
Citation: Mangi, F.A.; Su, G.; Zhang,

M. Statistical Model Checking in

Process Mining: A Comprehensive

Approach to Analyse Stochastic

Processes. Future Internet 2023, 15,

378. https://doi.org/10.3390/

fi15120378

Academic Editor: Gianluigi Ferrari

Received: 20 October 2023

Revised: 20 November 2023

Accepted: 22 November 2023

Published: 26 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Statistical Model Checking in Process Mining: A Comprehensive
Approach to Analyse Stochastic Processes
Fawad Ali Mangi 1,2 , Guoxin Su 1,∗ and Minjie Zhang 1

1 School of Computing and Information Technology, University of Wollongong, Wollongong 2522, Australia;
fam366@uowmail.edu.au or fawad.mangi@faculty.muet.edu.pk (F.A.M.); minjie@uow.edu.au (M.Z.)

2 Department of Computer Systems Engineering, Mehran University of Engineering and Technology Jamshoro,
Sindh 76062, Pakistan

* Correspondence: guoxin@uow.edu.au

Abstract: The study of business process analysis and optimisation has attracted significant scholarly
interest in the recent past, due to its integral role in boosting organisational performance. A specific
area of focus within this broader research field is process mining (PM) . Its purpose is to extract
knowledge and insights from event logs maintained by information systems, thereby discovering
process models and identifying process-related issues. On the other hand, statistical model checking
(SMC) is a verification technique used to analyse and validate properties of stochastic systems that
employs statistical methods and random sampling to estimate the likelihood of a property being
satisfied. In a seamless business setting, it is essential to validate and verify process models. The
objective of this paper is to apply the SMC technique in process mining for the verification and
validation of process models with stochastic behaviour and large state space, where probabilistic
model checking is not feasible. We propose a novel methodology in this research direction that
integrates SMC and PM by formally modelling discovered and replayed process models and apply
statistical methods to estimate the results. The methodology facilitates an automated and proficient
evaluation of the extent to which a process model aligns with user requirements and assists in
selecting the optimal model. We demonstrate the effectiveness of our methodology with a case study
of a loan application process performed in a financial institution that deals with loan applications
submitted by customers. The case study highlights our methodology’s capability to identify the
performance constraints of various process models and aid enhancement efforts.

Keywords: formal verification; model checking; process discovery; process mining; replay algorithm;
statistical model checking

1. Introduction

Modern information systems diligently maintain a record of operational events in
the form of an event log. Historically, these system logs served primarily as a reference
point to retrospectively trace the sequence of events and identify any potential errors.
However, with the rapid progression of technology in today’s era, the focus has broadened
significantly. The challenge now lies not just in detecting errors but also in deriving valuable
insights from these event logs. In the modern era, information systems have become an
integral part of various sectors, including business, healthcare, and education, among others.
These systems generate a vast number of data, providing a rich source of information for
understanding and improving processes. It is necessary to monitor, analyse, and improve a
process to keep the business environment running smoothly. However, the complexity and
number of these data present significant challenges to extracting meaningful insights.

Process mining [1] has emerged as a promising approach to address these challenges.
As an intersection between data mining and business process management, process mining
is about discovering, monitoring, analysing, and improving real-world business processes
through knowledge extraction from event logs provided by information systems [2].

Future Internet 2023, 15, 378. https://doi.org/10.3390/fi15120378 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15120378
https://doi.org/10.3390/fi15120378
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-0379-5764
https://orcid.org/0000-0002-2087-4894
https://orcid.org/0000-0003-1326-1106
https://doi.org/10.3390/fi15120378
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15120378?type=check_update&version=1

Future Internet 2023, 15, 378 2 of 21

Real-world examples of event logs include loan applications in banking systems [3],
an application of a patient’s medical billing report in hospital [4], logs used to detect
customer behaviour based on logged clicks [5], and there are more examples.

Real-world processes are often influenced by a number of unpredictable factors,
from machine breakdowns to human decision variability. Process-mining techniques might
fall short in capturing these peculiarities, leading to models that are overly simplified or
not representative of the actual system behaviour. Formal verification has emerged as
an effective strategy to verify process correctness. Formal verification is a method used
in computer science to verify and/or analyse the properties of finite-state systems, and
it is a powerful technique for verifying concurrent and distributed systems. The work
presented by [6] introduces BProVe, a verification framework dedicated to business process
model and notation (BPMN). This framework was created to address the lack of formal
semantics in BPMN, which creates obstacles for the automated verification of relevant
properties. The work in [7] proposes an approach, termed model mining, which facilitates
the creation of abstract, concise, and functionally structured models from event logs.
In [8], a methodology for conducting temporal analysis on mobile service-based business
processes is introduced with a concentrated emphasis on the specification and validation
of temporal constraints.

Model checking is an often-utilised technique of formal verification that involves the
creation of a model of the system, specifying desirable properties in a logical language
and then using algorithms to determine whether the model satisfies these properties [9].
According to [10], the model-checking approach model processes as transition systems and
express properties as formulas in temporal logic. These properties signify the requirements
that a particular process needs to fulfill to be deemed correct. Linear temporal logic (LTL) is
one of the languages that allows users to define properties for verification. The objective of
model checking is to ascertain whether a process model demonstrates particular desirable
behaviour. In some cases where the process model fails to exhibit the necessary behaviour,
model-checking techniques provide a counterexample. This assists in identifying the areas
of the model that require correction, ensuring that the final model is robust and fit for its
intended purpose. The application of model-checking techniques in process mining is a
relatively new and promising research area [11]. The integration of these two fields can
provide a more robust and comprehensive analysis of operational processes. By applying
model-checking techniques to the models discovered in process mining, we can verify
whether certain properties hold, detect discrepancies between the intended and actual
process, and even predict future process behaviour [12–14].

Historically, the verification of software and hardware systems was largely determinis-
tic. Yet, as systems have become more complex and have begun to account for randomness
and uncertainty, deterministic methods have been found lacking in comprehensiveness.
The traditional binary output (YES or NO) of model checking may not be enough for
real-world processes ranging from financial [15] to automotive [16] and healthcare [17]
sectors having stochastic behaviour.

Probabilistic model checking has risen to prominence in this context, providing a
means to verify systems that incorporate probabilistic behaviours, with probabilistic mod-
els being intended to quantitatively assess system performance and precision [18]. In recent
times, probabilistic model checking has established itself as a powerful method for verify-
ing both hardware and software. This technique is recognised for its broad applications,
notably in the assessment of reliability, dependability, and performance [19,20]. A notewor-
thy collaboration was achieved by combining probabilistic model checking and process
mining. This was implemented using discrete- and continuous-time Markov chain models,
as detailed in [21,22]. The authors proposed a framework to verify whether a discovered
model satisfies certain desired properties or constraints and provided answers to questions
of how likely, how long, and what factors influence possible paths in a process. Figure 1
illustrates the probabilistic model-checking method for process-mining models.

Future Internet 2023, 15, 378 3 of 21

ModellingFormalizing

Probabilistic Model
Checking

Yes/No
Counter example
Quantitative results

results

finite state-
space

formal modelproperty
specification

requirements process model

Figure 1. Probabilistic model checking for process-mining models.

While probabilistic model checking has made significant advancements in the field
of software model checking, showcasing its effectiveness and robustness in approach,
the persistent challenge of the state explosion problem continues to require innovative
strategies to be overcome. One such solution is the application of statistical model checking
(SMC), utilising simulation methods, particularly discrete-event simulation (DES), as a
mitigation strategy.

SMC represents a methodology rooted in simulation for validating properties relevant
to stochastic systems. It serves as an alternative to conventional model-checking techniques,
notably the probabilistic ones, which often struggle with systems that exhibit large or
infinite state space—a scenario that usually presents challenges for standard methods [23].
Within the scope of SMC, a system is conceptualised as a stochastic process, and the
properties are expressed using temporal logic. The fundamental concept supporting SMC
is the estimation of the likelihood that a system complies with a specific property. This
research article aims to explore the application of statistical-model-checking techniques in
process mining.

The methodology presented in this article aims to extend the current process-mining
techniques by introducing statistical model checking. In this study, we propose a novel
methodology that integrates SMC and PM by formally modelling discovered and replayed
process models and applying statistical methods to estimate the results. Our approach
offers an efficient, automated evaluation to determine the alignment of a process model
with user specifications, aiding users in choosing the most suitable process model. The pro-
posed approach enables the validation of qualitative and quantitative properties of complex
systems and/or systems with large state space, where it is difficult to perform probabilistic
model checking. The aforementioned process is accomplished by executing several dis-
crete simulations of the system under study, where each simulation trace is individually
examined for the property of interest. The final result can be understood as a statistical rep-
resentation of the given probability, supplemented by a confidence interval. This interval
serves to quantify the level of uncertainty embedded in the estimation, thereby providing a
comprehensive measure of the probable accuracy of the results.

The novelty of this work lies in the statistical methods utilised, which allow for the
analysis of large logs and complex models by using sampling and statistical inference, thus
making PM scalable to enterprise-level applications. SMC can provide a formal method to
verify business processes against desired properties. This is novel, because traditional PM
techniques focus on discovering, monitoring, and improving processes based on historical
data without formal verification. By using SMC, the accuracy of discovered process could
be improved. SMC-based formal methods in business processes can help in identifying

Future Internet 2023, 15, 378 4 of 21

not just the paths taken in a process, but also those that are possible yet never taken. This
provides a complete picture of the process capabilities. SMC can be used to predict future
states of a process. Such predictive capability could significantly contribute to PM, allowing
organisations to foresee and minimise potential issues before they occur. Figure 2 illustrates
the statistical-model-checking method for process-mining models. We believe that our
research will contribute to the advancement of process-mining techniques and will provide
valuable insights for organisations to improve their processes.

ModellingFormalizing

process model

Statistical Model
Checking

Statistical results

results infinite state-space \
complex model

formal modelproperty
specification

requirements

Figure 2. Statistical model checking for process-mining models.

The structure of this research article is as follows: Section 2 presents background
material related with this research. Section 3 offers a thorough analysis of the relevant work.
In Section 4, the proposed framework is presented; it is divided in three stages, and each
stage is discussed in detail. The implementation details of a case study and discussion of the
results are presented in Section 5, and finally, Section 6 concludes the article, summarising
the findings and implications of this research.

2. Background
2.1. Process Mining

Process mining serves as a bridge connecting the process-focused aspects of business
process management (BPM) with the data-centric elements of machine learning and data
mining. The foundation of process mining lies in the analysis of recorded process executions,
which are preserved in event logs.

As a field of study, process mining aims to discover, monitor, and refine actual pro-
cesses by leveraging knowledge extracted from readily accessible event logs in systems [24].
Figure 3 provides a comprehensive overview of the research domain encompassed by
process mining. As illustrated in Figure 3, a cloud represents organisations, their business
processes, and people. It is the real-world setting where processes happen. The information
system supports/controls the operations/activities performed in an organisation (cloud),
and it records all events and stores them as event logs, which are detailed records of all the
activities that have occurred. A process model is a formal representation of the business pro-
cesses, and it is derived from the event logs using process-mining techniques, e.g., discovery,
conformance, as shown in Figure 3.

As illustrated, process mining establishes a connection between the theoretical be-
haviour model and the actual observed behaviour.

Process-mining techniques can be categorised into three types: discovery, conformance,
and enhancement. There are various types of modelling notations to represent a process
model, with transition systems, Petri nets [25,26], BPMN [27], and causal net being widely
used notations.

Future Internet 2023, 15, 378 5 of 21

Figure 3. Process mining with discovery and conformance [24].

2.1.1. Traces and Event Logs

Let A be a finite set of activities. A trace σ ∈ A∗ is a finite sequence of activities. An event
log L is a multi-set of traces over a finite set of activities A. For example, if A = {a, b, c, d, e},
then L = {〈a, e, d〉, 〈a, c, b, d〉2, 〈a, b, c, d〉3} [24] is an event log including three traces, where
traces 〈a, e, d〉, 〈a, c, b, d〉, and 〈a, b, c, d〉 occur once, twice, and three times, respectively.

2.1.2. Petri Net

A Petri net is a formal language with graphical representation consisting of places,
transitions, and a flow relation. It is defined as a tuple N = (P , T ,F) [24], where P
represents the set of places; T represents the set of transitions; and F represents the
flow relation, which is a subset of (P × T) ∪ (T × P). A marked Petri net is denoted by
Nm = (N , Mr), whereN = (P , T ,F) and Mr : P → N represents a marking. The marking,
also referred to as a state, can be understood as a representation that encompasses a
collection of places.

2.2. Statistical Model Checking

Statistical model checking is a method that employs simulation techniques to evaluate
specific properties defined within a stochastic temporal logic framework. This approach is
especially beneficial for assessing systems that are interactive, distributed, and embedded
and exhibit stochastic behaviour. Unlike other verification strategies, such as numerical
analysis, SMC is distinguished by its capacity to analyse systems with large state space
and to accommodate systems with unspecified implementation components. As a versatile
and scalable solution, SMC offers a practical alternative for evaluating the properties of
stochastic systems, as highlighted in [28–30] and in a comprehensive survey [31].

The conceptual roots of SMC are linked to pioneering work by [32], who initially
proposed this technique to explore the properties of probabilistic systems. Their approach
integrates Monte Carlo simulation [33] methods, a class of computational algorithms that
rely on repeated random sampling to obtain numerical results, and statistical hypothesis
testing. In practice, SMC leverages the power of statistical methods, particularly Monte
Carlo simulations, to approximate the likelihood that a stochastic system satisfies a partic-
ular property. It achieves this by conducting multiple random simulations of the system
in question and then applying statistical analysis to estimate the probability that a given
property holds. Figure 4 illustrates the general workflow of SMC. As shown in Figure 4,
the high-level model is the model of a complex and/or partially uncontrollable system on
which we wish to perform SMC. The model generates sample paths, and the number of
properties can be utilised to perform verification. As the verification results are statistical
in nature, it is required to get an idea of reliable results by running an optimal number of
steps, and the analysis stage is responsible for this process by checking the number of paths

Future Internet 2023, 15, 378 6 of 21

and drawing a conclusion. If the number of paths is sufficient to accept the results, then the
process ends with drawing a conclusion; otherwise, additional paths are generated from
the defined model.

High-level Model

Verification

Analysis

property

path generation

enough paths

 generate more
paths

draw
conclusion

Figure 4. SMC general workflow.

In the domain of SMC, statistical tests are instrumental in making informed decisions
regarding the system, based on the outputs of the simulation runs. The selection of the
test depends on the nature of the verification we intend to achieve—on whether we aim to
affirm if the estimated probability surpasses a specific threshold or if it lies within a certain
interval. Notably, a number of statistical tests are commonly employed in SMC, such as
Wald’s sequential probability ratio test (SPRT) [34]; the Chernoff–Hoeffding test [35], which
is based on Chernoff–Hoeffding bounds [36]; and the Bayesian test [37].

Meanwhile, an estimator in SMC serves as a protocol for calculating an approximation
of a particular quantity based on the data observed. More specifically, in SMC, an estima-
tor’s function is to approximate the probability of a path formula or a system property.
This is achieved by executing a number of system runs or simulation traces and computes
the fraction of runs that comply with the property. Statistical tests and estimators, when
incorporated into SMC, enhance its capabilities, making it a practical and robust tool for
validating stochastic systems. The power of SMC lies in its ability to effectively deal with
complex as well as black-box-type systems (a black-box system refers to an operational
system where our knowledge is limited to a predetermined set of historical traces ac-
quired during its operational period). Furthermore, the technique provides a method of
verification that is statistically valid and exhibits excellent scalability with respect to the
dimension of the state space and the complexity of the properties under verification. As a
result, SMC has found widespread use in many areas, ranging from computer networks to
safety-critical systems, where it provides an indispensable tool for verifying the correctness
and performance of stochastic systems.

3. Related Work

The advent of process mining has revolutionised the way organisations understand
and optimise their operational processes. The advancements in this field have led to
significant improvements, enabling experts in their field to understand highly complex
processes [38] and non-technical users to easily retrieve relevant information and insights
about their processes [39]. By extracting knowledge from event logs, process mining pro-

Future Internet 2023, 15, 378 7 of 21

vides a data-driven lens to analyse and improve business processes. However, the accuracy
and reliability of the models generated through process mining are critical for effective
decision making. This underscores the need for a robust verification technique to validate
these models. Concurrently, the field of formal verification, particularly model checking,
has seen substantial advancements. The integration of these two fields, however, is a
relatively new area of exploration. This integration can offer a higher degree of confidence
in the validity of the models and the insights derived from them.

Formal verification methods are used to prove or disprove the correctness of a system
with respect to certain formal specifications or properties. Model checking is an automated
method that checks whether a model of a system meets a given specification by exploring
all possible states of the system. The work on model checking by [40] serves as a compre-
hensive overview of the evolution and advancements in model checking, an automatic
verification technique for state transition systems, over the past several years. Model
checking as a technique has proven to be a valuable tool in the identification and resolution
of problems within computer hardware, communication protocols, and software applica-
tions. Furthermore, it has begun to find its use in evaluating cyber–physical, biological,
and financial systems. However, this approach encounters a significant obstacle, often
referred to as the state explosion problem. In simple terms, this issue arises when the sheer
number of states within a system becomes too large to be managed effectively [40].

Expanding the scope of model checking, the authors [41] took it into the domain of
financial risk assessment. They devised a probabilistic model that provides an assessment
of potential risks in financial production. The authors approach is unique, as it relies on
computing probabilities to estimate users’ behaviours, hence quantifying the likelihood
of their actions. The authors recognised for their prior work on process discovery [12]
presented a complementary approach by proposing a method to verify whether a specific
property holds true for a system, given an event log of the system’s behaviour [13]. They
accomplish this through the development of a language based on LTL and the use of
a standard XML format to store event logs. Furthermore, the authors present an LTL
checker that can confirm whether the behaviour observed in an event log complies with
the properties defined in the LTL language. The LTL checker was implemented in the
process-mining ProM framework [42], and the results can be further analysed using various
process-mining tools. This work lays the foundation for the need of verification and model
checking of mined models.

In [14], the authors presented an approach that employs temporal logic query checking,
which bridges the gap between process discovery and conformance checking. This method
facilitates the identification of business rules based on LTL that are consistent with the log
by assessing them against a set of user-defined rules. In the study [19,43], the focus was on
conformance checking, emphasising the role of alignments, and in [44], they focused on
anti-alignments. Such conformance checking provides enhanced diagnostic tools to detect
variances between a trace and its associated process model.

The work in [45] advances runtime verification through a comprehensive examination
of flexible, constraint-based process models based on LTL on finite traces. In [46], the au-
thors presented a new probabilistic approach to conformance checking by incorporating
stochastic process models, considering routing probabilities and frequencies. The work
in [47] proposed a runtime verification technique called predictive runtime verification.
The unique aspect of this work is that instead of assuming the availability of a system
model, the authors describe a runtime verification workflow where the model is learned
and incrementally refined using process-mining techniques. The authors in [48] presented
an approach for the automatic analysis of business process models discovered through the
application of process-mining techniques.

Formal verification techniques such as model checking, however, often encounter a
common problem known as the state explosion problem, where the number of states in a
model may grow exponentially with the size of the model. Hence, alternative approaches
that can handle large models are needed. A unique algorithm that employs Monte Carlo

Future Internet 2023, 15, 378 8 of 21

simulation [33] and hypothesis testing for non-explosive, stochastic discrete-event systems
was proposed in [32] and further elaborated in [49]. Monte Carlo simulation—a statistical
method—permits the modelling of random variables and their potential outcomes. This
approach has significantly improved probabilistic model checking capabilities and high-
lighted the potential of using simulations to strengthen model-checking methodologies.
The authors in [32] presented a model-independent method for verifying properties of
discrete-event systems, which often have complex dynamics that are difficult to analyse.
The uniqueness of this approach lies in its model independence, making it versatile for any
discrete-event system. The sole model-dependent aspect is the establishment of sample
execution paths and the probability measure on these path sets. In [50], the algorithm of [32]
was extended to statistically verify black-box systems. The paper [50] presents a novel
statistical methodology for analysing stochastic systems against specifications specified in
a sub-logic of continuous stochastic logic. The system under study behaves as a black-box
that is already deployed, from which sample traces can be passively observed but cannot
be manipulated. More applications of SMC in stochastic systems can be found in [28–30].

A comprehensive overview of the SMC methodology, its real-world implementations,
and its applications in various domains can be found in the literature reviews conducted
in [31,51]. These surveys explain how SMC emerges as a formidable strategy for approxi-
mating the probability that a system adheres to a certain temporal property. The methodol-
ogy of SMC involves the examination of a finite collection of system executions, followed
by the application of statistical techniques to generalise the findings. The outcomes of this
process adhere to a confidence level that can be predefined by the user, thereby allowing for
control over the precision of the results. The work emphasises SMC’s capacity to alleviate
the state-space explosion problem, along with its ability to manage requirements that
surpass the expressiveness of traditional temporal logics. The work in [52] introduces a
research direction that merges statistical model checking and process mining. The research
aims to augment SMC by explaining the reasons behind specific estimates, which can assist
in model validation or recommend improvements (enhancement). The integration of SMC
and PM results in an approach to white-box behavioural model validation and enhance-
ment. With this methodology, PM can detect discrepancies in the model by examining the
simulations generated through SMC. Importantly, since SMC can determine the necessary
number of simulations for a given analysis, it produces statistically reliable event logs
suitable for PM applications.

The work performed so far in the verification of process models suggests that process
models must be validated for accuracy and precision to ensure their effectiveness. This
validation is achieved by defining the semantics of the models and applying various logic
and formal methods for verification, including model checking. Applications of model
checking in process mining are still in their infancy; nevertheless, it is a promising research
field and can be extended with the application of statistical model checking in process
mining to handle complex systems with stochastic behaviour.

4. Proposed Framework

Statistical model checking concentrates on performing the right number of simulations
to obtain statistically reliable estimations, such as the probability of success in reaching a
goal state. On the other hand, process mining focuses on constructing and/or optimising a
system model using logs of its traces. Drawing on the strengths of these two methodologies,
as shown in Figures 3 and 4, we propose a framework that integrates SMC and PM. This
fusion aids in identifying anomalies and areas of concern within models discovered through
PM. Notably, it addresses complex business processes, which are often challenging to model
comprehensively. Figure 5 illustrates the proposed framework.

Future Internet 2023, 15, 378 9 of 21

Event Log

check
paths Verification

Analysis with
Reliability

Parameters

end

Discovered
Process Model

Formal Model
Construction

check
results

formal modelling
language

description

m
od

ify
m

od
el

lin
g

pa
ra

m
et

er
s

reject

property

enough paths

need more paths

accept

Replayed Process
Model

1

3

2

Figure 5. Proposed framework.

SMC, with its capacity to manage the state-space explosion problem and its ability to
handle complex process behaviours, is a powerful tool for process mining. The application
of SMC could greatly aid in understanding, optimising, and controlling complex business
processes, thus offering significant value for organisations striving for efficiency and
reliability. Furthermore, it could recommend improvements based on the statistically
robust results estimated through SMC. The proposed framework is divided into three
major parts, as shown below:

1. Process-mining model.
2. Modelling and verification.
3. Analysis.

4.1. Process-Mining Model

In the initial stage, the focus lies in the discovery and replay of the process model.
Process discovery is a technique in process mining whereby a process model is constructed
from an event log, which is an unstructured sequence of events captured from the execution
of a process, while in the replay method, an algorithm operates by replaying event logs in
the process model, aiming to reproduce the observed behaviour and evaluate its alignment
with the expected process flow. Replay can also provide valuable insights, including the
frequency of execution of different paths and performance metrics such as waiting times
and execution times for activities. Dotted block 1 in Figure 5 illustrates the initial step of
the proposed framework.

4.1.1. Process Discovery

Process discovery entails utilising an event log as an initial data source and generating
a model that effectively captures the observed behaviour within the log. The objective of
process discovery techniques extends beyond merely constructing models that depict the
control flow of activities; they also encompass uncovering additional dimensions, such as
revealing the social network connections among the resources involved in executing these
activities [53]. The utilisation of process discovery techniques is highly valuable for gaining
insights into real-world processes.

Process discovery algorithm: Let I denote the set of process discovery algorithms. In a
formal sense, a process discovery algorithm can be defined as a function that maps an
event log to a process model. Specifically, for each i ∈ I, we have Di : L 7→ N , where L
represents the set of event logs and N represents the resulting process model. The primary
objective is to ensure that the discovered process model accurately reflects the observed
behaviour within the event log. Figure 6 shows a model of log L discovered using a
simple discovery algorithm, Alpha Miner. Alpha Miner, one of the first and simplest process

Future Internet 2023, 15, 378 10 of 21

discovery algorithms, is utilised for its capability to discover a process model that is
easier to understand compared with other discovery algorithms, which may generate
complex models.

a

b

c

e d

p3

p4p2

p1

endstart

Figure 6. Discovered model of log L.

4.1.2. Conformance Checking

Conformance checking involves the examination of both a process model and an
event log associated with the specific process. The purpose of conformance analysis is to
compare the observed behaviour recorded in the log against the behaviour permitted by
the model [54,55]. When the observed behaviour deviates from what is allowed by the
model or vice versa, it indicates non-conformance between the log and the model.

Alignment: It refers to the pairwise comparison or the quantification of the similarity
between observed event logs and a reference process model. It measures the level of
agreement between the recorded behaviour and the expected behaviour specified by the
model. Alignment provides insights into the degree of compliance, accuracy, and fitness of
the observed process execution traces with respect to the modelled process.

Replay algorithm: A replay algorithm refers to a computational procedure that operates
on an event log, denoted by L, and a process model, represented as N , as its input. The ob-
jective of the algorithm is to produce a set of alignments that establish the correspondence
between the event log and the process model, denoted by R(L,N) = ΓL,N . Here, ΓL,N
represents a set of alignments that establish a correspondence between the events in the log
and the states of a Petri net.

4.2. Modelling and Verification

In this step, the primary focus lies in constructing a model and ensuring its validity
for the system under investigation. A model is built to accurately represent the behaviour
of the real-world system. The construction of this model typically involves formalising the
processes obtained in the first step (Section 4.1), translating them into a formal language
that can be used for further analysis. Dotted block 2 in Figure 5 illustrates the modelling
and verification step.

In this step, one can build a complete model of a system or can generate paths to per-
form verification. The formal model is generated with the help of a set of alignments, ΓL,N ,
which results from the replayed process model, as shown in Figure 5. Set of alignments ΓL,N
is used to create a transition probability matrix and/or rate matrix depending on the type
of model we consider (i.e., discrete-time or continuous-time Markov model). In a formal
model of type discrete-time Markov chain (DTMC) D = (S , s̄,L, P) (where S is a finite set
of states, s̄ ∈ S is the initial state, L : S → 2AP is the labelling function, P : S × S → [0, 1]
is the transition probability matrix), where ∑s′∈S P(s, s′) = 1 for all s ∈ S , each element
P(s, s′) of the transition probability matrix gives the probability of making a transition from
state s to s′ [56]. And in a formal model of the type continuous-time Markov chain (CTMC)
C = (S, s̄, L, R), S is a finite set of states; s̄ ∈ S is the initial state; L : S→ 2AP is the labelling
function; and R : S× S→ R≥0 is the transition rate matrix [56]. The logic used to express
the properties of the formal DTMC model is probabilistic computation tree logic (PCTL), while
for CTMC, it is continuous stochastic logic (CSL). The syntax and semantics defined below

Future Internet 2023, 15, 378 11 of 21

are for CSL (excluding the S operator), and if we change the time domain from R≥0 to N,
we obtain PCTL [57]. Let Φ represent a state formula and ψ represent a path formula; then,

Φ ::= true | ap | ¬Φ | Φ1 ∧Φ2 | P∼p[ψ]

ψ ::= XΦ | X≤kΦ | Φ1 U Φ2 | Φ1 U≤k Φ2

where ap is an atomic proposition, ap ∈ AP (set of atomic propositions), ∼∈ {<,≤,≥,>},
p ∈ [0, 1], and k ∈ R≥0. The operators (¬, ∧) represent logical NOT and AND, respectively,
while X (“next”), Xk (“bounded next”), U (“until”), and Uk (“bounded until”) are standard
operators in temporal logic. Note that we use bounded and unbounded X and U operators.
The notion that a state s (or a path π) satisfies a formula Φ is denoted by s |= Φ (or π |= Φ)
and is defined as follows [57]:

s |= ap iff ap ∈ AP(s)

s |= ¬Φ iff s 2 Φ

s |= Φ1 ∧Φ2 iff s |= Φ1 ∧ s |= Φ2

s |= P ∼p (ψ) iff Prob {π ∈ Path(s) | π |= ψ} ∼ p

π |= XΦ iff τ(π, 1) < ∞ ∧ π[1] |= Φ

π |= X≤kΦ iff τ(π, 1) ≤ k ∧ π[1] |= Φ

π |= Φ1 U Φ2 iff ∃x ∈ R≥0 (π(x) |= Φ2 ∧ ∀y ∈ [0, x). π(y) |= Φ1)

π |= Φ1 U≤k Φ2 iff ∃x ∈ [0, k]. (π(x) |= Φ2 ∧ (∀y ∈ [0, x). π(y) |= Φ1))

This step involves generating a finite number of system simulations and leveraging
statistical methods to determine whether the collected samples provide statistical proof of
the system either meeting or failing to meet the specified requirements. The key principle
here is that the sample runs of a stochastic system are generated in accordance with the
system’s defined distribution. This allows for the estimation of the probability measure on
the system’s executions. A formal model of the discovered process, as shown in Figure 6, is
presented along with its defined properties below.

dtmc
module example_model

s : [1..5] init 1;
[] s=1 -> 0.5:(s’=2) +0.33333:(s’=3) +0.16667:(s’=5);
[] s=2 -> 0.6:(s’=3) +0.4:(s’=4);
[] s=3 -> 0.4:(s’=2) +0.6:(s’=4);
[] s=5 -> (s’=4);

endmodule

const int x;
const int y;

// Checking deadlock state
E [F "deadlock"]

// Probability of reaching state x?
P=? [F s=x]

// YES or NO verification.
P<0.7 [(s=x) U (s=y)]

Future Internet 2023, 15, 378 12 of 21

4.3. Analysis

The analysis phase within SMC plays an integral role, addressing the results derived
from the process and analysing them using a range of key determinants, i.e., reliability
parameters. A deeper understanding of these reliability parameters provides the ability to
closely examine the dependability of the SMC results. Typically, these parameters find
associations with the statistical confidence and accuracy of the outcomes obtained from
the model-checking procedure. Among the reliability parameters, the concept of confidence
interval finds prominence, with its elements being confidence level and width. A significant
feature within this context is the statistical test. An instance of such a test is the sequential
probability ratio test (SPRT) [34].

As illustrated in dotted block 3 in Figure 5, the first assessment criterion is the count
of paths. This criterion is essential to evaluating the results. If the execution traces or paths
are insufficient for making a conclusive decision, additional paths are generated from the
established formal model. Conversely, when there are adequate paths executed, the next
step involves reviewing the results and proceeding towards making a decision on whether
to accept or reject these results. The basis for such decision making, whether to accept or
reject the results, resides in the user requirements, serving as the determining factor for the
application of statistical-model-checking techniques to process models.

The implication of a user rejecting the acquired results denotes that alterations can
be made to the modelling parameters of the process model’s discovery and replay. Let us
consider a formal model represented byM, and let ϕ represent a temporal logic property.
In this scenario, the task of the SMC algorithm is to approximate the value of PM[ϕ],
where PM[ϕ] denotes the probability thatM satisfies ϕ. To achieve this, the algorithm
generates multiple random paths or samples, denoted by s1, s2, . . . , sn, inM. For every si,
the algorithm checks if ϕ holds. This results in a sequence of Bernoulli random variables Xi
defined as Xi = 1 if ϕ holds for si and Xi = 0 otherwise.

The SMC algorithm uses the generated samples to estimate PM[ϕ]. The estimate
is then validated against the user-defined acceptance/rejection criteria that are defined
using the reliability parameters. If the estimate falls within acceptable limits, it is accepted.
Otherwise, the algorithm iterates, either generating more samples or modifying the model
or the property, until a satisfactory estimate is obtained.

5. Case Study
5.1. Event Log and Process-Mining Algorithms

The implementation of the proposed approach is based on a dataset of a loan appli-
cation process performed in a financial institution [3]. The data contain all applications
filed on an online system in 2016 and their subsequent events until February 2017. There
are 31,509 applications filed in total, and for these applications, 42,995 offers were created
in total. The events in this dataset represent real-life events captured by the institute’s
operational processes. The event log contains 26 types of activities, which are divided into
3 types: Application events, Offer events, and Workflow events. To showcase the application of
the suggested method, we employed a range of process discovery algorithms, including
Alpha Miner, Discover using Decomposition, Mine for Heuristic Net, and Mine Transition Sys-
tem. And, for each discovered process model, we implemented various replay algorithms,
Heuristic cost-based fitness with Integer Linear Programming (ILP), A* cost-based fitness with
ILP, Best first search simple string distance (SSD) calculation, Dijkstra-based replayer, ILP-based
replayer, LP-based replayer, Prefix-based A* cost-based fitness, and Splitting replayer [58].

5.2. Verification

For each of the four process discovery algorithms and each of the eight replay al-
gorithms, we built a DTMC model in the PRISM model checker [59]. Table 1 presents a
description of the generated DTMC models grouped by process-mining algorithm. The
table is divided into three columns, in which the first column shows process discovery algo-
rithms, the second column is about the number of states for each discovered and replayed

Future Internet 2023, 15, 378 13 of 21

algorithm, and the third column presents the lowest and highest values of transitions for
each algorithm. In the second column, we can observe variations in the number of states
among discovery algorithms. The discovery algorithm Mine for Heuristic Net has 27 states,
while the others have 26. The reason is that the Mine for Heuristic Net algorithm generates a
discovery model that includes all (observable and unobservable) activities. A (tau) τ transi-
tion, also known as a silent or invisible transition, represents unobservable activities. It does
not correspond to any observable operation or event in the modelled process. It is used to
represent internal actions or events that are unobservable or irrelevant to the analysis at
hand. For example, in a workflow process, you might have actions like “approve document”
or “send email” that are represented by observable transitions. However, there might be
internal system checks or data processing steps that are not directly observable from the
outside. These are modelled using τ transitions, indicating that something happens, but it
is not necessary to specify what that something is for the purposes of the model. These
transitions can change the state of the Petri net without producing any visible outcome.

Table 1. Model size of generated DTMC models. For some process discovery algorithms, the transi-
tion numbers differ among different replay algorithms.

PM Algorithm Num. of States Num. of Transitions

Alpha Miner 26 [178, 254]

Discover using Decomposition 26 178

Mine for Heuristic Net 27 [172, 219]

Mine Transition System 26 [178, 201]

As mentioned in Section 5.1, there are eight different replay algorithms, which were
utilised to generate a formal model. Therefore, the number of transitions varies in each
discovery algorithm, depending on the nature of the respective replay algorithm, except for
Discover using Decomposition. The reason behind this is that the Discover using Decomposition
algorithm has consistent performance in each replay algorithm. In other words, the Discover
using Decomposition algorithm maintains consistent behaviour across different scenarios.

The verification procedure is divided into two main steps. Firstly, we undertake
estimation exercises at confidence levels of 99% and 95%. This part of the study fundamentally
focuses on the statistical evaluation of the properties under investigation within these
confidence intervals. The choices of these specific confidence levels allows us to assess the
robustness and reliability of our findings under different degrees of statistical certainty.
The 95% confidence level is commonly used in research, as it offers a standard balance
between statistical power and confidence. It implies that if the study were repeated multiple
times, 95 out of 100 similar studies would produce results within this interval, suggesting a
high level of reliability. However, to further strengthen our conclusions and to account for
potential variations in the data, we also consider the 99% confidence level. By comparing
results at these two levels, we aim to demonstrate the consistency of our findings. If the
results remain significant at both the 95% and 99% confidence levels, it indicates a higher
degree of certainty in our conclusions. On the other hand, discrepancies between these
levels may suggest areas where further investigation is needed or where conclusions are
more tentative.

The second part of our verification procedure comprises hypothesis testing applied to
selected properties. By incorporating these two complementary approaches, we seek to
provide a comprehensive evaluation of the properties under investigation. Estimation at
different confidence levels allows us to assess the reliability of the results across a range of
statistical significance levels. Hypothesis testing, on the other hand, facilitates the rigorous
validation of the underlying assumptions and predictions regarding the properties in
question. The proposed framework, therefore, offers a multifaceted and robust evaluation
of the model.

Future Internet 2023, 15, 378 14 of 21

5.2.1. Estimation with Confidence Level of 99%

In Tables 2–5, the derived results demonstrate the probabilistic estimates for the ex-
amined properties at a confidence level of 99%. In order to obtain reliable results, we
conducted a sequence of 100 simulations for each property. Table 2 presents a compre-
hensive overview of the estimated results specific to each process discovery algorithm,
inclusive of the corresponding replay algorithm. The focal property investigated here is
expressed as P = ? [F ≤ 10 (s = x)]. In simpler terms, this property seeks to explore the
likelihood of arriving at state x (where x denotes a target state) within a time frame of 10 units.
The property is particularly useful in scenarios where timely completion or response is
critical. It allows stakeholders to assess risks and make informed decisions with high-level
confidence based on the likelihood of events within relevant time frames. For example, it
can verify requirements such as a task’s completion within a specified time frame or the
prevention of system failures within a certain period.

Table 2. Property P = ? [F ≤ 10 (s = x)].

Process Discovery Algorithm
Replay

Algorithm
1

Replay
Algorithm

2

Replay
Algorithm

3

Replay
Algorithm

4

Replay
Algorithm

5

Replay
Algorithm

6

Replay
Algorithm

7

Replay
Algorithm

8

Alpha Miner 0.105 0.092 0.053 0.202 0.091 0.096 0.101 0.104
Discover using Decomposition 0.1 0.101 0.104 0.105 0.098 0.107 0.102 0.106
Mine for Heuristic Net 0.161 0.271 0.154 0.274 0.252 0.187 0.238 0.275
Mine Transition System 0.266 0.101 0.105 0.107 0.132 0.103 0.24 0.103

The findings pertaining to the particular property expressed as P = ? [¬ (s = x) U ≤ 5
(s = y)] are presented in Table 3. This property represents an exploratory question inquiring
about whether the probability that state x does not occur before state y is encountered within
a temporal window of 5 time units. Essentially, we are investigating the constraint-based
temporal behaviour of the model’s transitions, imposing a bounded time limit on the until
(U) operator. The importance of this property lies in its ability to model circumstances
where the occurrence of state y takes precedence and should be reached before state x. This
form of probabilistic property allows for the study of the ordered temporal relationships
between different states within a fixed time constraint, offering valuable insights into the
temporal dynamics of the system.

Table 3. Property P = ? [¬ (s = x) U ≤ 5 (s = y)].

Process Discovery Algorithm
Replay

Algorithm
1

Replay
Algorithm

2

Replay
Algorithm

3

Replay
Algorithm

4

Replay
Algorithm

5

Replay
Algorithm

6

Replay
Algorithm

7

Replay
Algorithm

8

Alpha Miner 0.0133 0.0617 0.0381 0.0392 0.0620 0.0199 0.0128 0.0142
Discover using Decomposition 0.0131 0.0118 0.0129 0.0136 0.0140 0.0125 0.0121 0.0133
Mine for Heuristic Net 0.1354 0.1575 0.1328 0.1200 0.1415 0.1526 0.1261 0.1194
Mine Transition System 0.0192 0.0152 0.0131 0.0126 0.0180 0.0133 0.0139 0.0125

Table 4 outlines the derived outcomes associated with the verification of the property
Rcost = ? [F (s = x)]. In essence, this property investigates the accumulated reward, repre-
sented in this context as a cost required to transition to a designated state x. It is important
to note that state x could represent various scenarios, such as the target state, a deadlock state
that halts progression, or any other significant state within the system model.

Future Internet 2023, 15, 378 15 of 21

Table 4. Property Rcost = ? [F (s = x)].

Process Discovery Algorithm
Replay

Algorithm
1

Replay
Algorithm

2

Replay
Algorithm

3

Replay
Algorithm

4

Replay
Algorithm

5

Replay
Algorithm

6

Replay
Algorithm

7

Replay
Algorithm

8

Alpha Miner 97.808 51.731 54.089 54.106 51.509 98.993 98.231 97.697
Discover using Decomposition 99.026 99.882 98.851 98.215 98.301 98.557 99.060 98.143
Mine for Heuristic Net 42.123 31.69 23 29.92 30.62 31.377 47.430 37.896
Mine Transition System 99.467 97.626 98.595 98.781 98.636 99.596 98.181 97.89

The estimation of such a property is essential, as it facilitates a quantifiable under-
standing of the resource expenditure needed to transition within the system, thus providing
crucial insights into the process model’s performance. By quantifying the cost to reach
specific states, we are better equipped to evaluate the model’s performance under different
conditions and make informed decisions. The summary presented in Table 5 offers an
analytical exploration of the property P = ? [X (s = x)], a construct defined to answer the
question what is the likelihood that the subsequent state following the initial state is x? In this
property, we utilise the NEXT operator, denoted by X, which signifies the next reachable
state from the current position in the sequence. The state labelled x is an arbitrary state
of interest within the model, subject to the specific requirements or investigative focus of
the analysis. This table, therefore, provides a quantitative estimation, offering a calculated
probability that the model will transition into specified state x immediately after leaving
the initial state. Specific state x is selected based on the research objectives or the specific
characteristics of the process under investigation.

Table 5. Property P = ? [X (s = x)].

Process Discovery Algorithm
Replay

Algorithm
1

Replay
Algorithm

2

Replay
Algorithm

3

Replay
Algorithm

4

Replay
Algorithm

5

Replay
Algorithm

6

Replay
Algorithm

7

Replay
Algorithm

8

Alpha Miner 0.6471 0.6521 0.5545 0.6408 0.6476 0.5541 0.6471 0.6472
Discover using Decomposition 0.6502 0.6476 0.6454 0.6447 0.6464 0.6487 0.6462 0.6490
Mine for Heuristic Net 0.6494 0.6462 0.6524 0.6480 0.6456 0.6470 0.6486 0.6515
Mine Transition System 0.6471 0.6299 0.6255 0.6478 0.5660 0.6055 0.6459 0.5516

5.2.2. Estimation with Confidence Level of 95%

Tables 6–9 present the findings derived from our probabilistic analysis of the properties
under investigation. Each of these results provides an estimation with a confidence level
of 95%. To ensure a robust set of data, a series of 100 simulations were carried out for
each property. Specifically, Table 6 provides a detailed analysis of the projected results,
differentiating between a variety of process discovery algorithms and their associated
replay algorithms. The focus of our evaluation is the property P = ? [F ≤ 10 (s = x)].
This property queries the probability of attaining target state x within a predetermined temporal
boundary of 10 units. A 95% confidence level offers a slightly broader margin for uncertainty
compared with the 99% confidence level for the same property, as presented in Table 2.
This might be suitable for scenarios where the implications of the outcome are less critical.

Future Internet 2023, 15, 378 16 of 21

Table 6. Property P = ? [F ≤ 10 (s = x)].

Process Discovery Algorithm
Replay

Algorithm
1

Replay
Algorithm

2

Replay
Algorithm

3

Replay
Algorithm

4

Replay
Algorithm

5

Replay
Algorithm

6

Replay
Algorithm

7

Replay
Algorithm

8

Alpha Miner 0.105 0.086 0.05 0.21 0.086 0.092 0.105 0.093
Discover using Decomposition 0.111 0.118 0.104 0.099 0.109 0.106 0.114 0.094
Mine for Heuristic Net 0.157 0.264 0.153 0.271 0.135 0.148 0.158 0.132
Mine Transition System 0.275 0.104 0.097 0.111 0.104 0.093 0.109 0.106

The results linked to the specific property expressed as P = ? [¬ (s = x) U ≤ 5
(s = y)] can be found in Table 7. This property represents an investigative query about
the likelihood that condition x does not appear before condition y within a defined period of 5 time
units. The property refers to an examination of model transitions within specific temporal
constraints. It captures a restricted duration on the until operator, essentially quantifying
the time-bound behaviour of these transitions. This property can be used to validate if a
system behaves as expected. For instance, in a business process, it can be used to check if a
certain undesirable state (s = x) is avoided until a desired state (s = y) is reached within a
certain time frame. The comparison between Table 3 and Table 7 highlights the impact of
confidence levels on the same property, with Table 3 yielding higher confidence results.

Table 7. Property P = ? [¬ (s = x) U ≤ 5 (s = y)].

Process Discovery Algorithm
Replay

Algorithm
1

Replay
Algorithm

2

Replay
Algorithm

3

Replay
Algorithm

4

Replay
Algorithm

5

Replay
Algorithm

6

Replay
Algorithm

7

Replay
Algorithm

8

Alpha Miner 0.013 0.063 0.031 0.039 0.052 0.010 0.017 0.014
Discover using Decomposition 0.015 0.015 0.016 0.015 0.021 0.013 0.016 0.018
Mine for Heuristic Net 0.130 0.158 0.031 0.120 0.134 0.136 0.201 0.104
Mine Transition System 0.022 0.016 0.014 0.014 0.015 0.017 0.016 0.015

Table 8 presents the results obtained from the verification of the property Rcost = ?
[F (s = x)]. Essentially, this property explores the aggregate reward, characterised as a
cost in this scenario, in relation to the transition to a specified state (x). Understanding the
expected cost until a certain state is reached is crucial for process optimisation. For instance,
if s represents a specific state in a process, the property can provide insights into the total
cost of reaching state s at a 95% confidence level.

Table 8. Property Rcost = ? [F (s = x)].

Process Discovery Algorithm
Replay

Algorithm
1

Replay
Algorithm

2

Replay
Algorithm

3

Replay
Algorithm

4

Replay
Algorithm

5

Replay
Algorithm

6

Replay
Algorithm

7

Replay
Algorithm

8

Alpha Miner 98.041 51.128 52.511 54.189 51.151 97.429 96.365 94.495
Discover using Decomposition 97.740 99.061 98.222 97.266 97.708 98.691 99.396 99.029
Mine for Heuristic Net 62.779 31.619 22.963 29.833 32.974 32.487 47.621 38.138
Mine Transition System 99.435 98.210 98.915 97.469 97.295 97.486 97.155 98.469

Table 9 provides an in-depth evaluation of the property P = ? [X (s = x)], a construct
designed to estimate the probability of transitioning into specific state x immediately following
the initial state. This property involves the use of the NEXT operator, denoted by X, which
indicates the subsequent reachable state in the model’s sequence. The specific state, denoted
by x, represents a chosen state in the model. This property can be used to verify the

Future Internet 2023, 15, 378 17 of 21

likelihood of transitioning from one state to another in the very next step. This is particularly
useful in processes where immediate transitions are critical, as it aids in understanding the
short-term behaviours and immediate consequences of the current state.

Table 9. Property P = ? [X (s = x)].

Process Discovery Algorithm
Replay

Algorithm
1

Replay
Algorithm

2

Replay
Algorithm

3

Replay
Algorithm

4

Replay
Algorithm

5

Replay
Algorithm

6

Replay
Algorithm

7

Replay
Algorithm

8

Alpha Miner 0.651 0.635 0.555 0.642 0.651 0.651 0.645 0.643
Discover using Decomposition 0.660 0.656 0.649 0.644 0.643 0.635 0.649 0.655
Mine for Heuristic Net 0.649 0.649 0.655 0.654 0.648 0.660 0.646 0.647
Mine Transition System 0.659 0.653 0.657 0.653 0.654 0.656 0.644 0.651

5.2.3. Hypothesis Testing

Hypothesis testing, an essential tool in statistical analysis, can be performed on a set of
collected samples. This process involves two distinct methodologies: fixed-size sampling
and sequential testing.

In the context of fixed-size sampling, the total number of samples required is deter-
mined in advance. This process is systematic, calculating the sample quantity according to
risk functions corresponding to error probabilities denoted by α and β [60]. It is a predeter-
mined approach where the sample size is set before the commencement of the experiment.

Sequential testing, on the other hand, contrasts with the fixed-size sampling method.
In this approach, samples are successively assembled, and statistical analyses are performed
concurrently [34]. The process continues iteratively until sufficient information to make a
decision with the necessary confidence level is acquired. This method provides flexibility,
since the total number of required observations is not set in advance.

The sequential probability ratio test (SPRT), based on acceptance-sampling techniques [32],
was performed to determine how many samples were needed for the defined property to
return a true result within a given bound on the P operator. Table 10 outlines the derived
outcomes associated with the verification of the property P ≥ 0.5 ? [¬ (s = x) U “visited”],
which states what is the probability that state x is not reached until ‘visited’ is/are reached (where
‘visited’ refers to one or more states defined in the model). This property can be used
to determine how many samples are needed to validate whether the system behaves as
expected, with a threshold of 50% or more. For instance, in a business process, it can be
used to check if a certain undesirable state (s = x) is avoided until number of desired
states visited is reached with a probability of 50% or more. To obtain reliable results, we
conducted a series of 100 simulations for the defined property. Note that the values of α
(type I error), β (type II error), and δ (half-width of an indifference region) were set to 0.05.

Table 10. Property P ≥ 0.5 [¬ (s = x) U “visited”]; samples required = ?

Process Discovery Algorithm
Replay

Algorithm
1

Replay
Algorithm

2

Replay
Algorithm

3

Replay
Algorithm

4

Replay
Algorithm

5

Replay
Algorithm

6

Replay
Algorithm

7

Replay
Algorithm

8

Alpha Miner 28 29 25 27 29 28 28 28
Discover using Decomposition 28 30 27 30 29 27 29 29
Mine for Heuristic Net 22 29 34 28 28 29 34 24
Mine Transition System 25 31 29 27 29 26 28 26

Tables 2–10 illustrate a comprehensive exploration of the application of SMC tech-
niques to process models. The analysis focuses on verifying various properties at different
confidence levels, specifically, 99% and 95%, and hypothesis testing, specifically, SPRT. Various

Future Internet 2023, 15, 378 18 of 21

statistical outcomes are obtained from different models, each demonstrating varied results
for multiple properties, as shown in Tables 2–10. In this context, Tables 2–5 illustrate the esti-
mation results at a 99% confidence level; Tables 6–9 highlight the results at a 95% confidence
level; and Table 10 presents the hypothesis-testing results for each process model.

5.3. Discussion

In the research conducted, we utilised statistical-model-checking methods to verify
properties associated with a complex system. The outcomes demonstrated significance,
highlighting the value of such methods when delving into complex systems based on
probability. Initially, our analysis involved the successful implementation of a formal
model (DTMC, in this case) to represent the system under consideration. This model then
underwent verification against various properties expressed using PCTL, spanning from
simple reachability to complex bounded until properties. Subsequently, we embarked on an
exhaustive statistical model evaluation of these properties. The checking process yielded a
series of results, providing valuable insights into the system’s behaviour. These insights
paved the way for deducing probabilistic metrics significant for informed decisions about
system management and control.

During the analysis of properties described in Tables 2–10, which were utilised in the
conducted case study, certain observations were made regarding the model’s performance,
specifically the model discovered through the application of the Mine for Heuristic Net tech-
nique. The model exhibited better performance in its estimations, irrespective of whether
the confidence level was set to 99% or 95% . It can be observed from Tables 2–9 that the
Mine for Heuristic Net discovery algorithm yielded better results in most of the replay algo-
rithms compared with other process discovery algorithms. When considering probabilistic
properties where a user desires higher probabilistic values, Mine for Heuristic Net provided
better results. Similarly, for cost-related properties where the objective is to minimise values,
the specified discovery algorithm performed better. During the hypothesis-testing phase, all
four models under consideration demonstrated varied performance with different replay
algorithms. As seen in Table 10, the first replay algorithm required fewer samples for Mine
for Heuristic Net to return a true result. In contrast, for the second replay algorithm, both
Alpha Miner and Mine for Heuristic Net required a fewer (or the same) number of samples.
Additionally, the results vary when moving from left to right in Table 10. Therefore, it is not
possible to definitively select one discovery algorithm as superior.

However, it is noteworthy to mention that these results are fundamentally statistical.
Despite this statistical nature, the findings indicate that the Mine for Heuristic Net model
offers certain advantages. Particularly, it appears to be more beneficial in relation to reward-
or cost-associated properties, as well as in the estimation of probabilistic properties.

The statistical-model-checking techniques were found to be remarkably effective in
handling the inherent randomness of the DTMC model. Notably, these techniques offered a
practical alternative to traditional, exhaustive model-checking approaches, which are often
obstructed by the state-space explosion problem. Moreover, the statistical-model-checking
techniques provided both upper and lower bounds to the property probabilities, thereby
providing quantifiable uncertainty measures for each result. One critical aspect observed is
this study is the trade-off between the accuracy of results and computational cost. While
increasing the number of samples in the statistical-model-checking process could enhance
the precision of results, it simultaneously led to an increase in the computational load.
Therefore, determining an optimal balance between accuracy and computational efficiency
is a significant challenge.

In conclusion, the work in this article demonstrates the practicality and efficiency of
using statistical-model-checking techniques for verifying the properties of complex models.
The results obtained provide a solid foundation for the further use of these methods in
more complex and larger probabilistic systems. Our findings also highlight the need for
additional research to optimise the balance between result accuracy and computational
effort in the model-checking process.

Future Internet 2023, 15, 378 19 of 21

6. Conclusions

In this work, we integrate statistical model checking into the domain of process mining.
The presented work demonstrates the feasibility and effectiveness of employing SMC to
analyse process models extracted from event logs. By applying statistical techniques, we
are able to assess complex process behaviours without yielding to the state-space explosion
problem, a prevalent issue in traditional model checking. The methodology enables the
verification of various properties in a more scalable and efficient manner. Through the
combination of SMC and PM, robust tools are provided for businesses to analyse, optimise,
and control their processes.

The proposed methodology helps in the continuous monitoring and verification of
business processes, ensuring that they meet the desired quality standards. As the methodol-
ogy sets a new standard for process analysis, it encourages the adoption of forward-thinking
approaches to process management. By staying ahead of the curve with such innovative
methodologies, businesses can future-proof their processes against evolving operational
challenges. The case study presented in this work further solidified the applicability and
effectiveness of the proposed approach across different scenarios.

However, this work is not without its limitations and challenges. The tuning of pa-
rameters in SMC, such as the confidence level and error margin (α, β), requires careful
consideration and a deep understanding of the underlying processes and statistical princi-
ples. Further research may focus on developing more user-friendly methods for non-experts
to utilise the power of SMC in process mining. Moreover, while our approach has proven
successful in handling various properties and models, certain highly complex or specialised
scenarios may require further refinement and extension of our techniques.

Author Contributions: Conceptualization, G.S. and F.A.M.; methodology, F.A.M. and G.S.; software,
F.A.M.; validation, F.A.M. and G.S.; formal analysis, F.A.M. and G.S.; investigation, F.A.M.; data
curation, F.A.M.; writing—original draft preparation, F.A.M.; writing—review and editing, G.S., M.Z.
and F.A.M.; visualization, F.A.M. and G.S.; supervision, G.S. and M.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available at a publicly accessible repository. The data pre-
sented in this study are openly available at [3].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. der Aalst, V.; Mining, W.P. Discovery, Conformance and Enhancement of Business Processes; Springer: Berlin/Heidelberg, Germany,

2011; Volume 136.
2. Van Der Aalst, W. Process mining: Overview and opportunities. ACM Trans. Manag. Inf. Syst. (TMIS) 2012, 3, 1–17. [CrossRef]
3. van Dongen, B. BPI Challenge 2017. 2017. Available online: https://data.4tu.nl/articles/_/12696884/1 (accessed on 10 July 2023).
4. Mannhardt, F.; De Leoni, M.; Reijers, H.A.; Van Der Aalst, W.M. Data-driven process discovery-revealing conditional infrequent

behavior from event logs. In Advanced Information Systems Engineering: 29th International Conference, CAiSE 2017, Essen, Germany,
12–16 June 2017; Proceedings 29; Springer: Cham, Switzerland, 2017; pp. 545–560.

5. Dees, M.; van Dongen, B. BPI Challenge 2016: Clicks Logged In. 2016. Available online: https://data.4tu.nl/articles/_/12674816/1
(accessed on 15 July 2023).

6. Corradini, F.; Fornari, F.; Polini, A.; Re, B.; Tiezzi, F.; Vandin, A. BProVe: A formal verification framework for business process
models. In Proceedings of the 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE),
Urbana, IL, USA, 30 October–3 November 2017; pp. 217–228.

7. Cerone, A. Model mining: Integrating data analytics, modelling and verification. J. Intell. Inf. Syst. 2019, 52, 501–532. [CrossRef]
8. Zhao, D.; Gaaloul, W.; Zhang, W.; Zhu, C.; Zhou, Z. Formal Verification of Temporal Constraints for Mobile Service-Based

Business Process Models. IEEE Access 2018, 6, 59843–59852. [CrossRef]
9. Baier, C.; Katoen, J.P. Principles of Model Checking; MIT Press: Cambridge, MA, USA, 2008.
10. Clarke, E.M.; Lerda, F. Model checking: Software and beyond. J. Univ. Comput. Sci. 2007, 13, 639–649.
11. Dumas, M.; La Rosa, M.; Mendling, J.; Reijers, H.A. Fundamentals of Business Process Management; Springer: Berlin/Heidelberg,

Germany, 2018; Volume 2.

http://doi.org/10.1145/2229156.2229157
https://data.4tu.nl/articles/_/12696884/1
https://data.4tu.nl/articles/_/12674816/1
http://dx.doi.org/10.1007/s10844-017-0474-3
http://dx.doi.org/10.1109/ACCESS.2018.2874937

Future Internet 2023, 15, 378 20 of 21

12. Van der Aalst, W.; Weijters, T.; Maruster, L. Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl.
Data Eng. 2004, 16, 1128–1142. [CrossRef]

13. Van der Aalst, W.M.; de Beer, H.T.; van Dongen, B.F. Process mining and verification of properties: An approach based on
temporal logic. In On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE: OTM Confederated International
Conferences, CoopIS, DOA, and ODBASE 2005, Agia Napa, Cyprus, 31 October–4 November 2005; Proceedings, Part I; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 130–147.

14. Räim, M.; Di Ciccio, C.; Maggi, F.M.; Mecella, M.; Mendling, J. Log-based understanding of business processes through
temporal logic query checking. In On the Move to Meaningful Internet Systems: OTM 2014 Conferences: Confederated International
Conferences: CoopIS, and ODBASE 2014, Amantea, Italy, 27–31 October 2014; Proceedings; Springer: Berlin/Heidelberg, Germany,
2014; pp. 75–92.

15. Anderson, B.B.; Hansen, J.V.; Lowry, P.B.; Summers, S.L. Model checking for design and assurance of e-Business processes. Decis.
Support Syst. 2005, 39, 333–344. [CrossRef]

16. Gu, R.; Marinescu, R.; Seceleanu, C.; Lundqvist, K. Formal verification of an autonomous wheel loader by model checking. In
Proceedings of the 6th Conference on Formal Methods in Software Engineering, Gothenburg, Sweden, 2 June 2018; pp. 74–83.

17. Munoz-Gama, J.; Martin, N.; Fernandez-Llatas, C.; Johnson, O.A.; Sepúlveda, M.; Helm, E.; Galvez-Yanjari, V.; Rojas, E.; Martinez-
Millana, A.; Aloini, D.; et al. Process mining for healthcare: Characteristics and challenges. J. Biomed. Inform. 2022, 127, 103994.
[CrossRef] [PubMed]

18. Katoen, J.P. The probabilistic model checking landscape. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, New York, NY, USA, 5–8 July 2016; pp. 31–45.

19. Bergami, G.; Maggi, F.M.; Montali, M.; Peñaloza, R. Probabilistic trace alignment. In Proceedings of the 2021 3rd International
Conference on Process Mining (ICPM), Eindhoven, The Netherlands, 31 October–4 November 2021; pp. 9–16.

20. Falcone, Y.; Salaün, G.; Zuo, A. Probabilistic model checking of BPMN processes at runtime. In Proceedings of the International
Conference on Integrated Formal Methods, Lugano, Switzerland, 7–10 June 2022; pp. 191–208.

21. Mangi, F.A.; Su, G.; Zhang, M. PM2PMC: A Probabilistic Model Checking Approach in Process Mining. In Proceedings of the
2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET), London, UK, 19–21 May 2023; pp. 1–6.

22. Mangi, F.A.; Su, G.; Zhang, M. Integrating Process Mining with Probabilistic Model Checking via Continuous Time Markov
Chains. In Proceedings of the FCS’23, 19th International Conference on Foundations of Computer Science, Las Vegas, NV, USA,
24–27 July 2023; pp. 1–6, (forthcoming).

23. Younes, H.L.S. Verification and Planning for Stochastic Processes with Asynchronous Events; Carnegie Mellon University: Pittsburgh,
PA, USA, 2004.

24. Van Der Aalst, W.; van der Aalst, W. Data Science in Action; Springer: Berlin/Heidelberg, Germany, 2016.
25. Petri, C.A. Kommunikation Mit Automaten. Ph.D. Thesis, University of Bonn, Bonn, Germany, 1962.
26. Reisig, W.; Rozenberg, G. Lectures on Petri Nets I: Basic Models: Advances in Petri Nets; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 1998.
27. OMG, B.P.M. Notation (BPMN) Version 2.0 (2011). 2011; Volume 2. Available online: http://www.omg.org/spec/BPMN/2.0

(accessed on 15 July 2023).
28. Ashok, P.; Křetínskỳ, J.; Weininger, M. PAC statistical model checking for Markov decision processes and stochastic games. In

Computer Aided Verification: 31st International Conference, CAV 2019, New York, NY, USA, 15–18 July 2019; Proceedings, Part I 31;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 497–519.

29. Gros, T.P.; Hermanns, H.; Hoffmann, J.; Klauck, M.; Steinmetz, M. Analyzing neural network behavior through deep statistical
model checking. Int. J. Softw. Tools Technol. Transf. 2022, 25, 407–426. [CrossRef]

30. Agarwal, C.; Guha, S.; Křetínskỳ, J.; Muruganandham, P. PAC Statistical Model Checking of Mean Payoff in Discrete-and
Continuous-Time MDP. In Proceedings of the International Conference on Computer Aided Verification, Haifa, Israel, 7–10
August 2022; Springer: Cham, Switzerland, 2022; pp. 3–25.

31. Agha, G.; Palmskog, K. A survey of statistical model checking. ACM Trans. Model. Comput. Simul. (TOMACS) 2018, 28, 1–39.
[CrossRef]

32. Younes, H.L.; Simmons, R.G. Probabilistic verification of discrete event systems using acceptance sampling. In Computer
Aided Verification: 14th International Conference, CAV 2002 Copenhagen, Denmark, 27–31 July 2002; Proceedings 14; Springer:
Berlin/Heidelberg, Germany, 2002; pp. 223–235.

33. Mooney, C.Z. Monte Carlo Simulation/Christopher Z. Mooney; Sage university papers series Quantitative applications in the social
sciences; No. 07-116; Sage Publications: Thousand Oaks, CA, USA, 1997.

34. Wald, A. Sequential tests of statistical hypotheses. In Breakthroughs in Statistics: Foundations and Basic Theory; Springer: New York,
NY, USA, 1992; pp. 256–298.

35. Hérault, T.; Lassaigne, R.; Magniette, F.; Peyronnet, S. Approximate probabilistic model checking. In Verification, Model Checking,
and Abstract Interpretation: 5th International Conference, VMCAI 2004 Venice, Italy, 11–13 January 2004; Proceedings 5; Springer:
Berlin/Heidelberg, Germany, 2004; pp. 73–84.

36. Hoeffding, W. Probability inequalities for sums of bounded random variables. In The collected works of Wassily Hoeffding; Springer
Science & Business Media: New York, NY, USA, 1994; pp. 409–426.

http://dx.doi.org/10.1109/TKDE.2004.47
http://dx.doi.org/10.1016/j.dss.2003.12.001
http://dx.doi.org/10.1016/j.jbi.2022.103994
http://www.ncbi.nlm.nih.gov/pubmed/35104641
http://www.omg.org/spec/BPMN/2.0
http://dx.doi.org/10.1007/s10009-022-00685-9
http://dx.doi.org/10.1145/3158668

Future Internet 2023, 15, 378 21 of 21

37. Jha, S.K.; Clarke, E.M.; Langmead, C.J.; Legay, A.; Platzer, A.; Zuliani, P. A bayesian approach to model checking biological
systems. In Computational Methods in Systems Biology: 7th International Conference, CMSB 2009, Bologna, Italy, 31 August–1 September
2009; Proceedings 7; Springer: Berlin/Heidelberg, Germany, 2009; pp. 218–234.

38. Werner, M.; Wiese, M.; Maas, A. Embedding process mining into financial statement audits. Int. J. Account. Inf. Syst. 2021,
41, 100514. [CrossRef]

39. Barbieri, L.; Madeira, E.; Stroeh, K.; van der Aalst, W. A natural language querying interface for process mining. J. Intell. Inf. Syst.
2023, 61, 113–142. [CrossRef]

40. Clarke, E.M.; Wang, Q. 25 Years of Model Checking. In Proceedings of the Ershov Memorial Conference 2014, St. Petersburg,
Russia, 24–27 June 2014; Perspectives of System Informatics; Springer: Berlin/Heidelberg, Germany, 2015; pp. 26–40.

41. Gao, H.; Mao, S.; Huang, W.; Yang, X. Applying probabilistic model checking to financial production risk evaluation and control:
A case study of Alibaba’s Yu’e Bao. IEEE Trans. Comput. Soc. Syst. 2018, 5, 785–795. [CrossRef]

42. Van Dongen, B.F.; de Medeiros, A.K.A.; Verbeek, H.; Weijters, A.; van Der Aalst, W.M. The ProM framework: A new era in
process mining tool support. In Applications and Theory of Petri Nets 2005: 26th International Conference, ICATPN 2005, Miami, FL,
USA, 20–25 June 2005; Proceedings 26; Springer: Berlin/Heidelberg, Germany, 2005; pp. 444–454.

43. Leemans, S.J.; Poppe, E.; Wynn, M.T. Directly follows-based process mining: Exploration & a case study. In Proceedings of the
2019 International Conference on Process Mining (ICPM), Aachen, Germany, 24–26 June 2019; pp. 25–32.

44. Boltenhagen, M.; Chatain, T.; Carmona, J. An A-Algorithm for Computing Discounted Anti-Alignments in Process Mining. In
Proceedings of the 2021 3rd International Conference on Process Mining (ICPM), Eindhoven, The Netherlands, 31 October–4
November 2021; pp. 25–31.

45. Maggi, F.M.; Westergaard, M.; Montali, M.; van der Aalst, W.M. Runtime verification of LTL-based declarative process models.
In Runtime Verification: Second International Conference, RV 2011, San Francisco, CA, USA, 27–30 September 2011; Revised Selected
Papers 2; Springer: Berlin/Heidelberg, Germany, 2012; pp. 131–146.

46. Leemans, S.J.; van der Aalst, W.M.; Brockhoff, T.; Polyvyanyy, A. Stochastic process mining: Earth movers’ stochastic conformance.
Inf. Syst. 2021, 102, 101724. [CrossRef]

47. Ferrando, A.; Delzanno, G. Incrementally predictive runtime verification. J. Log. Comput. 2023, 33, 796–817. [CrossRef]
48. Zakarija, I.; Škopljanac-Mačina, F.; Blašković, B. Automated simulation and verification of process models discovered by process

mining. Autom. Časopis Za Autom. Mjer. Elektron. Računarstvo I Komun. 2020, 61, 312–324. [CrossRef]
49. Younes, H.L.; Simmons, R.G. Statistical probabilistic model checking with a focus on time-bounded properties. Inf. Comput. 2006,

204, 1368–1409. [CrossRef]
50. Sen, K.; Viswanathan, M.; Agha, G. Statistical model checking of black-box probabilistic systems. In Computer Aided Verification:

16th International Conference, CAV 2004, Boston, MA, USA, 13–17 July 2004; Proceedings 16; Springer: Berlin/Heidelberg, Germany,
2004; pp. 202–215.

51. Legay, A.; Viswanathan, M. Statistical model checking: Challenges and perspectives. Int. J. Softw. Tools Technol. Transf. 2015,
17, 369–376. [CrossRef]

52. Casaluce, R.; Burattin, A.; Chiaromonte, F.; Vandin, A. Process Mining Meets Statistical Model Checking: Towards a Novel Ap-
proach to Model Validation and Enhancement. In Proceedings of the International Conference on Business Process Management,
Münster, Germany, 11–16 September 2022; pp. 243–256.

53. Van Der Aalst, W.M.; Pesic, M. DecSerFlow: Towards a truly declarative service flow language. In Web Services and Formal
Methods: Third International Workshop, WS-FM 2006 Vienna, Austria, 8–9 September 2006; Proceedings 3; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 1–23.

54. Rozinat, A.; Van der Aalst, W.M. Conformance checking of processes based on monitoring real behavior. Inf. Syst. 2008, 33, 64–95.
[CrossRef]

55. Adriansyah, A. Aligning Observed and Modeled Behavior. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The
Netherlands, 2014. [CrossRef]

56. Kwiatkowska, M.; Norman, G.; Parker, D. Stochastic model checking. In Formal Methods for Performance Evaluation: 7th International
School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2007, Bertinoro, Italy, 28 May–2 June
2007; Advanced Lectures 7; Springer: Berlin/Heidelberg, Germany, 2007; pp. 220–270.

57. Sen, K.; Viswanathan, M.; Agha, G. On statistical model checking of stochastic systems. In Computer Aided Verification: 17th
International Conference, CAV 2005, Edinburgh, Scotland, UK, 6–10 July 2005; Proceedings 17; Springer: Berlin/Heidelberg, Germany,
2005; pp. 266–280.

58. Verbeek, H.; Buijs, J.; Van Dongen, B.; van der Aalst, W.M. Prom 6: The process mining toolkit. In Proceedings of the Business
Process Management Demonstration Track, Hoboken, NJ, USA, 14–16 September 2010; Volume 615, pp. 34–39.

59. Kwiatkowska, M.; Norman, G.; Parker, D. PRISM 4.0: Verification of Probabilistic Real-time Systems. In Proceedings of the 23rd
International Conference on Computer Aided Verification (CAV’11), Snowbird, UT, USA, 14–20 July 2011; Volume 6806, pp. 585–591.

60. Wald, A. Statistical decision functions. In The Annals of Mathematical Statistics; Edwards Bros.: Kent, UK, 1949; pp. 165–205.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.accinf.2021.100514
http://dx.doi.org/10.1007/s10844-022-00759-9
http://dx.doi.org/10.1109/TCSS.2018.2865217
http://dx.doi.org/10.1016/j.is.2021.101724
http://dx.doi.org/10.1093/logcom/exad012
http://dx.doi.org/10.1080/00051144.2020.1734716
http://dx.doi.org/10.1016/j.ic.2006.05.002
http://dx.doi.org/10.1007/s10009-015-0384-z
http://dx.doi.org/10.1016/j.is.2007.07.001
http://dx.doi.org/10.6100/IR770080

	Introduction
	Background
	Process Mining
	Traces and Event Logs
	Petri Net

	Statistical Model Checking

	Related Work
	Proposed Framework
	Process-Mining Model
	Process Discovery
	Conformance Checking

	Modelling and Verification
	Analysis

	Case Study
	Event Log and Process-Mining Algorithms
	Verification
	Estimation with Confidence Level of 99%
	Estimation with Confidence Level of 95%
	Hypothesis Testing

	Discussion

	Conclusions
	References

