mechanism that classifies network traffic to identify the anomalies produced
by malicious users or bots.

1.2. Contributions

In our research, we delve into the intricate domain of Software-Defined Networking
(SDN) by analyzing a diverse dataset that includes various network traffic patterns, rang-
ing from benign to malicious. This dataset consists of 23 distinct features, forming the
foundation for our classification efforts. To tackle the classification task within the SDN
dataset, we adopt grammatical evolution-based methodologies [17,18]. This innovative
approach leverages evolutionary algorithms to discern complex patterns and interactions
inherent in the data, offering a unique perspective on the challenge of classifying network
traffic in the context of Software-Defined Networking.

This research concludes with the presentation of outcomes that provide valuable in-
sights into the effectiveness of the chosen approach, centered around grammatical evolution-
based classification methods. The results not only illuminate the performance of these
methods but also contribute significantly to the broader understanding of SDN security
and the classification of network traffic in this dynamic field. The motivation behind this
work stems from the increasing frequency of attacks in networked systems, particularly
distributed denial of service (DDoS) attacks, which pose a severe threat by potentially
causing system failures rather than just faults.

More specifically, the contributions of this paper are the following:

• Initially, we compare GenClass with three classification methods, namely the Bayes,
K-Nearest Neighbors (KNN), and Random Forest methods, and demonstrate that our
solution improves the average class error as opposed to the competitors.

• We encapsulate three methods based on grammatical evolution and show that Gen-
Class exhibits a lower average class error than NNC and FC2GEN.

• We demonstrate that the three grammatical evolution methods exhibit low average
class error values.

2. Related Work

There is a plethora of works on defense of DDoS attacks in SDN using machine
learning mechanisms [19–22]. A more detailed literature review follows.

An important survey on mitigation techniques regarding DDoS attacks in SDN is given
in [23]. The authors systematically categorized their research into two key domains: one
focusing on strategies to counter denial of service (DoS) attacks within Software-Defined
Networking (SDN) and the other exploring SDN-centric methods to counteract DoS attacks
across diverse networks. In the first category of solutions, they identified six distinct classifi-
cations: table-entry, scheduling, architectural, flow statistics, machine learning, and hybrid
solutions. Furthermore, the authors conducted a thorough examination of the tools and
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datasets featured in the reviewed contributions. It delivers a detailed comparative analysis
of these approaches, taking into account factors such as the engagement of network devices,
network layers, types of DoS attacks, and the specific targets subjected to these attacks.

In the paper referenced in [24], a comprehensive analysis of approximately 70 estab-
lished techniques designed for detecting and mitigating distributed denial of service (DDoS)
attacks within Software-Defined Networking (SDN) environments is conducted. These
techniques are systematically categorized into four primary groups, incorporating meth-
ods based on information theory, machine learning, Artificial Neural Networks (ANNs),
and various miscellaneous approaches. Additionally, the paper extensively explores and
addresses persistent research challenges, gaps, and issues associated with establishing a
secure DDoS defense solution in the realm of SDN. This detailed review is poised to serve
as a valuable resource for the research community, aiding the development of more robust
and reliable DDoS mitigation solutions tailored for SDN networks.

In [25], the paper proposes leveraging the central control features of SDN for attack
detection, introducing an efficient and resource-aware solution. Specifically, the paper
delves into how DDoS attacks can strain controller resources and presents a method for
identifying these attacks by analyzing the entropy variation in the destination IP address.
Notably, this approach demonstrates the ability to detect DDoS attacks within the first
five hundred packets of the attack traffic. This early detection capability is a significant
advancement in proactively identifying and mitigating DDoS threats, enhancing the overall
security posture of SDN environments.

In [26], the authors highlight the limitations of traditional methods reliant on fixed
thresholds and historical data, inhibiting their adaptability to new and evolving DDoS
attack scenarios. They propose an innovative approach for detecting DDoS attacks within
Software-Defined Networking (SDN) environments. This novel method incorporates
three vital components: a collector, an entropy-based module, and a classification stage.
Extensive experiments utilizing UNB-ISCX, CTU-13, and ISOT datasets demonstrate that
this approach surpasses existing methods in terms of accuracy for DDoS attack detection in
SDN environments.

Moving to [27], the authors conducted a comprehensive evaluation of the latest ad-
vancements in machine learning (ML) and deep learning (DL) methodologies for detecting
distributed denial of service (DDoS) attacks within SDN contexts. Their work involved
an extensive systematic review focusing on publications utilizing ML/DL techniques to
uncover DDoS attacks in SDN networks spanning from 2018 through to early November
2022. This evaluation provides a valuable and updated insight into the evolution and effec-
tiveness of ML and DL techniques in combating DDoS threats within SDN environments.

In [28], the authors introduce a DDoS attack detection and defense system that lever-
ages cognitive-inspired computing along with dual address entropy. This system involves
extracting attributes from the switch’s flow table, creating a DDoS attack model using
the support vector machine classification algorithm, and enabling real-time detection and
defense in the initial stages of a DDoS attack, ensuring the swift restoration of regular com-
munication. Their findings emphasize the system’s rapid attack detection, high accuracy in
detection, and a low rate of false positives. Moreover, it is capable of initiating appropriate
defense and recovery measures upon identifying an attack.

In another study, the authors [29] utilize the Neighborhood Component Analysis
(NCA) algorithm for feature selection and an effective classification phase. After prepro-
cessing and feature selection, they employ the K-Nearest Neighbor (KNN), Decision Tree
(DT), Artificial Neural Network (ANN), and Support Vector Machine (SVM) algorithms
on a similar dataset. Their experimental results reveal the DT algorithm’s superior per-
formance, achieving an impressive 100% classification accuracy rate when compared to
other algorithms.
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Brief Comparison

The aforementioned research works present some interesting methods for the detection
and mitigation of DDoS traffic in SDN networks. The approach that is being proposed in
this paper aims to show the efficiency of simple genetic algorithms towards the detection
and classification of malicious traffic. Some of the suggested related works may increase
the complexity of the detection and not provide a simple technique. As will be evident in
the results part of this paper, simple algorithms will exhibit a worse average class error
value than the proposed algorithm.

3. Proposed Approach

Here, we provide the proposed work with the reference architecture to the reader.

3.1. Reference Architecture and Problem Statement

Distributed denial of service (DDoS) attacks involve orchestrating Internet-enabled
devices, including traditional computers and SDN devices, into a network called a “botnet”.
Compromised devices within the botnet, referred to as “bots” or “zombies”, are controlled
remotely by an attacker. The attacker coordinates the assault by instructing each bot to send
numerous requests to overwhelm a target server or network, causing a denial of service.

Mitigating DDoS attacks is challenging as bots mimic legitimate devices, making it
difficult to distinguish attack traffic from regular data. Indications of a DDoS attack include
a sudden decrease in website or service speed, or even complete unavailability. Traffic
analysis tools are essential for discerning specific indicators.

Specialized signs of a DDoS attack vary based on the attack type, encompassing
application-layer, protocol-based, and volumetric assaults. Recognizing these signs is
crucial for implementing effective defense strategies against diverse modes of DDoS attacks.
A visual representation illustrating the nature of a DDoS attack is depicted in Figure 1.

ATTACKERS
REAL USERS

INTERNET

malicious

traffic

clean

traffic

SERVER

Figure 1. DDoS scheme.
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In the figure, we can see that the server is overloaded with malicious data, not allowing
the genuine data to reach the location. The early detection of malicious traffic is of primary
importance to SDN. In this way, the benign traffic will be able to reach the server without
problems. The mitigation strategies include dropping the malicious traffic before it is
handled by the SDN device. As such, the necessity of a classifier that performs this
operation is mandatory.

3.2. Proposed Methodologies

Here, we provide the reader with three proposed methods using grammatical evolu-
tion (GE) to perform the necessary tasks that are required. Before that, we introduce the
reader to the nomenclature of the parameters used.

3.2.1. GenClass

The GenClass method [30] has demonstrated a remarkable performance in tackling
classification problems. Furthermore, the method’s source code is openly available for use
in any classification task. Detailed information about the associated software can be found
in Anastasopoulos et al.’s pertinent publication [31]. Grammatical evolution in this context
relies on the following key components:

The first component is the grammar of the target language, which is expressed in
the Backus–Naur form (BNF) format. This grammar is defined as a context-free grammar
(CFG), represented as G = (N, T, S, P), where N signifies the set of nonterminal symbols,
T signifies the set of terminal symbols, S represents the starting symbol of the grammar,
and P is a set that contains production rules. Each production rule takes the form A→ a
or A → aB, where A and B belong to N and a belongs to T. The second component is
the corresponding fitness function.

In grammatical evolution, chromosomes are represented as vectors of integers, where
each element within the chromosome corresponds to a production rule from the provided
BNF grammar. Each production rule is assigned a unique serial number. The algorithm
initiates by commencing with the starting symbol of the grammar and progressively
generates program strings by substituting non-terminal symbols with the right-hand side
of the selected production rule. The rule selection process involves two steps:

Take the next element from the chromosome and label it as V. Choose the next
production rule based on the scheme Rule = V mod R, where R represents the number of
production rules applicable to the current non-terminal symbol. The proposed method is
given in the Algorithm 1.

3.2.2. Neural Network Construction (NNC)

Tsoulos et al. [32] proposed a method that employs grammatical evolution (GE) for
both structuring the network’s topology and refining its weights. Their approach involves
encoding the network’s architecture and weights using a context-free grammar (CFG) in
Backus–Naur form (BNF). The paper highlights that using GE for evolving Artificial Neural
Networks (ANNs) offers the advantage of easily shaping the search outcomes and results in
a concise encoding. However, while GE facilitates the effective shaping of the search process,
it appears less suitable for actual vector optimization, specifically in optimizing connection
weights. This limitation may lead to issues such as highly destructive variation operators,
potentially erasing information acquired during the evolutionary search. The algorithm is
given in Algorithm 2.

3.2.3. FC2GEN

This section summarizes the work in [33], which constitutes the third method that we
utilized with the dataset using GE. The FSC method, rooted in grammatical evolution, aims
to enhance the classification accuracy of a given classifier by generating new features from
existing ones. The process involves several key steps:
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Data preparation: The dataset is divided into independent train and test sets. The train
set is utilized for constructing features, while the test set is used to evaluate these features
in the chosen classification method.

Algorithm 1 GenClass algorithm

Require: Read Train Data (xi, ti)
Ensure: NG
Ensure: NC
Ensure: PS
Ensure: PM Initialize the chromosomes of the population. Every element of each chromo-

some is initialised randomly in rm.
Ensure: iter = 1

while i ≤ Ng do
(1)
Create Ci for gi

Calculate fi =
M
∑

i=1
(C(xi)− ti)

2

In the genetic algorithm’s selection process, chromosomes are classified according to
their fitness. The top-performing (1− PS)× NC chromosomes, where NC represents the
total number of chromosomes, remain unaltered and are preserved for the subsequent
generation in the population. The remaining chromosomes are then replaced by new
ones generated during the crossover phase.

In the execution of the crossover method, PS × NC chromosomes are generated.
Initially, for every pair of newly produced offspring, two distinct chromosomes (parents)
are chosen from the existing population using tournament selection. This entails forming
a subset of more than one (K > 1) randomly selected chromosome, and the chromosome
with the highest fitness value is selected as the parent. For each parent pair (z, w), two
new offspring, z̃ and w̃, are generated using the one-point crossover method.

Conduct the mutation process by iterating through every component of each chromo-
some. For each component, select a random number, r, from the range [0, 1], and modify
the corresponding chromosome if r ≤ PM.
end while
iter = iter + 1
if iter ≤ NG then

goto (1)
end if
Obtain g∗ and create C∗

Apply C∗ to test set

Genetic algorithm parameter definition: Parameters such as N f (determining the
number of constructed or selected features from the original set), Ng (total number of
chromosomes in the genetic population), Lg (chromosome size), Rs (fraction of unchanged
chromosomes in the next generation), and Rm (mutation rate) are defined. The algorithm
uses fixed-length chromosomes to restrict the creation of excessively large expressions and
decrease the search space.

Grammar definition: A context-free grammar, outlining the possible algebraic ex-
pressions of the original feature set, is created. This grammar includes valid arithmetic
operations using the original features, limiting the total number of original features (de-
noted as N) and defining the start symbol (denoted as S).

Chromosome initialization: Each part of every chromosome in the genetic pool is
randomly initialized within the range [0, 255].

Fitness evaluation: Evaluation of each chromosome involves assessing its perfor-
mance based on some fitness criteria.

Feature construction from chromosome parts: The chromosome is divided into N f
equal parts, and each part (gi, i = 1, . . . , N f ) is used to construct a feature. Features
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( fi, i = 1, . . . , N f ) are created from each part gi through a mapping process. This construc-
tion process can be executed in parallel.

Algorithm 2 NNC algorithm

Ensure: NG
Ensure: NC
Ensure: PS
Ensure: PM
Ensure: LI
Ensure: Lc
Ensure: Initialize the chromosomes as random vectors of integers.
Ensure: iter = 0

(1)
while i ≤ Ng do

Create Ci with GE
Calculate fi
Apply the genetic operations of crossover and mutation.

end while
if iter%LI = 0 then

Create random LC
create LS
while Xi ∈ LS do

select randomly Y from population
Create an offspring Z of Xi and Y using one point crossover.
if f (z) < fi then

Xi = Z,
fi = f (Z)
iter = iter + 1.
if iter > itermax then

terminate
else

goto (1)
end if

end if
end while

end if
Create a neural network for the best chromosome
Evaluate the neural network.

Data transformation based on constructed features: The original train and test
datasets are transformed using the constructed features to create new feature datasets.
The new train set trains the classification system, and the fitness of the chromosome gi is
determined by the classification accuracy. For regression problems, fitness is estimated by
the negative mean square error between actual and predicted values.

Chromosome transformation using genetic operators: Genetic operators, crossover,
and mutation are applied to form the subsequent generation of chromosomes. In the
crossover process, a certain number (n = (1−Rs) ∗Ng) of new chromosomes are generated,
replacing those with the lowest fitness in the current generation. This process involves
cutting and exchanging sub-chromosomes between pairs of randomly selected parents
using tournament selection. For mutation, each element in a chromosome has a chance to
be changed randomly based on the mutation rate Rm.

Termination check: The process either terminates if the maximum number of gener-
ations is reached or if the best chromosome reaches a predetermined threshold of fitness
(classification accuracy). Otherwise, the feature construction process restarts from the
chromosome transformation using genetic operators step.

The algorithm of this approach is given in Algorithm 3.
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Algorithm 3 FC2GEN algorithm

Ensure: split X to N f parts
while i ≤ N f do (1)

xi
For each xi construct FTi grammar

end while
Ensure: (xi, ti), i ∈ 1, . . . , M pairs of patterns
Ensure: NG
Ensure: NC
Ensure: PS
Ensure: PM
Ensure: N f
Ensure: Initialize the chromosomes in the range [0, 255].
Ensure: iter = 1

while i ≤ Ng do
Create a set of N f fopr the corresponding gi using (1)
Transform original to new train data (xgi,j, tj), j = 1, . . . , M
Apply Learning C and calculate fitness fi

fi = ∑
j
= 1M(C(xgi,j)− tj)

2

The selection process involves categorizing chromosomes based on their fitness.
The best-performing (1 − PS) × NC chromosomes, determined by their high fitness
levels, are directly carried over to the next generation unchanged. Meanwhile, the lower-
ranked portion of chromosomes will be replaced by new ones generated through the
crossover procedure.

Apply the crossover procedure. During this process, PS × NC chromosomes will be
created. Two distinct chromosomes (parents) are chosen from the existing population
using tournament selection for each pair of produced offsprings. Initially, a subset of
K > 1 chromosomes is randomly selected, from which the one with the best fitness value
is designated as a parent. Then, for each pair of parents (z, w), two new offsprings, z̃ and
w̃, are generated via one-point crossover.

For every element of each chromosome, select a random number r ∈ [0, 1] and alter
the corresponding chromosome if r ≤ PM
end while
iter = iter + 1
T = (xi, yi), i = 1, . . . , K the original test set
Get best chromosome g∗ of the feature construction step
Construct NF features for g∗ using (1)
Transform T into T′ = (x∗g,i, ti), i = 1, . . . , K) using the previously constructed features.
Apply a learning model such as RBF or a neural network and obtain the test error.

4. Performance Evaluation

Here, we provide the reader with the necessary information regarding the undertaken
tests using a number of different methods as well as some results showing the efficiency of
our approaches.

4.1. Simulation Setup and Metrics

The utilized dataset, referenced in [34], is purposefully curated for Software-Defined
Networking (SDN) applications and is generated using the Mininet emulator. Its main
objective is to facilitate the classification of network traffic through machine learning and
deep learning algorithms.

The project initiates by configuring ten distinct network topologies within the Mininet
environment, connecting switches with a single Ryu controller. The network simulation
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includes benign TCP, UDP, and ICMP traffic, alongside various types of malicious traffic,
such as TCP Syn attacks, UDP Flood attacks, and ICMP attacks.

Characterized by 23 features, the dataset includes extracted attributes from switches
(e.g., switch-id, packet_count, byte_count, duration_sec, and duration_nsec) and calculated
parameters. The extracted information comprises the source IP, destination IP, port numbers,
tx_bytes, rx_bytes, and the dt field indicating the date and time. The calculated features
encompass the packet per flow, byte per flow, packet rate, packet_ins messages, total flow
entries, tx_kbps, rx_kbps, and port bandwidth.

The dataset’s final column acts as the class label, distinguishing between benign
(labeled as 0) and malicious (labeled as 1) network traffic. The network simulation spans
250 min, resulting in a dataset comprising 104,345 rows of data.

The metric that was used in this work is the average class error, which essentially
shows the percentage of a classification error using a number of algorithms. In this way, we
can be certain regarding the performance efficiency of the simple grammatical evolution
algorithms as opposed to other simple algorithms.

4.2. Experimental Results

Here, we use the aforementioned dataset in order to show the efficiency of our ap-
proach. We performed experiments, initially, using three methods, namely the Bayes,
K-Nearest Neighbors (KNNs) [35–37], and Random Forest [38–40] methods, as opposed to
GenClass. These algorithms are common in classification and they have been chosen to
show the efficiency of the GenClass algorithm. Our results show that GenClass is superior
to the other methods since it exhibits 6.58% error as opposed to the Bayes method error of
32.59%, KNN method error of 18.45%, and the Random Forest error of 30.70%. The results
can be seen in Figure 2.
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Figure 2. Error of methods in %.

Thereafter, we performed experiments using two other methods with grammatical evo-
lution, namely the Neural Network Constructor (NNC) [32] and FC2GEN [33]. The results
can be seen in Figure 3. As we can see, the GenClass method is better, exhibiting less class
error comparing to the two competitors. In particular, GenClass exhibits 6.58% error, while
NNC and FC2GEN exhibit average class error values of 12.51% and 15.86%, respectively.
However, the results that the NNC and FC2GEN exhibited are satisfactory in terms of
performance. In summary, we see that grammatical evolution provides good results.
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5. Conclusions

This paper delves into Software-Defined Networking (SDN) research, exploring a
dataset encompassing a spectrum of network traffic patterns, inclusive of both benign and
malicious data. This dataset encompasses 23 unique features tailored for classification
purposes. The study employed grammatical evolution as its classification methodology,
utilizing evolutionary algorithms to decipher intricate data patterns. This research con-
cluded by presenting findings that assess the efficacy of the grammatical evolution-based
classification approach. These results yielded valuable insights into the method’s per-
formance, contributing significantly to comprehending SDN security and the evolving
landscape of network traffic classification within this dynamic field. We showed that the
proposed algorithm surpasses both other classification methods and competitors from the
grammatical evolution background.

For future work, we will address the work suggested in [41] in order to compare it
and show how software agents could play a role in solving the problem we are addressing.
Moreover, we will explore the idea of [42] to check the solution presented there in the form
of a security pattern.
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