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Abstract: Significant threats to ecological equilibrium and sustainable agriculture are posed by the
extinction of animal species and the subsequent effects on farms. Farmers face difficult decisions, such
as installing electric fences to protect their farms, although these measures can harm animals essential
for maintaining ecological equilibrium. To tackle these essential issues, our research introduces an
innovative solution in the form of an object-detection system. In this research, we designed and
implemented a system that leverages the ESP32-CAM platform in conjunction with the YOLOv8
object-detection model. Our proposed system aims to identify endangered species and harmful
animals within farming environments, providing real-time alerts to farmers and endangered wildlife
by integrating a cloud-based alert system. To train the YOLOv8 model effectively, we meticulously
compiled diverse image datasets featuring these animals in agricultural settings, subsequently
annotating them. After that, we tuned the hyperparameter of the YOLOv8 model to enhance the
performance of the model. The results from our optimized YOLOv8 model are auspicious. It achieves
a remarkable mean average precision (mAP) of 92.44% and an impressive sensitivity rate of 96.65%
on an unseen test dataset, firmly establishing its efficacy. After achieving an optimal result, we
employed the model in our IoT system and when the system detects the presence of these animals, it
immediately activates an audible buzzer. Additionally, a cloud-based system was utilized to notify
neighboring farmers effectively and alert animals to potential danger. This research’s significance lies
in its potential to drive the conservation of endangered species while simultaneously mitigating the
agricultural damage inflicted by these animals.

Keywords: object-detection model; IoT; endangered animals; agriculture farms; cloud; YOLOv8

1. Introduction

The rapid expansion of industries into forested areas has had a profound and long-
lasting impact on the dynamics between animals and surrounding communities [1,2].
Animals are being increasingly pushed closer to human settlements, leading to potential
conflicts and posing significant challenges for farmers [3]. These conflicts result in crop
destruction, encroachment on farmland and a loss of productivity. Necessitating increased
financial resources for recovery after such damages occur [4]. Traditionally, farmers have
relied on electric fences to prevent animals from entering their fields, aiming to mitigate
the effects of these challenges [5]. However, it is crucial to recognize that while the primary
objective is safeguarding crops and maintaining productivity, ensuring humans’ and ani-
mals’ health and safety remains the utmost priority in this complex coexistence [6]. In our
research, we resolve the challenges posed by industrial expansion into forested areas by
implementing an IoT-based detection model linked to cloud computing infrastructure and
specialized hardware solutions. This integrated approach enables real-time monitoring
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of animal movements, efficient data analysis and the automatic activation of deterrent
devices, ensuring the protection of crops and the safety of humans and wildlife in areas
where agriculture and animal habitats are prone to conflict.

Despite its importance, the detection and identification of animals have yet to be thor-
oughly investigated promptly [7]. Implementing an advanced surveillance system capable
of automatically monitoring the area and detecting animal presence is becoming crucial
to address this issue effectively [8]. The development of various technical alternatives for
intrusion detection has frequently surpassed the limitations associated with traditional
methods. One such system is intrusion detection, which focuses on identifying moving
targets in the surrounding area [9].

Moreover, the IoT and other sensing technologies have revolutionized environmental
monitoring and natural safeguarding efforts. These low-cost, pervasive technologies allow
for the collection and analysis of data in real time, making them valuable instruments
for protecting natural ecosystems and biodiversity [10]. IoT systems and technologies
such as Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are
now widely used to monitor and protect the environment, including wildlife conservation,
forest fire detection and climate change monitoring. These technologies provide real-time
data, facilitating prompt response and proactive environmental protection measures [10].
Computer vision has gained immense popularity for its classification capabilities and robust
detection capabilities [11]. In recent years, several studies [3,12–16] involving Internet of
Things (IoT) [17] and deep learning (DL) [18] have been conducted to detect animals that
can damage farmers’ crops. In their research, they utilized machine learning (ML) and deep
learning (DL) techniques; however, most of the previous studies focused solely on detecting
moving objects without considering the safety of animals. To address this limitation and
prioritize animal welfare, our research aims to develop an animal-detection system that
protects crops and ensures endangered animals’ well-being.

This research focuses on developing an animal detector that activates an alarm system
when animals approach fields, prompting them to retreat and eliminating the need for
harmful measures like killing. The project workflow starts with preparing a dataset, where
we collect images or recordings of endangered animals near agricultural areas and label
them accordingly. Next, we deployed a model to detect animals accurately and save
the best-performing model weights for future hardware implementation. An IoT system
is then created to detect and notify farmers and animals, promoting ecological balance.
Finally, via a performance analysis, the system’s effectiveness in protecting crops and
ensuring animal safety is evaluated. By adopting this approach, a comprehensive solution
safeguards agricultural productivity and fosters a harmonious coexistence between farming
communities and wildlife.

The significant contributions of the research are as follows:

• A comprehensive dataset is compiled, comprising high-resolution images of endan-
gered animals near agricultural areas. The images of those species hold significance in
maintaining an ecological balance within biodiversity while also posing a threat to
agricultural lands and they are primarily collected.

• The dataset has been meticulously annotated with bounding boxes and labels, enabling
the creation of a robust object-detection model.

• An optimized version of the object-detection model, YOLOv8, has been introduced. It
demonstrates remarkable reliability in recognizing and identifying animals, even un-
der adverse environmental conditions. Hyperparameters such as batch size, learning
rate and epoch number have been fine-tuned to enhance the stability of the model.

• The animal-detection model’s integration into IoT systems allows for real-time surveil-
lance of agricultural areas, providing swift identification of animal intrusions.

• To mitigate potential conflicts, the system activates an alarm when animals approach
the fields, prompting them to retreat without resorting to harmful measures. This
ensures the safety of both humans and animals.
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• The cloud-based systems and communication protocol swiftly relay messages to farm-
ers about animal intrusions, enabling prompt response and effective crop protection.

This research is organized as follows: Section 2 presents a comprehensive review of the
existing research concerning the detection of endangered animals through the utilization of
different hybrid methodologies and a proper gap analysis is also performed for a better
understanding of the limitations of the state-of-the-art works. Section 3 contains a detailed
discussion of the research methodology, including introducing an optimized YOLOv8
object-detection model and integrating our IoT system. Section 4 summarizes the result
section of the research employing different performance metrics to assess our technique’s
robustness by integrating a runtime cost analysis and comparison with state-of-the-art
models. Section 5 broadly discusses the proposed system’s novelty and Section 6 illustrates
the limitations and future scope of the study. Finally, the research is concluded in Section 7.

2. Related Works

Animal encroachment is causing extensive damage to agricultural lands and crops
worldwide. Various technologies have already been implemented to mitigate the intru-
sion of animals. The integration of artificial intelligence with IoT setups has played a
significant role in tackling this problem. In this section, we discuss existing research and
technologies that have been employed for the detection and prevention of endangered and
harmful animals.

In the research by K. Balakrishna et al. [12], an IoT-based application with ML inte-
gration is presented. The researchers created an image dataset comprising five different
animals to conduct their experiment. Their proposed R-CNN model outperformed other
methods, achieving an impressive mean average precision of 85.22%.

In another study, Simla et al. [13] utilized IoT devices and deep learning (DL) with
a machine-to-machine (M2M) communication protocol to develop an intruder-detection
system. They introduced a modified convolutional neural network (CNN) architecture to
recognize animals. The IoT application captured the animals’ motion and sent a message to
the farm owners using the M2M protocol.

Radhakrishnan et al. [14] employed image-processing techniques and ML algorithms
to detect animal intrusion in agricultural fields. They extracted Gabor features from the
images and utilized support vector machines (SVMs) for classification. Their proposed
approaches achieved a remarkable accuracy of 99.48%.

Additionally, Mamat et al. [3] developed an animal-intrusion-detection system using
the YOLOv8 model. They conducted experiments using a dataset of animal images and
employed the CSP network as the backbone of the model’s architecture. The proposed
approach demonstrated its effectiveness by achieving an accuracy of 95%.

Meena et al. [15] introduced a hybrid algorithm to detect unwanted wildlife intrusion
efficiently. They combined the YOLOv8 with the layer from CNN architecture to develop
this algorithm. The proposed system was evaluated on the collected dataset and obtained
an accuracy of 92.5%.

A study conducted by Priya et al. [19] developed a deep ensembled model to detect
intruders on agricultural land. The primary focus was to enhance the security and sustain-
ability of agriculture. They integrated different networks and layers to build the proposed
object-detection model. The model outperforms other architectures by achieving precision
and recall values of 97% and 96%, respectively.

In another study, Bapat et al. [20] developed an application using wireless sensor
networks to divert animal intrusions. They integrated multiple hardware equipment items
with sensors to effectively prevent animal intrusion. The application was tested in the lab
and its robustness was enhanced to improve the reliability of the farm.

Moreover, Varun et al. [16] designed a framework to detect animal intrusion from the
field and also classify intruders. They deployed a hybrid CNN model in the system and
experimented with this model on three datasets, namely ATRW, ADID and Google V6+.
They achieved the best accuracies of 92%, 99.6% and 95.6% for the corresponding dataset.
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Ravoor et al. [21] integrated computer vision and deep learning techniques to design
an animal-intrusion-detection system. They utilized a Pi camera to capture the move-
ment of the images and deployed MobileNetV2 architecture for the animals’ identifica-
tion. The research uses three animal species and yields accuracies of 80%, 89.47% and
92.56%, respectively.

Finally, Ding et al. [22] utilized deep learning techniques to identify wild animal
species. They used the fusion weight of the bidirectional feature pyramid network and
channel attention to propose an improvised version of YOLOv8. The model effectively
outperforms the benchmark network by obtaining an accuracy of 95.5% for the test data.

The limitations of the existing research are depicted in Table 1 and our research aims
to address these limitations by focusing on filling those gaps. The objective is to develop a
system that promotes ecological balance between endangered animals and humans.

Table 1. Comprehensive Analysis of Literature Gaps.

Reference Dataset Employed Identified Gaps

[12] Animal Images Dataset
The study lacks the identification and consideration of rare species within the
employed dataset. Additionally, the sustainability of the deployed models and
their integration with Internet of Things (IoT) devices are not addressed.

[13] Private Dataset
The research fails to provide individual class classification for animals in the
utilized dataset. Furthermore, the value and significance of protecting rare animal
species are not adequately emphasized.

[14] Field Image Dataset
The study lacks the capability to detect animal intrusions and does not
incorporate an alarm system for safeguarding crops and animals. Furthermore,
the potential impact of extinct animals on ecosystems is not discussed.

[3] Bird Images Dataset
The research focuses solely on bird detection across various ecosystems,
neglecting discussions on extinct animal species and lacking integration with
hardware components.

[15] General Image Dataset
The study’s scope is limited to animal classification, without offering a
comprehensive framework for crop protection. Additionally, the importance of
extinct animal preservation is not given due emphasis.

[23] Image Data Representation
While predicting crop pathology, the research overlooks the protection
mechanisms for crops and lacks discourse on the preservation of extinct animal
species.

[20] Animal Images Compilation
The study focuses solely on animal intrusion detection, lacking a real-time
monitoring system and neglecting the significant aspects of rare species within
ecosystems.

[16] Customized Image Dataset
The research is centered on animal classification, without implementing real-time
alerts for agricultural environments. Furthermore, the crucial subjects of
biodiversity and protection of rare species are not adequately covered.

[21] Wild-Animal Camera-Trap Data
The study does not adequately address real-time monitoring requirements and
lacks provisions for alerting against animal intrusions. Additionally, the absence
of hardware setup is notable.

[24] Whale Images Dataset
The research confines its focus to detecting and classifying whales, disregarding
other extinct animal species. Moreover, no real-time alarming system is discussed
in the context of the study.
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3. Methodology

Figure 1 presents this research’s workflow diagram, organized into four distinct sections.

Figure 1. Workflow of the research methodology.

Figure 1 presents an illustrative depiction of the workflow diagram of this study. The
first stage of the process entails obtaining images of endangered animals and animals that
cause damage to crops. These images are then manually annotated to train the object-
detection model. In the second stage, an object-detection model is introduced and the
parameters are fine-tuned to obtain the optimal configuration of the model and improve its
performance. The resulting model’s weight is then stored for implementation on hardware.
The hardware phase comprises implementing an alarm system that utilizes a cloud-based
approach, effectively notifying farmers about the presence of the animals and the potential
risks to their crops. Finally, this study assesses the performance of the system by employing
metrics such as sensitivity, recall, positive rate, etc. These metrics determine the efficacy of
this comprehensive solution.

3.1. Dataset Description

This research has a great novelty in simultaneously detecting endangered animals and
harmful animals for crops. But such datasets are not publicly available. Consequently, a
new dataset has been introduced in this experiment. According to the perspective of our
region, the endangered species of our biodiversity were consciously figured out. Along
with this, we also listed the common animals that attack the crop fields occasionally. We
comprehensively collected 2362 high-resolution images of eight species of animals in
various habitats. The dataset includes at least 400 images of each species. The species
are squirrel (Sciurus vulgaris), indian crested porcupine (Hystrix indica), wild elephant
(Elephas maximus), hispid hare (Caprolagus hispidus), rat (Rattus), bat (Chiroptera),
vulture and goat (Capra aegagrus hircus). These animals are all threatened by various
factors, including habitat loss, poaching and climate change. The ecological balance of our
planet depends on the survival of all species, including these threatened animals. Table 2
includes all the information of our dataset.
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Table 2. Dataset description.

Risk Criteria Class Name # of Images Source Format

Endangered

Indian Crested Porcupine 500

Google, Freepik,
Unsplash, Pixabay,
Pexel

PNG,
JPG,
JPEG

Wild Elephant 500

Squirrel 462

Wild Boar 400

Vulture 500

Deleterious

Bat 500

Rat 500

Goat 500

3.2. Model: YOLOv8

Deep learning has significantly advanced image classification, detection and segmen-
tation [11]. The CNN-based deep learning model is exceptionally adept at accurately
detecting and classifying images. This research primarily focuses on recognizing extinct
animals and wildlife animals surrounding an agriculture field. To address this, an object-
detection model, YOLOv8 was deployed using the deep learning architecture. YOLOv8
presents the most recent advancement in YOLO models, demonstrating state-of-the-art
capabilities in object detection [25]. It is comprised of mainly three components, the back-
bone, neck and output layer. There is a prevailing assumption that the YOLO-v8 model
will prioritize the deployment of limited edge devices with an emphasis on achieving
high-inference speed [26]. Figure 2 illustrates the model of this research.

Figure 2. The architecture of the YOLOv8 model.
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Figure 2 presents the architectural description of this research. The proposed model
has an input layer taking the input image dimensions 640 × 640 × 3. It consists of
9 convolutional layers for feature extraction and among these convolutional layers, there
are 8 CSP layers incorporated to enhance the feature-extraction process and simplify infor-
mation flow. YOLOv8 employs a comparable underlying architecture to YOLOv5, though
with certain modifications made to the CSPLayer, which has been renamed the C2f module.
The C2f module, referred to as the cross-stage partial bottleneck with two convolutions,
was designed to improve the accuracy of detection by incorporating contextual information
with high-level features. The CSPDarknet53 is used as a backbone which is further utilized
to extract features from the images [27]. It creates a complementary low-resolution image
and moves from pixel to pixel for feature extraction. A Cross-Stage Partial (CSP) module
creates a features map from the extracting features and minimizes the duplication of in-
formation to enhance the model scalability. It also optimizes the process for a large-scale
network. It uses a spatial pyramid pooling (SPP) [28] network to distinguish the contextual
features and increase the receptive field in the final segment.

After completing the feature-extraction process, the model includes a series of sam-
pling and concatenation processes, which enhance its capability to identify animals. Next,
the neck structure performs the feature-enhancement tasks. It employs an attention-based
pyramid network to improve the feature-extraction ability. For this reason, the same object
with different categories and shapes can easily be recognized [29]. Consequently, the over-
all detection accuracy is increased substantially. Finally, the model’s output layer makes
predictions, which consist of bounding boxes that outline the detected animals.

The YOLOv8 algorithm incorporates the CIoU [30] and DFL [31] loss functions to
calculate the bounding box loss, while binary cross-entropy is employed for classification
loss. The aforementioned losses have demonstrated enhanced performance in the task of
object detection, particularly in scenarios involving tiny objects.

An additional contribution of the proposed work involves the development of a
precisely refined and optimized detection model. Various hyperparameter settings were
utilized in our study, including adjustments to the number of layers, batch size and learning
rate, in order to optimize the results. The epoch numbers of 80, 100 and 150 were modified
and the outcome of the experiment was evaluated based on the completion of 100 epochs.
Furthermore, it has been shown that the optimal learning rate for the model is established
at 0.001, while the ideal batch size is identified as 16. The activation function used in the
model is leaky relu and sigmoid. The leaky relu is used for corresponding hidden layers
and softmax is used in the final output layer to detect the accurate label of the object. This
setup provides the system with the capability to achieve outstanding reliability in detecting
and classifying animals, even under challenging conditions.

Algorithm 1 explains the process of optimized YOLOv8 detection model.

Algorithm 1: Optimized YOLOv8 Object Detection
Data: Input image
Result: Detected objects with bounding boxes and class labels
Load pre-trained weights;
Preprocess input image;
Pass image through backbone network;
Extract features at multiple scales;
for each scale do

Apply detection head to predict boxes, class probabilities and objectness scores;
Filter out low-confidence detections;

Apply non-maximum suppression to remove duplicate detections;
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3.3. IoT Systems

By leveraging the power of the model, we seamlessly integrated the ESP32-CAM
and buzzer to craft an innovative IoT system. The ESP32-CAM acted as the central hub,
efficiently capturing and transmitting real-time video and image data to our network.
This allows us to monitor and control devices remotely, enhancing the system’s versatility.
The buzzer played a vital role in providing audio feedback and alerts, enabling timely
notifications for critical events.

(1) Hardware Components
ESP32-CAM: The ESP32-CAM is a highly versatile and compact development board [32],

bringing together an ESP32 microcontroller module, an OV2640 Camera Module with 2MP
resolution and a small 802.11b/g/n Wi-Fi BT SoC module. This powerful combination
allows for a wide range of applications, including the exciting possibility of face recogni-
tion [33] and object detection [34]. With its minimal 40 × 27 mm footprint, the ESP32-CAM
can function independently, making it an excellent choice for projects requiring a small and
self-contained system. The convenience of its DIP package and features like GPIO pins and
a microSD card slot further enhance its utility. Additionally, programming the ESP32-CAM
is made easy using the Arduino IDE with the ESP32 core installed.

Buzzer: A buzzer is a fundamental electronic sound-producing device that finds applica-
tions in a wide array of scenarios, such as alarms, timers, notifications and electronic games.
By being driven by a DC voltage, this small PCB mountable 5V active device generates a
simple, continuous and often monotonous sound. It typically consists of two positive and
negative pins, allowing for straightforward integration into various circuits and systems.

Future Technology Devices International Limited (FTDI) module: ESP32-CAM does
not have a program chip. To program this board, an FTDI [35] to TTL module was used.
This device handles all serial data communication to the board.

Figure 3 depicts the diagram of our proposed IoT system.

Figure 3. Hardware diagram of ESP32-CAM and buzzer.

(2) Hardware implementation
For hardware implementation, the ESP32-CAM module was used. Since the board

does not have a program chip, an FTDI module was connected to the ESP32-CAM in order
to program it. Figure 3 shows the pin diagram of our IoT system. A modified YOLOv8
model was trained with 2362 images. Since the ESP32-CAM module has limited memory,
the model needed to be as light as possible. Therefore, the model was converted into
TensorFlow (TF) Lite format and that TFLite model was converted to a C array header
file in order to implement it in ESP32-CAM. Figure 4 depicts the proposed IoT system’s
implementation overview.
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Figure 4. Implementation of IoT device.

Figure 5 displays the workflow of the IoT device.

Figure 5. Workflow of IoT device.

The incoming frames from the ESP32-CAM are resized to 800 × 600 pixels with JPEG
pixel formatting to ensure compatibility with the trained model. After preprocessing,
the frames are routed through a C array, which facilitates the detection of endangered
animals within the frame. If the detection confidence is greater than 80%, the buzzer
trigger is activated, activating the alarm system to notify stakeholders of the presence of an
endangered animal on the farm. This procedure is repeated for every frame captured by the
ESP32-CAM, with the trained model used to determine the presence of endangered animals
in the scene. Recognizing that a single device might not adequately cover a vast agricultural
field, the possibility of integrating multiple IoT devices is raised. Multiple autonomously
operating devices would be dispersed across the field in this scenario. Any device detecting
an endangered animal within its field of view would independently activate an alarm,
notifying the appropriate parties of the potential threat as soon as possible.

(3) Cloud
Firebase Cloud: Firebase is a real-time cloud-hosted NoSQL database platform that

Google develops [36,37]. It lets users store and sync data in real-time across multiple
end devices. Firebase also provides secure storage for content such as images and videos.
The data are encrypted at rest and in transit. Firebase Cloud is designed to simplify
the development process and eliminate the need for extensive backend infrastructure
management [38].

Cloud implementation: For storing the logs of alarms, we used the firebase real-time
database. Firebase is a free-to-use database platform developed by Google. Since the
ESP32-CAM module has Wi-Fi 802.11b/g/n/e/i, it will be connected to a nearby Wi-Fi
access point. When the buzzer is triggered, the ESP32-CAM module will send a detailed
message to the Firebase database. This message contains the data of the animal that was
detected, the timestamp of the sighting and the location of where the animal was detected.
When a log is updated in the database, an email will be sent to the user to notify them
about the alert. The email will also contain the entire log message in detail.
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Figure 6 displays the example logs of the Firebase database.

Figure 6. Example of database logs.

4. Result Analysis of Detection Model

In this section, the analysis of the results of the detection model is presented.

4.1. Training Phase

Figure 7 illustrates various loss curves and precision and recall metrics to evaluate the
effectiveness of the proposed object-detection models. The three-loss curve, which consists
of ‘box loss’, ‘class loss’ and distributive focal loss, also known as ‘dfl loss’, refers to the
model’s loss in terms of bounding box, class and the data imbalance problem. The model is
run for 100 epochs. At the beginning of the epoch, the model had the highest loss value. The
maximum box loss was greater than 1.2 at the outset of the epoch and it began to decrease
as it progressed. After 100 epochs, the model possessed a minimum loss value of 0.1. After
100 epochs, class loss and dfl loss tended to decrease to 0.1 from their initial maximums of
2.5 and 1.8, respectively. The mean average precision (mAP) method evaluates the efficacy
of object-identification models, whereas the recall curve is used to classify object detection
as a true positive [39]. During the early epochs, the mAP precision and recall curves may
have a minimum value of 0. As the training process advances and the model’s parameters
endure improvements, the model’s capacity to accurately identify objects is enhanced,
resulting in an increase in mean average precision (mAP). The initial precision and recall
curve values are 0 and 0.4, respectively, and increase to 1 after 100 epochs.

Figure 7. Box loss, class Loss, DFL loss, map during training phase during model training.

The precision–recall and loss function curves are fully depicted in Figure 8’s visual
representation of the model’s validation phases. The curves display similar trends in the
validation phase as in the training phase. In order to assess how well the model generalizes to
new data, it is essential to consider the validation loss. The loss curve revealed a recurrent
pattern where the model first showed the highest loss and increased performance by gradually
lowering the loss throughout 100 epochs. The maximum box loss value observed was 1.5
at the beginning of the period, which then decreased to 0.6 upon completion of all epochs.
At the beginning, the maximum class loss and dfl loss values were 3.5 and 2, respectively.
After all 100 epochs were complete, these values gradually decreased to 0.5 and below 1.2.
The validation loss shows a decreasing trend over time, supporting the effectiveness of our
approach. The precision and recall curve exhibits an initial value of 0, which progressively
increases to 1 after 100 epochs during the validation phase. This observation indicates that the
object-detection model has shown substantial progress in validating the unseen data.
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Figure 8. Box loss, Class Loss, DFL loss, map during validation phase during model training.

4.2. Testing Phase

The confusion matrix is a commonly employed tool for evaluating the performance of
a model [40]. The evaluation assesses the performance of individual classes and presents
various performance metrics of the model, including precision, recall, specificity, F1 score
and others. This analysis examines the distribution of accurate and inaccurate predictions
obtained from the model, aiding in the assessment of the model’s reliability. Figure 9
depicts the confusion matrix generated for our suggested model. The matrix is additionally
used to estimate several performance metrics, as indicated in Tables 3 and 4.

Figure 9. Confusion matrix of the detection model.

The F1 confidence curve provides insights about the model’s predictions and helps to
balance between the precision and recall [41]. Figure 10 depicts the F1 score of the model in
relation to different confidence threshold values, as well as the confidence scores affiliated
with its predictions. In our study, the F1 score is tuned at 89% to balance both precisions
and recall. Moreover, this value was determined at a confidence threshold of 0.524, which
was the optimal threshold. This observation suggests that the model has satisfactory
performance in terms of precision and recall across all classes at the aforementioned value.
The precision–recall curve is typically a curve that starts at a high value of precision and
gradually decreases as recall increases [42]. It provides a trade-off between precision and
recall for different classification thresholds. According to Figure 10, the model attained a
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precision value of 98.1% for the vulture class, which is the highest value obtained. The total
precision value across all classes is reported to be 92.5%, with a threshold set at 0.5.

Table 3. Performance metrics analysis for individual class.

Measure Bat Goat Porcupine Rat Squirrel Vulture Wild Boar Elephant

Sensitivity 98.75 96 98.31 93.33 100 100 95.92 90.91
Specificity 99.5 99.7 99.41 99.28 99.26 99.74 99.74 100
Precision 97.53 97.96 96.67 94.92 91.67 98.86 98.95 100
Negative Predictive Value 99.75 99.39 99.7 99.05 100 100 98.96 99.77
False Positive Rate 0.5 0.3 0.59 0.72 0.74 0.26 0.26 0
False Discovery Rate 2.47 2.04 3.33 5.08 8.33 1.14 1.05 0
False Negative Rate 1.25 4 1.69 6.67 0 0 4.08 9.09
F1 Score 98.14 96.97 97.48 94.12 95.65 99.43 97.41 95.24
Matthews Correlation Coefficient 97.76 96.52 97.04 93.29 95.39 99.3 96.77 95.24

Table 4. Overall Performance Analysis of the Proposed Model.

Measure Value (%)

Sensitivity 96.65
Specificity 99.57
Precision 97.07
Negative Predictive Value 99.57
False Positive Rate 0.42
False Discovery Rate 2.93
False Negative Rate 3.34
F1 Score 96.8
Matthews Correlation Coefficient 96.41

Figure 10. F1 confidence and precision–recall curve.

Precision confidence evaluates the accuracy of accurate positive predictions, highlight-
ing the model’s reliability [43]. On the other hand, recall confidence refers to the level
of confidence associated with the model’s capacity to identify all objects of a particular
class [44]. The trade-off between them is critical because increasing precision reduces the
number of alarms generated by the system but increases the risk of missing some detections.
In contrast, increasing recall may increase the number of alarms, including some false ones,
to minimize missed detections. Object-detection models assign each detected object a
confidence score [45]. These scores are used as thresholds for determining the validity of
detections. By conducting a comparison analysis of precision and recall metrics across
various confidence score thresholds, it is feasible to enhance the model’s decision-making
process and effectively monitor the effectiveness of the object-detection model over time.

Figure 11 depicts a precision–confidence and a recall–confidence graph. The recall–
confidence graph illustrates the correlation between recall and confidence thresholds within
the context of a detection task. In addition, it provides valuable insights into the intrinsic
trade-off between recall and precision during the adjustment of the confidence threshold.
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Figure 11 shows that the model obtains a recall value of 96% at a very low threshold value.
This implies that the model successfully detects positive cases across all classes. In a similar
manner, the model demonstrates its robustness by achieving a maximum precision value
of 99% when the confidence threshold is set to the highest value of 1.

Figure 11. Recall–confidence and precision–confidence curve.

The performance assessment of a classification model on several animal species is
summarized in Table 3. The measurements provide valuable insights into the model’s
ability to distinguish between various species effectively. The model has a notable level of
sensitivity, as evidenced by the high sensitivity for bats (98.75%) and porcupines (98.31%).
These results indicate the model’s proficiency in accurately identifying positive cases. The
model demonstrates the ability to accurately detect negative instances, as indicated by the
specificity metric. Specifically, the wild boar class exhibits a specificity value of 95.92%,
while the elephant class exhibits a specificity value of 90.91%. The precision of the model
remains consistently high for all categories, particularly for goat (97.96%) and squirrel
(98.86%), indicating its ability to generate accurate positive predictions. This table also
demonstrates the model’s inclination towards developing adverse predictions, as indicated
by the high unfavorable predictive values observed for most species. The research exhibits
a commendable achievement in achieving low rates of false positives, revealing just a
limited number of cases where predictions were incorrectly positive. The results of this
study illustrate the model’s high level of precision and reliability when it comes to detecting
as well as classifying various animal species.

Table 4 contains the key performance indicators for a detection model within a research
endeavor. These metrics comprehensively evaluate the model’s ability to distinguish
between diverse groups. The model’s sensitivity of 96.65% demonstrates how well it can
identify pleasurable events. With a specificity rating of 99.57%, the model can identify
unfavorable circumstances. The model’s ability to make accurate optimistic predictions is
illustrated by the model’s accuracy rate of 97.07%. The model’s high negative predictive
value of 99.57% demonstrates how accurately it predicts adverse outcomes. False positive
occurrences are exceedingly uncommon, as indicated by their low frequency (0.42%). With
a mistaken discovery rate of 2.93%, false positive predictions are distinctive. The false
negative rate of 3.34% represents instances in which true positives were neglected. Due to
its low value, the F1 score of 9.68% should be interpreted cautiously; further investigation
may be required. The 96.41% Matthews Correlation Coefficient demonstrates the overall
correlation between the model’s predictions and the actual outcomes. These metrics support
the comprehensive evaluation of the model’s performance in the research environment by
providing an in-depth analysis of the model’s benefits and drawbacks.

The model achieves a remarkable average precision of 94% for the “Indian Crested
Porcupine” class on both the validation and test sets. This high score demonstrates the
model’s ability to predict this class’s instances accurately. The model’s performance remains
strong across different classes, with average precision scores ranging from 86% to 94%.
Particularly noteworthy is the fact that both the “Indian Crested Porcupine” and “Wild
Boar” classes achieve the highest precision score of 94%, showcasing the model’s proficiency
in identifying these classes correctly. The model exhibits outstanding capabilities in this
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detection task by analyzing the overall performance. With an average precision of 90% on
the validation set and 89% on the test set for all classes combined, the model demonstrates
high accuracy in classifying instances accurately. Furthermore, the comparable performance
of the model on the test set to that on the validation set indicates its ability to generalize
well to unseen data. This aspect highlights the model’s robustness and demonstrates that it
has been well trained.

Therefore, it is evident that our model has proven to be robust, efficient and valuable
for detecting endangered animals and giving extra protection to farms.

4.3. Runtime Cost Analysis

In this section, we analyze the runtime of our proposed optimized YOLOv8 model.
Figure 12 depicts the runtime analysis of the experiments, as mentioned earlier. In-

vestigating runtime complexity is vital to this study as it refers to the model’s efficacy in
processing data and making predictions within a suitable timetable. In this research, we
trained our object-detection model for 100 epochs, where each epoch needed 75 s to be
completed. This research utilized an AMD Ryzen 5 5600X 6-core Central Processing Unit
(CPU) and 16 GB of RAM for all the experiments. It is paired with a Graphical Processing
Unit (GPU) named ZOTAC GAMING GeForce RTX 3060 Twin Edge OC GDDR6 with
12 GB video RAM (VRAM). It was reviously stated that, for a single epoch, the device
required 75 s; for 100 epochs, the total time stands at 7500 s, just exceeding 2 h. Since we
conducted the experiment on a good number of images, this shortest training duration
shows the efficiency of the proposed model. Moreover, optimizing the model facilitates
convergence while maintaining the model’s mAP, which exhibited consistent improvement
with each epoch. In addition to the hardware setup, the optimal configuration of this model
played a significant role in enhancing the efficiency of our research. Also, it highlights the
possibility of timely and precise object detection for practical applications.

Figure 12. Runtime analysis of the optimized YOLOv8 model.

4.4. Comparison with State-of-the-Art Models

In this section, we conducted a performance comparison of our proposed model
with several state-of-the-art object-detection models, including Single Shot Detectors
(SSDs), faster regions with convolutional neural networks (R-CNN), YOLOv3, YOLOv4,
YOLOv5-M, YOLOv5-L, YOLOv5-X, YOLOv7-L, YOLOv7-X and our optimized version
of YOLOv8-L. We evaluated their mAP performance, with higher values indicating more
precise object detection. The objective was to identify each model’s strengths and limita-
tions and highlight our proposed model’s exceptional performance. Figure 13 illustrates
the comparison of our models with other object-detection models.
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Figure 13. Comparison with state-of-the-art models.

SSD emerged with the lowest mAP score of 74.3% among the models we evaluated,
indicating its relatively inferior performance in endangered-animal-detection tasks. The
next fastest R-CNN had a modest mAP of 78.8%, a marginal improvement. The mAP
scores of YOLOv3 and YOLOv4 were 79.3% and 81.9%, respectively, reflecting their moder-
ate effectiveness in this context. The YOLOv5 family of models (YOLOv5-M, YOLOv5-L
and YOLOv5-X) achieved mAP scores ranging from 83.2% to 85.7%, demonstrating their
capacity to improve object-detection precision. This trend was reinforced by YOLOv7-L
and YOLOv7-X, which had mAP values of 85.9% and 86.6%, respectively. With a mAP
score of 90.2%, YOLOv8-L performed better in our evaluation than its predecessors and
the majority of other models. Nonetheless, the “Optimized YOLOv8-L” model attained
the most outstanding mAP score (92.44%), representing the pinnacle of our investigation.
This significant margin of improvement over other models demonstrates our optimiza-
tion efforts’ efficacy, highlighting our proposed model’s robustness in detecting objects
within images.

Therefore, our performance comparison revealed that our optimized YOLOv8-L model
emerged as the top performer, outperforming all baseline models with an exceptional mAP
score of 92.44%, indicating the robustness of our model.

5. Discussion

This research aims to design an object-detection model integrated with an alarm system
to reduce human–wildlife conflict in agricultural environments. The primary objective of
our study is to implement conservation strategies for endangered animal species while
concurrently mitigating the negative impact of wildlife invasions on crop fields. The
significance of this study lies in the concern observed among farmers, who are increasingly
resorting to killing endangered animals to prevent their intrusion. But, to maintain the
ecological balance, the role of these animals is beyond description. Consequently, this
research emphasizes formulating a proficient solution to yield advantages for farmers and
endangered wildlife. Existing research has discussed the challenges associated with human–
wildlife conflict, reinforcing the necessity for safe approaches. However, none of them
emphasized the significance of conserving endangered animals.

Moreover, previous methodologies have frequently proven inadequate because of
constraints in detecting and generating real-time alarms. This research overcomes all
these limitations substantially. We compiled a dataset of eight species of animals by
acquiring images of the animals on the verge of extinction and commonly harming crops. To
effectively train the model, we meticulously annotated all the images. The YOLOv8 model
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was employed for object detection in our study. The model’s parameters were meticulously
tuned to maximize its performance. The outcome of this optimized model demonstrates
its efficacy and stability by obtaining an impressive mean average precision (mAP) of
92.44%. Various performance metrics such as precision–confidence, recall–confidence
and F1–confidence figures are illustrated to assess the model’s ability to detect objects
properly. The aforementioned findings provide evidence of the model’s robustness and
applicability in real-world implementations. The optimal weight of the model was stored
to implement the hardware component. The hardware component involves a variety of
devices such as cameras, buzzers and sensors and makes a proper alarm system. The
images are subsequently subjected to processing by our object-detection model in order to
ascertain the presence of any potential threats. In the case in which a positive detection
occurs, an alarm is activated to notify farmers or necessary authorities, facilitating prompt
response and intervention. The deployment of a cloud-based approach for storing alarm
logs provides several benefits, including improved data accessibility and collaboration.

Additionally, our system enables real-time updates and offers cost-efficiency. Integrat-
ing hardware components with the object-detection system facilitates a comprehensive and
practical strategy for addressing the issue of human–wildlife conflict while concurrently
reducing the adverse impact on endangered animals and crop fields. In summary, this
study allows real-time monitoring investigation and aims to safeguard endangered animals
and protect crops.

6. Limitation and Future Scope

Acknowledging and addressing certain limitations within this research is crucial in
developing an object-detection model for recognizing endangered and hazardous animals in
crop fields. There are some limitations identified in this research. The first one is a constraint
with sample size. The study focuses extensively on eight species of animals that are primarily
on the verge of extinction and cause agricultural damage. Still, many species could make
the model more effective at detecting different animals. In addition, the experiments did not
consider the influence of environmental factors, such as temperature, lighting, terrain, etc.
Furthermore, the experiments were conducted exclusively with RGB images.

To address these limitations, we proposed future works that will increase the prediction
accuracy of the proposed system. In particular, providing detailed explanations and
exploring possible paths for further development and research might yield significant
insights. The inclusion of a broader range of animal species in the dataset will enhance the
model’s efficacy across various geographical locations. Moreover, the application of multi-
domain learning will be utilized to improve the capacity for generalization. Incorporating
weather and seasonal data, such as rainfall and temperature, will provide valuable insights
into the growth stages of crops and the frequency of animal intervention within a specific
time frame. The use of hyperspectral, multispectral or satellite images will increase the
sustainability of this system, as it will enable the detection of animals using UAVs or other
compatible devices. This research will focus on integrating video input to conduct temporal
analysis to utilize motion and temporal patterns observed in video footage to enhance
detection capabilities and minimize false positive rates. Additionally, the implementation
of edge computing enables efficient execution on embedded devices such as Raspberry Pi
deployed throughout the farm, hence facilitating the generation of alarms with little delay.

7. Conclusions

An innovative and unique approach to tackle the threats posed by the extinction of
animal species and its impact on agricultural farms has been introduced in this research.
The research successfully achieves real-time detection and classification of endangered and
harmful animals in farming using a sophisticated object-detection system that combines
the ESP32-CAM and the YOLOv8 model. The system’s impressive performance is evident
through its efficiency and accuracy, with a mean average precision (mAP) of 92.44% and
a sensitivity rate of 96.65% on the unseen test dataset. The significance of this research
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lies in its dual purpose: promoting the conservation of endangered species and mitigating
the agricultural damage caused by these animals. By providing farmers with real-time
warnings when animals approach their fields, the proposed system enables a humane
approach to protect crops, eliminating the need for harmful and lethal measures against
the animals. This research approach fosters a harmonious coexistence between farming
communities and wildlife, ensuring the safety and well-being of humans and endangered
animals. The research’s comprehensive workflow, from data collection and model training
to implementing the IoT system, showcases a holistic solution that preserves agricultural
productivity and ecological balance. This research represents a crucial stride towards
sustainable agriculture and wildlife conservation, addressing the challenges posed by the
encroachment of human settlements into natural habitats. The novel contributions of this
work lie in seamlessly integrating deep learning object-detection models and IoT systems
to develop an animal-detection system that prioritizes animal welfare while safeguarding
crops. The resulting system benefits farmers by protecting their livelihoods and contributes
to the preservation of endangered species, thereby promoting a balanced ecosystem.
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