
Citation: Paasche, S.; Groppe, S. A

Finite State Automaton for Green

Data Validation in a Real-World

Smart Manufacturing Environment

with Special Regard to Time-Outs

and Overtaking. Future Internet 2023,

15, 349. https://doi.org/10.3390/

fi15110349

Academic Editors: Michael Sheng

and Paolo Bellavista

Received: 18 September 2023

Revised: 4 October 2023

Accepted: 21 October 2023

Published: 26 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Finite State Automaton for Green Data Validation in a
Real-World Smart Manufacturing Environment with Special
Regard to Time-Outs and Overtaking
Simon Paasche 1,* and Sven Groppe 2,*

1 Automotive Electronics, Robert Bosch Elektronik GmbH, John.-F.-Kennedy-Strasse 43-53,
38228 Salzgitter, Germany

2 Institute of Information Systems, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
* Correspondence: simon.paasche@de.bosch.com (S.P.); sven.groppe@uni-luebeck.de (S.G.)

Abstract: Since data are the gold of modern business, companies put a huge effort into collecting
internal and external information, such as process, supply chain, or customer data. To leverage the full
potential of gathered information, data have to be free of errors and corruptions. Thus, the impacts of
data quality and data validation approaches become more and more relevant. At the same time, the
impact of information and communication technologies has been increasing for several years. This
leads to increasing energy consumption and the associated emission of climate-damaging gases such
as carbon dioxide (CO2). Since these gases cause serious problems (e.g., climate change) and lead to
climate targets not being met, it is a major goal for companies to become climate neutral. Our work
focuses on quality aspects in smart manufacturing lines and presents a finite automaton to validate
an incoming stream of manufacturing data. Through this process, we aim to achieve a sustainable
use of manufacturing resources. In the course of this work, we aim to investigate possibilities to
implement data validation in resource-saving ways. Our automaton enables the detection of errors in
a continuous data stream and reports discrepancies directly. By making inconsistencies visible and
annotating affected data sets, we are able to increase the overall data quality. Further, we build up a
fast feedback loop, allowing us to quickly intervene and remove sources of interference. Through this
fast feedback, we expect a lower consumption of material resources on the one hand because we can
intervene in case of error and optimize our processes. On the other hand, our automaton decreases
the immaterial resources needed, such as the required energy consumption for data validation, due
to more efficient validation steps. We achieve the more efficient validation steps by the already-
mentioned automaton structure. Furthermore, we reduce the response time through additional
recognition of overtaking data records. In addition, we implement an improved check for complex
inconsistencies. Our experimental results show that we are able to significantly reduce memory usage
and thus decrease the energy consumption for our data validation task.

Keywords: consistency checking; sustainable IT; green computing; big data streams; smart
manufacturing

1. Introduction

One aspect of industry 4.0 aims towards the interconnecting of devices and sensors
(cf. Industrial Internet of Things, IIoT) to, e.g., increase efficiency by enhancing business
models and identifying bottlenecks [1]. Therefore, data are a key factor. Using data-driven
applications enables companies to optimize internal and external processes to decrease
resource consumption or to gain competitive advantage [2]. However, to exploit the full
potential, analyst require a high data quality which has to be ensured during acquisition and
storing process-related information [2,3]. Simultaneously, information and communication
technologies (ICT) lead to steadily increasing energy usage (between 1% and 3.2% of global
consumption in 2020) and are prognosticated to represent up to 23% by 2030 [4]. In order

Future Internet 2023, 15, 349. https://doi.org/10.3390/fi15110349 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15110349
https://doi.org/10.3390/fi15110349
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0009-1865-4196
https://orcid.org/0000-0001-5196-1117
https://doi.org/10.3390/fi15110349
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15110349?type=check_update&version=1


Future Internet 2023, 15, 349 2 of 23

to reduce climate-damaging emissions and become climate-neutral, the IT landscape is
therefore an important factor to consider.

In our work, we aim to combine the aspects of data quality in combination with green
computing approaches to archive improvements in data pipelines for IoT environments.
Since our work is in cooperation with Robert Bosch Elektronik GmbH, we mainly focus on
smart manufacturing scenarios, but our results can be adapted to other areas like smart
healthcare as well.

Figure 1 shows an example of a smart surface-mount technology (SMT) line. Such lines
are used at Bosch among others to manufacture printed circuit boards (PCBs) for control
units (e.g., for vehicles and e-bikes). SMT basically includes five processes: (1) solder paste
printing (SPP) for printing solder paste on the circuit board, (2) solder paste inspection
(SPI) to inspect the paste, (3) surface-mounted device (SMD) for placing components on
the board, (4) reflow soldering (RFL), which is the actual soldering process, and (5) solder
joint inspection (SJI) to inspect and test the final product. From a data point of view, SPI,
SMD, and SJI provide the most important information; thus, the highest effort has to be on
these processes.

Figure 1. Run through a smart SMT line with data from SPP, SPI, SMD, and SJI. The machine pictures
are provided by AE/MFT1 department.

During manufacturing, we noticed that in some cases, data and final product did not
match. On a closer inspection, we observed that these mismatches are due to erroneous
data, which are the result of a heterogeneous production landscape with various machines
and software versions. We called these mismatches inconsistencies. Inconsistencies usually
refer to a data set, which corresponds to all messages and information related to one
manufactured product. To handle erroneous data, we categorized our inconsistencies into
four main classes (cf. [5,6]):

1. Missing message. A missing message leads to incomplete data and thus, an informa-
tion gap.

2. Multiple message. Multiple messages from one process may indicate problems with a
machine.

3. Incorrect content. This category refers to the content of a single message.
4. With contradictions. By comparing the data of a data set, the matching has to be

conflict-free.

The classification resulted from the study of our internal data. Categories 1 and
2 refer to entire messages that are either missing or duplicated (cf. Zhang et al. [7]).
Since we validate complex JSON files, the content is of major interest in our use case.



Future Internet 2023, 15, 349 3 of 23

Our examinations have shown that inconsistencies either concern the content of a single
message (incorrect content) or constitute a mismatch between the information content of
two or more messages (with contradictions). Although the categories (especially 3 and 4)
evolved from a smart manufacturing use case, the manifestations of inconsistencies are
similar in related IIoT and IoT domains. In smart healthcare, we can, for example, track the
completeness of health records and identify discrepancies between two related parameters.

In order to ensure a high quality, in the past we presented a concept for a consistency
checker (CC) [5]. Our CC enables the detection of known anomalies on a continuous data
stream, making use of a domain ontology. According to [8], working on streams allows
for fast feedback. In our scenario at Bosch, this domain ontology contains process flows
and machine specifications. The CC utilizes this knowledge to map incoming data using
SPARQL Protocol And RDF Query Language (SPARQL) (https://www.w3.org/TR/sparql1
1-query/, accessed on 14 September 2023) queries. These queries contain characteristics
of relevant inconsistencies. We further adapted our CC to be more resource-efficient and
energy-saving (GreenCC) [6]. The GreenCC consists of two units: (1) LightCC to predict the
likelihood of inconsistencies and (2) FullCC to perform an accurate check using semantics.
Experimental results showed that we can significantly reduce the energy consumption
of data validation by adapting our architecture and optimizing the implementation. The
GreenCC is currently running in an adapted version on real data. With the help of the CC,
we were able to show that the inconsistencies affect between about 1% and 10% of the data,
depending on the plant (larger plants are more likely to be affected). The small amount
argues for an approach that is as efficient as possible to keep overhead to a minimum
during monitoring. Although our previous CCs run stably on real data, we still encounter
the following problems:

• We are able to detect known inconsistencies. If, for example, the characteristics of an
inconsistency or the production environment change, these changes have to be entered
manually. Similarly, new inconsistencies must be modeled accordingly in a machine-
readable format. Nevertheless, the currently running version has its justification for
existence, since newly modeled inconsistencies can be transferred to other plants and
checked. Furthermore, the knowledge about possible causes can be transferred. Due
to the heterogeneous landscape, it is not economical to prophylactically adjust all
machines and process flows without knowing the problems.

• Inconsistencies in categories 1 and 2 can already be checked via an efficient procedure.
For the other categories, it is so far only possible to identify periods in which they are
more likely. A corresponding check must be carried out via transforming all gathered
data from JSON into Resource Description Framework (RDF) (https://www.w3.org/
RDF/, accessed on 14 September 2023).

• A final result is only available after the product has been manufactured. Depending
on the production, this means that important time passes during which any errors
cannot yet be corrected. Thus, in the worst case, many inconsistencies of the same
kind are present.

• The longer the validation steps are, the longer large amounts of data are retained. This
leads to increased memory and corresponding energy consumption of a CC.

We can transform these problems to four open challenges:

(C1) Detect inconsistencies of any kind and expression;
(C2) Increase efficiency of the checking process;
(C3) Shorten validation process;
(C4) Reduce the memory consumption during validation.

Challenge (C1) refers to quality aspects. To address this challenge, we propose an effi-
cient matching using a message template in combination with an automaton structure. The
machine specifies how the overall process to be checked is structured. The template is used
to map the flow and steps of the sub-processes and thus to check complex inconsistencies.
Deviations from the template are treated as anomalous.

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/RDF/
https://www.w3.org/RDF/


Future Internet 2023, 15, 349 4 of 23

Challenges (C2) to (C4) refer to sustainability aspects and complement each other.
On the one hand, the explained template has the potential to check inconsistencies of
Category 3 and 4 more efficiently (C2). On the other hand, our aforementioned automaton
structure shortens the validation in case of detected inconsistencies (C3). Depending on
the state, the automaton shows whether consistency is present or can still be achieved.
Inconsistencies become directly visible in this way. We also take advantage of the fact
that many production lines operate in a linear fashion. This means that the products pass
through the machines one after the other and no overtaking is possible. If the data overtake
each other, we can conclude that there is an error in the message transmission. Thus, we
do not only consider the current data set as before, but include surrounding information
and link further knowledge with it. In particular, the detection of overtaking data sets and
drawing conclusions from an overtake in complex IoT environments are not addressed in
existing studies. We want to achieve further sustainability benefits through clever internal
handling of large amounts of data. In many IIoT scenarios, immense amounts of data of
several gigabytes (GB) occur during, e.g., manufacturing. If these data volumes have to be
held internally due to a long validation process, the storage requirements of a CC increase
enormously. At this point, we also want to implement two optimizations: (1) perform
validations as early as possible and release data that are no longer needed, and (2) store
data smartly while they are in the checker. In this way, we address challenge (C4). Our
present work includes an automaton that processes incoming messages, detects overtakes
in the data stream, and handles time constraints. In this way, the automaton concept is
useful for any IoT application where data quality is of high importance and at the same
time limited computing resources are available or required in terms of energy consumption.

To present and explain our automaton, the remainder of this paper is as follows:
Section 2 provides an overview of relevant work in the fields of data validation. We subdi-
vide this into pure methods and efforts to use resource-saving technologies. Subsequently,
we present our automaton concept in Section 3. In the course of this, we introduce an
example automaton on which we visualize properties and algorithms. Section 4 shows
possible applications based on two use cases. Afterwards, we evaluate our automaton with
respect to the three identified challenges. We compare our new automaton with previous
implementations in several experiments. The evaluation is followed by a discussion section.
Finally, we conclude in Section 7.

2. Related Work

The literature provides a large body of work on the topic of data quality and validation.
We first have a look at quality issues to work out how the use of the term relates to our
view. Afterwards, we address the detection of inconsistent data in (I)IoT scenarios. We
present semantic methods, complex event processing (CEP) systems, automatons, and
machine learning methods. Furthermore, we investigate to what extent green computing
has already found acceptance in the community. Additionally, our literature study includes
related work with a focus on energy efficiency.

The work of Gao et al. [9] presents an overview of data quality and validation in big
data environments. The authors point out that insufficient quality can lead to high costs
for companies. In the literature, data quality often refers to aspects such as completeness,
correctness, timeliness, accuracy, and availability (cf. [7,10–12]). The criteria completeness
and correctness are similar to those in our work. Thus, we also try to detect incomplete data
sets and aim to keep correct information in the data. With our categories 3 and 4, we also
specifically address the fact that content correctness of data may depend on a single message
or a set of messages. The arrival of the messages plays a minor role, especially in our
manufacturing scenario, since we handle long delays via timers or detection of overtakes.
Accuracy of the data is not a criterion, as we do not aim to create a trust score with our
automaton but to detect and subsequently report inconsistencies. Karkouch et al. [10]
also address contextual anomalies, which can only be detected with the addition of the



Future Internet 2023, 15, 349 5 of 23

context. However, the focus of the work is on individual values and not on detection in
complex documents.

The work of Haav et al. [13] refers to data validation in the timber industry. The
authors use SHACL shapes to define constraints. The work describes their real example
case in detail and gives descriptive examples. Nevertheless,the authors do not provide
a concrete implementation of their approach. Furthermore, the proposal is not intended
to process big data streams. Cortés et al. [14] introduce a practical data stream scenario
from the medical sector. The authors explain data validation techniques to address IoT
problems in healthcare, but mainly evaluate data throughput to identify challenges in the
big data area. Concrete implementations and experiments are missing. In [3,15,16], further
approaches are presented. In contrast to our work, the presented methods do either use
fixed knowledge bases, work on static data instead of streams, or are not intended to be
applied in real-world IoT environments. Furthermore, none of these validation approaches
focus on green computing solutions.

The work of Maier et al. [17] and Hranislav et al. [18] present automatons for data
validation. The authors refer to production plants and introduce time constraints. However,
the authors do not mention detections of overtakes. This detection helps us to reduce the
energy and resource consumption of the automaton.

In [19], the authors provide an overview of further anomaly detection approaches to
detect outliers in time series. In general, the problem is very similar to our data validation.
Time series, however, usually contain much simpler data sets. In our work, we present an
approach that tests complex content issues.

Another possible solution to our data validation problems is complex event processing
(CEP) systems. In preparation for this work, a literature search of existing CEP approaches
has been performed. The literature search revealed that with Siddhi [20], Wihidum [21],
and ETALIS [22], a large selection of CEPs exists. These systems allow the definition of
simple constraints to detect patterns on a data stream. To do this, each of our consistency
checks would have to be transformed into a pattern. For categories 1 and 2, this is possible.
For inconsistencies of categories 3 and 4, however, the content is important. Since the
content varies depending on the product, no uniform pattern is possible. Furthermore, the
considered CEP systems do not offer different operating modes. We hope for an advantage
in terms of energy consumption especially with the light mode.

Regarding energy efficiency, Ahmed et al. [23] present a blockchain-based approach
with a focus on aggregation and protecting the IoT network. The system is used to validate
edge servers in a hierarchical scenario. Our system is also suitable to run as a distributed
application in large IoT scenarios. However, with our current application scenarios, we
directly validate incoming data streams before data are stored. Furthermore, since we
operate in protected environments and not in public networks, security and privacy play a
subordinate role during validation. The work of Batmunkh et al. [24] provides an overview
of carbon emissions emitted by social media platforms. The authors describe the effects
of using these platforms, for example, by streaming videos and movies. The main energy
consumption is due to the platform architectures consisting of large data centers. In our
approach, we also consider carbon emissions due to the energy consumption of our system.
However, our consistency checker does not consist of a large backend. We connect to an
existing data pipeline to increase the usability of the collected data.

Other possibilities to increase the efficiency of IoT application are data prioritization
techniques. According to Zahedina et al., data prioritization approaches focus on accessing
correct data as quickly as possible. Therefore, IoT data are prioritized based on properties
such as timeliness and significance to only use the most valuable data [25,26]. As a result,
the approach of Zahedina et al. [25], for example, removes low-priority data from the cache.
Sultana et al. [27] present an approach to implement patient monitoring in smart healthcare
efficiently. Therefore, the authors classify patient data into critical and non-critical data
packets to determine the urgency of the data. In general, we also aim to only store valuable
data in our databases. In our scenarios, however, the focus is not on the real-time use



Future Internet 2023, 15, 349 6 of 23

of data, but on monitoring processes and workflows. To achieve this, our automaton
identifies deviations from the expected information. The detection and categorization of
inconsistencies enable us to determine causes of errors to prevent them from recurring.
How to deal with the detected anomalies is decided at a later stage (cf. [6]).

3. Concept of an Automaton for Data Validation

This section describes our concept to build automatons to handle stream data valida-
tion tasks in (I)IoT environments. The formal representation of our automaton is a tuple
A = (Q, Σ, δ, Q0, F) where:

• Q is a finite set, called the states of our automaton. In our case, an element of Q is a
tuple Q = (q, E) where q is the actual name of the state and E is a list of all current
elements that are in the state. Each element of E is in turn a triple e = (id, r(id), t),
where id represents a unique identifier, r(id) is the position of arrival, and t is a
process-specific timer.

• Σ is the alphabet. A word of the alphabet consists of messages (m), timer expirations
(ex), overtaking (o), and category 3 and 4 checks (cat3 and cat4).

• δ is a function Q× Σ→ Q (transition function).
• Q0 represents a finite set (Q0 ⊆ Q), called the initial states.
• F is a finite set with F ⊆ Q, which holds the accepting states.

We call our concept AutomatonCC. In the following, we give deeper insights into each
element of the automaton and explain our concept step by step, building up an example
automation. Therefore, we use the process described in Figure 2. Our process consists of
the three steps S, M, and T, which are aligned linearly.

Figure 2. Example process to visualize states, transitions, and algorithms.

3.1. States

The first parameter we consider are the states Q. To create an automaton from the
example process above, we determine the power set of the process steps: {∅, {S}, {M},
{T}, {SM}, {ST}, {MT}, {SMT}}.

We use the elements of this set as states of our automaton. We ignore the empty set
(see Figure 3). Sets containing only one element form the start states in each case. We char-
acterize states that follow the process run as potentially consistent ({{S}, {SM}, {SMT}}).
Potentially consistent means that it is ensured that the existing messages have arrived in
the correct order, but it remains to be checked whether there are inconsistencies within the



Future Internet 2023, 15, 349 7 of 23

messages (category 3 and 4). Furthermore, we add an inconsistent, a cat4 state, in which a
data set waits until it has been checked for category 4 inconsistencies, and a consistent state
to our automaton. This gives us a total of ten states for our example process.

Figure 3. Resulting states from example process. To determine states, we refer to the powerset of the
process steps.

As mentioned, we define a state as a tuple Q = (q, E). With q, we denote the unique
name of a state. E is a list consisting of all products, waiting in the corresponding state. An
element of E is a triple e = (id, r(id), t). The parameters of this triple are a unique product
identifier (id) to be able to track each product and group related data, a rank (rk(id)), to
detect overtakings, and a process-specific timer (t), to be able to terminate in the case of a
missing message. Depending on the current manufacturing conditions, these timers can be
extended or shortened.

3.2. Transitions

The second parameter is the transitions. In our automaton, state transitions are
triggered by one of the following four types:

1. Incoming message. For each incoming message, an identifier switches its state.
2. Expiring timer. In case of an expiring timer, we terminate the run for the affected

identifier.
3. Overtaking of a subsequent identifier. In case of an overtake, we terminate the run for

all elements with a smaller rank than the actual identifier.
4. Content violation (Category 3 & 4). Content violations indicate an inconsistency in the

considered data set.

Figure 4 provides an overview of all automaton transitions of our example process
from Figure 2. As we develop a finite ω automaton, we have a transition function, mapping
each possible input to exactly one output. Our function δ takes as input the current state
q ∈ Q and the trigger σ ∈ Σ and maps to a new state from Q (δ = Q × Σ → Q) Since
our alphabet Σ consists of four different types of triggers, our σ is of the form of m, for
an incoming message, ex, for an expired timer, o, for a detected overtake of a subsequent
product, or cat3/cat4, which denotes a content violation in our gathered data.



Future Internet 2023, 15, 349 8 of 23

Figure 4. All transitions of our automaton.

3.2.1. Incoming Message

An incoming message can be assigned to a product. It thus leads to a data record
being extended. For each message, we therefore check whether it contains new information
or already exists. New information leads to a new state. If a piece of information is already
present, we classify this as a multiple message inconsistency. The dataset under consideration
is thus inconsistent and is moved to the inconsistent state. Further messages with the
identifier of an inconsistent record do not change the state. Usually, all redundant messages
lead to inconsistency.

Figure 5 shows the transition as an example for our S-M-T process. The regular pass
in our example is the sequence S, SM, SMT. Since it is possible that messages are delayed,
we can not build up a linear automaton but have various paths. For overview purposes,
the state transitions to the inconsistent state have been omitted from the figure.

Figure 5. Transitions for incoming messages.



Future Internet 2023, 15, 349 9 of 23

3.2.2. Expired Timer

If a timer expires, we terminate the run through the automaton for the affected identi-
fier. A timer expiration indicates that we did not receive any information belonging to this
data set for a longer period. To save resources and to prevent running out of memory, we
stop tracking this product. If our product is in a potentially consistent state at this time, we
transfer the identifier to the cat4 state. Otherwise, the records will end up in the inconsistent
state because not all expected information has arrived in the time limit (see example in
Figure 6). Timers should be set accordingly, depending on the domain. Furthermore, we
decided to automatically adjust the timers to the process flow at regular intervals, for exam-
ple, to take into account traffic jams in a manufacturing line. Since in our manufacturing
use case we sometimes receive operator messages regarding the final inspection, we also
have a timer in the last process state (SMT in the example).

Figure 6. Transitions for expired timer.

3.2.3. Detected Cat3 and Cat4 Inconsistency

As in our previous validation approaches, we have to check for content violations
in our data [5,6]. By validating categories 3 and 4, our automaton has a larger range of
functions than our LightCC (cf. [6]), which only tests for the first two categories. In addition,
we do not use semantic SPARQL queries for the validation step as before, but match the
received data with a template. Expert knowledge is still involved via the template as well as
through the actual transitions and states. In the automaton, this on the one hand eliminates
the transformation step from JSON to RDF, which we expect to result in more efficient
resource usage. On the other hand, unknown discrepancies can be detected as well. This
possibility did not exist in the previous GreenCC (cf. [6]). Overall, the automaton thus
offers an extended range of functions.

In our machine, we follow the approach of detecting inconsistencies as soon as possible.
As a result, we check as soon as something is testable. Category 3 Inconsistencies refer to
the content of a single message. The validation takes place after each incoming piece of
machine information (see Figure 7). Violations result in the inconsistent state. If the test is
successful, the data set remains in the current state. In the cat4 state, validation for category
4 inconsistencies takes place. This step is only possible when all expected data are available,
as discrepancies between messages are validated.



Future Internet 2023, 15, 349 10 of 23

Figure 7. Transitions for complex inconsistencies (Category 3 and 4).

3.2.4. Detected Overtake

In our special case of a manufacturing scenario, it is often the case that the individual
machines are arranged linearly. This means that it is not possible to overtake another
product. If overtaken identifiers are in a normal state, an overtake leads to inconsistency
(see Figure 8). In this case, we assume that messages have been lost and thus incomplete
information is available (missing message inconsistency). In contrast, an overtake in a
potentially consistent state does not automatically lead to inconsistency. In this scenario, the
first assumption is that the overtaken identifiers were taken out of the manufacturing line
prematurely. For this reason, the state transitions in Figure 8 of S and SM each lead to cat4.
As described previously, category 4 is validated in this state. In the last regular state (in our
example SMT), an overtake is no longer possible. As described in Section 3.2.2, in this state
we wait only for the timer end.

Figure 8. Transitions for overtaking messages.



Future Internet 2023, 15, 349 11 of 23

3.3. Algorithms

To implement our automaton, we split up the functionality in three main algorithms
running in parallel. These are: (1) handleMessage(m), (2) expiringTimer(t), and (3) validate-
Content(m). In the following, we will go into more detail about these three algorithms and
describe how they work in general.

3.3.1. Handle Incoming Messages and Detect Overtakings

The most important task is to handle incoming data from the IoT environment.
Algorithm 1 provides an overview of the steps to perform. For incoming information,
we first have to identify the data set it belongs to. If a corresponding data set does not yet
exist and the identifier is thus unknown, we proceed as follows: Depending on the message
type, we enter the associated initial state. The new identifier is then assigned with a rank
and a process-specific timer is started.

Algorithm 1 Process incoming messages and detect overtakings

Require: A← new ValidationAutomaton()
1: procedure handleMessage(m) . For each incoming message
2: id← m.getId()
3: if ¬A. f ind(id) then . Start of a new manufacturing process
4: qnew ← δ(Null, m) . Enter initial state
5: A.set(qnew, id)
6: A.startTimer(id, m) . Process-specific timer per product
7: A.determineRank(qnew) . Compute rank considering time of arrival
8: else
9: q← A.getCurrentState(id)

10: r ← q.getRank(id)
11: A.clearTimer(id)
12: if r > 1 then . Overtake detected
13: A.trans f erToCat4({[rank(all) < r] u [consistentState(id)]})
14: report({[rank(all) < r] u [¬consistentState(id)]})
15: end if
16: qnew ← δ(q, m)
17: A.set(qnew, id)
18: if qnew is con then . Reached final consistent state
19: validateDataSet(M) . M contains all messages related to the current id
20: else if qnew is valid then
21: A.startTimer(id, m) . Start timer considering next process
22: A.determineRank(qnew) . Compute new rank
23: else
24: report(id) . When entering invalid state, report inconsistency
25: end if
26: end if
27: end procedure

Otherwise, we clear the active timer to prevent an expiring timer from triggering
unwanted actions. Afterwards, we check the rank of our identified set. If rank > 1,
we detect an overtake, because the state contains older data sets. An overtake is not
problematic for the current data set, but is for older ones. If the overtake happens in a
potentially consistent state, we can transfer all older elements into the cat4 state. This is
possible because we assume that the identifier has been removed from the IoT scenario.
An overtake in a usual state means that older data sets are not currently consistent. We
conclude that information was lost. The affected data sets are classified as inconsistent
according to the missing message criterion.

Thereafter, we can switch the state and proceed. First, the algorithm checks in what
type of state the identifier is. In the cat4 state, the entire data set is checked for category



Future Internet 2023, 15, 349 12 of 23

4 inconsistencies. In a valid state, a new process-dependent timer is started and the new
rank of the identifier is determined. As we already mentioned in Section 3.1, each process
has its own time restrictions. The rank is derived from the timestamp of a message. The
recalculation of the rank is necessary in order to further identify overtaking items.

If we are in an inconsistent state, there is no longer the possibility to receive an
anomalous-free data set. As a result, we can report an identified inconsistency directly.

3.3.2. Handle Expiring Timer

Algorithm 2 lists the steps for the expiringTimer(t) procedure. In case of an expired
timer, we check if the affected identifier currently is a potentially consistent state. If so, we
assume that we received all expected messages and transfer the identifer to the last check
(cat4). Otherwise, we report a missing message inconsistency.

Algorithm 2 Handle expiring timer

Require: A← new ValidationAutomaton()
1: procedure expiringTimer(t)
2: id← t.getId()
3: q← A.getCurrentState(id)
4: if q is potentiallyConsistent then
5: A.trans f erToCat4(id) . Check for Category 4
6: else
7: report(id)
8: end if
9: end procedure

3.3.3. Inconsistencies of Category 3

Our last algorithm shows how to treat inconsistencies of category 3 (Algorithm 3).
As already mentioned, we validate each incoming machine message directly to report
discrepancies as early as possible. In contrast to earlier approaches, we check for these
inconsistencies by matching a message with a consistent template. If the match is above a
defined threshold, the message is consistent. Otherwise, an error will be reported.

Algorithm 3 Handle complex Inconsistencies

1: procedure validateContent(m)
2: type← m.getMessageType
3: template← loadTemplate(type)
4: content← m.getContent()
5: if ¬match(content, template) then
6: report(id, m)
7: end if
8: end procedure

3.4. Example Runs

To visualize our algorithms, we use three example data sets and present the runs
through our automaton in Figures 9–11. The graphics each represent a time-dependent
snapshot of the automaton.

Figure 9 shows the automaton in case of clean data. As one can see in the Figure, our
automaton runs step by step through the potentially consistent states, starting with state S
(timestep t = 0). In each step, a check for category 3 inconsistencies is performed. After
the last message has arrived, the data set remains in state SMT until the last timer expires
(timesteps t = 3 and t = 4). The automaton switches into state cat4, where the whole data
set is checked for category 4. As the data set is consistent, the automaton switches into the
final state con. For the last two states, we do neither need to start a new timer nor calculate
the new rank.



Future Internet 2023, 15, 349 13 of 23

Figure 9. Example run for a consistent data set with messages arriving in order.

Figure 10. Example run for an expired timer.

Figure 11. Example run for a detected overtake.



Future Internet 2023, 15, 349 14 of 23

Figure 10 illustrates the run of a data set with a potentially missing message. Again,
we start in state S, then change into SM. At this point, no more messages arrive. When the
timer expires (time step t = 4), we switch into state cat4. Since SM is a potentially consistent
state and we did not yet recognize any inconsistent content, we assume that the process
has been stopped after step M. Our data are thus consistent and can be processed further.

Figure 11 exemplifies a detected overtake in t = 3. The data set with id = 1 has rank
r = 1 in state MT. Data with id = 2 enter state MT and receive the rank r = 2. In t = 5, data
with id = 2 switch into state SMT. At this point, our automaton detects an overtake due to
the higher rank of r = 2. According to our algorithm, each data set with smaller rank has
to leave the current state. Since the overtake takes place in a normal state, the overtaken
data set (id = 1) is moved into the trash state.

4. Use Cases for the Automaton

In the following, we look at how to map different (I)IoT scenarios to our automa-
ton. First, we consider a smart manufacturing environment. We will refer to such an
environment in our evaluation (Section 5). Furthermore, we describe a smart healthcare
scenario. Although these two domains are far apart, the underlying IoT structure has many
similarities. This also results in similar problems. Inconsistencies within the collected data
represent one of these problems. By comparing both scenarios, we want to show that our
automaton is suitable for stream validation in both domains.

4.1. Smart Manufacturing

In smart manufacturing, machines are equipped with additional sensors and programs
to monitor and track the production processes remotely. In our production lines at Bosch
(see Figure 1), the individual machines document the tasks performed in each case. Using
this documentation, process optimization can take place afterwards and error rates can be
minimized. Each individual machine can be regarded as an IoT device or a composition of
IoT devices.

In the first step, we map the machines to states in our automaton. According to the
rules from Section 3.1, we create the power set of the set of machines and add a cat4, a
final consistent, and an inconsistent state to it. Assuming that each process of Figure 1 is
implemented by one machine, the total number of states is 34 (25 − 1 + 3, since we ignore
the empty set). In our scenario, there is also the special case that different products are
manufactured on the lines. So, it can happen that even if there are several SMD placement
machines, not all of them perform a production step. For this reason, we cannot assume
the number of machines for the SMD states but must check completeness of the data at the
end by including additional domain knowledge. On our automaton, this has the effect that
there is only one state for SMD.

Afterwards, we determine the set of potentially consistent states. In our case, this is
the path corresponding to the regular process flow. If all messages arrive in the correct
order, there are complete data on this path up to the respective state.

In the next step, we create the transitions. The message transitions can be derived
from the process flow. Since we classify our states among others into usual and potentially
consistent ones, the transitions for timer expired, overtaking, and cat3 + cat4 remain the same as
in the example above (see Section 3.2). The records are grouped based on a unique product
identifier. In real operations, we use one automaton per manufacturing line to simplify the
detection of overtakes.

4.2. Smart Healthcare

In smart healthcare, patient-related measurement data, such as blood pressure mea-
surements, electrocardiogram (ECG) data, or X-ray data are recorded by smart devices
and stored for later assessment. The measurements are taken according to a schedule so
that they take place at defined intervals. The schedule created by the intervals can be seen
as a process. In this way, a process can be defined for each patient or a group of patients.



Future Internet 2023, 15, 349 15 of 23

Patient identifiers can be used to identify related data. Our automaton can detect missing
messages, duplicates, and contextual discrepancies in these processes. In the medical field,
many medical treatments are customized, resulting in a process that is structured according
to the type of treatment or specialty. As increasingly large amounts of data, such as the
aforementioned ECG or X-ray pictures, have to be sent and managed, data retention during
validation also plays a role. Appropriate timers as well as the detection of outdated data
can help to reduce memory consumption. The general workflow is thus comparable to the
manufacturing scenario above. Transitions for an automaton are again derived from the
process flow. The timer lengths must initially be adapted to the environment.

4.3. Smart Parking Scenario

Furthermore, scenarios such as those described with the IoT simulator of Warnke
et al. (cf. Github repository (https://github.com/luposdate3000/SIMORA, accessed on
14 September 2023) and [28]) can be tested. Among other things, the authors describe a
smart parking scenario. Parking also creates a kind of process sequence in which data are
expected from the various sensors. If obstacles are detected, the involved sensors start
sending distance values. This behavior should remain unless the vehicle moves away
from obstacle or an obstacle (e.g., a person) moves. Data are timestamped so that multiple
and missing information can be determined. Complex inconsistencies can then arise, for
example, by including driving direction and steering movements.

4.4. Universal IoT Scenario

An IoT scenario is characterized by information being collected and tracked via diverse
distributed sensors, actuators, and embedded systems [29,30]. Using our concept, we can
map an arbitrary (I)IoT scenario to create an automaton for data validation. The procedure
in any smart scenario looks like this:

1. Determine the IoT Devices.
2. Form the power set of the determined devices and add a cat4, and a final and an

inconsistent state.
3. Add incoming message transitions according to the process flow.
4. Take over the remaining transitions and define corresponding timers.

For each scenario, specify what happens to inconsistent records. In [31], the authors
present an approach to handle corrupt data. Depending on the degree of damage, the
authors propose to either discard or clean.

5. Evaluation

For our experimental results, we refer to an automaton in SMT environments. Our
automaton and our reference programs are implemented in Python. The work of Pereira
et al. [32] shows that Python in general has a larger overhead in contrast to, e.g., C language.
However, in our current experiments, the focus is on evaluating different techniques for
validating data streams. Future work may investigate the impact of the programming
language on the overhead.

We use the paho mqtt package (https://pypi.org/project/paho-mqtt/, accessed on
14 September 2023) to connect our system to real manufacturing data. In case of an ideal
scenario, we load a previously generated data set. As an automaton is developed to
validate one line at the same time, in our evaluation we also limited the connection to one
manufacturing line (important in the last evaluation). Furthermore, each of the approaches
only listens to the specific line topics to leverage the capabilities of message brokers. By
doing so, we reduce the internal data traffic and move this task to the broker management.

5.1. Experimental Results

The evaluations are performed on a computer with Intel i5-1145G7 processor and 16
GB RAM. For calculating the climate footprint in carbon-dioxide equivalents (CO2e), we
use the Python framework CodeCarbon (https://codecarbon.io/, accessed on 14 September

https://github.com/luposdate3000/SIMORA
https://pypi.org/project/paho-mqtt/
https://codecarbon.io/


Future Internet 2023, 15, 349 16 of 23

2023). We record the memory usage with tracemalloc (https://docs.python.org/3/library/
tracemalloc.html, accessed on 14 September 2023). To determine the CPU load, we use
psutil (https://github.com/giampaolo/psutil, accessed on 14 September 2023).

The focus of our experiments is on comparing previous approaches with our newly
developed automaton. Previous consistency checkers are only able to detect already known
inconsistencies on a data stream. By using template matching to check categories 3 and 4,
our automaton is at least as powerful in detection as semantic methods. The main mea-
surable difference between our systems is the direct energy consumption. In the first
evaluation, we examine at the energy consumption of our approaches developed so far. The
evaluation builds on the results from [6]. We then compare the memory consumption for
validating complex inconsistencies (category 3 and 4) of our automaton with the previously
developed FullCC. Both evaluations take place in an ideal scenario. Possible waiting times
and thus additional energy consumption for data storage over a longer period are not
taken into account. For this reason, we compare the memory and CPU utilization of the
automaton in a real scenario with the aforementioned GreenCC in a third evaluation.

5.1.1. Energy Consumption in Ideal Environment

The first evaluation compares the total energy consumption when applying our sys-
tems in ideal manufacturing plants of different sizes (small, medium, and large). For small
plants, we consider 400 k machine messages each day, in medium plants about 1.5 Mio,
and in large plants around 2.5 Mio machine messages per day (cf. [6]).

In the evaluation, we compared the modules of our GreenCC (LightCC and FullCC)
with Apache Flink (https://flink.apache.org/, accessed on 14 September 2023) and our
newly developed automaton. For this we kept the concepts of GreenCC and used the Flink
framework for stream handling. Table 1 presents consumption in kilowatt-hours (kWh)
and costs in cent. Table 2 shows our evaluation results of the climate footprint in grams
of carbon-dioxide equivalents (gCO2e) . We have already presented part of the evaluation
in [6], therefore, we will not go into detail on each point. The main results from [6] are that
energy and costs can be saved by using more efficient processes. In a medium-sized plant,
energy consumption can be reduced by a factor of more than 0.3 in this way. (cf. Flink (all)
vs. FullCC (all)). This reduction does not affect the accuracy of the detection. The reduced
consumption also lowers operating costs and the climate footprint. (medium-size plant in
EU about 676 gCO2e less). In the past evaluation, we also observed that the deciding factor
between the approaches is not due to the semantic transformation and validation, but to
the overhead that a framework like Apache Flink brings with it.

The consumption values of our automatons are highlighted in blue. The results show
that the automaton even outperforms the FullCC with a larger range of functions. The
difference in a medium-sized plant is 1.116 kWh, which corresponds to a factor of 0.24. For
the climate footprint, this difference results in a reduction of 293 gCO2e (assuming an EU
average of 262 gCO2e/kWh).

Overall, the first evaluation shows that the automaton structure has a positive influence
on the computing resources required. One main reason for this is the adapted internal
data management through which data are validated as quickly as possible in order to
forget parts that are no longer needed. In our next analysis, we will look at the memory
consumption during the analysis of a data set.

Table 1. Energy consumption in kilowatt-hours (kWh) and operating costs for small, medium, and
large manufacturing plant on a daily basis.

Approach Small Plant per Day Medium Plant per Day Large Plant per Day
(Costs\Day) (Costs\Day) (Costs\Day)

Flink
(1&2)

1.898 kWh 7.116 kWh 11.860 kWh
(24.04 Cent) (90.16 Cent) (150.27 Cent)

https://docs.python.org/3/library/tracemalloc.html
https://docs.python.org/3/library/tracemalloc.html
https://github.com/giampaolo/psutil
https://flink.apache.org/


Future Internet 2023, 15, 349 17 of 23

Table 1. Cont.

Approach Small Plant per Day Medium Plant per Day Large Plant per Day
(Costs\Day) (Costs\Day) (Costs\Day)

Flink (all) 1.949 kWh 7.308 kWh 12.180 kWh
(24.69 Cent) (92.59 Cent) (154.32 Cent)

Flink
heuristic

1.856 kWh 6.960 kWh 11.600 kWh
(23.52 Cent) (88.18 Cent) (146.97)

SPARQL 0.090 kWh + es 0.336 kWh + em 0.560 kWh + el
(1.14 Cent) + cs (4.26 Cent) + cm (7.10 Cent) + cl

LightCC 1.226 kWh 4.596 kWh 7.660 kWh
(15.53 Cent) (58.23 Cent) (97.05 Cent)

LightCC with
Change Detection

1.229 kWh 4.608 kWh 7.680 kWh
(15.57 Cent) (58.38 Cent) (97.31 Cent)

FullCC (1&2) 1.251 kWh 4.692 kWh 7.820 kWh
(15.85 Cent) (59.45 Cent) (99.08 Cent)

FullCC (all) 1.261 kWh 4.728 kWh 7.880 kWh
(15.97 Cent) (59.90 Cent) (99.84 Cent)

Automaton 0.963 kWh 3.612 kWh 6.020 kWh
(12.20 Cent) (45.76 Cent) (76.27 Cent)

Legend: es: ~0.049 kWh RDF transform in small plant. em: ~0.183 kWh RDF transform in medium plant. el :
~0.305 kWh RDF transform in large plant. cs: ~0.61 Cent RDF transform in small plant. cm: ~2.32 Cent RDF
transform in medium plant. cl : ~3.86 Cent RDF transform in large plant.

Table 2. Carbon-dioxide equivalents (CO2e) in gram per kWh for daily operation in small, medium,
and large plants.

Approach
Germany EU USA World

Plant Size 366 262 379 441
gCO2e/kWh gCO2e/kWh gCO2e/kWh gCO2e/kWh

Flink (1&2)
small: 695 g 497 g 719 g 837 g
medium: 2604 g 1864 g 2697 g 3138 g
large: 4341 g 3107 g 4495 g 5230 g

Flink heuristic
small: 679 g 486 g 703 g 818 g
medium: 2547 g 1824 g 2638 g 3069 g
large: 4246 g 3039 g 4396 g 5116 g

Flink (all)
small: 713 g 511 g 739 g 859 g
medium: 2675 g 1915 g 2770 g 3223 g
large: 4458 g 3191 g 4616 g 5371 g

SPARQL
small: 33 g + ges 23 g + eus 34 g + uss 40 g + ws
medium: 123 g + gem 88 g + eum 127 g + usm 148 g + wm
large: 205 g + gel 147 g + eul 212 g + usl 247 g + wl

LightCC
small: 449 g 321 g 465 g 540 g
medium: 1682 g 1204 g 1742 g 2027 g
large: 2804 g 2007 g 2903 g 3378 g

LightCC with
Change
Detection

small: 450 g 322 g 466 g 542 g
medium: 1687 g 1207 g 1746 g 2032 g
large: 2811 g 2012 g 2911 g 3387 g

FullCC (1&2)
small: 458 g 328 g 474 g 552 g
medium: 1717 g 1229 g 1778 g 2069 g
large: 2826 g 2049 g 2964 g 3449 g



Future Internet 2023, 15, 349 18 of 23

Table 2. Cont.

Approach
Germany EU USA World

Plant Size 366 262 379 441
gCO2e/kWh gCO2e/kWh gCO2e/kWh gCO2e/kWh

FullCC (all)
small: 461 g 330 g 478 g 556 g
medium: 1730 g 1239 g 1792 g 2085 g
large: 2884 g 2065 g 2987 g 3475 g

Automaton
small: 353 g 252 g 365 g 425 g
medium: 1322 g 946 g 1369 g 1593 g
large: 2203 g 1577 g 2282 g 2655 g

Legend: gex : Additional CO2e in plant of size small (~17.9 g), medium (~67.0 g), large (~111.6 g) in Germany. eux :
Additional CO2e in plant of size small (~12.8 g), medium (~47.9 g), large (~79.9 g) in EU. usx : Additional CO2e
in plant of size small (~18.6 g), medium (~69.4 g), large (~115.6 g) in USA. wx : Additional CO2e in plant of size
small (~21.6 g), medium (~80.7 g), large (~134.5 g) worldwide.

5.1.2. Validating Complex Inconsistencies

We have seen in the previous evaluation that our Automaton has lower energy con-
sumption in an ideal environment compared to previous approaches. This results in lower
operating costs as well as an improved climate footprint. In our next experiment, we want
to look at the causes of the reduced consumption. To do this, we look at the memory
consumption of our FullCC (best full verification approach) for checking complex inconsis-
tencies with that of the automaton. We focus our evaluation on inconsistencies of categories
3 and 4, because for validation of these content requirements, large amounts of data have
to be stored and, if necessary, transformed in the respective approaches. We have seen in
the previous evaluation that our Automaton has lower energy consumption in an ideal
environment compared to previous approaches. This results in lower operating costs as
well as an improved climate footprint. In our next experiment, we want to look at the
causes of the reduced consumption. To do this, we look at the memory consumption of
our FullCC (best full verification approach) for checking complex inconsistencies with
that of the automaton. We focus our evaluation on inconsistencies of categories 3 and 4,
because for validation of these content requirements, large amounts of data have to be
stored and, if necessary, transformed in the respective approaches. This is not required
for categories 1 and 2, resulting in a non-significant additional memory usage. Figure 12
depicts our results.

Figure 12. Memory usage during validation of category 3 and 4 inconsistencies.



Future Internet 2023, 15, 349 19 of 23

The table shows the RAM usage in mega-bytes (MB) in three scenarios with increasing
data set size: (1) No inconsistencies, (2) Category 3 inconsistency, and (3) Category 4
inconsistency. As can be seen in the table, the memory consumption of the automated
runs is very close to each other. The maximum value here is 0.33 MB for no inconsistency
and nine messages. This value differs by almost 0.01 MB compared to four messages.
The result shows that RAM usage can be kept almost constant by early validation. If a
category 3 inconsistency occurs, the run can be terminated early. This is reflected in a peak
of 0.31 MB for nine messages. Compared to the semantic approach, the automaton beats it
by far. Even with four messages, there is a difference of about 11 MB. In addition, the usage
increases with every incoming message. The growth suggests a logarithmic curve which
is positive for operation on large data sets in real-world environments (e.g., compared to
linear increase).

As a result, we can state that storing large amounts of data as a graph structure
increases the overhead of a program and thus has a large impact on memory usage. By
omitting this step, the improved performance from Section 5.1.1 can be explained. In the
next evaluation, we study the RAM increase over a longer period of time.

5.1.3. AutomatonCC vs. GreenCC in Real Manufacturing Scenario

The RAM increase detected in the previous experiment (especially the GreenCC) is the
focus of this analysis. In this way, we want to identify if there exists a limit of the ramp up.
This is important for a stable operation, because otherwise one risks running out of memory.
During our next experiment, both systems have been connected to a real manufacturing
stream during a time period of two hours.

Figure 13 compares the memory peaks of the automaton and the GreenCC. Both
graphs show a slightly oscillating behavior at the beginning. This is due to the fact that
memory is released and allocated again and again during the checking period. The usage
of the GreenCC increases continuously up to about 200 MB. After that, there is a fluctuation
around this value. The sharp increase is the result of a long intermediate storage of machine
data over a longer period. With the automaton, on the other hand, you can see that memory
consumption is significantly reduced. The maximum peak is about 25 MB. The usage of
the automaton remains almost constant over the period.

The CPU comparison shows a relatively similar behavior for both systems. These are
shown in Figure 14. Slight oscillations indicate times when the actual validation steps take
place. Higher outliers can be explained by several expiring timers at similar time periods.

Figure 13. Memory usage during 2 h of operation on real manufacturing data.



Future Internet 2023, 15, 349 20 of 23

Figure 14. CPU load during 2 h of operation on real manufacturing data.

Overall, the results reinforce the findings from Sections 5.1.2 and 5.1.3. The higher
energy consumption is explained by a higher memory overhead.

6. Discussion

This section discusses the advantages and disadvantages of the automaton in com-
parison with our previous semantic approaches. To this end, we first discuss the general
structure and the extensibility of the methods. Afterwards, we will explicitly consider the
checking for content inconsistencies (complex inconsistencies).

6.1. Automaton vs. Semantic Approach

The major difference between our AutomatonCC and our GreenCC is the response to
incoming messages. As explained in the previous sections, in AutomatonCC we use an
automaton structure for information management and processing, in which a state can
change based on incoming information. From our point of view, this has the advantage that
we know at any point in time whether all previously expected information is available or
not. The check for inconsistencies of categories 1 and 2 therefore happens in the automaton
almost without explicit checks (exception: SMD; see Section 4.1). In GreenCC, we had to
perform a SPARQL test after timer expiration for this information.

However, the automaton structure shifts many tasks from the SPARQL queries to the
automaton. This increases the complexity of the overall system. The program is devel-
oped modularly; the higher complexity has the consequence that fundamental changes
bring more expenditure. In comparison, the GreenCC has a module for handling the data
stream. This module does nothing but categorize incoming messages and store them until
validation. Changes to the checking process take place in the SPARQL script.

Depending on the scope of the constraint to be checked, changes in SPARQL also
become messy and difficult. For this, we consider the following section.

6.2. Checking Complex Inconsistencies via Template

In previous work, we performed the checks via SPARQL queries. For this purpose,
the manufacturing environment had to be modeled with ontologies in advance. For the
validation step, incoming process and machine data were converted from JSON to RDF
format using these ontologies. RDF creates a graph structure that can be traversed via
SPARQL queries. Validation via ontologies and SPARQL has the advantage that changes
can be incorporated in a simple way. In addition, the modeling languages are easy to
understand. These are two properties that argue for its use in a heterogeneous, continuously
changing environment. A serious disadvantage of semantic modeling in our scenario is



Future Internet 2023, 15, 349 21 of 23

that every discrepancy to be checked must be modeled and thus known. This makes it
impossible to cover unknown errors. In addition, many models (including queries and
ontology) have to be adapted even for small changes.

Therefore, we have decided to no longer perform checks of Categories 3 and 4 seman-
tically, but by means of template matching. We receive the templates directly when changes
are made. The line structure and the general process flow are relatively fixed. Thus, we can
still refer to the respective process ontology when creating an automaton.

Template matching also offers further scope for optimization. Currently, we use
an accurate method to detect inconsistencies with very high probability. As the authors
have indicated in [6], relevant savings are recognizable in energy consumption when
small measurement errors are taken into account. The consideration and evaluation of
approximate approaches will be part of future work.

In summary, both concepts have their advantages and disadvantages. If changes in the
checking process of complex inconsistencies are necessary, the adaptation of the template is
easier than revising ontology and SPARQL queries. If the process changes, complex changes
in the automaton are necessary. The GreenCC, on the other hand, remains unaffected. The
stream handling controls the message grouping; at the end, a check is performed.

7. Summary and Conclusions

Our paper presented an automaton for data validation tasks in (I)IoT scenarios. At the
beginning, we presented the problem of invalid data, especially in smart manufacturing
environments, and first prototypes to cope with the task. Subsequently, we discussed the
novel AutomatonCC concept, in which we particularly dealt with aspects of increasing
efficiency. By direct validation of incoming messages as well as detection of overtakes, the
automaton terminates the validation earlier in many cases and stores less data during the
validation than previous methods. This is also reflected in the evaluation results, in which
we have demonstrated the lower energy consumption due to reduced memory usage. Since
our automaton concept is adaptable to related domains, it can be applied in each (I)IoT
scenario where quality of data is of importance.

In future work, we want to further consider two limitations of our automaton:
(1) Currently, an automaton has to be adapted manually to an (I)IoT scenario. Especially
with many devices that are mapped to states, this process is time-consuming and error-
prone. (2) With an increasing number of devices, the number of states increases nearly
exponentially. An open question remains, up to which environment size our approach
scales. For (1), we propose to automatically create automata based on an ontology of the
environment to be validated. To address the second limitation, we propose to divide big
IoT scenario into sub-scenarios. An automaton can be created for each sub-scenario. The
resulting automata can exchange information at a higher level.

Further, we aim to incorporate data cleaning techniques into our automaton. There-
with, we want to consider in particular at what point cleaning should take place (e.g.,
directly after false validation or at the very end). Afterwards, we want to perform more
tests with our automaton prototype on real manufacturing data to continuously increase
the overall stability and performance of the consistency checker.

Our list also includes looking at machine learning techniques for validating data.
These methods usually fall under the term Anomaly Detection. In analyses, we would like to
find out whether machine learning can help us to efficiently detect outliers.

Author Contributions: Conceptualization, S.P. and S.G.; Software, S.P.; Supervision, S.G.; Writing—
original draft, S.P.; Writing—review and editing, S.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The used datasets were provided by Robert Bosch Elektronik GmbH
as part of a confidentiality agreement and are not publicly available.



Future Internet 2023, 15, 349 22 of 23

Acknowledgments: The work of this paper has been supported by AE/MFT1 department of Robert
Bosch Elektronik GmbH.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CC Consistency Checker
CO2e Carbon-Dioxide Equivalents
ECG Electrocardiogram
GB Gigabyte
ICT Information and Communication Technologies
IIoT Industrial Internet of Things
IoT Internet of Things
kg Kilogram
kWh Kilowatt-Hours
PCB Printed Circuit Board
RDF Resource Description Framework
RFL Reflow Soldering
SJI Solder Joint Inspection
SMD Surface Mounted Devices
SMT Surface-Mount Technology
SPARQL SPARQL Protocol And RDF Query Language
SPI Solder Paste Inspection
SPP Solder Paste Printing
X-ray Electromagnetic Radiation

References
1. Iftikhar, N.; Nordbjerg, F.E.; Baattrup-Andersen, T.; Jeppesen, K. Industry 4.0: Sensor data analysis using machine learning. In

Proceedings of the Data Management Technologies and Applications: 8th International Conference, DATA 2019, Prague, Czech
Republic, 26–28 July 2019; Revised Selected Papers 8; Springer: Berlin/Heidelberg, Germany, 2020; pp. 37–58.

2. Tao, F.; Qi, Q.; Liu, A.; Kusiak, A. Data-driven smart manufacturing. J. Manuf. Syst. 2018, 48, 157–169. [CrossRef]
3. Tian, Y.; Michiardi, P.; Vukolić, M. Bleach: A distributed stream data cleaning system. In Proceedings of the 2017 IEEE

International Congress on Big Data (BigData Congress), Honolulu, HI, USA, 25–30 June 2017; pp. 113–120.
4. Geiger, L.; Hopf, T.; Loring, J.; Renner, M.; Rudolph, J.; Scharf, A.; Schmidt, M.; Termer, F. Ressourceneffiziente Programmierung,

2021. Available online: https://www.bitkom.org/sites/default/files/2021-03/210329_lf_ressourceneffiziente-programmierung.
pdf (accessed on 14 September 2023).

5. Paasche, S.; Groppe, S. Enhancing Data Quality and Process Optimization for Smart Manufacturing Lines in Industry 4.0
Scenarios. In Proceedings of the International Workshop on Big Data in Emergent Distributed Environments, BiDEDE ’22,
Philadelphia, PA, USA, 12 June 2022. [CrossRef]

6. Paasche, S.; Groppe, S. GreenCC: A Hybrid Approach to Sustainably Validate Manufacturing Data in Industry 4.0 Environments.
In Proceedings of the 12th International Conference on Data Science, Technology and Applications (DATA), Rome, Italy, 11–13
July 2023.

7. Zhang, L.; Jeong, D.; Lee, S. Data quality management in the internet of things. Sensors 2021, 21, 5834. [CrossRef] [PubMed]
8. Groppe, S.; Groppe, J.; Kukulenz, D.; Linnemann, V. A SPARQL Engine for Streaming RDF Data. In Proceedings of the Third

International IEEE Conference on Signal-Image Technologies and Internet-Based System (SITIS), Shanghai, China.
9. Gao, J.; Xie, C.; Tao, C. Big data validation and quality assurance–issuses, challenges, and needs. In Proceedings of the 2016 IEEE

symposium on service-oriented system engineering (SOSE), Oxford, UK, 29 March–2 April 2016; pp. 433–441.
10. Karkouch, A.; Mousannif, H.; Al Moatassime, H.; Noel, T. Data quality in internet of things: A state-of-the-art survey. J. Netw.

Comput. Appl. 2016, 73, 57–81. [CrossRef]
11. Mansouri, T.; Sadeghi Moghadam, M.R.; Monshizadeh, F.; Zareravasan, A. IoT data quality issues and potential solutions: A

literature review. Comput. J. 2023, 66, 615–625. [CrossRef]
12. Song, S.; Zhang, A. IoT data quality. In Proceedings of the 29th ACM International Conference on Information & Knowledge

Management, Virtual Event, 19–23 October 2020; pp. 3517–3518.
13. Haav, H.M.; Maigre, R.; Lupeikiene, A.; Vasilecas, O.; Dzemyda, G. A semantic model for product configuration in timber

industry. In Databases and Information Systems X; IOS Press: Amsterdam, The Netherlands, 2019; Volume 315, pp. 143–158.
14. Cortés, R.; Bonnaire, X.; Marin, O.; Sens, P. Stream processing of healthcare sensor data: Studying user traces to identify challenges

from a big data perspective. Procedia Comput. Sci. 2015, 52, 1004–1009. [CrossRef]

http://doi.org/10.1016/j.jmsy.2018.01.006
https://www.bitkom.org/sites/default/files/2021-03/210329_lf_ressourceneffiziente-programmierung.pdf
https://www.bitkom.org/sites/default/files/2021-03/210329_lf_ressourceneffiziente-programmierung.pdf
http://dx.doi.org/10.1145/3530050.3532928
http://dx.doi.org/10.3390/s21175834
http://www.ncbi.nlm.nih.gov/pubmed/34502723
http://dx.doi.org/10.1016/j.jnca.2016.08.002
http://dx.doi.org/10.1093/comjnl/bxab183
http://dx.doi.org/10.1016/j.procs.2015.05.093


Future Internet 2023, 15, 349 23 of 23

15. Gao, S.; Dell Aglio, D.; Pan, J.Z.; Bernstein, A. Distributed stream consistency checking. In Proceedings of the International
Conference on Web Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 387–403.

16. Xuanyuan, S.; Li, Y.; Patil, L.; Jiang, Z. Configuration semantics representation: A rule-based ontology for product configuration.
In Proceedings of the 2016 SAI Computing Conference (SAI), London, UK, 13–15 July 2016; pp. 734–741.

17. Maier, A.; Vodencarevic, A.; Niggemann, O.; Just, R.; Jaeger, M. Anomaly detection in production plants using timed automata. In
Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Noordwijkerhout,
The Netherlands, 28–31 July 2011; pp. 363–369.

18. Hranisavljevic, N.; Niggemann, O.; Maier, A. A novel anomaly detection algorithm for hybrid production systems based on deep
learning and timed automata. arXiv 2020, arXiv:2010.15415.

19. Schmidl, S.; Wenig, P.; Papenbrock, T. Anomaly detection in time series: A comprehensive evaluation. Proc. VLDB Endow. 2022,
15, 1779–1797. [CrossRef]

20. Suhothayan, S.; Gajasinghe, K.; Loku Narangoda, I.; Chaturanga, S.; Perera, S.; Nanayakkara, V. Siddhi: A second look at complex
event processing architectures. In Proceedings of the 2011 ACM Workshop on Gateway Computing Environments, Seattle, WA,
USA, 18 November 2011; pp. 43–50.

21. Jayasekara, S.; Kannangara, S.; Dahanayakage, T.; Ranawaka, I.; Perera, S.; Nanayakkara, V. Wihidum: Distributed complex event
processing. J. Parallel Distrib. Comput. 2015, 79, 42–51. [CrossRef]

22. Anicic, D.; Rudolph, S.; Fodor, P.; Stojanovic, N. Stream reasoning and complex event processing in ETALIS. Semant. Web 2012,
3, 397–407. [CrossRef]

23. Ahmed, A.; Abdullah, S.; Bukhsh, M.; Ahmad, I.; Mushtaq, Z. An energy-efficient data aggregation mechanism for IoT secured
by blockchain. IEEE Access 2022, 10, 11404–11419. [CrossRef]

24. Batmunkh, A. Carbon footprint of the most popular social media platforms. Sustainability 2022, 14, 2195. [CrossRef]
25. Zahedinia, M.S.; Khayyambashi, M.R.; Bohlooli, A. Fog-based caching mechanism for IoT data in information centric network

using prioritization. Comput. Netw. 2022, 213, 109082. [CrossRef]
26. Kiourtis, A.; Mavrogiorgou, A.; Kyriazis, D. A computer vision-based IoT data ingestion architecture supporting data prioritiza-

tion. Health Technol. 2023, 13, 391–411. [CrossRef]
27. Sultana, N.; Huq, F.; Razzaque, M.A.; Rahman, M.M. User utility maximization in narrowband internet of things for prioritized

healthcare applications. Sensors 2022, 22, 1192. [CrossRef] [PubMed]
28. Warnke, B.; Sehgelmeble, Y.C.; Mantler, J.; Groppe, S.; Fischer, S. SIMORA: SIMulating Open Routing protocols for Application

interoperability on edge devices. In Proceedings of the 2022 IEEE 6th International Conference on Fog and Edge Computing
(ICFEC), Messina, Italy, 16–19 May 2022; pp. 42–49.

29. Vijayakumar, K.; Dhanasekaran, C.; Pugazhenthi, R.; Sivaganesan, S. Digital Twin for factory system simulation. Int. J. Recent
Technol. Eng. 2019, 8, 63–68.

30. Wingerath, W.; Gessert, F.; Friedrich, S.; Ritter, N. Real-time stream processing for Big Data. it-Inf. Technol. 2016, 58, 186–194.
[CrossRef]

31. Paasche, S.; Groppe, S. Poster: Handling Inconsistent Data in Industry 4.0. In Proceedings of the 17th ACM International
Conference on Distributed and Event-Based Systems, Neuchatel, Switzerland, 27–30 June 2023; pp. 180–181.

32. Pereira, R.; Couto, M.; Ribeiro, F.; Rua, R.; Cunha, J.; Fernandes, J.P.; Saraiva, J. Energy efficiency across programming languages:
How do energy, time, and memory relate? In Proceedings of the 10th ACM SIGPLAN International Conference on Software
Language Engineering, Vancouver, BC, Canada, 23–24 October 2017; pp. 256–267.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.14778/3538598.3538602
http://dx.doi.org/10.1016/j.jpdc.2015.03.002
http://dx.doi.org/10.3233/SW-2011-0053
http://dx.doi.org/10.1109/ACCESS.2022.3146295
http://dx.doi.org/10.3390/su14042195
http://dx.doi.org/10.1016/j.comnet.2022.109082
http://dx.doi.org/10.1007/s12553-023-00748-0
http://dx.doi.org/10.3390/s22031192
http://www.ncbi.nlm.nih.gov/pubmed/35161937
http://dx.doi.org/10.1515/itit-2016-0002

	Introduction
	Related Work
	Concept of an Automaton for Data Validation
	States
	Transitions
	Incoming Message
	Expired Timer
	Detected Cat3 and Cat4 Inconsistency
	Detected Overtake

	Algorithms
	Handle Incoming Messages and Detect Overtakings
	Handle Expiring Timer
	Inconsistencies of Category 3

	Example Runs

	Use Cases for the Automaton
	Smart Manufacturing
	Smart Healthcare
	Smart Parking Scenario
	Universal IoT Scenario

	Evaluation
	Experimental Results
	Energy Consumption in Ideal Environment
	Validating Complex Inconsistencies
	AutomatonCC vs. GreenCC in Real Manufacturing Scenario


	Discussion
	Automaton vs. Semantic Approach
	Checking Complex Inconsistencies via Template

	Summary and Conclusions
	References

